12 United States Patent

Evans et al.

US010990646B2

10) Patent No.: US 10,990,646 B2

(54) SYSTEM FOR DYNAMIC USER INTERFACE
GENERATION

(71) Applicant: HSBC Group Management Services

Limited, London (GB)

(72) James Michael Evans, Kingston Upon
Thames (GB); Rajesh Gupta, Woking
(GB); Vincent Moffat, London (GB);
James Edward Peek, Chelmstord

(GB); Shaun Smith, L.ondon (GB)

Inventors:

(73) HSBC GROUP MANAGEMENT

SERVICES LIMITED, London (GB)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 0 days.
(21) 16/622,507

(22)

Appl. No.:

PCT Filed: Jun. 14, 2018

(86) PCT No.:

§ 371 (c)(1),
(2) Date:

PCT/GB2018/051648

Dec. 13, 2019

(87) PCT Pub. No.: WQ02018/229499

PC1 Pub. Date: Dec. 20, 2018

Prior Publication Data

US 2020/0210513 Al Jul. 2, 2020

(65)

(30) Foreign Application Priority Data

45) Date of Patent: Apr. 27,2021
(52) U.S. CL
CPC GO6I’ 16/986 (2019.01); GO6F 8/38
(2013.01); GO6F 16/168 (2019.01);
(Continued)
(358) Field of Classification Search
CpPC ... GO6F 3/048; GO6F 3/0481; GO6F 3/0482;
GO6F 8/38; GOO6F 16/16; GO6F 16/18;
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

7,827,478 B2* 11/2010 Farrcccounn. GO6F 40/174
715/222
10,691,873 B2* 6/2020 Ben-Aharon GO6F 40/186

(Continued)

OTHER PUBLICATTONS

PCT International Search Report from the International Application
No. PCT/GB2018/051648, dated Sep. 24, 2018, 15 pages.

(Continued)

Primary Examiner — Xiomara L. Bautista

(74) Attorney, Agent, or Firm — Tucker Ellis LLP;
Michael G. Craig

(57) ABSTRACT

A computer-implemented method of generating a form
definition for a user interface form 1s disclosed. The method
involves retrieving form defimition data for a requested form
from a database. One or more overrides are optionally

applied to the form definition data to modily properties of
form elements. Form instance data tor the modified form 1s

Jun. 15, 2017 (GB) oo 1709558 generated and stored for reuse. The form instance data is
transmitted to a rendering module at a client device for
(51 21(;;51(;13:’/048 5013 01 generation of a user interface form based on the form
(01) instance data.
GO6F 16/958 (2019.01)
(Continued) 19 Claims, 9 Drawing Sheets
4435 16 1033
et fomeemoemo e es et W l
STURAGE FORM GENERATION LOGIC ¥ 3
] Hird
X ,,,.:-r-r""af
, FOFm %
| Reqguest 1 f
EGE\ uuuuuu =% ; B S o dd ﬁ | 5148
N " RS - Wi o f |
N %:;..;m - ;j’* } E-wﬁf\ | , o A4
D Retrieve ¥ 1 * fﬁip-ﬂiv - vt Renderad |
P » el | OGEEYY WO ISION B i _ o _
FONm | { form . i g‘xﬁerfziiﬁs nstance =07 |
613 definitions | — | ' |
;| efnitons R
N ; 51
by . ;
R o
ot : |
Form | ; {Daﬁ:.ﬁz ertry
L nstances : .. .

S 30 — | 1 % S
S SR | y
. g*w“'“mﬁ’ﬁ ; : ; i
Coptured gl * “orm Ticket

formdata |
. dlickets)y o
g

US 10,990,646 B2

Page 2

(51) Int. CL 2007/0208669 Al* 9/2007 Rivette G06Q 50/184
GO6F 16/18 (2019.01) 705/59

GOGF 16/16 (2019.01) 2009/0083616 Al 3/2009 Ali et al.
GO6F 40/186 (2020.01) 2010/0174974 Al* 7/2010 Briseboisco......... G06Q 10/00
GO6F 40/174 (2020.01) | 715/223
GO6F 8/38 (2018.01) 2012/0137235 A1* 5/2012 Sabarish GO6F 8/34
(52) US. €. 2014/0032604 Al* 1/2014 Young G06F7jlgggi’
CPC ... GOooF 16/1873 (2019.01); GO6F 16972 — "~ T oomE o 207/797
(201901)3 G06F 40/1 74 (202001)5 G06F 2015/0379244 Al1* 12/2015 Pathak GO6F 21/10
40/186 (2020.01) 796/7%
(58) Field of Classification Search 2016/0266881 Al* 9/2016 Thompson ... GOGF 9/445

CPC GO6F 16/938; GO6F 40/174; GO6F 40/186;
GO6F 15/00; GO6F 17/00; GO6F 17/21;

GO6F 17/30
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0101051 AL* 5/2006 Carrcoeevvvvvnnn, GOo6F 40/174
2007/0055924 Al1l* 3/2007 Farrcooooevevininnnn, GO6F 40/174
715/207

OTHER PUBLICATIONS

United Kingdom Examination Report from the corresponding Pat-

ent Application No. GB1709558.9, dated Nov. 9, 2017, 12 pages.

Wikibooks online, Xforms/Versioning Form Data with Webdav and
Subversion, Sep. 12, 2019, 5 pages.

Orbeon online, Versioning in Form Builder / From Runner #1157,
dated Sep. 12, 2019, 3 pages.

* cited by examiner

US 10,990,646 B2

Sheet 1 of 9

. \ﬁ!‘::ﬁﬂiﬁﬂﬁ‘:“i~\ﬁﬂJﬂﬂiliﬂﬂqEJW
'y ol e S e P P Pl R s A s il
T i = T
: L -l
; . . j
-

2021

27

Apr.

=
i

U.S. Patent

SINEN

AE

LU

N NE0H DIRYNA

t“ H.H.

"
L]
L]
.
.
i
i
i g
+
-+
+ A
-
o, '
[L P P P P TR T T I I PP L L T T IR T R W G L L L T T T R T W W L P L T T -
-

T T L LIl il el el N R P L L o o el el e e N P L LI P o el el e T

PrIv

|

:g-ﬂ-z

AN

! kS

‘ErrETtITITETan

Fac F ot ok ob b gt LT T A N I R KR ST I I E N IFEE EE
Sl - ol P P P i T Pl W B S - ol Pl T P i T Tl - ol Sl - - - i PP T T Tl - B e -
L]

E-ii,,nnn

]

SN I -

S L N T NN N L T N NN T R N N N T L L L N NN T L L L NN NN NE T LI E S NN W ey
. .
iy
'

TR T I Tl A A P T P P T T I T Tl A Al Al B L T T T e Rl el Al P P B T T T T i Il il il A R P T T T T I T il il el R T R T TR T T T il Al R R P T BT T i

MHhhhﬂhhhhﬁﬁhhﬂﬂﬂlﬂﬂh muuwnﬂﬂﬂﬂﬂﬂﬂﬂﬂuuuﬂﬂﬂﬂww MH””HHHHW .“hﬂhhhﬁ"“iﬂ Iﬂhhhﬂhhw
2 T e e e e e e MR T e e e e e e e e : : e :

!

uHunﬂ#wuuuuuuuw‘nuHunnﬂ#wuuuuuwuw‘nuHnnﬂﬂ#ﬂuuuuuuuw‘nuu*
e "

Ll b T |

W FF A r LT YR L T T T

W

[]

T N L L L 0L L P R R K L L B O W R L PR L L O W R R R L PR PLPLIEU U O T R R PR L JPL L I O R R R L PR L L IPLI P

T Fopr T P m ey - PRI W W PRy e PR ey -y - % PN Ay -y - P e ey

A o o W TR PLPLUPLIUUE O o o NN e

Al o N R TR AL R o ol e e M o o N e R TK L LU el o W e

T e e el il o Y P T

%.3,% SIAYNAC NIAMA YIPG

P T e e e Tl T BT

P P T T e T Tl ol Y

US 10,990,646 B2

Sheet 2 of 9

Apr. 27, 2021

U.S. Patent

_—1
.ﬁ.-..r-l.r.l.r-_
-

y

L L b

ok chh R W W R B

o
7

I PR o o T il el e i T P o M M T Y Tl il e e T T T P P P YT

T T ik e ol it il e T e T T - W A A T ol el il Tl e i S - T -

H’H’j
o T TPl s et etk ek P 0 T R i i

Tl T e T ol PP L e e T W e o T ol PP PP e e W W ek o

o - (ol
e Y &
" wrilanand ~hannd

% K
[
I
II‘W“E&&iﬁ:’I??ﬁI -
"
]
¥
¥
Ry AN L L N NEEE KL L LI LT -r Hﬂﬂﬂﬂﬂuwwﬁinﬂlﬂﬂﬂﬂ - m EE NI RN EEE X"
m“ W L ml “.
: F _
4 . ¥ :
¥
¥
s d :
. - - :
T .-.m.i‘.u". b | .- 4
_ m ﬂ#‘L”fm “ “ M
. i .ll- L] 2
[4 ; .l.hul.rn.-. H “
i :
) L :
H - e e el el m H
™ F !
b . 1
EoE i :
- 4 m W m 2 . %
m-rl : bl 2 ' .
g & Y ,
.mr?fh .ﬁFHﬁWF m
- el e m
i wrd “
J..m_-i._ r M “
i =3 A . :
lﬂ1§1 E 5ﬂ"1 [] F
ﬁuf-..m] : .»t(.rb. N “ . M
555?& laaaﬂ.m 2
¥ . 2
Qo g Gy
g e L LESETLTX m
wﬂhﬂﬂ ﬂhﬂﬂ m m
y 1
i H :
] . #
H
2
¥
¥
N ;
H
3 : m
w #
* . m
3 ;
M 1
3 : m
2 n ¥
“ n
2
m .
F ¥

F
T T TR TR N N RN W T T T T O T I T TR M RN W T T T T
+ -
b Ak ik = .

- W W N R U W T W A W W, W, N R i L W R R T R W W e R T N M R W T W N W R R I T W W Pl S

AL W R I R TN L L L L L N E NI AR L L L L L L L e NN AR LT L L L oL - R E AT LT L L L L L o S F A A REE T LT R TR L A I A REEA T TR L L L I A A AR LT LT L LT EH L W T A A A AR LT L LR L o o o AN AL L T =

- ; 0 N ‘ I..
. H . . i ' = .
P P P o P P o Iy P M o e Pt P iy 4 o B e P T Iy I 0 0 o e P Py Iy o S 0 o o e 6 P O e P e T W I P 50 PP P W i I O O PP PP W T I I 50 0 P P M T I T 0 P PP e T T iy P S

B T Tl T Tl WO IS TE T T T 7 7 TR T Tk Tk T IS B TR TP T T T T Tl Tl i, T ISP TP L T T " Tk T Tl Tl . IS IS T TP T T T " T T Tl Tl el P IS T T T T " T Tl Tl I T BT B T TP T T T T T Tl o I T P T T T T T Tl Tl i o T T T TR T T T " " T Tk Tl Tl Ml BT BT WK T T T T T Tk Tl T S BT T T T " T Tl Tl Tl o IS PE T I T TN "N W T B
L L el e e T P L el e e T e T P T el e e e T TR P L el il e T T T P P el el T T P e P P el sl el e e T e P P P el el e e T e T T T T P L Pl el e e e T R I L el e el e T

wdrreal ;
e _ e I : £
Y =3Bk M,w G T3 M.u “ m,w
ISR BRI R R R K] B A B
i 8 PLALf LI - S B B O 3 S
ﬂ““ n! : S R Y ﬁ S ”“m__ w “”“m
q._.mw_ “ : . :
> L2 ; oo - - boee
i L7 : _. m
o ,,

¥ Y

..l![tllﬂ

E
p
[
K
[
[8
1
\
E
]
[
[
[8
[1
[

fiElttW‘ﬁﬁﬁﬁﬁ’?ﬂ?Ftlttt‘ﬁ\lﬁi”?ﬂfil!ttl‘\\hﬁﬁ’?ﬂﬂllttI![Ihh”??ijllttlI5[[&3”?iiﬂllttI![Ihh”??iilltttIﬁ[lhh”?iiﬂllttIl[[hh”??iilllttIﬁ[fhh”??iﬂlltﬁ

e ST
SN o

Fig. 2

US 10,990,646 B2

Sheet 3 of 9

Apr. 27, 2021

U.S. Patent

SIEY ANIYHISNOD xS

dVIN INIYYLSNGD MY

JOBEAD Q1314 AR

d¥iA JGIMYIAS Q131 AIYS

JOIMHAAD NOILDIS Ny

YA CINYIAC NOILDIS NYA

;

AT13i4 AN

NOISEZA Q131 B

NOISHIA NOILLDIS Ny

NOIIDES A4

IDNYISNT A

W

NOISHIA INEOd Y

v

SRISE T

US 10,990,646 B2

Sheet 4 of 9

Apr. 27, 2021

U.S. Patent

paly

% o
A
L

.,
SUDISSRACNT

»

age] ‘adAL Pl Py

fLUOISIaA

SIURIISUCT

Pi) w0y

.— - o . a)
- -
.lrr.. -I-n.-
e -

L=

-

= - .

.-.I-I

US 10,990,646 B2

Sheet 5 of 9

Apr. 27, 2021

U.S. Patent

+ o
b
0

1] ULIO

| AJIUS PR

TiTal
PRIBPUDY

153nD3Y

SJURIS U

JIRTo R

ALY

=
. .

- e

SRS

SBIISAD

Wioj

IABLIRY

LiJ0 4

IS B
B TENE ST

e

ALT e 3NAL Vel

'
Yo

' al

iiiii

-

K=<y

(SEXET)
eIE0 ULIO)
SER[Esig

3 ELS U
LSO

SUCIHULSD

L0

ADTH0LS

US 10,990,646 B2

Sheet 6 of 9

Apr. 27, 2021

U.S. Patent

e id N (94a 007) uvHOUWYA 3NTEA MIHIINTH £
LRIy LA QUL mm_ﬁ.ﬁwmﬂm KE G S0MUIA0 B3
W0 L0 3NN ASYT

- e sxa wy g PR o L
NN 3V RS
AL 0GT) CHYHOUVA 3MVA DINVAEC
(SIAT] G} TAMYHOMYA 41 TEslA
SAG G INYHONYA 4L ATND Qv
GAG 5 TUVHORYA 4L AHOEYONYA

) e AP SR

m { o pnbemn 1y e ook {pen cr ol foo o . SR . WH WQ%M - PWKW@&&

- SKIDATXOXIO oid) N R OL ZEHORYA :5: “
WA T z

“ ek £ 3 _. | oad | et

.‘\“I‘Iﬂg‘.ﬁﬁ.ﬂ.I.I.lg‘.ﬁ.‘.l.l.lllfg‘.ﬁﬁﬂﬂlﬂﬂfgﬁﬁﬁﬂﬂll

K-

: .

‘ . ! v o

P g V4L Wi oih R AT Y s eTat .m ; ﬁ £

DX D NN EERON O SO0 D] o
.u : ‘__ .__.qum q....«. : u.,._w_ 5 X “M.ﬂrﬂ & i S m w._..__rJ .._- L..ilu.ﬂ. mu.wu.. ___ ___.W..*,w.mwuq.m ‘ _. _._-t., .r ._._ m'l. _w.w mtm-—ﬁm u M
U0 D NN uEEAON DNOISSEA 0 B b Gk GBe] HHON Y, TYNDILAC

Pk
ap;
eart

;-r-h-'} {r iy
L. ‘::::3 1":11.:.:1!; {--
A I

;:ETcmMW L wm ,Mﬁxm
FHYHOHYA 0318YRS I0HEEEAG HYTINYH
,m_ 3 ﬁ w m.w R m,._mm,r“ 2:

7o
In

-.‘F
o ek

MR

Tf

oo

]
Y

ﬁmu__.J____._.._.u N m\}.w i AW
AV AUREANG O S

l‘l-::

Tl Tl Mkt Nty Wy s 0 0 O S il il il il il s Tk Pk P e W P T 0, S S, 0, S ol ol il ik Nl

rcfemet
L.

o -
T

)

Py
1

ST Ry TRy, e TRy,
H""w"‘ " ."“'i“'nl-"" ""‘hlrlrl;ll" """-l‘-‘-

L

‘_1

]
Y "l'!

.'h--I--'ull:--I.-'_-\alll

0 A %

n
]
.H.F.l.

-\."H
|l|u|u.-|-"
ez |

T []]
L.-L-JI..
i I
b
ey
' h
el sl du
g
N
e 4
oF i i TeF B e ' Tl

il L*,,_, 3

;! 1 -
8 G CevHURYA] Bl
BN Q07) Y HOUVA 11 AU0LYONYA
EIAE 001) ZUYHOUYA A DNV

MR N
“,.m:ﬁwm

,,h Ww,ﬂ,

L
m
_
_
_

L
i
{ Fi

KL
' "‘*-...-:..-53

L.

_p""""‘ -?\.:,,‘
I:"I’!'H =
4 -~
i}“hi
L,
i
i‘-
i
Ay,
., I
h"ﬁ‘.“."h.
-
.‘iﬁ.-..n..n
-
o f"'(}‘{‘

. [Bp T4 T 5 T Y

3
- -1-“
et

{.
{

LA

o, ﬁl_! -

=L
=2

.
Ny
mt
oyl
F
E
[
E
k

© A h"‘I--a't""‘tq_..:ﬂ;-"t'h_-.‘___..-i'hh___,:s-
Lol
S
M
Hw’
odod
n, L
I‘F:'EJ:
L
Emm
[I
LB L

—

r
i 1

.3

rErk

H

T
™
i
L 5 & T & J

L

N

r
F
/

i JUANG Qv |

ol

E

ﬁ A umé.w O O34 & 8
%

e Y

i
h

A

2
.._,._mem
4

-;’:-_F:
N
o n
N N
.'.\:* E
52

i
O

.. ,Hrww 1
HoHAN

L 2 2 0

5L

1. {43 E..

TR
{\'\(-u!'“
1
|
[+
r--.-
€1 A7
LI H
#'l"'
u’ﬂ}f‘
e
Lt 3]

¥
; &

L ol
sk .

ALY T T T
rﬁi.'
L=
T
CEENEE ;"l."l.!"l-; t 4+ oF o o
L Tl
T M

S
,_.:_....3
o
Lo
s
nn

I
3

-q-'—'—.
!.'5:-

%

q
w
Y
h.
-
i
LT

L
|
+

™
k.

N

24

LAy T Ry AT,

X seexbtaes .;z.-_ - o
:Lutuu gun.guu- :u.ri.r:.-“)
YoV e T ey g™

SN A T
z, JOMIEA O .”
) i 1 il

m
bi

U.S. Patent Apr. 27,2021 Sheet 7 of 9 US 10,990,646 B2

T
) .llb. , -

P L Ry S
R

US 10,990,646 B2

/ ‘b4

N

A A L A R T L T T L L T I I o R T R T T T A T Rl Ty L G Y T W e T A Bl L T Il ey L R A e T I I L Rl e, e, P A L W A A - T T A T T ol P T SR L e Tl T, T I T e S T L ey e L T R L T T AR, L I T L T A S T A B L I e L L A o L L T Y P T IR T N Ll R L S R R T T R R L I L L T I e T L I

W

1‘:"-;"--;“ '..'-ﬂ!l'-‘-‘lil.l. 'HE“I’HEL. A" "l el AT i.:l l.lnl...'ltl I‘”‘I.;“'.E:.ll;l 'E‘-‘u‘l-lgl-i.iii";‘-'g‘llr.;‘ l.'...'..r-'-li“'E‘l‘u‘.‘-‘.%“'EE“"E‘H‘“";“"; L L,] ’5*"-%.‘ o r il 5'*':-‘.-:: ;E“:"E‘Iﬂ‘"‘.l"tﬁ“m

ms;w

En--&tﬁn:-.\tﬂwﬂ rﬂinnl:pﬂf&.
_mwﬂa mpmm { a5 L

HEEELH NIRRT E LN A E T EIOICO SRR

ﬂl.' 7 0, -*. .n |. S e wt kb o e ek e Y Y e e e T o e e ko s - - . , , .
H - r- Elt%lt‘%:t‘élt‘!‘s't . \
g mmmwmﬁﬂwwwﬁﬁwmm; s M mrﬁwﬁhdmwmﬁmmmm

l%‘l%“%“%i

N I t

: S el
- “‘l#ﬁ-ﬂ.ﬂﬂ.&.ﬁg T LA N IR R U A e A R L A K T R L T oy . ,
f PR f Ry B aad :._m . __mw__,_.:. o
- 1 Tan Sk AL 1IN0
r L
Hnri 3.WJ r X i 5 .ii- 5 A i’ et it Wi A il e e W it etttk et ittt i i A L L i i it i il il i
. FFIEH Y 4
¥ Yn w

o el

Mn?n._i.._t..l.:‘rlr.f.!.l.i.l..l..hj.l..::rﬂ!.b‘.i.t}.i.‘.x E PR .l__.vtr..lr.l._..l:l..-r:fn-.._. .

Sheet 8 of 9

Apr. 27, 2021

3

.

el
<

U.S. Patent

m... n u ..Hﬂh) ..M-.iﬁ ...-f l...m -“. i F} . .‘&.m\t‘ " .E;._. L“ - y 1:.*;*";;;**.‘ .!.l.. l.n.‘l.._.l..ili.i!.lh.lh;._.!! l.l.n.l.-...ﬂ.l..i..! ot b WL i LB b A e . wI._ v .l . .
i A BLS R T S e .
g MLt I A ¥ mww) P ; %ﬁ?.ﬁu;PLﬂMn o ::ﬁﬁwruf WM hw

5
8%

Fs

L
i

sy A %

Ly ._.....{.h PPy -“_..-.._.-...
Eﬁ:ﬂﬂi‘ﬂ%uﬂ

.

m:.
|
rtgtggtig

AN xw"_muw“ T Al : ; ¥4
uu.ﬂ mm._.v .n.m._m._u..mﬂw._.___.m“ ,m. ey a&ﬂ”r..... k . P y My WA 4 rh__.___.,_.. .t...r "__L.._ . .___ﬁ LT L___.._".n___...__. . h_ﬂu
. .] : . x ']
&3

L E Y
E”n"ﬂf:
&
o~
i i
s
e
AL

3 N

Vv Yh YAy \; R Hels

i HJJ Mﬁ, “H %3 m.f T Tt
m. %Eﬂf w i mﬂ AR FTIN

Il - A AT AL TR R T T R e e S A T ‘.i_-t.....l- g e B B b o p i]

Al At UCBSIUIECY B0

.t.l.igi_.

w WM\WM.\H_E._:# #RMKM .m %wm TR I MR M WS WA T O AT N T
o m “ _ M 4 § }ﬁmm Told g

-.-._..-.._"t.___._ ..l.._t..l_.art...l_..r.._.:.._.:...l-!.‘l.l.I.:...tl_.i.ln.l..ial.!.r...t.-li:?!?tt*-’.‘#;?

¢ w
w
E)

{4
m‘.l.-.__q..___q. b, T, o N o T T T, S T TR AR P T T e Y 1..1....1.

P 4 P P P T iii.umgf&i.!.l I ol N Y . D I ol A 0 0 e o A !hfu_..rﬂ...__i o,
o) y ,_“ BN o Pt Ains
#m ﬁA _ﬂ..._“ﬁ.mman m.tm“ _n:m.&a N
. W_mw rw w :_._..f. . e .,..h__._.. : t_____{....._
_nqﬂ. . . ot Fy
" :._, T _Rhwh ﬁﬂﬂtfﬁhﬂa ,Wuri;{ L{ , | N |
mm o 1 .,.f.... . ¥ - “ _.."..__m L. WL, T o LA e LN e AT ML B el LI S NN P) W A e L P S A YO G L I G N ol
g . .
F..._-_...-__.::. J..J.n.l_..-.__n.l..l_...ln.-___"i..*i:!lt!‘lnﬁt!.‘x!!l.ittvi._i..._-___-_....l.I.....-.__.Il-v!.) - b i . b = " - b y { -.m..u...._n. A .l: .u_.._.lj.: a.
M ““h i

n 1..__._..: I o :.._- R ﬂ....___ A H.J___ i .1“ H dm.-ol,
&, S m:...u j m.#.__p,.ﬂ s uuﬂmm“"“rﬂwh ,..i “.xm*u",...ﬁ {T_imr ._...._“..-_M..
-;\Uw..m.ﬂ.mm»wfm ; nﬁ._ +HU :rhqhu.thn“» ﬁlﬁiﬁﬂ!ﬁ-li! 3 - L)

4 _.....m:._._.. h L..________.

P o o e T e e e e gy ;g

ol Ol gunowyueuemes Ry e SN WRCORY SHAL9S

'WHH:M__M “ ...Mw.lm qu) "_m._.__.._i.._n..ﬂ L W S S, e, Gl e T, B S B Bk ol O, . S I B o)) . o . . . o . - " i
P> % A YR H iy oy m:i.,ttifit.iirii i e
K [+m_-..“ < 0 :__.. . .J.__.J _____. 77
iy E P W L a %ul} R “ N«.-_r t ..-_.-.._.___Pr.ﬁ. . M W‘ HLALW l..mi.w . ._-._.wu_ M Mlhh.muﬁhnhuﬂ."r#w Mn.u "M ._mu_.f___
mam #M-A.W ..W.n.nm .ﬂu.lw .“M?.H M”wh. .H...H.hﬂtl W-w...m.q ' M rm m, m m_am m Il T, T, e B T, T, e ’ i ﬂ« m H&n e ot Hr.w. Heto ﬂ.. ._.._1. bl m.__- :J. -f.__. #L_ ___...-__
- AL LR N R T L A A T o N A L i B T L N T
I 2]

Al e e T R T TR, T I T R T T T L Y T T R T P L L e T L T e L T P S o T T Y T R T P e e e T O L T e e e e TR L T T e e L L e T L T T T P T T T T T L P T T P T T I L T T T P I L T T T

N R PR ha gt 5 o4 b R te-giat g 4 g B R Pata-pt g g 8 ow R tata- g g £ R Ltargs gt gF g A o i g ge g ok R W Al g e g A e o e e Fas e el by ot b 2 R A R -k ok o e e Pyttt o B Rty Pt gt d o i Pabaod g8 R Rt g g

<
&
Hl'b'('!":g
E,
L
i
S
75
i
wiirea
i T
}::_'_‘.']
st
mmml
!
!'m“‘
whe?
A
=2
I
.
s
i
oo
oot
s
e
Ly
I R
:1%
E
R
L S
-

" 1y h
..n. il & ._.u..rw... - u_.w .r_.....___

o iuﬁwﬂwﬁﬁm.inmwﬁﬁmmﬂ%ﬁﬂi ay T
_ 3.“_ Iy Py mmm . 3 m!j % u L_%..H

”n :ﬂg L W W

.ﬂ_."l..l..l.lp.l.wau_-!..l...l.l.i..._]l.ﬁ

t Fl.lh..m.m ¥ . % = : xS FE ¥ n L il el ol e W e

; LﬂiM - Mlm #mf“m \.M ¥ L g . S A RN R R R AL R T N KL I R - . s

et 0 FUEH x O gremdweusges _ S e .ﬂ. “ iy 94BN
s

L
=
A=

Fl

!!E‘iguﬂiéhﬁgﬁl

e g e o g e e o =

,.__.... nFOEDE g
__a_.:-...mlnm L__.-.. t1 N u“m‘:_ﬂ j t...“._._,

- m. HENATAE
Eu‘%rﬁ .f ._._.ruﬂ.-r____....u .-Mr.u* fr_.__.r .r... ¥ .r._Fmr..w-

ot ot] Eﬂ%ﬂ

i

BOUS RN 1R

r ;‘"
3

N
EX 4
O
o
i.,l--l-‘h
.
)
ey
b '
i
:
:‘l B2
C"'i..‘f-
)
e
b

£ g g bt P T
- n . L]] -N uMUH] i 1 i
. r ‘ -
. y i ‘.I-l.m. . h— u..‘. .-. . L | N H. u...w A . #

- . " . ..&. .l.—l. w k-3 . i

. w1l I :

o et o [(WAN f

E | - L ‘ .

....l.-l..!:.r.ﬁhh....l..-l.-l..h:.—h.ll....l..-..l..h..hl.".—hl..........hllﬂ.‘l..l..l..-l-ll.-l.llht.-.-l‘l.ll.-I-I-.l.tlr‘l-.llll....ttthhl 'E|.rhE.—.l.-.lhll|."EEEL.H.I...-'rnh:hhhhrrthh.h.h-'.rtt:.hhh..'.Ehh..h'...tEn.h.h-h'.rt:Fhhh-!E:.h.h-....l...l.'h.'h.-h.-.......'...'....h.'ht.-h..rl......'..-l..h.:.r.ﬁ.-hln....l..'..-l..h:.r.-.lnln.l..l..-l'l.r.ﬁ.r.ﬁ.-..l.|...l..-..-l'h.rh.:.-..l.....l..-..!.'h:.-.".l..h"t:hh--"HE:F'-‘FFHI[EF--"hH‘.hhh.-rthhhhh-Frt:;hhhhrtt:hh.h-..rt:hh

TS T T T S T T L UL T T

sl i S L t:nhh--r-:: S 3 N o ..h.r.ﬁ.‘u.n.- E_T .!..h:.r‘h.l.l....'. .Ih..h.r..-.‘...l.'-.'-t:.r. E X F Lk} .-ll-.l.u.ltr.I. l'...tttl"l..l.lll.. 'ttrﬂlhh-"!ttih-‘r' ' e Jek o I .l...l.'. F T T o 4 A g] .'..'n.'h II.—.‘I... '...Ih.'ht.—.‘.l.....-...'h.'h.—h.—h--.-.h:'h..--.'h.'h ‘.—...l......'..l.'h!.—.‘.—h L x| .'..'...h.'ht.-.. E T T | .'..'-..h.r.ﬁt.lll L .'n.'-.l.-.ﬁ.r.ﬂ .l o . . rr:.rh.rlll... l..'..'n.'.nt.r‘.r. L . B .Ih.'hu.‘r..l.....llu'..-n_..'h.r‘.-h..l - 'E!nlhl E T .l l E-hhlh-ﬂhhhhrﬂhhh-rﬂhh“nh- .l..'..'-..h.r.ﬁ.‘llh L3 ¥ 1 .'- rh.r.ﬁ.illll.- .'..'l.'h.rh:..ll... -...-.!.I.-.t.-hl.

m
|
m
.

US 10,990,646 B2

Sheet 9 of 9

- meﬁchwiinmwwmhm%wgmm o i\ﬁm Ewwww k- mmm)

. - _ S{npOU i1} Joreisual uilog) SWa
- ppg o8eio)s 7S BHRI0]5
L uBISIBIRg ITESICIER
- 0v8 PR SIRLIEILY 978 3%&5_ 078 .
2 A | S | S . S I AJOLLIDY
(P8 MOWSN | 05533044 3G BN WIOMIBN _ 55300 44 CCB AU

GO] 3DIA3P 35 P08 J3AISS WG

Apr. 27, 2021

U.S. Patent

IEYSES
3SR RIE(

JBALTS
W30

ETF i AT

US 10,990,646 B2

1

SYSTEM FOR DYNAMIC USER INTERFACE
GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a national phase application of Inter-
national Application No PCT/GB2018/051648, filed Jun. 14,
2018, which claims priornity to Great Britain Patent Appli-
cation Serial No. 1709558.9, filed Jun. 15, 2017, all of which

are 1ncorporated herein by reference.

BACKGROUND

The present invention relates to a system for dynamically
generating user interfaces, in particular user interface forms
for entering, editing and displaying data.

Data-driven user interface generation presents a variety of
technical challenges. For example, while the use of a data-
driven approach removes the need for a user interface to be
hard-coded by a programmer, much of the flexibility of
manually crafted user interfaces can be lost. In environments
where user interfaces change regularly, data-driven
approaches can also result 1n a proliferation of incompatible
form definitions, which can be diflicult to manage, and can
lead to errors, for example when form fields are added to or
deleted from a form definition after a form has been used to
input data.

SUMMARY

The invention seeks to alleviate some problems associated
with prior art systems.

Accordingly, 1n a first aspect of the invention, there 1s
provided a computer-implemented method of generating a
form definition for a user interface form for transmaission to
a user interface module, comprising: receiving a form
request comprising form 1dentification data identifying a
requested form; retrieving from a database: form definition
data for the requested form based on the form 1dentification
data; and at least one override data eclement defining an
override, the override data element specilying an override
condition for applying the override and one or more form
data modifications; generating form instance data, the form
instance data comprising a data description of the form
based on the retrieved form definition data, as modified
based on the at least one override data element, the gener-
ating comprising, for the (or each) override data element:
determining whether the override condition defined for the
override 1s fulfilled; 1n response to determining that the
override condition 1s fulfilled, applying the form data modi-
fication(s) defined for the override to the retrieved form
definition data; and wherein the method further comprises
outputting the form instance data to the user interface
module for generation of a user interface form based on the
form 1nstance data.

The term “form”™ as user herein preferably refers to a user
interface, including a collection of user interface elements
(such as mput fields, selection lists or buttons, checkboxes,
text labels, and the like) which can be used to mput data.
Such a form may, for example, be presented as part of a user
interface for a data entry application. The term “form
definition™ refers to a set of structured data specifying the
form elements and their properties, from which a form can
be generated. A form definition may correspond to a par-
ticular version of a form 1n the case where versioned form
definitions are stored. The term “form instance” preferably

10

15

20

25

30

35

40

45

50

55

60

65

2

refers to a particular instance of a given form definition
(version), which may have been generated 1n response to a
specific user request. Diflerent form instances generated
from the same form definition may be diflerent (e.g. due to
application of different overrides and other control param-
cters controlling the form generation process). The data
representation of a form instance (e.g. as a JSON document)
may be different than the data representation of the original
form definition (e.g. as structured data entities 1n a database).
The term “override” preferably refers to a modification rule
applied at time of form 1nstance generation to modily a form
definition based on a condition.

Form definitions stored in the database and form instances
generated from them therefore provide data-driven repre-
sentations (or data descriptions) of forms and are therefore
preferably not executable code (whether machine, virtual
machine, object, or high-level code or executable script),
though data elements within the data descriptions may
include references to external code (e.g. calls to obtain data
values from external sources).

The retrieved form defimtion data preferably includes a
plurality of data elements defining form elements and speci-
tying values for properties of the form elements. An override
data element (or each such element) 1s preferably associated
with a given form element, the form data modifications
defined for the override including one or more override
values for one or more properties of the associated form
clement. Applying the form data modification(s) of the
override then preferably comprises setting one or more
properties ol the associated form element (in the form
instance data) to corresponding override values specified 1n
the override data element.

Properties of form elements not modified by an override
are preferably set (in the form instance data) based on the
form definition data. Thus, a form instance i1s preferably
generated 1n accordance with the form definition data except
that specific aspects or properties may be modified by
overrides.

The override condition of an override 1s preferably asso-
ciated with a control parameter controlling applicability of
the override. More particularly, the override condition of an
override may specily a control parameter controlling appli-
cability of the overnide, and a parameter condition relating
to the control parameter, the method comprising determining
that the override condition 1s fulfilled 11 the control param-
cter meets the specified parameter condition. Thus, the
parameter controlling whether an override applies 1s pref-
erably specified 1n data and configurable, rather than being
fixed. In a preferred example, the parameter condition
specifies one or more values of the control parameter (e.g.
explicitly or alternatively implicitly by specifying a thresh-
old or range), the method determining that the override
condition 1s fulfilled 11 the specified control parameter has a
value corresponding to the specified value (or one of the
specified values). The control parameter may be a parameter
received by the request, a context variable available to the
system, a parameter obtained from an external data source,
and the like. In a preferred example, the control parameter
comprises a form field, the form field preferably associated
with a second form, the second form optionally displayed to
a user prior to or concurrently with the requested form.

An override data element may specity values for a plu-
rality of properties of a form element, the method compris-
ing setting values for each property of the form element to
the override values 1f the override condition 1s met. Over-

US 10,990,646 B2

3

rides may specity null values for one or more properties, in
which case those properties are preferably not modified by
the override.

Preferably, the override specifies values for one or more
properties of the form element, the properties defining one
or more of: a visual appearance of a form element; interac-
tive behaviour of a form element; and a data value associated
with a form element. More specifically, the properties may
include one or more of: a property specitying whether the
form element 1s visible or invisible; a property speciiying
whether the form element 1s editable or read-only; a property
specilying whether the form element i1s mandatory or
optional; a property specilying a default value for the form
clement; and a property specifying a label to be displayed for
the form element.

A given override (or each such override) 1s preferably
associated with one of: a data input form element, preferably
an mput field, and a form structuring form element, prefer-
ably a section element defining a section of the form.
However, the concept may be extended to apply overrides to
any other type of form element.

The method may comprise applying a plurality of over-
rides to the retrieved form definition data, preferably in
accordance with respective priority indicators associated
with each overnide (this may mvolve applying data modifi-
cations or form element property values from higher-priority
overrides 1n preference to corresponding modifications
specified by lower-priority overrides).

The method preferably comprises storing the generated
form 1nstance data 1n a database. The stored form instance
therefore reflects both the form that was requested and any
overrides that were applied (and/or other modifications
performed). The form 1nstance 1s preferably stored 1n a form
that can be directly processed by the user interface module
(c.g. unlike the form definition data on which the form
instance 1s based). Thus, the form instance i1s 1n a sense
“compiled” from the form definition data and stored 1n the
complied form for later reuse.

The method may comprise generating the form instance
data based on the form definition data 1n dependence on one
or more control parameters, and preferably associating val-
ues of the control parameters used to generate the form
instance data with the stored form instance data 1n a data-
base, for example as a key consisting of one or more
parameter values. The key can then be used to determine 11
a form 1nstance already exists for a given form request with
a particular set of control parameter values.

The method may thus further comprise, in response to a
later form request specifying the given form (1.e. a request
received subsequent to the original request and generation of
form 1nstance data), retrieving and outputting the stored
form instance data in response to the request. This may
advantageously be done without regenerating the form
instance data from stored form definition data. The later
form request may request the same form with the same one
or more control parameter values, the method comprising
retrieving and outputting the previously stored form instance
data based on the request and control parameter values (e.g.
by selecting the form instance from the database based on a
form 1dentifier and a key corresponding to control values as
mentioned above).

The method preferably comprises receiving form input
data corresponding to the form following interaction with
the form by a user, the form mput data comprising data
values for one or more mput field form elements of the form,
and storing the form 1nput data in a database as a form 1nput
data record, wherein the form input data record 1s associated

10

15

20

25

30

35

40

45

50

55

60

65

4

in the database with the form 1nstance data generated for the
form. The form input data record may be stored as a single
data entity, e.g. a set of field/value pairs corresponding to the
fields of the form, for example as a JSON document or other
document/file specifying field values using a data descrip-
tion language. Form input data records are also referred to
herein as “tickets” or “form tickets”. The form mnput data
record may alternatively or additionally be associated with
the form definition or form version used to generate the form
(1nstance).

The method may comprise, 1n response to a request to
view or edit the form input data record storing data previ-
ously captured using the form, identifying the associated
form 1nstance data, and transmitting the identified form
instance data and the mput data record to the user interface
module. Using the same form instance ensures that the form
generated to view or edit the data will correspond to (and
may be 1dentical to) the form used to enter the data origi-
nally.

The database preferably stores versioned form definitions.
Versioning may preferably be applied at the level of the form
itself and/or at the level of individual form elements. Thus,
modifications to a form definition (or element definition)

preferably result 1n a new version of the form (or element)
definition being created 1n the database.

Thus, the method may comprise, 1n response to modifi-
cation of a form definition, creating a new version of the
form definition reflecting the modification, whereby subse-
quent form requests may use the new form version.

Preferably, in response to a request to create a new input
data record using a specified form, a latest (most recently
created) version of the form definition 1s i1dentified 1n the
database for the specified form and the form instance data 1s
generated based on the identified form defimition data.

The method may comprise, 1n response to a request to
modily an existing input data record, identitying a version of
a Tform definition used to 1nput the mnput data record from a
plurality of versions of the form definition, and outputting
form 1nstance data defining a form for editing the 1input data
record based on the 1dentified version of the form definition,
preferably wherein the i1dentifying step uses a reference
stored with the existing input data record to the form
definition version used to capture the imput data record. The
term “‘capturing”’ data as used herein preferably refers to
recording data values supplied using a form; such data
values may be actively input by the user or the user may
merely accept suggested data values and the user may not
supply values for some fields 1n which case null or empty
values are captured.

In a further aspect of the invention, there 1s provided a
computer-implemented method of generating a form defi-
nition for a user interface form for transmission to a user
interface module, comprising: receiving a form request
comprising form i1dentification data identifying a requested
form; retrieving from a database form definition data for the
requested form based on the form i1dentification data; gen-
crating form 1instance data based on the retrieved form
definition data and optionally one or more control param-
cters relating to the request, the form instance data compris-
ing a data description of the requested form; storing the form
instance data in the database; outputting the form instance
data to the user interface module at a client device for
generation ol a user interface form based on the form
instance data; receiving from the client device form 1nput
data including one or more 1nput field values for the form 1n
response to user mteraction with the form; storing the form

US 10,990,646 B2

S

input data as an mput data record; and associating the input
data record with the stored form instance data in the data-
base.

The method may comprise receiving a further request,
wherein the further request 1s a request to view or edit the
previously stored input data record; retrieving the stored
form instance data based on the request; and transmitting the
stored form instance data to the client device for generation
of a form for viewing or editing the iput data record. This
allows the data to be viewed or edited using the same form
as used to enter the data, avoiding incompatibilities that
might result from changes to form defimitions and the like.
The request preferably includes an identifier for 1dentifying
the stored input data record, the method including accessing,
the stored input data record using the i1dentifier; and identi-
tying the stored form instance data associated in the data-
base with the stored mput data record.

The method may comprise recerving a further request,
wherein the further request 1s a request for a form to enter
a new 1nput data record, the method comprising generating
form instance data for the form from stored form definition
data 1n response to the request.

The database may store a plurality of form definition
versions of the requested form, the method comprising
selecting one of the form defimition versions and generating
form instance data based on the selected form definition
version. The selecting step may comprise selecting: a most
recent form definition version, or a form definition version
specified 1n the request.

The form definition data preferably comprises a data
description of the form and includes a plurality of data
clements defining form elements and specifying values for
properties of the form elements. Generating form instance
data based on the retrieved form definition data may com-
prise modilying one or more form element properties in
dependence on the at least one control parameter.

The retrieved form definition data may comprise at least
one override data element defining an override, the override
data element associated with a form element of the form and
specilying: an override condition for applying the override;
and override values for one or more properties of the
associated form element; the method preferably further
comprising: generating the form instance data based on the
retrieved form definition data, as modified by the overrides,
the generating comprising, for the or each override: deter-
mimng whether the override condition i1s fulfilled; in
response to determining that the override condition 1s ful-
filled, setting one or more properties of the associated form
clement to corresponding override values specified in the
override definition. The override condition may specily a
control parameter controlling applicability of the override,
and a parameter condition relating to the control parameter,
the method comprising determining that the override con-
dition 1s fulfilled 11 the control parameter meets the specified
parameter condition, preferably wherein the parameter con-
dition specifies one or more values of the control parameter,
the method determining that the override condition 1s ful-
filled 11 the specified control parameter has a value corre-
sponding to one of the specified values.

The override may specily values for one or more prop-
erties of the form element, the properties preferably relating
to one or more of: visibility of a form element; interactive
behaviour of a form element, and a data value of the form
clement, and/or wherein the properties include one or more
of: a property specilying whether the form element 1s visible
or 1invisible; a property specitying whether the form element
1s editable or read-only; a property specitying whether the

10

15

20

25

30

35

40

45

50

55

60

65

6

form element 1s mandatory or optional; a property specity-
ing a default value for the form element; a property speci-
tying a label to be displayed for the form element. The (or
cach) override may be associated with one of: a data input
form element, preferably an input field, and a structural form
clement, preferably defining a section of the form.

A method according to this aspect may comprise the
further steps or features of a method as set out in the
preceding aspect of the mnvention (and vice versa). The
following optional features may be applied to either aspect
of the mvention.

The method may further comprise, at the user interface
module: receiving the form instance data; generating a user
interface form based on the form instance data; and display-
ing the user interface form. The generating step may com-
prise generating a web document (preferably an HIML
document) representing the form, and preferably wherein
the displaying step comprises outputting the web document
to a browser application for display. The process of gener-
ating an HITML document for a form for display by a
browser may also be referred to herein as “rendering” the
form. Thus rendering may or may not include displaying the
form on a screen (which may be done separately by a
browser based on the rendered HI'ML version of the form).

The method may comprise recerving a render mode
indicator 1dentifying one of a predetermined set of rendering
modes; and generating the user interface form based on the
identified render mode; preferably wherein the user interface
module modifies one or both of the appearance and the
behaviour of the form 1n dependence on the selected render
mode. The render modes may include one or more of: a
render mode for generating a form to display data without
permitting editing of the data (e.g. where input elements are
set to read-only); and a render mode for generating a form
for displaying and editing data.

The form 1nstance generation 1s preferably performed at a
form generation module, preferably at a form server (which
may include the database(s) storing form definitions, form
instances and input data records, or the database(s) may be
stored elsewhere). The user interface module 1s preferably
provided at a client device (e.g. as a software module such
as a browser or browser add-on) connected to the form
server over a computer network.

The method may comprise caching the form instance data
at the user interface module. Preferably, the method com-
prises, at the user interface module, determining whether
form instance data for a requested form has been cached at
the user interface module; if so, retrieving the locally cached
form instance data and generating a form for display based
on the locally stored form instance data; and if not, sending
a request to retrieve or generate the form instance data to a
form server, receiving form instance data from the server,
and generating a form for display based on the received form
instance data.

The method may comprise, at the user interface module,
receiving data values corresponding to input values of the
form 1n response to user interaction, and transmitting the
data value to the form generation module or database for
storage as a form data record (e.g. 1n response to form
submission by a user).

Form definition data for a form 1s preferably stored as one
or more data entities in the database, preferably in accor-
dance with a relational or object-oriented data schema. Thus,
the database may be a relational database storing form
definition data in one or more database tables or an object
database storing form definition data as one or more objects.
The generated form instance data 1s preferably generated,

US 10,990,646 B2

7

stored and/or transmitted in the form of a data description
file or document, preferably in accordance with a data
description or markup language (e.g. 1n a text or human-
readable format); preferably wherein the form instance data
for the form 1s transmitted to the user interface module
and/or stored 1n the database as a JSON (JavaScript Object
Notation) document. Thus, the form instance generation
may involve translation of a form definition from a first
format (1n which 1t 1s stored 1n the form definition database)
into a second, diflerent format (in which 1t 1s transmitted to
the client device and/or stored for later reuse). The transla-
tion may imvolve moditying the form definition obtained
from the database, e.g. based on overrides, control param-
eters and the like.

The mvention also provides a tangible computer-readable
medium comprising software code adapted, when executed
on a data processing apparatus, to perform a method as set
in any of the aspects above, or as described elsewhere
herein.

The invention turther provides a system, apparatus, or
computer device having means (e.g. in the form of at least
one processor with associated memory) for performing any
method as set above or as described elsewhere herein. Such
a system may include a form server and/or (including a form
generation module) and a client device (including the user
interface module), adapted to communicate over a data
network.

Any feature in one aspect of the mvention may be applied
to other aspects of the mvention, 1n any appropriate com-
bination. In particular, method aspects may be applied to
apparatus and computer program aspects, and vice versa.

Furthermore, features implemented 1n hardware may gen-
crally be implemented in software, and vice versa. Any
reference to software and hardware features herein should be
construed accordingly.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features of the present invention will now be
described, purely by way of example, with reference to the
accompanying drawings, in which:

FI1G. 1 1llustrates a system for data-driven form generation
1N overview;

FIG. 2 depicts a simplified example of a form having a
number of form elements;

FIG. 3 illustrates a simplified data schema used to store
form definitions;

FIG. 4 depicts a hierarchy of data entities making up a
form definition;

FIG. 5 1illustrates the form generation system and its
operation;

FIG. 6 illustrates data entities used to represent form
element overrides;

FIG. 7A illustrates multiple forms cooperating to 1mple-
ment dynamic behaviour;

FIG. 7B depicts an example form generated using the
system;

FIG. 8 A depicts a system architecture for an embodiment
of the system 1n overview; and

FIG. 8B depicts a system architecture including hardware
and software components.

DETAILED DESCRIPTION

Embodiments of the invention provide a system, referred
to heremn as the dynamic form engine, for dynamically
generating data entry forms from form definitions stored 1n

10

15

20

25

30

35

40

45

50

55

60

65

8

a database. The dynamic form engine can manage the
definition, dynamic display, validation and storage for form
presentation and associated data capture including version-
ing through time.

The system allows form structure (sections, fields, for-
matting) to be defined 1n data with no coding. Form structure
can dynamically change dependent on previous form field
entrics. Form fields can be populated virtually via data
configuration with no coding. Several layers of validation
can be configured for each form field, again in data with no
coding, ensuring governance and data quality. Form fields
are intelligent and can be configured to default, auto-popu-
late or change their options based on the population of other
fields in the form. Form element definitions can be modified
by way of an override mechanism, and captured data 1s
associated with the form instance used to enter the data to
allow subsequent editing via the same form, irrespective of
subsequent changes to the form definition. The dynamic
form engine can be integrated with existing worktlow
engines.

The dynamic form engine 100 1s illustrated 1n overview 1n
FIG. 1 and i1s constructed from three core components:

User Interface (UI) layer 102: Rendering engine and

component library

Logic layer 104: Form generation logic and validation

library

Storage layer 106: Data schema and services

These components together support the creation, storage
and use of a number of data elements used 1n representing
dynamic, data-driven forms.

In particular, form definitions and data entered via forms
are stored 1n the storage layer 106. The logic layer 104 acts
as an intermediary between Ul layer 102 and data storage
layer 106, processing form requests and generating form
instances based on form definitions from the database. The
rendering engine at the Ul layer 102 1s responsible for
rendering a defined form for display to a user—in a typical
example, forms are rendered as HITML for display 1n a web
browser. The Ul layer receives input entered into a form by
a user and forwards it to the logic layer 104 for validation
and storage 1n the storage layer 106.

A generic example of a form 1s depicted i FIG. 2. As
illustrated, a typical form 200 may optionally include one or
more form sections 202. Sections may be nested, so that a
section 202 may further include subsections (e.g. 204).
Arbitrary levels of nesting may be supported. The form may
turther include data entry fields (e.g. 208) with associated
field labels (e.g. 206), which may be arranged within sec-
tions or directly within the form.

Fields may have data types associated with them (speci-
tying the type of data that may be entered). Fields may
turther have validation constraints associated with them (e.g.
to specily a valid numerical range for a numerical entry
field). Any form elements (including fields, labels and
sections) may also have other associated attributes, e.g.
controlling whether an element 1s visible or hidden or (for
entry fields) whether a field 1s editable or read-only, or
whether completion of the field 1s optional or mandatory
prior to form submission (note the terms “attribute” and
“property” 1n relation to form elements such as fields are
used interchangeably herein, and refer to any data element
in a form definition that defines a characteristic of the form
clement).

Different types of entry fields are supported. For example,
in addition to standard iput fields allowing value entry by
keyboard, field types may include list boxes and drop-down
boxes, checkboxes, radio buttons and the like. More com-

US 10,990,646 B2

9

plex types of user interface controls may also be supported,
such as sliders or dials. Components are implemented at the
Ul layer via component libraries (e.g. in Java), and bespoke
components may be added to the form definitions 1f corre-
sponding components are added to the Ul component
library. The term “field” as used herein encompasses any
type of user interface control via which data mput can be
carried out.

Storage Layer and Data Representation

The storage layer 106 comprises the data schema and
services supporting the entire configuration to generate a
form, capture a form, version 1t and persist the data captured
through 1t. In a preferred embodiment the data schema and
data services are implemented 1n an Oracle database envi-
ronment, but any other suitable database technology may be
used.

The storage layer manages a set ol data enfities for
representing form data, including both data descriptions of
the structure the forms and data entered (captured) using the
forms. The data representation includes inter alia the fol-
lowing data entities:

The Form Definition

The Form Version

The Field Version

The Form Instance

The Form Ticket

The Form Definition: The form definition describes the
form 1dentity, its structure, available content and behaviour.
It also provides the basis for versioning and data capture.

The components of a form described by a Form Definition
are:

Form Identity

Sections

Fields

Field Types

Field Attributes (or properties)

Field Constraints

Field Overrides

Field Associations

Field Expressions (Data Sources)

The form definition defines the form displayed to the user.
All data captured from a form 1s stored as a form ticket along
with a form 1nstance and a form version.

The Form Version: A Form Version 1s a versioned Form
Definition. When a master Form Definition 1s modified a
new Form Version 1s created. In that respect Form Versions
are treated by the system as being immutable (since modi-
tying a form definition creates a new version of the form).

The Field Version: A Field Version 1s a versioned Field
Defimition. When a master Field Definition 1s modified a
new Field Version 1s created.

The Form Instance: A Form Instance 1s a “compiled”
Form Version with overrides applied (see the discussion of
overrides below). Form Instances are immutable and there-
tore cacheable on the client.

The Form Ticket: A Ticket represents data entered into a
form (or more specifically, a form version) by a user. Thus,
the form ticket consists of a list of values for the fields
defined on a form version.

A simplified version of a data schema representing the
above entities (e.g. as relational database tables) 1s depicted
in FIG. 3. This shows the main form components (form,
section, field) with associated component versions (form
version, section version, field version). Any modification to
an existing form (version), section (version) or field (ver-
sion) generates a new version of the component. This
ensures full versioning of the form definitions. Section and

10

15

20

25

30

35

40

45

50

55

60

65

10

field overrides (discussed 1n more detail below) may be
assoclated with section versions and field versions, and
validation constraints (defining constraints on the value a
field may take) may be associated with field versions. In
cach cases these associations are many-to-many (1mple-
mented by the “map” tables), allowing multiple overrides
and constraints to be defined for each element, whilst also
allowing reuse of override and constraint definitions across
different elements.

Structurally the form elements are arranged 1n a hierarchy
as depicted in FIG. 4. Each form 402 1s identified by a form
identifier and a version identifier (1dentifying a specific
version of the form). Each form 402 may consist of a number
of form sections 404, where a section represents a group of
fields. Each section 1s again 1dentified by a section identifier
and a version 1dentifier identifying a specific version of the
section. Each section 404 1n turn includes any number of

data fields 406. Each field 406 1s identified by a field
identifier, a field datatype specitying the type of data that the
field accepts, and a field label which 1s displayed adjacent
the field in the form when displayed (plus optionally also a
field version identifier, not shown).

Each field may optionally be associated with one or more
constraints 408, which define constraints on the values that
may be entered (for example, maximum/minimum values)
and are used for automatic validation. Each field may also be
associated with one or more expressions 410 defining field
content. For example, expressions may specily a default
value or expression for determining a default value, which
may include calls to external code routines to obtain relevant
values (e.g. from an external data source). Expressions may
also specily values (or calls to obtain relevant values e.g.
from an external data source) to populate a drop-down or list
box or other set of options from which the field value can be
selected.

While not depicted in FIG. 4, sections may also be nested,
so that a form section may include one or more other form
sections (as described above).

Logic Layer

The form generation logic 104 actions requests sent from
the Ul interrogates the data schema and data on the Storage
layer 106 and processes the results into a response that 1s
sent to the Ul layer. The response typically defines a form
that 1s to be displayed and 1s formatted to fit the UI render
models.

In a preferred embodiment, the Logic layer 1s imple-
mented as Java code.

Generation of forms by the logic layer 1s described 1n
more detail below.

The logic layer may additionally perform validation based
on constraints defined for form fields. Alternatively, such
validation may be performed at the user-interface layer.

User Interface Layer

The UI provides a rendering engine which presents a
targeted form dynamically, based on user choices of speci-
fied driver fields, from a library of pre-configured form
definitions. Once the form 1s chosen the Ul then further
manages behaviour of fields within the chosen form. Driver
ficlds are fields whose values are used to trigger certain
dynamic behaviour of the form (including overrides). A
value for a dniver field may be entered directly by a user,
selected from a list (e.g. populated from a dynamic database
search) or entered 1mn any other way. Modification of the
driver field value can then automatically alter how the form
1s presented, e.g. by hiding fields or options (or whole form
sections) that are not relevant, making others visible, or

US 10,990,646 B2

11

changing other form and field properties. The operation of
overrides 1s described in more detail below.

The operation of the Ul tier 1s based on:

Form definitions received from the form generation logic

A set of predefined form element types, form field types

and field attributes that may be used in the form
definitions

A set of predefined form render modes dictating how

forms are rendered

Form field component libraries, comprising Ul code for

cach type of form element. The Ul code for an element
manages the element’s behaviour, and the layout of its
children (e.g. fields within a section).

As 1ndicated above, the Ul supports multiple render
modes, and will present the same form definition with
different layout and behaviour depending on the UI render
mode selected for the given use case.

The render modes can provide both a different look (e.g.
akin to skins or themes) and different behaviour for the same
form under differing scenarios. Thus, each render mode
displays a form based on the same underlying form defini-
tion and data (field values), but the displayed data may be
presented in diflerent ways (e.g. suppressing certain fields in
certain modes, displaying fields in different orders etc.).
Different render modes may also allow different forms of
user interaction (e.g. entry/modification vs. read-only).

In one example, Render Modes might include, for
example:

an Input mode (for input of new data),

an Authorisation Review mode (for review/amendment of

previously entered data),

a Read Only Review mode (for review without amend-

ment), and

a Preview mode (e.g. to provide a compact read-only

summary of the data).

Different form field component libraries (1implementing
the fTundamental form elements) may be used for diflerent
render modes.

The user interface layer may be implemented as one or
more solftware modules running at a client device, for
example as a standalone application or as a browser add-on
for processing form requests from web pages or web appli-
cations, or 1n any other suitable form.

Form Generation and Rendering Process

FI1G. 5 1llustrates the process of requesting, displaying and
receiving input through a dynamic form.

The process begins with the user interface tier 102
requesting a form. For example, the request may be gener-
ated by a web application. In one example, a user wishing to
enter data via a form may select an appropriate option 1n the
web application, 1n response to which the request 1s gener-
ated by the user interface layer.

The request 502 specifies a form i1dentifier and a form
version 1dentifier to i1dentity a specific required version of
the form. Alternatively, the request may simply 1dentity a
particular form, and the system may default to using the
latest stored version of the form. The request may also
include one or more control parameters to control the form
generation process.

The request 1s recerved at the form generation logic 104.
The form generation logic retrieves (step 504) the form
definition 508 for the required form version from the form
definitions database 506 1n the database layer 106. The form
generation logic applies any applicable overrides (step 510)
to adapt the form defimtion (e.g. based on driver fields,
context, parameters 1n the form request, data retrieved from
a data source etc.) For example, application of overrides

10

15

20

25

30

35

40

45

50

55

60

65

12

may hide certain form fields or sections or make certain
hidden fields or sections visible, change fields between
mandatory and optional, and the like. The form generation
logic then generates a form 1nstance 512, which 1s stored 1n
form 1nstance data 513 in the database.

The form 1nstance 512 provides an encoded data descrip-
tion of the form that 1s to be displayed to the user (including
any overrides that have been applied). The form instance
thus defines the form elements that make up the form (e.g.
sections and fields), the values of any element properties
(e.g. labels, field types, read-only flags and the like), and any
default field values. The form instance 1s transmitted to the
user interface layer 102. The user interface layer includes a
rendering module which renders the form based on the
received form instance. The rendered form 514 may, for
example be 1n the form of HIML (optionally including
JavaScript or other browser-side code to implement dynamic
behaviour such as front-end validation). Thus, the term
“rendering’” as used herein includes generation of HTML or
other code for the form, for processing by a browser.
Alternatively, the renderer could directly generate and dis-
play user interface elements (e.g. 1f a browser 1s not being,
used as a front-end).

A user then enters data (step 516) using the form. The
captured data 1s encoded as a form data record, referred to
herein as a form ticket 318, which specifies the data entered
for each form field and 1s associated with the form instance
512 used to generated the form with which the data was
entered. Note that form fields may include default values or
empty fields which may not be changed by the user; for
clanty, references herein to the “captured” or “entered” data
includes such values not actually supplied by the user and
thus the captured values 1n the ticket may also include
default or null values 1n addition to values supplied by the
user.

The ticket 518 1s thus a list of field values corresponding,
to the form fields defined 1n the form instance. The ticket 1s
transmitted to the database layer where it 1s stored 1in a
tickets database 520 (this may occur via the form generation
logic which may receive the ticket and send 1t to the database
layer for storage, optionally after validating or otherwise
processing the data). An identifier of the form instance 512
used to enter the data 1s stored with the ticket (as part of the
ticket, or otherwise associated with 1t), to thereby associate
the ticket with the form instance i1n the database.

In one embodiment, the form stance 512 transmitted by
the logic layer 104 to the Ul layer 102 1s encoded as a JSON
(JavaScript Object Notation) document, defimng the form
sections and fields and other elements. The Ul rendering
engine interprets the JSON document to construct the form
(e.g. by creating a corresponding Java object hierarchy
representing the form, and then generating HIML from the
Java objects). The form ticket may similarly be encoded as
a JSON document, for example encoding entered data as a
set of <field ID, value> pairs, where the field 1D references
a corresponding field identifier 1n the form instance (and
form version from which the form instance was constructed,
since the field identifiers in the form instance preferably
match those 1n the form version definition).

At the databases 513, 520, the form instances and tickets
may be stored directly as JSON documents or alternatively
they may be stored using a suitable relational data model or
in any other way.

Note that, for descriptive purposes, data sets 506, 513 and
520 are discussed herein as 1f they were distinct databases.
However, the distinction 1s conceptual, and these data sets
may be combined into fewer physical databases (or divided

US 10,990,646 B2

13

in any appropriate way into multiple databases). For
example, the data sets may be stored in a single Oracle
database.

The above describes a process of entering a new data
record using the form, with the data record stored as a form
ticket.

Each ticket, once entered, 1s associated in the database
layer 106 with the form mstance 512 used to enter data for
the ticket. The form instance 1tself 1s based on a specific
version ol a specific form (possibly with overrides applied).
Thus the data entered by the user that 1s stored 1n the ticket
maintains a link to the exact definition of the form used to
enter 1t. This allows subsequent editing of the ticket without
problems even 1f the form definition has changed subse-
quently (e.g. to add or remove fields).

For example, if the original form defimition 1s modified, a
new form version will be created 1n the form definitions
database 506 and subsequent data entry will generally use
the new version of the form (generating new form
instances). However, 1n the case where a user wishes to edit
an existing data record, stored as an existing ticket 1n the
database, the system operates as follows.

In this example, a form request 502 1s sent as before, the
request specifying that an existing ticket 1s to be modified
and provides an 1dentifier of the ticket. The form generation
logic 104 retrieves the ticket from the database 520 and
identifies the form instance 512 associated with the ticket.
The form 1nstance 1s retrieved directly from form instances
database 513, bypassing the form instance generation
described previously. The form instance and ticket are then
sent to the Ul 102, which renders the form based on the form
instance and populates fields with the values specified 1n the
ticket.

Overrides

Overrides allow adaption of a form definition. Specifi-
cally, the override mechamsm allows attributes of form
clements defined 1n a master form definition to be overrid-
den based on predefined criteria. This allows certain fields or
sections to be tailored for a given selection scenario and
hence reduces the number of master form definitions
required.

In preferred embodiments, overrides can be implemented
against sections and fields. The principles for section and
field overrides are the same. The following explains 1n detail
the field override mechanism but 1t will be understood that
the same approach can be applied to section overrides (and
can be extended to overrides for other types of form ele-
ments).

In a particular implementation of the system, the override
for a field can apply to any or all of the following properties
or attributes of the field;

An optional field can be overridden such that 1t becomes

mandatory (and vice versa)

A hidden field can be overridden such that 1t becomes
visible: and a visible field can be overridden such that
it becomes hidden 1f the field 1s optional (effectively
removing the field from the form)

An override can specily a new label for a field (different
from the label specified 1n the form definition)

An override can specily a default value for a field (dif-
ferent from the default value specified 1n the form
definition)

Overrides are configured as part of the form definition
within the database. As illustrated 1n FIG. 5, the logic layer
retrieves overrides with the form definition from the data-
base and processes the overrides (step 510) to build the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

JSON form instance 512 sent to the Ul and the UI displays
the form with the overridden element properties.
Three tables are involved 1n the definition of the override,

as depicted 1n FIG. 6. These are:
frm field version: This holds the record for a version of
a field that has been associated to a version of a form,
including a set of field properties (e.g. “MANDATO-
RY_TF”, “READ_ONLY_TF”, “VISIBLE_TF” etc.)
frm_field override: This defines the conditions for the
override to occur, and what that override will consist of
(1n terms of modified values for given field properties)
frm_field_override_map: This defines a many to many
relationship between a field version and a field over-
ride. By using this method a field may have many
overrides, and an override may be used for many fields.
An example of an override definition 1s given 1n Table 1
below:

TABLE 1
OVERRIDE 1D 1000000
IDENTIFIER TP txnType
PRIORITY 1
MANDATORY__TF NULL
READ ONLY_TF NULL
VISIBLE TF FALSE
DEFAULT__VALUE NULL
LABEL_1TX NULL
INSERT_DT Dec. 6, 2015
LAST__UPDATE_ DT Feb. 7, 2015 08:36
OVERRIDE 1D TX CNCGn-DFP-NoSettValue

IDENTIFIER VAL UE DEP

The override defimition includes an override identifier
(OVERRIDE_ID). A priority field indicates an override
priority; 1f multiple overrides are specified for an element,
then settings specified 1in the higher-priority override are
applied 1n preference to lower-priority overrides (1f they
conilict). The definition further defines a set of override
values for various properties of the form element. In this
example, MANDATORY_TF specifies whether the form
field 1s mandatory, READ_ONLY specifies whether 1t 1s read
only or modifiable, VISIBLE specifies whether the element
1s visible or hidden and DEFAULT_VALUE specifies a
default value for an input field. IT any of these values specity
NULL (no value) then the orniginal setting in the form
definition 1s not modified by the override. If a value 1s
specified (e.g. TRUE/FALSE for a Boolean attribute, any
approprate value for the DEFAULT_VALUE attribute or a
text value for the LABEL_TX attribute), then the corre-
sponding property of the form element takes that value
instead of the value specified in the form definition.

If multiple overrides are applicable to a form element,
they may be applied in priority order (from lowest to
highest); again, NULL values 1n a higher priority override do
not change a property value set by previous lower-priority
override (or the original form definition) but non-NULL
values do.

The specific set of properties are provided by way of
example only and other properties could be provided to
override other form element settings (for example, a colour
property, size property or the like). Not all properties may be
applicable (or defined) for all form element types.

Other override attributes provide insert/update dates and
a text 1dentifier of the override.

Application of overrides 1s governed by the “IDENTIFI-
ER_TP” and “IDENTIFIER_VALUE” fields. IDENTIFI-
ER_TP specifies the parameter controlling the override; 1f
that parameter has the value specified by IDENTI-

US 10,990,646 B2

15

FIER_VALUE then the override 1s applied. In this example,
for a txnType parameter of “DFP” the VISIBLE_TF prop-

erty will be set to FALSE (making the field invisible) and the

other properties are unailected by the override.

The control parameter referenced by the override may be
an external parameter (e.g. sent with the request or obtained
from some other source).

Alternatively, the control parameter may be a form field
value.

In a particular embodiment, multiple forms may cooper-
ate to implement dynamic override behaviour. Whilst sepa-
rately defined and generated, these forms may be presented
to a user essentially as a single form (or sub-forms of a single
form). In such arrangements, ficld values of one form may
be used to control application of overrides 1n another form.

An example 1s illustrated in FIG. 7A. Here, the screen
display 730 presented to the user actually consists of two
forms, form 720 on the left having control fields 724 and

726, and form 722 on the right.

Form 720 1s generated and displayed first (in the manner
described above) and form 722 1s mitially empty. In
response to the user entering values mto one or more of the
control fields 724, 726, a request for generation of second
form 722 1s generated. This behaviour may be specified 1n
the form definition of the first form 720. A form instance for
the second form 722 1s then generated, again in the manner
described above. However, 1n generating the second form
instance 722, one or more overrides are applied based on the
field values of the control fields 724 and/or 726. The form
istance 722 1s transmitted to and displayed at the client,
with 1ts exact appearance determined by the values entered
into the control fields, 1n accordance with the overrides. The
user can then continue data entry using form elements 728
in form 722.

Instead of form 722 being blank initially, a default form
version could be generated and displayed at the same time
as form 720, for example based on default values of override
control fields 724, 726.

Furthermore, 1f a user modifies an override control field 1n
form 720 after form 722 has been generated, form 722 may
be regenerated and redisplayed based on the new override
control value(s). This may involve discarding data already
entered 1nto form 722 or if appropriate entered values may
be retained 1n the newly generated form 1instance.

The override definitions in form 722 can reference the
relevant control fields 724, 726 in form 720 since form field
(and field version) identifiers are unique 1n the database, and
field defimtions exist independently of form definitions,
allowing a form to reference a field 1n another form. In an
alternative approach, the control fields may additionally be
included 1n the second form 722 except that 1n that form they
may be defined as hidden fields. The hidden fields (which
retain the values entered in the first form 720) then control
application of the overrides directly within the second form.

Although forms 720 and 722 are in this example dis-
played alongside each other so as to appear as a single form,
the forms could be displayed 1n different sections of the user
interface or could be displayed one after the other. Further-
more, 1 the fields controlling the application of overrides in
form 722 (1.e. the “driver” fields) are included as hidden
fields 1n form 722 itself, then the values of those fields could
have been entered previously on another form (where the
corresponding fields appeared as regular, visible fields) or
those values could be sourced in some other way altogether
(c.g. by call to an external code routine, reference to a
system or context variable, by a database query, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

16

Information speciiying where or how to obtain the field
values can i1n that case be included in the relevant field
definitions.

Thus the specific i1llustrated example shows just one way
in which control fields can be defined. While 1n this example
two override control fields are shown 1n form 720 by way of
example, any number of such fields may be provided.

Use of a form field 1n the control form 720 (or 1n form 722
¢.g. as a hidden field) as a control field for controlling an
override may be defined 1in the form by specifying the field
role for the field holding the value of the parameter.

Specifically, 1n the following field definition, the fieldRole
property drives whether the field value 1s used as DRIVER,
FIELD_OVERRIDE OR SECTION_OVERRIDE in a
selector form. Here, the “mkt” field 1s used to control a field
override.

“fields™ : [{
iﬁidﬁﬂ : GEH]kt!'!‘?
“label” : “Market”,

“fieldType” : “DROPDOWN”,
“required” : true,

“readOnly” : false,
“dataProvider” : “mktProvider”,
“preview’’ : true,

“fieldRole” : “FIELD_ OVERR

)E! rl

This field definition defines a dropdown field, with data
values populated from an external source, referred to as a
“provider” (here “mktProvider”), which represents a call to
a data service (the call may for example be mapped to a
particular SQL request at the storage layer 106). Various
properties such as “required” and “readOnly” define behav-
iour and appearance of the field (e.g. mandatory, read only
etc.). The “fieldRole” property indicates that the field can be
referenced 1n an override, as a control parameter that deter-
mines whether the override applies.

As described previously, when generating a form with
overrides defined, the logic layer first selects the master form
(version), applies any overrides to 1t (retrieving the neces-
sary control values e.g. control field values 724/726) and
generates an override adjusted form instance and form JSON
to send to the Ul layer.

Versioning

Versioning 1s applied throughout the dynamic form engine
to forms, sections, fields and their associated relationships.
In preferred embodiments, versions of these components are
immutable—that 1s they cannot be changed after they have
been created. Any change to a component results 1n a new
version.

Versioning 1s managed within the logic layer and storage
layer. When the logic layer requests a form definition based
on driver values and overrides 1t first checks to see if there
1s already a valid form instance matching the critenia. If a
valid form instance 1s not available then 1t creates and stores
a new form instance as described above 1n relation to FIG.
5. The form instance 1s created with a unique key based on
the driver and override values, e.g.:

mkt=NZ,

productCode=CNC,

security Type=NO__ TC_ MAPPING,
txn'lype=DFP

Once created, the form definition JSON 1s stored against
the form instance for performant reuse. Future attempts to

US 10,990,646 B2

17

access the same form version with the same driver/override
control values retrieve the previously created form instance
and corresponding JSON form definition for transmission to
the UI layer.

A form instance 1s automatically expired when a new
version 1s created.

Form Tickets (holding the data values entered by the user)
are always created based on a form instance and 1f a form
instance expires then the old form tickets will continue to
use the expired form instance definition ensuring that all
form tickets (1.¢. the captured values) are fully versioned and
that a user can return to any form used historically and view
the exact form definition and values as used at the time of
original entry.

Since for subsequent access to a previously created ticket,
the previously created form instance 1s retrieved (and not
regenerated) the rendered form will thus be 1dentical to the
one presented originally to the user.

The stored form instance retlects both the specific version
of a form used as well as any overrides applied at the time
the form instance was generated. This ensures that the
versioning lunctionality and dynamic override mecha-
nism—which provide flexibility and adaptability—do not
lead to problems that could otherwise be caused by incon-
sistent/incompatible form versions or unanticipated behav-
iour resulting from changes occurring over time.

Since form 1instances are encoded as immutable JSON
documents, they can also be cached at the client. Thus, 1n
preferred embodiments the user interface layer maintains a
cache of form instances. On requesting a specific form
version the system determines whether a form instance
matching the requested form version 1s stored in the cache
(and where applicable, matching any relevant driver and
override values, by way of the key stored with form
instances as discussed above). If found, the local cached
form 1nstance JSON 1s retrieved instead of requesting 1t from
the logic/storage layers.

The core components and capabilities described above
together allow the presentation, validation and versioned
storage of a form and its associated content entered by a user.
The form generation 1s data-driven (based on the stored form
definition) and configurable, making the portable dynamic
form engine agile and extensible to a huge variety of form
presentation and capture use cases and application contexts.

In an example, the system may be used to capture
transactions, for example securities transactions. Capturing
the data for a transaction as a form ticket that 1s tied to the
form version used to enter the data can be particularly
beneficial, since i1t ensures that transaction data can be
viewed and manipulated later on, even 11 the form definitions
have changed in the meantime. In addition to securities
trading (or trading of other kinds of assets), such a data
capture mechanism can be eflective for other types of
financial or commercial transactions. However, the dis-
closed system 1s not limited to such applications and can be
applied 1n any data capture scenario.

FIG. 7B illustrates some of the form features that are
supported by the dynamic form engine in the context of a
securities trading application example. Form definitions
allow for definition of form structure with sections and fields
(702). Different field types are supported, with virtual popu-
lation of options (704). Form governance and data quality 1s
provided by way of field attributes controlling appearance
and function, for example whether fields are visible, editable
or mandatory, as well as by way of front-end validation
(706). Intelligent fields and automatic population are sup-
ported (708). Dynamic form structures are also supported

10

15

20

25

30

35

40

45

50

55

60

65

18

(710); 1 this example the form structure i1s dynamically
altered (e.g. by way of the override mechanism described
above) to display different sections and/or fields) depending
on what type of Security and what Market 1s chosen.

The different system layers depicted in FIGS. 1 and 5 (UI
layer 102, logic layer 104, and storage layer 106) may be
implemented on separate hardware devices or combined 1n
any appropriate fashion. FIG. 8 A depicts one architecture 1n
which the storage layer 1s implemented by a database server
802 (e.g. running an Oracle or other suitable Database
Management System). The form generation logic layer is
implemented 1n a form server 804. The Ul layer 1s imple-
mented 1 a user device 808 (e.g. a conventional personal
computer terminal), including a rendering module 810
which renders received form definitions and provides the
rendered forms as HIML to a browser application (not
shown). The user device communicates with the form server
over a network 806, which may be a local area network or
wide area network such as the Internet.

In other embodiments, the data storage and form genera-
tion logic layers may be implemented on a single device
(combining the functions of database server 802 and form
server 804). Alternatively, the form generation logic could
be provided as a software process running at the client
device (combining the functions of form server 804 and user
device 808), communicating with a remote database server
over the Internet. All three layers could similarly be imple-
mented on a single device (e.g. the user device 808).

Furthermore, the functions of particular components may
be spread over multiple devices (e.g. form definitions and
form tickets could be stored at separate database servers).
Thus the described functionality can be distributed over any
number of physical devices in any appropriate manner, the
devices communicating over local or remote network con-
nections as needed.

FIG. 8B depicts a further example, 1n which form server
804 includes the functions of the database server 802.

As depicted mn FIG. 8B, the end user device 808 may
comprise a conventional personal computer, mobile device
or other user terminal device comprising memory 842 and
persistent storage media 844 (e.g. hard disk, DVD-ROM
etc.), both for storing computer-executable software code
and data, one or more processors 840 for executing software
and a network interface 846 for communication with exter-
nal networks such as the Internet. The processor preferably
runs web browser software 850 as well as a Ul module
including rendering engine 848.

The form server 804 preferably comprises conventional
server hardware, comprising memory 822 and persistent
storage media 824 (e.g. disk storage), both for storing
computer-executable software code and data, one or more
processors 820 for executing software and a network inter-
face 826 for communication with external networks such as
the Internet.

The processor runs software modules including a Data-
base Management System (DBMS) 828 for implementing
data storage functions of the storage layer 106, with data
stored 1n persistent storage 824 and/or memory 822. The
server also runs form generator module 830, implementing
the functions of the logic layer 104. Form generator 830
communicates with the Ul module 848 at the user device
808 over the connected network (e.g. including the Internet),
to communicate form requests (e.g. as HI'TP requests) and
responses (e.g. as JSON documents encoding form
instances).

The various methods and software elements described
throughout this description are preferably provided in the

US 10,990,646 B2

19

form of computer-executable soitware code embodied 1n
one or more tangible computer-readable storage media that
may be executed by database server 802, form server 804,
user device 808, or any other appropriate devices. Though
described herein with functionality divided in a certain
manner, functionality may be distributed between the system
clements 1n any appropriate manner or could be imple-
mented 1n a single device.

Embodiments of the mnvention described herein provide a
computer-implemented method of generating a form defi-
nition for a user interface form. The method involves
retrieving form definition data for a requested form from a
database. One or more overrides are applied to the form
definition data to modily properties of form elements. Form
instance data for the modified form 1s generated and stored
for reuse. The form 1nstance data 1s transmitted to a render-
ing module at a client device for generation of a user
interface form based on the form instance data.

It will be understood that the present invention has been
described above purely by way of example, and modifica-
tion of detail can be made within the scope of the invention.

The 1invention claimed 1is:

1. A computer-implemented method of generating a form
definition for a user interface form for transmission to a user
interface module, comprising:

receiving a form request comprising form identification

data identifying a requested form:;

retrieving from a database:

form definition data for the requested form based on the
form 1dentification data, wherein the form definition
data includes a plurality of data elements defining
form elements and specitying values for properties
of the form elements; and

at least one override data element defining an override,
the override data element specilying an override
condition for applying the override and one or more
form data modifications, wherein the override data
clement 1s associated with a given form element, the
form data modifications defined for the override
including one or more override values for one or
more properties of the associated form element;

generating form instance data, the form instance data
comprising a data description of the form based on
the retrieved form definition data, as modified based
on the at least one override data element, the gen-
crating comprising, for the override data element:

determining whether the override condition defined for
the override 1s fulfilled; and

in response to determining that the override condition
1s fulfilled, applying the one or more form data
modification defined for the override to the retrieved
form definition data, wherein applying the form data
modification(s) comprises setting one or more prop-
erties of the associated form element to correspond-
ing override values specified 1n the override data
element; and

outputting the form instance data to the user interface

module for generation of a user interface form based on
the form 1nstance data.

2. A computer-implemented method according to claim 1,
wherein the override condition of an override specifies a
control parameter controlling applicability of the override,
and a parameter condition relating to the control parameter,
the method comprising determining that the override con-
dition 1s fulfilled 11 the control parameter meets the specified
parameter condition; wherein the parameter condition speci-
fies one or more values of the control parameter, the method

10

15

20

25

30

35

40

45

50

55

60

65

20

determining that the override condition 1s fulfilled 1f the
speciflied control parameter has a value corresponding to the
specified value or one of the specified values, and/or wherein
the control parameter comprises a form field, the form field
preferably associated with a second form, the second form
optionally displayed to a user prior to or concurrently with
the requested form.

3. A computer-implemented method according to claim 1,
wherein the override data element specifies values for one or
more properties of a form element, the properties defining
one or more of:

a visual appearance of a form element;

interactive behaviour of a form element; and

a data value associated with a form element.

4. A computer-implemented method according to claim 1,
wherein the override specifies values for one or more
properties of a form element, the properties including one or
more of:

a property specitying whether the form element 1s visible

or 1nvisible;

a property specilying whether the form element 1s editable

or read-only;

a property specitying whether the form element 1s man-

datory or optional;

a property speciiying a default value for the form element;

and

a property specitying a label to be displayed for the form

clement.

5. A computer-implemented method according to claim 1,
wherein a given override 1s associated with one of: a data
input form element, preferably an mput field, and a form
structuring form element, preferably a section element
defining a section of the form.

6. A computer-implemented method according to claim 1,
comprising applying a plurality of overrides to the retrieved
form definition data, preferably 1n accordance with respec-
tive priority indicators associated with each override.

7. A method according to claim 1, further comprising
generating the form instance data based on the form defi-
nition data in dependence on one or more control param-
cters, and associating values of the control parameters used
to generate the form instance data with the stored form
instance data in a database.

8. A method according to claim 7, further comprising, in
response to a later form request specitying the given form,
retrieving and outputting the stored form instance data in
response to the request; the later form request requesting the
given form with the same one or more control parameter
values, the method comprising retrieving and outputting the
previously stored form instance data based on the request
and control parameter values.

9. A computer implemented method according to claim 1,
comprising receiving form mmput data corresponding to the
form following interaction with the form by a user, the form
input data comprising data values for one or more 1nput field
form elements of the form, and storing the form 1nput data
in a database as a form 1nput data record, wherein the form
input data record 1s associated in the database with the form
instance data generated for the form; and

turther comprising, 1n response to a request to view or edit

the form mput data record storing data previously
captured using the form, identifying the associated
form instance data, and transmitting the identified form
instance data and the mnput data record to the user
interface module.

10. A computer-implemented method according to claim
1, wherein the database stores versioned form definitions.

US 10,990,646 B2

21

11. A computer-implemented method according to claim
10, comprising, 1n response to a request to create a new 1nput
data record using a specified form, identifying a latest
version ol the form definition for the specified form stored
in the database and generating the form 1nstance data based
on the identified form definition version.

12. A computer-implemented method according to claim
10, comprising, in response to a request to modily an
existing input data record, identifying a version of a form
definition used to 1nput the mput data record from a plurality
of versions of the form definition, and outputting form
instance data defimng a form for editing the input data
record based on the 1dentified version of the form definition,
wherein the identifying step uses a reference stored with the
existing input data record to the form defimition version used
to mput the input data record.

13. A computer-implemented method according to claim
1, further comprising, at the user interface module:

receiving the form instance data;

generating a user intertace form based on the form

instance data; and

displaying the user interface form.

14. A computer-implemented method according to claim
13, wherein the generating step comprises generating a web
document comprising an HTML document representing the
form, and wherein the displaying step comprises outputting
the web document to a browser application for display; the
method further comprising;

receiving a render mode indicator i1dentifying one of a

predetermined set of rendering modes;

generating the user interface form based on the 1dentified

render mode;

wherein the user interface module modifies one or both of
the appearance and the behaviour of the form 1n depen-
dence on the selected render mode; and

wherein the render modes include one or more of:

a render mode for generating a form to display data
without permitting editing of the data; and

a render mode for generating a form for displaying and
editing data.

15. A computer-implemented method according to claim
1, comprising, at the user interface module, determining
whether form instance data for a requested form has been
cached at the user interface module;

if so, retrieving the locally cached form instance data and

generating a form for display based on the locally
stored form instance data; and

if not, sending a request to retrieve or generate the form

instance data to a form server, receiving form instance
data from the server, and generating a form for display
based on the received form instance data.

16. A computer-implemented method of generating a
form definition for a user interface form for transmission to
a user mnterface module, comprising;:

receiving a form request comprising form identification

data identifying a requested form:;
retrieving from a database form definition data for the
requested form based on the form i1dentification data;

generating form instance data based on the retrieved form
definition data and one or more control parameters
relating to the request, the form instance data compris-
ing a data description of the requested form:;

storing the form instance data in the database;

22

outputting the form instance data to the user interface
module at a client device for generation of a user
interface form based on the form instance data;
recerving from the client device form input data including
5 one or more input field values for the form 1n response
to user 1nteraction with the form;
storing the form input data as an mnput data record; and
associating the iput data record with the stored form
instance data in the database.
17. A computer implemented method according to claim

10 16, further comprising:
recerving a further request, wherein the further request 1s
a request to view or edit the previously stored input data
record;
retrieving the stored form instance data based on the
15

request; and
transmitting the stored form instance data to the client

device for generation of a form for viewing or editing

the mput data record.
18. A computer-implemented method according to claim
20 17, wherein the request includes an 1dentifier for identifying
the stored input data record, the method including accessing
the stored input data record using the i1dentifier; and 1denti-
tying the stored form instance data associated 1n the data-
base with the stored input data record.

19. A non-transitory computer-readable medium compris-
ing software code adapted, when executed on a data pro-
cessing apparatus, to perform a method of generating a form
definition for a user interface form for transmission to a user
interface module, comprising:

recerving a form request comprising form identification

data identifying a requested form:;

retrieving from a database:

form defimition data for the requested form based on the
form 1dentification data, wherein the form definition
data includes a plurality of data elements defining
form elements and specitying values for properties
of the form elements; and

at least one override data element defining an override,
the override data element specilying an override
condition for applying the override and one or more
form data modifications, wherein the override data
clement 1s associated with a given form element, the
form data modifications defined for the override
including one or more override values for one or
more properties of the associated form element;

generating form instance data, the form instance data

comprising a data description of the form based on the

retrieved form definition data, as modified based on the

at least one override data eclement, the generating

comprising, for the override data element:

determining whether the override condition defined for
the override 1s fulfilled; and

in response to determining that the override condition
1s fulfilled, applying the one or more form data
modifications defined for the override to the
retrieved form definition data, wherein applying the
form data modification(s) comprises setting one or
more properties of the associated form element to
corresponding override values specified 1n the over-
ride data element; and

outputting the form instance data to the user interface

module for generation of a user interface form based on
the form instance data.

25

30

35

40

45

50

55

60

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

