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projection data, and the projection result of the estimated
image based on a statistical model.

18 Claims, 10 Drawing Sheets
(4 of 10 Drawing Sheet(s) Filed in Color)

o 610 Vo 620
3, Analvtical P |
Input 5 Frojection 5 reconsfructicn i Image domain
domain network - | | — network
ail ne ‘} network layer
e

i
Statistical | Hf | Projection|
model layer |- — —»-|  layer

-
[
9
.
-
ER
u
n
e r-.

——-Forward operatione —Back propagation



US 10,984,565 B2
Page 2

(58) Field of Classification Search
CPC ......... GO6T 11/008; GO6T 2207/10081; GO6T
22077/20084; GO6T 2207/20088; GO6T
2211/416; GO6N 3/084; GO6N 3/0454;
A61B 6/03; GOIN 23/04

See application file for complete search history.

(56) References Cited

OTHER PUBLICATIONS

Rojas, R., “Chapter 7: The backpropagation algorithm,” Neuwral

Networks—A Systematic Introduction, Jan. 1, 1996 (pp. 164-173).
Wurtl, Tobias, et al., “Deep Learning Computed Tomography,”

Medical Image Computing and Computer-Assisted Intervention
(MICCAI) 2016, Lecture Notes in Computer Science, vol. 9902,

Oct. 2, 2016 (pp. 432-440).

* cited by examiner



U.S. Patent Apr. 20, 2021 Sheet 1 of 10 US 10,984,565 B2

100 r

Voltage and current control and
translation controf

of an X-ray 60 Rotation controf
of a rotational siage
T Data transmission
Fig. 1
200 210 220 230
Storage
= ROM RAM
device
/ ____________ 280
S 270
Input Processor Disglay lnteﬁgce
apparatus device unit
< |
240 — ~— 250 \~— 260

Fig. 2



US 10,984,565 B2

Sheet 2 of 10

Apr. 20, 2021

U.S. Patent

scanning
ted angle

L §

N

L

Detector under-

Q@
o)
C
T
@

0
-
©
2

i

v

samphing
intra~reconstruction

me Detector
direction

”1”1”1”1”1”1”1.1.1. " __lllllI "ot " e
e
- "u..u"“""u..u..“..u..“....ﬁ......
wonee e e e e e e e e e e
e
e e e e e e
e
e e e e e e e e e e
e e e e e e e
e
e
e e e e e e
e
e e e e e e e e e e
e e e e e e
e e
e
e e e e e e
aoete e e e e e e e e e
e e e e e e e e e e
e e e e e e
wonoe et te e e e e e
A
e e
l- Il- || || || || || || || || || || || || || || || || || || || || || || .l.l.l-l- l- l.
._.._.._._"u.._.u.._.u.._.u"._.u"._.u"._.u"._.u"._.u"._.u"._.u"._.u"._.u"._.u"._.u"..u"._.u"..u"...._"..u...u....._...u...u...._... -
-

256

)

w
-
=
=

"
= =
S
=
—

e
=
—
S
=
—
S
=
—
T
S :
iQ).

S

S

[ 4.-H4”...”.4H...”...”...H...H...H
bl ol 3 2l
o iy dr iyl
EaE N
T

)

)

.__.“.4”.4”.__.“.4”...”...“...”...
AR
Ll

LR A ALl M

u
Illlll II | || | | || | | || | | || | | || | | II II Illlllllﬁ%ﬁll
e
Tl
Sl e

e e e e e

"
ettt e
.
el

Y
”}.”J.H}.”}.” ”l.”j.“
Ea
T RN M RN M

.
Hﬂﬂﬂﬂﬁ,””””wm.w. R

r
rrrrrrorr
r

L

(

uoiosnp oipuy  sesibsp oo

LN N N

h......H._,..._. x H...H...H...H&Hf
X i e
ar e e e e e e
S e
-
I N )
O St N

arde de dp ey dp i e R a
L Nk o N
NN N AL VN A
M e
N
e e Sl i e
ey ki &k &
e aC aE N
N N -
I dr U e e e ki i
s Skl ak al kol
ol
PN MMM NN
e e
VTR e

A



U.S. Patent

Apr. 20, 2021 Sheet 3 of 10

Position 1

PGSItIOﬂ 2 F ................... - ;Ef:%f.fﬁ:';_. :

e et LI g

Frrr
F h h h

e bb*bbb*bbb*b.’i‘
L r

bbb:
r

raTr
l'q'h
i

4 :
ko
I T F '
. ¥ N- - - === rF I L -
[ T T T T T T T F L L T R [ ] L
" - - - - - - F ko F F r - - - - - L]
3"’ e N - bbrbbbkb ; kbbbkbbbh ........... .. .,
. I e A e I . .
- 4 - - - - - - F ik kP F e kb r B0 - - = = a = 1] -
- B oo - s e e e e S LA AN M .
k T g, L T
L - - - - - - - F kS F N 2 R
[ F e
T LA AL AL r
.......... - "
..' .".. - - - - F e r b I
{ . ........... bb*bbbtbbb*
. R R R R
1 T [ 3
) a [ - - - - F ki I
........... bbbbbbb*bb
" B LT T T L, b‘-bb‘.bbb
LT - - - - - - F ke kY
"} . .. ........... T T Y P T 1Y
N e e e e =Tl b kK kO
T F kb ki -
. » .|.- - - - - kel .
- L F ke bk b e kb b b kI N
o T e e e e e e e e e e, r [ r |r *
" . ‘. ----------- P T L L]
. > B R ok ke b ke b ke kb bk 4
M W e e e e - b*bbb*bbb*bbb*bbb*b -
X “ ........... F i r
- . R - - - F ke kb ko -
f .l. ............ bbbbbbbbb ‘I
........... **bb*bb*bb"bb
A e e s e s e . F e kbbb 4
- [ bbbbbbb\-b "
- g = = = = = = = = = = = o= N
" .F“_ ........... - kbbtbb
f_ . - - - - - - F
" P

at B e e T,

Posifion 3 ¥ t__"""* o

v LI &

US 10,984,565 B2

Position 6

god

W, A

- S g L e | :" | POSItIOﬁ 5

- ., LIRS o T i
" o ol e M 3& "
-+ Lt o b
-'.. . “h‘:

1';.-.rl‘-.-.:‘-.-.-I-.-.-'Jl.-.-‘h.-.r '.-.‘.-."l‘.-.-‘*.'."r'.-.:"."l‘.'."*.'.-'-.'.:*-.'.‘.'."*.-."*.-.'4-.'.“'.--1‘.'.-hi.'.'*..'.'. = = = omorasom homomofouom J.'-.-*-.-.q.‘-.-'q-.-.-'j.-.- CECEL AL T "
L T L L L L T L T L L

= & = rm

'
1';;;;;b;;-;4-;#-;;-.-.-.--.-.-J...--.i..-.-J.-.-.-.-.-4.-.-J,.-.-J.-.-.-J.-.--.-.-J,.-.-J,.-.-J.-.--.-.-4.-.-J...-.-J.-.-.-.-.--.-.-J,.-.-J,.-.-J.-.--.-.-4.-.-J,.-.-J.-.-.-.-.-q..-.-J...-.-J.-.-.-.-.--.-'l‘t.-.-;;;b;;-;g-;;-;*-;;-h

L L)
N IEENEE RN
=k onorom

E

o = B s ok

O I T T T Tt T T o T o o T o o L N AL ]

Ak o & E E s e Ak A A SN E A E SN E S E NS SE SN ER SRR RS E NS S S SRS A E RSN SE S EE SRR R E A RSN E R ERE R R RSN E SR NS R A FE RS SR S E R EEd sk Ak EENE S EE RN RE A NS SR NS AR E R R SRR E NS

e B10 620
s /

[y
- .

£

Input 5
{

{

Analytical
reconstruction

network fayer

Projection
domain network

r 2T

g':r

Hf. o)

Image domain
network

ipliy fglgh |Eghyl iplgiy

Projection
layer

Statistical
model layer

- e mmm A

e 650

—Forward operatione —Back propagation

Fig. 6A



U.S. Patent Apr. 20, 2021 Sheet 4 of 10 US 10,984,565 B2

Priori model | . 560
layer ’

Input = Proiccti & Ana!ytica'l i Image domain ” Prior del
s rojection reconstruction a | riort moael | - 670

domain network “"'l';" network layer | network layer
:
I
i

g HE g A

Priort model | 7 630

. Statistical | Hf | Projection| £ layer

model layer - — —p| layer | _ ..

------- 650
—p-Forward operations—— Back propagation

Fig. 6B

o

Analytic-
al

reconst- |

ruction 5iéféiéféEz'%z'iz'%z'iz':'z'55':'5'55'55'55'55'555iiiiéi_é:‘é55':'iié55'55'55'iéféiéféiééézéeézéeézéeéeg}; Image

network vqh Toammmae | domath

g

Frojection
domain

''''''''''''' l.::ll . ", 5
network layer, 3 eI . NQLWO!
0 e, - SN o
AL LT AL !
%"":':':':':':':':':"""I- - . %'-":':-:':"-""" L]
i R
*_ -I'-.'-I'-I'-I-I'-I'-"-I"' o b -I-I'-I'-I-I'-"-I-I'ﬁ"'

il A i i A e N e N F Y P R i R et e Sl Sl Nl R N Y

b o L] 3 L L
™, L] F b R T R I R R )
T l"r’ ’i"""‘ll '||l""|l""'¢l'I » ’d - "

U '\ll'ﬁlﬂ'llﬂ"ll"ll"llﬂ"ll,'\l

1"\.

e



I T T T T T O B T T . T T T TR, T . . e
o & & F & FEFEFEFFFEFFEFFFEFER o F D F L L F L F L P L L L A F L F L F

% ejepuonosford syidwan

L T T T T T T g e v T T T T A A R R R R R R R R R R R R R R R R R R T T T T
FFEFEEEEFEEFEEEEFEEEEREERL

2 onejodaauy

SINCTRE TN JNC TN IO DN TN O O TN O JOCC O O O O O O O O JOC TN O O O O O O O O O O O O DO O O O O O O O O OO O O O O O O O O O O O O O DO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O I I

US 10,984,565 B2

- SRR FFEFFEFF S o o F RS FEEFFEFFEF S F S & o R FFEFFEF A EEEFE RS R FEFR

r -
L] [ ]
e e e e e - - K - [

| + okl L

] T3
L] = ._....
' . 1
" it 3
i PR | L} '
LI LSRR g O O P P i
__.II -
S,/ III_ - '
- - [ ] | - -
0 1.'.-." %’. T'.-.' -I. In 1.'.-.'
.- ' [ -
r [] -
o 'y ¥ x
- - ¥ x
- 'S o .
o N L "
N2 2 a2 s a2 a a2 aaaaan i a - 4 a2 & a a2 a =2 aaa a a0 A a2 4 2 2 2 a s a2 s aaalg W s o - a -4 a a a a s m aaaaax
B ”_. : ”.._....—_l__l_..-___l__l__.-_—_l__l__.-_-_l__l_....-_ .-_.-..._.—_l__l__.-_—_.-.__.-___.-_—_l__l__.-_—_l__l__ » .-_....__....—_.-..-_“.. ..-_H.-_”. -.”.._l__l__.-_—_.-.__.-___.-_—_l__l__.-_—_l__....__.-_r
- r . . s . .. .
f R . w’ " ’ * A ' .._..__
& rkoror -
”y . r
.. .. .
v r-_l.“_ "
4 .__.I¥
ra
- “l.? - a
e 5 Sy
S [
" a r
ko1 .
S l..r
. “wgne
ra
F - - F Fl
.r.._ ¥ I
”
- . o
t el )
...... . .-.i ” . .-_.-.....-..
ra " a ra .
e b e e e e e e e e et T [ e M e e e e e e e e e e e T T Y |
.-_.__.l.__.t.._.-..__..r._..I.__..r.__..-_....-_...l....l...t...l.....-.._..l....l.....-....t...l...Ii..._ - 1.._..'.__..!.__.'._...-_.._..-..-.:..__.-_.._.l....l...t...l....l....l..._..-....l....t.._.l...l...'.._..-.-_1 1.._..-..__.l._..t.__..-..._.l.__.I.._..-..__.-_....'.._.I...l...t.._.l....l.....-..._.l....l...t...l....-.l._. -..__I.__.t.__.-_.__..-_.__I.._..r.__.I...t...l.....-_._..l..._..-....l....l..._.l....l...t...l....-......-.l .I.-_.__..-_.._..-..__I.__..-_.._.IH.r.__.-_.._.l....l....l..._.l....l...t.._.l....l....l..._..-....l....
.rii rqli.. . - .._..._.t.. . ..|.-_ -
h = a a r . "
.Ill' | ] hll Ll - .Ill' - - ' » -
. . . - . . -
. r a . . - . . [
- . .
1.-..._.-_.-. llll"“l.lt ' Rt s S ' " i t.-_t-_ll" s
[y . - - . ” & iy i
- [ ) g . ' - E - . a
l.-_Il_ 'y ™, . 5 l_.... - . J: x,
- . r [] r [] ¥ » III_.._.
r [] . 0 B r A . L
S s g ...-..- : - o
- . r [] r [] * » II-..._.
- - .k . . [ ] - a
& . - [ - [ I .-_I-. [
[] . . ' r .
* ) " III'.._ -&"-_.. . l-_l-» ._.__-II- ...
LT [l 3 . », I

- A . - " B
- [ e . - - AR,
' e rroroa r Voo

n_a n_a A
LI - & i ki
L l.-.i-. l.-_.i._.. i.-_.'._..
' S .
Y " - . .
- a - . - - -
LN | L] L - & i L
. b Tt .r s o
' . . ' '
- a 2 . oA - a 2
u i = & i a i . L | g
L LIl - i L r i
o L =t Tt e

A I IO I IO IO IR I IO I R I |

L]
L]

EE TN DO TR I O O IO O I O IO O I ) a_a

Apr. 20, 2021

e e e D T e e e e e Lo
P e e e mbr e e e e e e e e e e ror g
) . ) ¥ Pl s
| N} o r o |
- . - -
- . . - . . ....-.
. a . . ra .
.r 'n .r .
. LE . - -
et 1Ii. LN, » .......
. K. - ¥ K a a - -
i : . Kl
a e - X v a >
Foa . r a ra - a -
5 r . r . woa » x i
¥ e . ’ Xx ‘- " l.-_.....-.l
. o ey X w .r [
r F o .. r & L] roa Il ] i
. X . [ . . [ F a Y
- > . Al .
n. A ..l..-. .;.-. n. l..-. '.l "2 o
= = [ . s a - a roh l..—l,l a
K. . K K K o X
- X . i X . > [ ra
X X ¥ Ea
SaoeTa X " [ " K. A
o " a ra s . o - a a
v . . roa Ko roa ko » TR R N » .
" ¥ I N . o - ' N
s .. . . . . . . . - o L . . . . . . R e N 1.1...1. . . . R . . R . . A ....l ....l. R . . R . . R . e LI v X 4 LRI R . . R . . R e
1.”. 1.”. 1".q‘.q‘.q‘.q‘.q‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*“ .q‘.q‘*- -J.P J.. .'q‘-q‘.q‘.q‘.q‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘* l‘*‘ - > | ] ‘.q‘.q‘-q‘.q‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘* ."-q‘ - LI | 1'. ' ‘.q‘.q‘-q‘.q‘.q‘.q‘.q‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘”‘*‘ l- .'..r i .-.*‘.q‘.q‘.q‘.q‘.q‘.q‘*‘*‘*‘*‘*‘*‘*‘*‘*‘*‘”‘*‘ d
» . * X . a 3 ......._ x5 s . " e wa x5
¥ r ' ra ra ra - a a ) r K K ¥ -
P . . F oa o o " a ” X . P X . o
- e e * X P r . ¥ r . Ta ra 5 r .
" K a ra " " . o . K .._ M Ty >
ar . S a2 a Y - &y & r . R - ra . 5
. P Ve s e kA A kA A A A kA P T R A A R A R A A A Ak A A A o e R A Ak A Ak A e L e A A A A A A A Ak
I | 1"b.-.b-.-.b..-.b..'*..-.b.h*h*h*‘*h*‘*.‘*h*‘*.‘*ht‘*T‘..'*- .l.h- > F FEFEFEFEEFEFEEFEEFEEFEEEEFEN ‘.-.l ) T.'.. s FEFEFEEEFEEFEENFENFENFEERFN ‘.r' F ] - r o 5 F B FFFEFEFEFEEFFEEFEFN ‘.-.rl..' 1] -.'-.*l F I DR N N Ja RN N BN N N N e B B o ‘fl & d
. " . .. . .
Y ity A Al e . ....... Y s "t " s ¥
X N ra wa ra ra r . . r . P
I | L . | . I.TL L F r l.'L
e " e e » ' . Lo ......_ P »
T o T T L T T o A T e e e e e e e e e e e
S P et e e P P i T L L L L L L 11.....r.....r.....r.....r....rHI.....__.....r.....r.....r.....r.....r.....r.....r.....r.....r.....r....r.....r.-_.._. .-..r.....r.....r.....r.....r....r”-.Hr....r.....r....r....r.....r....r....r.....r....r....r.....r....r v r.....r.....r.....r.....r.....—”-.....r.....r.....r....r.....r.....r....r....r.....r....r....r.....r....r.-.h
. - . -
.l.__. 4 - ..-_.-_ - [ ] = i
o~ o " . . .- .. o .
e & - A m % . » e i III-. '
&y o] r ' - f o * .
rF r ¥y - » a . a
- . » . i ..E}.
¥ - » a a
- * r r i
v - » III-. 4
- - . - 'y
e n * ! -_I- (3
- . .
3 . r . » - e e e e e e e e e e e e e e e e e A
B L e s e e e e e e e e e e e s e ™ . a e s e s e s s s e et e s e e A '
R N I o N O N T N R N N N N N N o N N N N

ll&lwm.""...q..__...__...._...__...__...._..*.*.*.*.*.*.*.*.*.*.*.”.‘“‘."“".WH“..“I."““””""%I"‘“"""‘. . II“"""II.
Lol ol el il el il el el el il i A Ll e e el e el el ol el el el el el el el el ol el el Sl e el el St e S N i el i i el el el ol il el e el il ol el i
oo oo oo oo e ' ' oo oo oo o oo oo

e :

A e e e Ay
& 0 LI T T I | 1 [

r .
-
-
-
[
E
[ [ R R oo

& & 1
- v w

%
! _H_.-. . ey
[} .r____w__.u ﬂ._u . .n..u..”.”...,
N e
R R
! Gy
8y
\ I o SRS

U.S. Patent

Back-

tion
layer

projec

Ramp
filtering
layer

layer

Analytical reconstruction network layer

B Weighting

Back propagation

®» Forward operation




US 10,984,565 B2

Sheet 6 of 10

Apr. 20, 2021

U.S. Patent

ieAry Buyiduwies-d

19AB] bunoo

JaAe} |BUOIINICAUOD

r

Inding

elelelele]

| bl

S < Dy G

LI EEEFRRE

bk bk h bk ks kL R
dr b o dr o dr b b b b B o N

[ i ety P

- i - - -
PN N o o ] ataaa A "aaT e e a"a e a  Ta"a"a"a" o o ' ' [ i S S | [l i i 'y
P D I N e I O b

Jr b M b bk b h Wk S

“.

N .
- .

»aetetetet atetntats ettt St et e "amm e, et n"a A AT e atemat "a"a"n"a". 'm"a"n"a"s A AT ama e a"n" "am"a"n". 'm " a" " " a"n"s e ""a"e"a". 's"s""a"s
I

- - m om m_r - omom omm nomom omom - m om omm - mom o m_r - e om mom LI - e oo - o o - ] v o o T o o - o - - o v o o ow T o o o ow - o -

& o & d LN N N N L L L [ N r o & L N N L N [ N N L N L L N *+ & F & & r i & & & L N L L O

e

SR

/N

-
k
t




U.S. Patent

Apr. 20, 2021

Sheet 7 of 10
1 - .
"‘FE 1 N
-1 | 42y2 | -1
1 - A
1';& 1 *wfl.r:i
Fig. 11
Fig. 12A
Fig. 128
SO

L AN L L L L L L L L L L L G S W WS o e

e e B e e e

US 10,984,565 B2



U.S. Patent Apr. 20, 2021 Sheet 8 of 10 US 10,984,565 B2

Projection data of an object is acquired by aCT S131
scanning system

e —————————————————————————————— _ _ 3132

The projection data is processed by using a |

convolutional neural network, to acquire an

estimated image of the object
Fig. 13A
[ In a first training process, a simulation data set is 51321
lused as input projection data to train a neural network §
S1322

In a second training process, collected true CT
projection data is used as the input projection
domain data to further train the neural network

Fig. 138
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IMAGE PROCESSING METHOD USING
CONVOLUTIONAL NEURAL NETWORK,
IMAGE PROCESSING DEVICE AND
STORAGE MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priornity to the Chinese Patent
Application No. 201711498783.0, filed on Dec. 29, 2017,

which 1s incorporated herein by reference in its entirety.

TECHNICAL FIELD

The embodiments of the present disclosure relate to
radiation 1maging, and more particularly, to an 1mage pro-
cessing method, an 1mage processing device and a storage
medium.

BACKGROUND

X-ray Computerized-Tomography (CT) imaging systems
have been widely used i fields such as medical treatment,
security ispection, industrial non-destructive detection eftc.
Ray sources and detectors collect data of a series of attenu-
ation signals according to a certain trajectory, the data of the
series ol attenuation signals 1s preprocessed, and a three-
dimensional spatial distribution of linear attenuation coet-
ficients of an object to be inspected may be obtained through
recovery using an image reconstruction algorithm. CT
image reconstruction process 1s to recover linear attenuation
coellicient distribution from data acquired by the detectors.
Currently, analytical reconstruction algorithms such as {il-
tered back-projection, Feldkmap-Davis-Kress (FDK) eftc.
and 1terative reconstruction methods such as Algebra Recon-
struction Technique (ART), Maximum A Posterior (MAP)
etc. are mainly used 1n practical applications.

With the increasing diversity of demands for X-ray CT
imaging, the requirements for reducing radiation dose have
become higher and higher. Techniques for C'T image recon-
struction using a convolutional neural network have been
proposed. However, reconstruction methods using convolu-
tional neural networks require supervised tramning i a
process of traiming the neural networks. Such a method
requires acquiring a large number of real 1mages as labels,
that 1s, the convolutional neural network requires both
projection data of low quality and projection data (ground

truth value) of high quality.

SUMMARY

According to the embodiments of the present disclosure,
there are proposed an 1mage processing method, an 1image
processing device and a storage medium.

According to an aspect of the present disclosure, there 1s
proposed an 1mage processing method, comprising:

acquiring, by a Computerized-Tomography (CT) scan-
ning system, projection data of an object; and

processing, by using a convolutional neural network, the
projection data, to acquire an estimated 1mage of the object;

wherein the convolutional neural network comprises: a
projection domain network for processing input projection
data to obtain estimated projection data; an analytical recon-
struction network layer for performing analytical recon-
struction on the estimated projection data to obtain a recon-
structed 1mage; an image domain network for processing the
reconstructed image to obtain an estimated 1image, a projec-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion layer for performing a projection operation on the
estimated 1mage by using a system projection matrix of the
CT scanming system, to obtain a projection result of the
estimated 1image; and a statistical model layer for determin-
ing consistency among the input projection data, the esti-
mated projection data, and the projection result of the
estimated 1mage based on a statistical model;

wherein the 1mage processing method comprises training
the convolutional neural network by: adjusting parameters
of convolutional kernels of the image domain network and
the projection domain network by using a consistency cost
function of a data model based on the mput projection data,
the estimated projection data, and the projection result of the
estimated 1mage.

According to an embodiment of the present disclosure,
training the neural network further comprises: constructing
a cost function consistent with the projection from estimated
image using the projection layer, constructing a likelihood
relation cost function using the statistical model layer, and
forming the consistency cost function of the data model
using at least one of the cost function consistent with the
projection and the likelihood relation cost function.

According to an embodiment of the present disclosure,
the convolutional neural network further comprises at least
one priori model layer for adjusting the image domain
network by using a prior1 model cost function based on the
estimated 1mage, and performing back propagation of gra-
dients through the analytical reconstruction network layer to
adjust parameters of a convolutional kernel of the projection
domain network.

According to an embodiment of the present disclosure, a
forward propagation process of the projection domain net-
work, the analytical reconstruction network layer and the
image domain network comprises:

expressing mput projection data of the projection domain
network as g={g,, 2,, . . . , 2. €xpressing estimated
projection data output by the projection domain network as
=18, 8,, ..., 8}, wherein M'=zM, after the estimated
projection data is weighted, obtaining Diag(W)g={W,§,,
W.g,, ..., W,g | after the weighted projection data
passes through a ramp filtering layer, obtaining h&®@Diag(W)
o  after the filtered data 1s back-projected, obtaining an
output of the analytical reconstruction layer as
f=H,"h®Diag(W)g, and assuming that ¢, represents a pro-
cessing function of the image domain network, obtaining the
estimated 1mage output by the image domain network as
=),

wherein a superscript T represents transposition ol a
matrix, h 1s a discrete ramp filtering operator, Hy 1s a system
matrix for M'xN dimensional reconstruction, N 1s a total
number of pixels of the reconstructed image, and W,,
W,, ..., W, represent weighting coetlicients.

According to an embodiment of the present disclosure,
the consistency cost function of the data model 1s expressed
as W(g; Hf, ¢)=L(g; 8)+p||g-H1|]*, and error transfer relations
from the consistency of the data model are

oY _ L&) |
g 03

wherein L(g; g) 1s a likelihood relation cost function, the
smaller the L(g; &) becomes, the more consistent the pro-
jection data g and the estimated projection data g will be,
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Bllg=H1][* is a cost function consistent with the projection, f
1s a Lagrangian multiplier parameter, and H 1s a system
projection matrix.

According to an embodiment of the present disclosure,
the priori model cost function ¢(f) comprises one or a
combination of 1s a total varniation of local conditions, a
Markov field priori, a texture priori, and sparsity of a feature
space, wherein f is the estimated image.

According to an embodiment of the present disclosure,
training the neural network further comprises: defining a
prior1 model cost function (p(f) using a priori error €7 as
e =q(1).

According to an embodiment of the present disclosure,
importance A of each prior model cost function ¢(f) in an
error feedback process 1s used to adjust the 1mage domain
network.

According to an embodiment of the present disclosure, 1n
the analytical reconstruction network layer, a prior error of
the analytical reconstruction network layer 1s back-propa-
gated according to the following propagation relation:

aSPr]
af

where nput projection data of the projection domain
network is expressed as g={g,, 2., . . ., g}, estimated
projection data output by the projection domain network 1s
expressed as §=18,, 8., . .., §,,}, wherein M'=M, after the
output is weighted, Diag(W)g={W,g,, W,&,, ..., W, 8,.}
1s obtained, after the weighted output passes through a ramp
filtering layer, h®Diag(W)g is obtained, after the output
trom the ramp filtering layer 1s back-projected, an output of
the analytical reconstruction network layer is {=H,’h®Diag
(W)g, wherein a superscript T represents transposition of a
matrix, h 1s a discrete ramp filtering operator, H, 1s a system
matrix for M'xN dimensional reconstruction, N 1s a total
number of pixels of the reconstructed image, and W,,
W,, ..., W, represent weighting coethicients.

According to an embodiment of the present disclosure,
the processing function of the image domain network i1s
represented by @,, as f:(pN(f), and then the prior1 error 1s
back-propagated according to the following propagation
relation:

EP.F"

—
e

= Diag(W)[h ® Hp

ae"” , acsh™ af
— =Diag W) h@ Hp — - —
ag of af

de(f) den(f)

3 f a f

= Drag( W)(h ® Hp

According to an embodiment of the present disclosure,
the method further comprises: propagating

¥ e
— and

08 0g

together to the projection domain network to update param-
cters of various layers.

According to an embodiment of the present disclosure,
the method further comprises: acquiring attenuation signal
data by the CT scanning system, and preprocessing the
attenuation signal data to obtain input projection data.

According to an embodiment of the present disclosure,
the method further comprises: acquiring the projection data
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of an object by the CT scanning system by using one of
detector under-sampling scanning, sparse-angle scanning,
intra-reconstruction scanning, limited-angle scanning, and

straight line trajectory scanning.
According to an embodiment of the present disclosure,
the projection domain network comprises a plurality of
parallel convolutional neural network branches.
According to an embodiment of the present disclosure,
the 1image domain network comprises a U-shaped convolu-
tional neural network.
According to an embodiment of the present disclosure,
training the neural network further comprises: pre-training,
supervisedly the convolutional neural network by using
simulation data set.
According to another aspect of the present disclosure,
there 1s proposed an 1image processing device, comprising:
a memory configured to store istructions and data, and
a processor configured to execute the mstructions to:
receive projection data of an object acquired by a Com-
puterized-Tomography (CT) scanning system; and

process the projection data by using a convolutional
neural network, to acquire an estimated 1mage of the
object;
wherein the processor 1s further configured to construct
the convolutional neural network to comprise: a pro-
jection domain network for processing input projection
data to obtain estimated projection data; an analytical
reconstruction network layer for performing analytical
reconstruction on the estimated projection data to
obtain a reconstructed 1mage; and an 1mage domain
network for processing the reconstructed image to
obtain an estimated 1mage, a projection layer for per-
forming a projection operation on the estimated image
by using a system projection matrix of the CT scanning
system, to obtain a projection result of the estimated
image; and a statistical model layer for determining
consistency among the input projection data, the esti-
mated projection data, and the projection result of the
estimated 1mage based on a statistical model;

wherein the processor 1s further configured to train the
convolutional neural network by: adjusting parameters
of convolutional kernels of the image domain network
and the projection domain network by using a consis-
tency cost function of the data model based on the input
projection data, the estimated projection data, and the
projection result of the estimated 1mage.

According to yet another aspect of the present disclosure,
there 1s proposed a computer readable storage medium
having computer instructions stored therein, which, when
executed by a processor, implement the method according to
the present disclosure.

BRIEF DESCRIPTION OF THE
ACCOMPANYING DRAWINGS

For better understanding of the embodiments of the
present disclosure, the embodiments of the present disclo-
sure will be described 1n detail with reference to the fol-
lowing accompanying drawings.

The patent application contains at least one drawing
executed 1n color. Copies of this patent with color drawings
will be provided by the Patent and Trademark Oflice upon
request and payment of the necessary fee.

FIG. 1 illustrates a schematic structural diagram of a CT
device according to an embodiment of the present disclo-
Sure;
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FIG. 2 1s a schematic structural diagram of a control and
data processing apparatus 1n the CT device shown in FIG. 1;

FIG. 3 illustrates an example of a sinogram of projection
data obtained by the device according to an embodiment of
the present disclosure;

FIG. 4 1llustrates a schematic diagram of data contained
in a sinogram 1n different scanning modes;

FIG. 5 1s a schematic diagram of a scanning apparatus
implementing a sparse-angle sampling and scanning mode
according to an embodiment of the present disclosure;

FIG. 6A illustrates a structural diagram of a neural net-
work according to an embodiment of the present disclosure;

FIG. 6B illustrates another structural diagram of a neural
network according to an embodiment of the present disclo-
SUre;

FIG. 7 1s a diagram illustrating images processed by
various modules 1n architecture of the neural network shown
in FIGS. 6A and 6B;

FIG. 8 illustrates a structural diagram of a projection
domain network used in a device according to an embodi-
ment of the present disclosure;

FIG. 9 illustrates a structural diagram of an analytical
reconstruction network layer used 1n a device according to
an embodiment of the present disclosure;

FIG. 10 illustrates an exemplary structural diagram of an
image domain network 1n a device according to still another
embodiment of the present disclosure;

FIG. 11 illustrates a structural diagram of a smooth
conditional convolutional kernel used in a convolutional
neural network according to an embodiment of the present
disclosure:

FIGS. 12A , 12B, and 12C 1llustrate a diagram of sizes of
filter cores used 1n the device according to an embodiment
of the present disclosure;

FIG. 13A 1s a schematic flowchart illustrating an 1mage
processing method according to an embodiment of the
present disclosure;

FIG. 13B is a schematic flowchart illustrating a method
for training a neural network according to an embodiment of
the present disclosure;

FIG. 14 1s a schematic diagram of a scanming apparatus
which implements limited-angle CT scanning according to
another embodiment of the present disclosure;

FIG. 15 1s a schematic diagram of a scanming apparatus
which implements an intra-reconstruction scanning method
according to yet another embodiment of the present disclo-
Sure;

FIG. 16 1s a schematic diagram of a scanming apparatus
which i1mplements a detector under-sampling scannming
method according to yet another embodiment of the present
disclosure; and

FIG. 17 illustrates a schematic diagram of a scanning
apparatus which implements straight line trajectory CT
scanning according to yet another embodiment of the pres-
ent disclosure.

DETAILED DESCRIPTION

The specific embodiments of the present disclosure will
be described in detail below. It should be noted that the
embodiments herein are used for illustration only, without
limiting the embodiments of the present disclosure. In the
description below, a number of specific details are explained
to provide better understanding of the embodiments of the
present disclosure. However, 1t 1s apparent to those skilled in
the art that the embodiments of the present disclosure can be
implemented without these specific details. In other
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istances, well known circuits, materials or methods are not
described specifically so as not to obscure the embodiments
of the present disclosure.

Throughout the specification, the reference to
embodiment,” “an embodiment,” “one example” or “an
example” means that the specific features, structures or
properties described 1n conjunction with the embodiment or
example are included in at least one embodiment of the
present disclosure. Therefore, the phrases “in one embodi-
ment,” “in an embodiment,” “in one example” or “in an
example” occurred in various positions throughout the
specification may not necessarily refer to the same embodi-
ment or example. Furthermore, specific features, structures
or properties may be combined mto one or more embodi-
ments or examples 1 any appropriate combination and/or
sub-combination. Moreover, it should be understood by
those skilled 1n the art that the term *“and/or” used herein
means any and all combinations of one or more listed 1tems.

The embodiments of the present disclosure propose a
method and device for training a neural network and an
image processing method and device, wherein input projec-
tion data 1s processed by using a neural network to obtain
estimated 1mage of an object. The neural network may
comprise a projection domain network, an analytical recon-
struction network layer, an 1image domain network, a pro-
jection layer and a statistical model layer. The projection
domain network processes input projection data to obtain
estimated projection data. The analytical reconstruction net-
work layer performs analytical reconstruction on the esti-
mated projection data to obtain a reconstructed image. The
image domain network processes the reconstructed image to
obtain an estimated image. The projection layer performs a
projection operation on the estimated image by using a
system projection matrix of a Computerized-Tomography
(CT) scanning system to obtain a projection result of the
estimated 1mage. The statistical model layer determines
consistency among the mput projection data, the estimated
projection data, and the projection result of the estimated
image based on a statistical model. Parameters of convolu-
tional kernels of the image domain network and the projec-
tion domain network are adjusted by using a consistency
cost Tunction of a data model based on the input projection
data, the estimated projection data, and the projection result
of the estimated 1mage. With the solutions according to the
above-described embodiments of the present disclosure, an
image with a higher quality may be reconstructed by the
trained neural network when there 1s a defect 1 the projec-
tion data.

FIG. 1 illustrates a schematic structural diagram of a CT
device according to an embodiment of the present disclo-
sure. As shown 1n FIG. 1, the CT device according to the
present embodiment comprises an X-ray source 10, a
mechanical movement apparatus 50, a detector and data
acquisition system 20, and a control and data processing
apparatus 60, so as to perform CT scanning and data
processing on an object 40 to be inspected, for example,
training of a neural network and reconstruction of an 1image
using the trained network.

The X-ray source 10 may be, for example, an X-ray
machine, and an appropriate focus size of the X-ray machine
may be selected according to a resolution of 1imaging. In
other embodiments, mstead of using the X-ray machine, an
X-ray beam may be generated using a linear accelerator eftc.

The mechanical movement apparatus 50 comprises a
stage, a rack, a control system, etc. The stage may be
translated to adjust a position of a center of rotation. The
rack may be translated to align the X-ray source (the X-ray
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machine) 10, the detector, and the center of rotation. In the
present embodiment, the description 1s made according to a
circular scanming trajectory or a spiral trajectory of a rota-
tional stage and a fixed rack. As the movement of the stage
with respect to the rack 1s a relative motion, the method
according to the present embodiment may also be 1mple-
mented by a fixed stage and a rotational rack.

The detector and data acquisition system 20 comprises an
X-ray detector, a data acquisition circuit etc. A solid detec-
tor, a gas detector, or other detectors may be used as the
X-ray detector; however, the embodiments of the present
disclosure are not limited thereto. The data acquisition
circuit comprises a readout circuit, an acquisition trigger
circult, a data transmission circuit etc.

The control and data processing apparatus 60 comprises,
for example, a computer device installed with a control
program and a data processing program, and 1s responsible
for performing control of an operation process of the CT
system, 1ncluding mechanical rotation, electrical control,
safety interlock control, etc., training a neural network, and
reconstructing a CT 1mage from the projection data using the
trained neural network eftc.

FIG. 2 illustrates a schematic structural diagram of a
control and data processing device 200, for example, the
control and data processing apparatus 60 shown in FIG. 1.
As shown 1n FIG. 2, data collected by the detector and data
acquisition system 20 1s stored in a storage device 210
through an intertace unit 270 and a bus 280. A Read-Only
Memory (ROM) 220 has configuration information and
programs of a computer data processor stored therein. A
Random Access Memory (RAM) 230 1s configured to tem-
porarily store various data during operation of a processor
250. In addition, computer programs for performing data
processing, such as a program for training a neural network
and a program for reconstructing a CT i1mage etc., are also
stored 1n the storage device 210. The storage device 210, the
read-only memory 220, the random access memory 230, an
input apparatus 240, the processor 250, a display device 260,
and the interface unit 270 are connected through the internal
bus 280.

After a user mputs an operation command through the
input apparatus 240 such as a keyboard, a mouse etc.,
instruction codes of the computer program instruct the
processor 250 to execute an algorithm for training a neural
network and/or an algorithm for reconstructing a CT 1image.
After obtaining a reconstruction result, display the recon-
struction result on the display device 260 such as an LCD
display etc., or output a processing result directly 1n a form
of a hard copy such as printing etc.

According to an embodiment of the present disclosure,
C'T scanning 1s performed on an object to be inspected using
the above device to obtain a raw attenuation signal. Data of
the attenuation signal may also be displayed in a form of a
two-dimensional image. FIG. 3 1llustrates an example of the
data of the attenuation signal obtained according to an
embodiment of the present disclosure. A horizontal axis
direction of the raw attenuation signal shown in FIG. 3
represents a detector pixel sequence (for example, from 1 to
256) and a vertical axis of the raw attenuation signal shown
in FI1G. 3 represents an angle (for example, from 1 degree to
360 degrees). The raw attenuation signal 1s preprocessed to
obtain projection data. For example, the raw attenuation
signal may be preprocessed by a CT scanming system by
performing negative logarithmic transformation etc. to
obtain the projection data. The processor 250 in the control
device then executes a reconstruction program to process
projection data using a trained neural network to obtain the
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estimated projection data, so as to further performs a recon-
struction operation on the estimated projection data through
the analytical reconstruction network layer to obtain a
reconstructed image, and further process the reconstructed
image to obtain a final image. For example, the recon-
structed 1mage 1s processed using a tramned (for example,
U-shaped) convolutional neural network to obtain feature
images on various scales, which are fused to obtain a
resultant 1mage.

In the embodiments of the present disclosure, projection
data 1s processed using a trained convolutional neural net-
work 1n a projection domain, then a reconstruction operation
1s performed through the reconstruction layer to reconstruct
the 1mage, and finally the reconstructed image 1s processed
by the image domain network to obtain the estimated 1mage.
The convolutional neural network may comprise convolu-
tional layers, pooling layers, and fully connected layers. The
convolutional layers each identify characteristics of an mnput
data set, and each convolutional layer has a nonlinear
activation function operation. The characteristics 1s refined
by the pooling layers, and typical operations comprise
mean-pooling and max-pooling. One or more fully con-
nected layers implement a high-order signal nonlinear syn-
thesis operation, and the full connected layer also has a
nonlinear activation function. The commonly used nonlinear
activation functions comprise Sigmoid, Tanh, ReLLU etc.

Although the above description 1s mainly described for a
case that 360-degree circular scanning 1s performed to
obtain complete projection data, i1t can be understood by
those skilled 1n the art that the above solution can be applied
to the case of mcomplete projection data, for example, to
detector under-sampling, sparse-angle sampling, limited-
angle, intra-reconstruction, or straight line trajectory scan-
ning etc.

FIG. 4 1llustrates a schematic diagram of data contained
in a sinogram 1n different scanning modes. As shown 1n FIG.
4, the projection data obtained by sparse-angle sampling CT
scanning, limited-angle CT scanning, detector under-sam-
pling CT scanning, and intra-reconstruction C'T scanning are
all incomplete. Although the projection data 1s incomplete,
with the above solutions, an 1mage with a higher quality can
be reconstructed from the imncomplete projection data.

FIG. 5 1s a schematic diagram of a scanning apparatus
implementing a sparse-angle sampling and scanning mode
according to an embodiment of the present disclosure. As
shown 1n FIG. §, after X rays emitted by the radiation source
10 pass through the object 40 to be mspected 1n a field of
view 45, the X rays are received by the detector 30, are
converted mnto an electrical signal, and are further converted
into a digital signal indicating an attenuation value, which 1s
pre-processed as projection data, so as to be reconstructed by
a computer. With the solutions described above, an image
with a higher quality can be reconstructed by the neural
network which 1s trained by using the method according to
the present disclosure even 1f CT scanning i1s performed on
the object 40 to be inspected at a plurality of rotational
positions (for example, six positions). In this way, an 1image
with a higher quality may be reconstructed from incomplete
projection data even 1f sparse-angle CT scanning 1s per-
formed on the object to be mspected.

FIG. 6 A 1llustrates a structural diagram of a convolutional
neural network according to an embodiment of the present
disclosure. As shown in FIG. 6A, an input of an unsuper-
vised X-ray CT image reconstruction neural network is
projection data obtained by performing CT scanning and
then preprocessing on the attenuation signal. The neural
network may mainly comprise a projection domain network
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610, an analytical reconstruction network layer 620, and an
image domain network 630. Further, the neural network
according to the embodiment of the present disclosure may
turther comprise a statistical model layer 640 and a projec-
tion layer 650. FIG. 6B illustrates another structural sche-
matic of a convolutional neural network according to an
embodiment of the present disclosure. Unlike the structure
of the neural network shown in FIG.

6A, the neural network 1n FIG. 6B may further comprise
at least one a priori model layer, and FIG. 6B 1llustrates three
prior1 model layers 660, 670, 680 as an example.

FIG. 7 1s a schematic diagram illustrating 1images pro-
cessed by various modules in architecture of the neural
network shown 1n FIGS. 6A and 6B. As shown 1in FIG. 7, the
input projection data may be expressed as g, data obtained
alter being processed by the projection domain network 1s
expressed as g, which may be referred to as “estimated
projection data”, data obtained after being processed by the
analytical reconstruction network layer i1s expressed as 1, and
data obtained after being processed by the image domain
network 1s expressed as 1, which may be referred to as
“estimated 1mage”. The projection domain network 610 1s
used for recovery ol projection data and estimation of
missing data to obtain complete projection data. The ana-
lytical reconstruction network layer 620 comprises a plural-
ity of layers which are constructed based on an analytical
reconstruction algorithm known by those skilled in the art,
but are specifically matriculated. A special construction of
these layers will be described in detail below. The image
domain network 630 1s used for reducing artifacts and errors
in a reconstructed image, thereby further improving the
quality of the reconstructed image. The projection layer 650
performs a projection operation on the estimated image f by
using a projection matrix of a CT scanning system to obtain
projection of the estimated 1image, so as to construct a cost
function consistent with the projection, which i1s similar to a
cost function of ART. The statistical model layer 640 con-
stitutes a cost branch of the network to describe a statistical
fluctuation at the time of collection of projection, so as to
determine consistency among the input projection data, the
estimated projection data, and the projection result of the
estimated 1mage based on a projection model, all or a part of
which may be a likelihood relation cost function that 1s
satisfied under collected X-ray CT data and true data under
a statistical model.

As shown 1n FIG. 6B, the neural network according to the
embodiment of the present disclosure may further comprise
prior1 model layers 660, 670, 680, which constitute an end
cost function of the network. It may be understood by those
skilled 1n the art that the three prior1 model layers in FIG. 6B
are merely 1llustrated as an example, and the neural network
may also comprise one or other numbers of parallel priori
model layers (also referred to as constraints). The prion
model layers 660, 670, 680 may be at least one of a total
variation of local conditions, a Markov field prior, a texture
prior1l, and sparsity of a feature space, and other models,
respectively. Parameters A are used to adjust importance (or
intensity) of the prior1 models or constraints. FIG. 6B
illustrates A, A, and A, which may be used as weights for
back-propagation of the priori model layers 660,670, 680.

A forward operation tlow of the overall network 1s shown
by solid arrows 1n FIGS. 6A and 6B. The projection data
input to the projection domain network 1s expressed as
g={g .9, ...,2,} and the estimated projection data output
by the projection domain network 610 is expressed as §={§,
8., ..., 8, wherein usually M'=M. After the output of the
projection domain network 610 passes through a weighting,
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layer shown in FIG. 9, Diag(W)g={W,g,, W,&,, . . .,
W, & .} is obtained, wherein W,, W, .. ., W, , represent
weighting coeflicients. After the weighted data passes
through a ramp filtering layer, a filtered sinogram h®Diag
(W)g 1s obtained, wherein h 1s a discrete ramp filtering
operator, which may be, for example, a Ram-Lak filter or a
Shepp-Logan filter. In one example, h may be a discrete
ramp convolutional kernel. After the filtered data passes
through a back-projection layer, an output of the analytical
reconstruction network layer is obtained as =H,’h@Diag
(W)g, wherein a superscript T represents transposition of a
matrix, H, 1s a system matrix for M'xN dimensional recon-
struction, and similarly to a forward projection matrix H
(system projection matrix), 1s determined by the architecture
of the CT scanning system and a scanning method, and H,”,
completes a back-projection process, specifically, a
weilghted back-projection process under fan beam or cone
beam scanning. After passing through the reconstruction
network, 1 continues to be fed forward to pass through the
image domain network, so as to obtain an estimated image
fof a scanned object. An output of each pI‘lOI‘l model layer 1s
a cost function @(D). ¢(f) may be an organic combination of,
for example, one of a full variation of local conditions, a
Markov field priori, a texture priori, sparsity of a feature
space, etc. or a combination thereof.

Error back-propagation of the overall network 1s back-
propagated, as indicated by dashed arrows shown in FIGS.
6A and 6B. The back-propagation 1s divided into two main
lines, which are a consistency cost of a data model and a
eemeldenee cost of the priori models. A prior1 error is
defined as & *”—cp(f) according to a coincidence cost function
(D) of the priori models. Importance of each ¢(f) in an error
teedback process, that 1s, importance of the priori models 1n
an 1mage space, 1s defined by a parameter A. An error of the
comncidence cost of the priori models 1s propagated to the
image domain network, and derivatives of an mput and
parameters of each layer with respect to the cost function are
calculated according to a layer-wise forward chain deriva-
tion rule. Then, the priori error of the analytical reconstruc-
tion network layer 1s back-propagated through the analytical
reconstruction network layer as follows:

aSPr]
af

Assuming that ¢, represents an processing function of the
image domain network, 1.e., I=q¢,[(1), and then the back-
propagation may further be expressed as

9t , (1)
— = Diag(W)| h ® Hp

g

o EPI"

o =Diag(w)[h - do(f) den (D))

3 f af

Dlag(W)(h ® Hp

The consistency cost of the data model comprises at least
one of a likelihood relation cost function and a cost function
consistent with the projection. The likelihood relation cost
function 1s defined according to a signal statistical model,
and a Gaussian noise distribution, a Poisson probability
distribution, a Gaussian and Poisson mixed probability
distribution, etc. may be used to calculate a likelihood
function L(g; &) (a negative value thereof 1s obtained under
a framework of error minimization). Here, the smaller the
defined L(g; g) becomes, the more consistent the nput
projection data g and the estimated projection data g will be.
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The cost function consistent with the projection reflects a
difference between a projection result obtained after a pre-
vious estimation result (estimated image) 1s projected
through the projection layer and the estimated projection
data g. The consistency cost function of the data model may
be expressed as:

W(g: Hf, g)=L(g; &)+Plg-Hf (2)

Thus, error transier relations from the consistency of the
data model are:

OV UG (3a)
FFARET: +2B(g—Hf),

A 3b
— =28H"(H] - g) )
8

where f is a Lagrangian multiplier parameter, p|[g—-Hf|] is a
cost function consistent with the projection, H 1s a system
projection matrix, and

are propagated to the projection domain network together, to
update parameters of various layers

1s propagated to the image domain network and 1s propa-
gated to the projection domain network through the analyti-
cal reconstruction network layer.

According to an embodiment of the present disclosure, a
training data set may comprise a simulation model covering
an application scenario which 1s generated using a simula-
tion tool, and a projection data set 1s generated according to
parameters ol an actual CT system and an actual scanning
method. An object 1s scanned on the actual system to obtain
C'T scanning data. A part of the CT scanning data 1s input to
the network as the training data set for further training, and
another part of the CT scanning data 1s collected to test a
training eflect of the network.

FIG. 8 1llustrates a structural block diagram of a projec-
tion domain convolutional neural network applied to a
sparse angle 1n a device according to an embodiment of the
present disclosure. A collected raw attenuation signal 1s
preprocessed by, for example, a CT scanning system by
using logarithmic transformation etc. (the preprocessing
may further comprise correction with air value, consistency
correction etc.) to obtain projection data g. The projection
domain network 610 uses the projection data as an nput.
The projection domain network complements missing data
by using the convolutional neural network. An input of
parallel networks shown 1n FIG. 8 1s the data collected 1n a
case of sparse angle, estimated missing angle data 1s divided
into multiple groups, and each group of data 1s data which
has the same scale as that of a collection angle, and has a
constant angle from the collection angle. For each group,
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existing projection data 1s used as the mput data, and
multi-level feature extraction 1s performed on the mput data
by concatenated convolutional layers (Cony) including an
activation function, and missing projection data 1s obtained
by a fully connected layer (which may be implemented by
using a 1x1 convolutional layer).

For the projection domain network 610, 2-dimensional
convolutional kemels on all scales each have two dimen-
sions, a first of which 1s defined here as a detector direction
and a second dimension of which 1s defined here as a
scanning angle direction. Each of the convolutional kernels
may not necessarily have the same length in the two dimen-
sions. Generally, the convolutional kernel has a greater scale
in the detector direction than 1n the scanming angle direction,
for example, the convolutional kermnel 1s a convolutional
kernel of 3*1, 5%*3, 7*3, or 9*%3. The convolutional kernel
may also have a size which 1s determined according to a
proportional relationship between two dimensions of a pro-
jection map. There may be a plurality of convolutional
kernels set for each scale. The convolutional layer 1s fol-
lowed by an activation function.

For example, the projection domain network has a main
role of increasing a resolution of the projection data 1n the
angle direction. The projection domain network may com-
prise a five-branch parallel network shown in FIG. 8. Each
branch comprises, for example, a seven-layer convolutional
neural network. A rectangular convolutional kernel 1s used
as the middle part due to a proportional relationship between
a number of detectors and a number of projections (FIGS.
12A, 12B, and 12C). Convolutional kernels 1n the last layer
cach have a size of 1*1 to achieve full connection 1n a
feature map direction, and at an output of each convolutional
layer, a Relu function i1s used as a nonlinear activation
function. During a convolution process, boundary data is
complemented by using periodicity of the convolution 1n the
angle direction, so that the feature map has a size which 1s
always the same as that of the mput.

As shown 1n FIG. 8, after being processed by the seven-
layer network respectively and then being interpolated, four
groups ol missing projection estimation are combined with
one group of projection which 1s collected and 1s de-noised
through the network to form an estimated projection map at
360 dense angles, which 1s propagated to the analytical
reconstruction network block. Although FIG. 8 illustrates
the convolutional network including a plurality of parallel
branches, 1t may be appreciated by those skilled 1n the art
that the technical solutions according to the present disclo-
sure may also be implemented by other forms of networks.
Although 1n the above embodiment, the projection domain
network 1s used to recover the missing data, that 1s, the
projection domain network i1s applied to a case where
incomplete data 1s obtained by using CT scanning, 1t may be
understood by those skilled 1n the art that the above projec-
tion domain network may process complete projection data,
thereby 1mproving the quality of the projection data.

FIG. 9 1llustrates a structural block diagram of an ana-
lytical reconstruction network layer used 1n a device accord-
ing to an embodiment of the present disclosure. The ana-
lytical reconstruction network layer 620 may comprise a
weilghting layer (optional), a ramp {iltering layer (optional),
and a back-projection layer. The weighting layer performs
cosine weighting on each data. The ramp filtering layer
performs a ramp filtering operation 1n a conventional ana-
lytical reconstruction method. The back-projection layer
performs back projection from the projection domain to an
image domain (distance-weighted back-projection for a fan
beam CT back-projection layer and a cone beam CT back-



US 10,984,565 B2

13

projection layer). Generally, the analytical reconstruction
network layer 1s designed and implemented according to the
architecture of the C'T 1maging system, and no parameter 1s
modified 1n the network training process.

For example, the analytical reconstruction network layer
620 explicitly adds the analytical reconstruction algorithm
into a structure of the network, thereby simplifying the
physical laws which the network needs to learn. The ana-
lytical reconstruction network layer 620 comprises three
layers.

A first layer 1s a weighting layer, which, in the present
application, performs cosine normalization on data in the
detector direction according to geometric parameters of the
C'T scanning using a cosine vector of 216*1, so as to achieve
point multiplication with the estimated projection, and
extend the cosine normalized vector 1n the angle direction to
obtain a weighting matrix W of 216*360, wherein values 1n
cach column of W are equal. After passing through the W
layer, the projection map 1s expressed as g,~9* W.

A second layer 1s a ramp filtering layer, which performs
a discrete filtering operation on the projection map in the
detector direction, that 1s, in the present application, per-
forms filtering on a vector of 216 detector responses at each
angle, which may be described as matrix multiplication, to
generate a filtering matrix F of 216%216. A matrix multipli-
cation 1s performed on the filtering matrix F and the
weighted projection data according to an equation of
o ~F*g . to complete a filtering process.

A third layer 1s a back-projection layer, which recon-
structs the filtered projection 1into an 1mage according to the
geometric relationship, which, 1 the present application,
generates a distance-weighted back-projection matrix H,”
according to the geometric parameters by using a pixel
driving method. The filtered image 1s back-projected to
obtain a reconstructed 1mage in the image domain.

FI1G. 10 illustrates an exemplary schematic diagram of an
image domain network used in a device according to yet
another embodiment of the present disclosure. The image
domain network may perform suppression on artifacts and
noise in the 1image domain. For example, the image domain
network 630 shown 1n FIG. 6 may be a U-shaped network
shown 1n FIG. 10.

For example, feature maps on different scales may be
obtained by processing the reconstructed image using the
U-shaped convolutional neural network shown 1n FIG. 10,
and may be combined to obtain a resultant 1image. More
specifically, the feature maps on the plurality of scales are
merged level by level by using an up-sampling operation, to
finally obtain a resultant 1mage of an object to be mspected.
For example, the image domain network further applies
prior knowledge to remove artifacts on the basis of the
analytical reconstruction of the estimated projection. In the
present embodiment, the image domain network adopts the
U-shaped network design in this example (as shown 1n FIG.
10). For example, pooling 1s performed on the reconstructed
image of 200%*200 four times, to gradually reduce a size of
the feature maps, so as to increase global features of a
learned 1mage 1n an acceptance domain. Then, the feature
maps are gradually expanded and merged with feature maps
with the same size without down-sampling, to prevent
information loss caused by down-sampling, so as to finally
recover an image with a size of 200%200, which 1s processed
by the network to finally reconstruct the image. In the image
domain network shown 1n FIG. 10, convolutional kernels in
different layers each have a size of, for example, 3*3. In a
process of down-sampling the image, as a size of the feature
maps decreases, a number of feature maps increases gradu-
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ally. In an up-sampling process, as a size of the feature maps
decreases, the number of feature maps decreases.

Although FIG. 10 exemplary illustrates the image domain
network to have a specific structural of a U-shaped network,
it may be appreciated by those skilled 1n the art that the
technical solutions according to the present disclosure may
also be implemented by U-shaped networks having other
structures. In addition, 1t may also be appreciated by those
skilled 1n the art that the technical solutions according to the
present disclosure may also be implemented by using
another network, for example, auto-encoder, fully convolu-
tion neural network etc. as the image domain network.

According to an embodiment of the present disclosure, all
convolutional kernels of the projection domain network 610
and the image domain network 630 have network param-
cters to be determined, which may be randomly 1nitialized,
or may be updated using other pre-training results obtained
in other ways during the network training process. In addi-
tion, the network processes the mput data 1n the projection
domain and the image domain, respectively, so that an
objective function to be optimized (often referred to as a loss
function 1 the deep learning field) achieves an optimal
result. Since adjacent pixels 1n the projection domain and the
image domain have different geometric relationships, the
projection domain convolutional layer and the image
domain convolutional layer may complement each other.

According to a specific example of an embodiment of the
present disclosure, 1 the image domain, this calculation
may be performed using a fixed convolutional kernel wy,
based on the prion1 knowledge of image continuity with
neighborhood similarity constraints. A fixed 3*3 convolu-
tional kernel design 1s represented in FIG. 11. Therefore, a
cost function for smoothing the 1mage may be used as the

objective function to be optimized, which may be expressed
as

. A2
m;meD ®fH2'
I

For the design of the consistency cost function W of the
data model, 1n this example, the collected projection data g
1s a set of samples which conform to an independent
(Gaussian distribution, and has a mean value which 1s an
integral of linear attenuation coeflicients of an scanned
object on a corresponding ray path. A first term in the
constraints 1s a Gaussian model likelihood cost function,
which completes maximum likelihood estimation con-
straints from the samples g to distribution true values, and 1s
only applicable to a network which 1s partially de-noised by
a collected sparse-angle projection, and a second term 1n the
constraints represents consistency constraints between the
projection and the 1mage, and 1s applicable to each part of
the projection domain network.

W=(g-F.5) = (g8 ) +B(E-F*N T (-H*) (4)

where g 1s the collected sparse-angle projection data, g_ ,
1s an estimated value on the ray path corresponding to the
collected sparse-angle projection data, f is an estimated
image output by the network, X 1s a diagonal matrix 1n which
diagonal elements 1s variances of the projection data, H 1s a
system projection matrix, and {3 1s a Lagrangian multiplier
parameter.
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The back-propagation of the coincidence cost function of
the priori models may be expressed as follows:

de(f) A () 3

An 1mage output by the network 1s derived, and a gradient
is back-propagated through the analytical reconstruction !©
layer and then 1s applied to the network convolutional

kernels 1n the projection domain. )
In a data fidelity constraint W, there are both 1 and g, and

the gradient 1s back-propagated while updating the projec-

tion domain network from g and propagating 1 to the image 1
domain network.
N S , (6)
a_§=2$2 (8 = &) + 2% Blg - HS) 20
ix , (7)
— =2«H'BHf - g)
af
25

Two data sets which are a simulation data set and an
actual data set may be used in the process of training the
neural network.

The simulation data set 1s a human CT tomogram with a
high quality which 1s from a source such as a network etc. 30
As an example, according to a mechamical geometry, a
simulation projection data 1s generated at an angle from 3
degrees to 338 degrees with an increment angle step of 5
degrees, with a number of photons being 10°. A set of
simulation projection data on a scale of 216%*72 1s obtained.
45 of the set 1s used for unsupervised training of the network,
and s of the set 1s used as a verification set to control a
normalization effect of the network.

An actual data set may be projections generated by
scanning a phantom body on a fan beam spiral CT platiorm
at an angular interval of 5 degree using an array of 216
detectors, so as to control time during which tube current 1s
generated to reach a normal dose. Another different group of
phantom bodies 1s scanned 1n the same manner to obtain 45
projections as a test set, which 1s used to test the effect of the
network after the training 1s completed.

According to an embodiment of the present disclosure, a
direct training manner 1s used. In a direct training process,
weights for the convolutional kemels of the projection 50
domain network and the image domain network are ran-
domly initialized, the actual collected data set 1s used for
training, and after the traiming 1s completed, the training
cllect of the network 1s verified by another set of actual
collected data as a test set. 55

According to another embodiment of the present disclo-
sure, a direct traiming manner with the auxiliary of pre-
training may be used. In a data simulation phase, projection
data with a high quality may be generated. The process of
using the simulation data set to train the neural network may 60
be referred to as “pre-traiming”. Firstly, complete projection
data at 360 angles 1s generated by using the simulation data,
to perform supervised training on parallel projection esti-
mation networks respectively. After the training 1s com-
pleted (the simulation data set 1s trained to converge), values 65
of the projection estimation network are used as 1nitial
values of the overall projection domain network, and then

35
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the network 1s trained as a whole 1n a direct training manner
without assigning the initial values.

For an actual CT scanning process, the collected data 1s
input into the above training process to obtain the trained
network (at this time, parameters of the network are fixed),
so as to obtain the reconstructed 1mage.

FIG. 13A 1s a schematic flowchart 1llustrating an 1image
processing method according to an embodiment of the
present disclosure. As shown 1n FIG. 13A, 1 step S131, a
projection data of an object 1s acquired by a CT scannming
system. In step S132, the projection data i1s processed by
using a convolutional neural network, to acquire an esti-
mated 1mage of the object.

The neural network according to the embodiment of the
present disclosure may comprise a projection domain net-
work, an analytical reconstruction network layer, and an
image domain network. The projection domain network 1s
used to process mput projection data to obtain estimated
projection data. The analytical reconstruction network layer
performs analytical reconstruction on the estimated projec-
tion data to obtain a reconstructed 1mage. The image domain
network processes the reconstructed image to obtain an
estimated 1mage. The neural network according to the
embodiment of the present disclosure may comprise a
projection layer for performing a projection operation on the
estimated 1mage by using a system projection matrix of a CT
scanning system to obtain a projection result of the esti-
mated 1mage; and a statistical model layer for determining
consistency among the input projection data, the estimated
projection data, and the projection result of the estimated
image based on a statistical model.

The 1image processing method according to the embodi-
ment of the present disclosure may further comprise training
the neural network. FIG. 13B 1s a schematic flowchart
illustrating a method of training a neural network according
to an embodiment of the present disclosure.

As shown 1n FIG. 13B, 1 step S1321, 1n a {irst training
process, a simulation data set 1s used as imput projection data
to train a neural network. The first training process 1s to
pre-train the neural network to speed up the training process.

In step S1322, 1n a second training process, the acquired
true CT data 1s used as 1nput projection data to further train
the neural network. In step S1322, the image domain net-
work may be adjusted by using the prionn model cost
function based on the estimated image, and a gradient 1s
back-propagated through the analytical reconstruction net-
work layer to adjust parameters ol convolutional kernels of
the projection domain network. In step S1322, parameters of
convolutional kernels of the image domain network and the
projection domain network are adjusted by using a consis-
tency cost function of a data model based on the input
projection data, the estimated projection data, and the pro-
jection result of the estimated image. A more specific
implementation may be known with reference to the
embodiment described above 1n connection with the net-
work structure shown in FIGS. 6A and 6B, and details
thereof will not be described here again.

Although sparse-angle sampling and scanning etc. is
given above, 1t may be reached by those skilled 1n the art that
the training method according to the present disclosure may
also be used 1n a limited-angle CT scanning system, an
intra-reconstruction scanning system, a detector under-sam-
pling scanning system, and a straight line trajectory CT
scanning system.

FIG. 14 1s schematic diagram ol a scanming apparatus
which implements limited-angle CT scanning according to
another embodiment of the present disclosure. As shown 1n
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FIG. 14, after X rays emitted by the radiation source 10 pass
through the object 40 to be nspected 1n a field of view 45,
the X rays are received by the detector 30, are converted 1nto
an electrical signal to obtain attenuation data, which 1s
preprocessed to obtain projection data to be reconstructed by
a computer. With the solutions described above, an image
with a higher quality can be reconstructed using the traimned
neural network even 1f limited-angle (for example, 130
degrees) scanning 1s performed on the object 40 to be
ispected.

FIG. 15 1s a schematic diagram of a scanming apparatus
which implements an 1ntra-reconstruction scanning method
according to yet another embodiment of the present disclo-
sure. As shown 1 FIG. 15, after X rays emitted by the
radiation source 10 pass through a part of the object 40 to be
ispected 1n a field of view 435, the X rays are recerved by
the detector 30, are converted into an electrical signal, are
turther converted into a digital signal indicating an attenu-
ation value as projection data to be reconstructed by a
computer. With the solutions described above, an image with
a higher quality can be reconstructed using the trained neural
network even 1f intra-reconstruction CT scanning 1s per-
tformed on the object 40 to be mspected.

FIG. 16 1s a schematic diagram of a scanming apparatus
which 1mplements a detector under-sampling scanning
method according to yet another embodiment of the present
disclosure. As shown 1n FIG. 16, after X rays emitted by the
radiation source 10 pass through the object 40 to be
ispected 1n a field of view 45, the X rays are recerved by
the detector 30, are converted into an electrical signal, are
turther converted into a digital signal indicating an attenu-
ation value as projection data to be reconstructed by a
computer. In this example, the detector 30 1s set to be
under-sampled, for example, under-sampling 1s realized by
spacing various detector units apart by a predetermined
distance. In this way, with the solutions described above, an
image with a higher quality can be reconstructed using the
trained neural network even 11 detector under-sampling CT
scanning 1s performed on the object 40 to be 1nspected.

FIG. 17 illustrates a schematic diagram of a scanning
apparatus which implements straight line trajectory CT
scanning according to yet another embodiment of the pres-
ent disclosure. As shown 1n FIG. 17, after X rays emitted by
the radiation source 10 pass through the object 40 to be
ispected 1n a field of view, the X rays are recerved by the
detector 30, are converted mto an electrical signal, are
turther converted into a digital signal indicating an attenu-
ation value as projection data, to be reconstructed by a
computer. In this example, the object 40 to be spected
moves along a straight line trajectory on a conveyor belt
parallel to the detectors. A field angle of the ray source
tformed by the detectors 1n a horizontal direction 1s as large
as possible, and the detectors cover the object 1n a vertical
direction. For example, the detector array 1s placed on an
opposite side of the source, and a horizontal field angle 0 of
the rays 1s required to be more than 90 degrees, to obtain
protection data through the straight line trajectory CT scan-
ning. With the solutions described above, an 1image with a
higher quality can be reconstructed using the trained neural
network even 1t straight line trajectory CT scanning 1s
performed on the object 40 to be mspected.

The embodiments of the present disclosure may firstly
perform pre-training using simulation data and then perform
unsupervised training using true data. Further, it 1s also
possible to directly perform unsupervised training using a lot
of true data. In this way, data information 1s deeply mined to
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form a convolutional neural network and system-specific
parameters, and obtain an etlicient C'T image reconstruction
method.

The method according to the present disclosure can be
flexibly applied to different CT scanning modes and system
architectures and can be used in the fields of medical
diagnosis, industrial non-destructive detection and security
ispection.

The foregoing detailed description has set forth various
embodiments of the method and device for training a neural
network wvia the use of diagrams, flowcharts, and/or
examples. In a case that such diagrams, tlowcharts, and/or
examples contain one or more functions and/or operations,
it will be understood by those skilled 1n the art that each
function and/or operation within such diagrams, flowcharts
or examples may be implemented, individually and/or col-
lectively, by a wide range of structures, hardware, software,
firmware, or virtually any combination thereof. In one
embodiment, several portions of the subject matter
described in the embodiments of the present disclosure may
be implemented via Application Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), Digital
Signal Processors (DSPs), or other integrated formats. How-
ever, those skilled 1n the art will recognize that some aspects
of the embodiments disclosed herein, 1n whole or 1n part,
may be equivalently implemented 1n integrated circuits, as
one or more computer programs running on one or more
computers (€.g., as one or more programs running on one or
more computer systems), as one or more programs running
On one or more processors (€.g., as one or more programs
running on one or more miCroprocessors ), as firmware, or as
virtually any combination thereof, and that designing the
circuitry and/or writing the code for the software and/or
firmware would be well within the skill of those skilled 1n
the art 1 ray of this disclosure. In addition, those skilled in
the art will appreciate that the mechanisms of the subject
matter described herein are capable of being distributed as a
program product 1n a variety of forms, and that an illustra-
tive embodiment of the subject matter described herein
applies regardless of the particular type of signal bearing
medium used to actually carry out the distribution.
Examples of a signal bearing medium include, but are not
limited to, the following: a recordable type medium such as
a floppy disk, a hard disk drive, a Compact Disc (CD), a
Digital Versatile Disk (DVD), a digital tape, a computer
memory, etc.; and a transmission type medium such as a
digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.).

While the embodiments of the present disclosure has been
described with reference to several typical embodiments, 1t
1s apparent to those skilled 1n the art that the terms are used
for 1llustration and explanation purpose and not for limita-
tion. The embodiments of the present disclosure may be
practiced 1n various forms without departing from the spirit
or essence ol the embodiments of the present disclosure. It
should be understood that the embodiments are not limited
to any of the foregoing details, and shall be interpreted
broadly within the spirit and scope as defined by the fol-
lowing claims. Therefore, all of modifications and alterna-
tives falling within the scope of the claims or equivalents
thereol are to be encompassed by the claims as attached.

We claim:

1. An 1image processing method, comprising:

acquiring, by a Computerized-Tomography (CT) scan-
ning system, projection data of an object; and
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processing, by using a convolutional neural network, the
projection data, to acquire an estimated image of the
object;

wherein the convolutional neural network comprises:

a projection domain network for processing input projec-
tion data to obtain estimated projection data;

an analytical reconstruction network layer for performing
analytical reconstruction on the estimated projection
data to obtain a reconstructed 1image;

an 1mage domain network for processing the recon-
structed 1mage to obtain an estimated i1mage,

a projection layer for performing a projection operation
on the estimated 1mage by using a system projection
matrix of the CT scanning system, to obtain a projec-
tion result of the estimated 1image; and

a statistical model layer for determining consistency
among the 1mput projection data, the estimated projec-
tion data, and the projection result of the estimated
image based on a statistical model;

wherein the 1image processing method comprises training
the convolutional neural network by:

adjusting parameters of convolutional kernels of the
image domain network and the projection domain
network by using a consistency cost function of a data
model based on the mput projection data, the estimated
projection data, and the projection result of the esti-
mated 1mage.

2. The method according to claim 1, wherein training the

neural network further comprises:

constructing a cost function consistent with the projection
using the projection layer, constructing a likelithood
relation cost function using the statistical model layer,
and forming the consistency cost function of the data
model using at least one of the cost function consistent
with the projection and the likelithood relation cost
function.

3. The method according to claim 1, wherein the convo-
lutional neural network further comprises at least one priori
model layer for adjusting the image domain network by
using a priort model cost function based on the estimated
image, and performing back propagation of a gradient
through the analytical reconstruction network layer to adjust

parameters of a convolutional kernel of the projection
domain network.
4. The method according to claim 1, wherein a forward
propagation process of the projection domain network, the
analytical reconstruction network layer and the image
domain network comprise:
expressing input projection data of the projection domain
network as g={g,, 2., . . ., 2,,}, expressing estimated
projection data output by the projection domain net-
work as §={8,, &,, . . ., &,,}, wherein M'=zM, after the
estimated projection data 1s weighted, obtaining Diag
(W)g={W,8,, W,&,, . .., W,,.}, after the weighted
projection data passes through a ramp filtering layer,
obtaining h®@Diag(W)g, after the filtered data is back-
projected, obtaining an output ot the analytical recon-
struction layer as f=H,"h®Diag(W)g, and assuming
that ¢, represents a processing function of the image
domain network, obtaining the estimated image output
by the image domain network as f=q (1),

wherein a superscript T represents transposition ol a
matrix, h 1s a discrete ramp filtering operator, Hy 1s a
system matrix for M'xN dimensional reconstruction, N
1s a total number of pixels of the reconstructed image,
and W,, W,, ..., W, represent weighting coetlicients.
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5. The method according to claim 4, wherein the consis-
tency cost function of the data model 1s expressed as W(g;
o)=L(2: §)+B|g-Hi][*, and error transfer relations from

the consistency of the data model are

Y
ag

IL(g; D)
-

. oY .
+28(g - Hf) and a_f =2BH"(Hf - 3).

wherein L(g; g) 1s a likelihood relation cost function, the
smaller the L(g; &) becomes, the more consistent the
projection data g and the estlmated projection data g
will be, BHg—Hﬂ\Z is a cost function consistent with the
projection, [ 1s a Lagrangian multiplier parameter, and
H 1s a system projection matrix.

6. The method according to claim 3, wherein the priori
model cost function @(f) comprises one or a combination of
1s a total variation of local conditions, a Markov field prior,
a texture priori, and sparsity of a feature space, wherein 1 1s
the estimated 1mage.

7. The method according to claim 6, wherein training the
neural network further compnses deﬁnlng a priori model
cost function @(f) using a priori error & e =q().

8. The method according to claim 6, Whereln importance
A of each prior model cost function cp(f) in an error feedback
process 1s used to adjust the image domain network.

9. The method according to claam 7, wherein 1n the
analytical reconstruction network layer, a priori error of the
analytical reconstruction network layer 1s back-propagated
according to the following propagation relation:

agpr]
af

where mput projection data of the projection domain net-
work is expressed as g={g,, 2,, . . ., 2., estimated
projection data output by the projection domain network 1s
expressed as §=18,, 8., . . ., §,,}, wherein M'zM, after the
output is weighted, Diag(W)g={W,g,, W.&,, ..., W, .} is
obtained, after the weighted output passes through a ramp
filtering layer, h®Diag(W)g is obtained, after the output
from the ramp filtering layer 1s back-projected, an output of
the analytical reconstruction network layer is f=H ,"h@Diag,

(W)g, wherein a superscript T represents transposition of a
matrix, h 1s a discrete ramp filtering operator, H, 1s a system
matrix for M'xN dimensional reconstruction, N 1s a total
number of pixels of the reconstructed image, and W,,
W,, ..., W, represent weighting coetlh

EP.F"

— = Diag(W)(h ® Hg
g

1cients.

10. The method according to claim 9, wherein the pro-
cessing function of the image domain network 1s represented
by @ as f=@. (1), and then the priori error is back-propa-
gated according to the following propagation relation:

5 EPF

| aEPF
— =Drag(W)| A ® Hp

de(f) den(f)

af  of

Pt

0g of

| = Diag(W)[h ® Hy
Ji

11. The method according to claim 10, further compris-
Ing: propagating,
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together to the projection domain network to update param-
eters of various layers.

12. The method according to claim 1, further comprising:
acquiring attenuation signal data by the CT scanming system,
and preprocessing the attenuation signal data to obtain input
projection data.

13. The method according to claim 1, further comprising:
acquiring the projection data of an object by the CT scanning

system by using one of detector under-sampling scanning,
sparse-angle scanning, intra-reconstruction scanning, lim-
ited-angle scanning, and straight line trajectory scanning.

14. The method according to claim 1, wherein the pro-
jection domain network comprises a plurality of parallel
convolutional neural network branches.

15. The method according to claim 1, wherein the 1image
domain network comprises a U-shaped convolutional neural
network.

16. The method according to claim 1, wherein training the
neural network further comprises: pre-training the convolu-
tional neural network by using a simulation data set as the
input projection data.

17. An 1image processing device, comprising:

a memory configured to store mstructions and data, and

a processor configured to execute the instructions to:

receive projection data of an object acquired by a
Computerized-Tomography (CT) scanming system;
and

process the projection data by using a convolutional
neural network, to acquire an estimated 1mage of the
object;
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wherein the processor 1s further configured to construct
the convolutional neural network to comprise:

a projection domain network for processing imput pro-
jection data to obtain estimated projection data;

an analytical reconstruction network layer for perform-
ing analytical reconstruction on the estimated pro-
jection data to obtain a reconstructed image; and

an 1mage domain network for processing the recon-
structed 1mage to obtain an estimated image,

a projection layer for performing a projection operation
on the estimated 1image by using a system projection
matrix of the CT1 scanning system, to obtain a
projection result of the estimated 1mage; and

a statistical model layer for determining consistency
among the input projection data, the estimated pro-
jection data, and the projection result of the esti-
mated 1mage based on a statistical model;

wherein the processor 1s further configured to train the
convolutional neural network by:

adjusting parameters ol convolutional kernels of the
image domain network and the projection domain
network by using a consistency cost function of the
data model based on the mput projection data, the
estimated projection data, and the projection result of
the estimated 1mage.

18. A non-transitory computer readable storage medium
having computer instructions stored therein, which, when
executed by a processor, implement the method according to
claim 1.




	Front Page
	Drawings
	Specification
	Claims

