US010983951B1

12 United States Patent 10) Patent No.: US 10,983.951 B1
Kuang et al. 45) Date of Patent: Apr. 20, 2021

(54) RECOVERY PROCESSING FOR (56) References Cited
PERSISTENT FILE DATA CACHE TO

REDUCE DATA LOSS U.S. PATENT DOCUMENTS

_ _ 5,819,292 A * 10/1998 Hitzceeene, GO6F 11/1435
(71) Applicant: EMC' IP Holding Company LLC, 714/15
Hopkinton, MA (US) 5,893,920 A * 4/1999 Shaheen GO6F 12/0813
711/133
(72) Inventors: Yaming Kuang, Shanghai (CN); Yunfei 7,379,954 Bz: /2008 Shoens GO6LF 17/30088
Chen, Shanghai (CN); Philippe 7,089,599 Bl 3/2010 Shah .ccoiiinns, GUok l;/lljg
Armangau, Acton, MA (US); 7,814,057 B2* 10/2010 Kathuria GOGF 11/1471
Kamakshi Viswanadha, [exington, 707/646
MA (US); Yubing Wang, 8,661,068 BL* 2/2014 Seibel GOGF 16/172
Southborough, MA (US) 707/825
8,782,003 B1* 7/2014 Patterson GO6F 16/1734
: . 707/624
(73) Assignee: EMC IP Holding Company LLC, 8,818,951 Bl* 82014 Muntz ... GOGF 16/13
Hopkinton, MA (US) 707/639
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 580 days.

Primary Examiner — Tony Mahmoudi
Assistant Examiner — Michael Le

(74) Attorney, Agent, or Firm — Muirhead and Saturnells,
LLC

(57) ABSTRACT

Processing for a file system may include determining an
inconsistency between a data log and inodes (index nodes)
of the file system. Responsive to determining the inconsis-

(21) Appl. No.: 15/279,983
(22) Filed: Sep. 29, 2016

(51) Int. CL

GoO6l" 16/11 (201 9-OE~) tency, recovery processing may be performed including first
Goor 16723 (2019-O:~) processing of the data log, second processing of the inodes
Goor 16/13 (2019.01) of the file system, and third processing of the data log after
GO6F 16/172 (2019.01) said second processing. First processing may, for each entry
(52) U.S. CL of the data log that records a create snapshot operation to
CPC GOG6F 16/128 (2019.01); GO6F 16/13 create a snapshot of a file having an associated 1inode of the

(2019.01); GO6F 16/172 (2019.01); GO6F file system that 1s a dirty snapshot inode, marking the
16/2365 (2019.01) associated 1node as “snap validated”. Second processing

(58) Field of Classification Search may include freeing each dirty snapshot inode not marked as

CPC . GOG6F 16/128: GO6F 16/2365: GOGF 16/13: “snap validated”. Third processing may include freeing any
j 3G06F 16 /175 entry of the data log where the entry reterences dirty

USPC 707/691 snapshot inode freed by the second processing.
See application file for complete search history. 20 Claims, 11 Drawing Sheets
1000 7Y
i{I(}ZHF_Ti'averse data Tog and Took at each enfry/descripior referencing an mode manber to validale that the mode number of the

entry/descriptor references an actual valhid mode of the file system. For exampie, the mnode nmmber of an enfry m the datd
iog 1s obtamed and uscd to locate an inode in the file system’s address space (e.g. where the mnode has a state valid state
mdicaling the mode 18 m use/has been allocated/is not free). If Lthe inode number has nod been validated/is determined

as invalid, the entry/descriptor in the data log may be cleared, 1nitialized or zeroed out fo thereby mdicate the eniry 1s fred.

1004 N - J i

~] Perform processing to determine/locate any missing or corrupt data log enirtes for a create snapshot operation,
Traverse the data log and fTor cach entry recording a create snapshot operation, obtain the inede number, locate &
corresponding inode that s for 4 dirty smapshot {¢.g., dirty snapshot wmode), and mark the dity snapshot mode ag
“snap validated”. Such processing determines a maich between cach eniry 1n data log for a create smapshot
operation and its dirty snapshot inode where the dirty snapshot mnode 15 marked as “snap validated”.

N]

Traverse mode bist to ensure that every dirty snapshot mnode has been marked as “spap validated™, 1f an inode 15 for
a dirty snapshot {e.g., based on state of inode indicates a dirty snapshot inode) and s not marked as “snap validated™,
clear or remove the mode thereby changinyg the mode state to free or available for use. In other words, if the

duty spapshot inede was not marked as “snap vahdated”, 11 means the corresponding data log entry tor the
create snapshot command has been lost or corrupted.

1008 - _ I

Traverse the data log and remove entries for /O operations/writes to dirty snapshots where such entries now reference

an invalid dirty snap mode which has been cleared or removed {(by step 1006). In other words, this step performs
processing (hat removes any enlry from he dala log that denotes an 1YO such as a write where the entyy references an

mnode for a dirty snapshot iode that 15 cleared, remwid or otherwise tndicated as free as a result of step 1006,
1010

™~

W o i o

1000

Perlorm clean up processmyg {(e.g., cleanng modes warked as “snap vahdated™).

US 10,983,951 Bl

Page 2
(56) References Cited 2011/0145363 Al* 6/2011 Ananthanarayanan
GOGF 16/172
U.S. PATENT DOCUMENTS 709/218
2011/0258164 Al* 10/2011 Mandagere GOG6F 11/1435
8,943,282 Bl* 1/2015 Armangau GOGF 16/128 707/685
711/162 2012/0151245 Al* 6/2012 Chang GOGF 16/1865
9,003,227 B1* 4/2015 Patel ..ccooovenr..... GOGF 11/1435 714/4.1
714/15 2014/0089264 Al* 3/2014 Talagala GOG6F 11/1471
9,020,903 Bl * 4/2015 Vempati GOGF 3/0619 707/649
| 707/674 2014/0101108 Al* 4/2014 Stewart GOG6F 11/1458

9,152,353 BL1* 10/2015 Wangc........... GOGF 3/0689 707/6.49

9,208,031 B2* 12/2015 Macecooooovnen. GOoF 1171471 2014/0108352 Al* 4/2014 Ahrens GOGF 11/1451

9,367,395 Bl 6/2016 Bono et al.

0,734,021 B1* 82017 Sanocki HOA4L, 41/0654 | 707/645
2004/0267835 Al* 12/2004 Zwilling GOGT 11/7097 2015/0106342 Al* 4/2015 Liang GOG6F 12/0806
2005/0165617 Al* 7/2005 Patterson GOG6F 3/065 707/690

705/59 2017/0060702 Al* 3/2017 Daveccvvenn.... GOG6F 11/1451
2006/0106860 Al* 5/2006 Dee ..oovvvviviiiiii, GO6F 16/2246 2017/0097873 Al1l* 4/2017 Krishnamachari ... GO6F 3/0688
2006/0129612 Al* 6/2006 MacCormick GOGF 11/1469 2017/0132429 Al* 5/2017 Bell ooovvevverinn., HO41. 9/0861
2008/0189343 Al* 8/2008 Hyer GO6F 3/0614 2017/0277739 Al* 9/2017 Josephccccco....... GOG6F 3/0643
2009/0044046 Al* 2/2009 Yamasaki GOG6F 11/2082

714/6.1

* cited by examiner

US 10,983,951 Bl

Sheet 1 of 11

Apr. 20, 2021

U.S. Patent

eCe
WQJSAS

JUAUWBBURIA

Uyl

QOBIIUI
JDIADD YsSe[]

¢z (S)dorLIU]
AOIAJ(]

[DId

C-1OH

qvl

LC 5dS

Atowdwr 1eqOIN)

qce

12U10)

34

9C

31

E

¢ |

4!

ol

US 10,983,951 Bl

Sheet 2 of 11

Apr. 20, 2021

U.S. Patent

¢ DId

301

COT WRISAS 91,

9801 4801 E301
dd | ¢ dlj [dl

ol
1]
101 NN'T

901 =pou]

/ooﬁ

US 10,983,951 Bl

Sheet 3 of 11

Apr. 20, 2021

U.S. Patent

80¢

(QN) erepeloN |
PRO |

90C
sapou]

¢ DId

bOZ |

(sd1) syoo1q |
1021Ipu] |

20z (s9Q)

SY201g Bie(g

v OIA

0% sdnoig (11 ¥ =10Ul 10 aU()

US 10,983,951 Bl

~_~

— bO€ 100d 321[§
S
=
.4
~
s
-
=
7.
00§ SUIAISAS I[IJ AI0UI 10 AU()
X
=
|
=3
~
-
-3
<

RO < 521 =2JOUL JO 2U()

01€ SN[)T 2I0W JO 2U()

U.S. Patent

US 10,983,951 Bl

Sheet 5 of 11

Apr. 20, 2021

U.S. Patent

s Dld

01+ 28e103s [eo1sAyd 9[IIR[OA-UOU pUAYORY

((S)I2AR] Suryoed SUIpnoul “3§°9)
80¥ SIPAR] yred O/ 39WPO

GO A1 90 WAISAS I[1

U.S. Patent Apr. 20, 2021 Sheet 6 of 11 US 10,983,951 B1

F1G. 6

l

Data log 510

520

US 10,983,951 Bl

Sheet 7 of 11

Apr. 20, 2021

U.S. Patent

£0L6
=JquInu

apouj
%@Emmﬁ

£0¢6
—Iquinu
opou]

oPOU] HAHA

[0£6=_POU]
0TI VT
VNNTJO

dVNS
0] 1) ALIN

POI9

L OIA

10€6
=1oqunu
apou]

206 |
—Rqunu |

apouy 949 | V NI1'TJ0
- dVNS ALYIA

10€6
06 =Taqunu
—Jaquinu APOU

opou] A

apou]
L RGIC R K|

10£6="pOUl 00£6=2POU] | 00L6="pOU] |

vV NN'T 001 V41
dVNS VNN
MEMHU 0}l ¢4 Eﬂa
9019 Q019

opouy | 40C9 °POU] ”

00£6
—IdquInu

apou]

E0CY
apou]

V NIYT

01 Va1
V N1 0

VUM |

019

09

0CY

c09

US 10,983,951 Bl

Sheet 8 of 11

Apr. 20, 2021

U.S. Patent

£0€6
=IaquInu

Jpou]
SPOU] A

[0E6=9pou]
0TI V4l
VNNTIO
dVNS

01 1) 91LIA\

POLS

3 DIA

[ASVHJ Aq . pajeprpea deus, se
poyIew 10U (1L

[0L6
—Iaqunu

apouy |

c0€6
—Idquinu

spouy | 40T9 2pou]

)
spour gy | Y NSO
JVNS ALMIA

00£6="POU] | 00£6=9POU]
001 Vd'I] Ol V'l

 VNOT | 'VNNTO
_ - 03 g A V LA
3019 q019 BO19
0L

0¢9

<09

US 10,983,951 Bl

Sheet 9 of 11

Apr. 20, 2021

U.S. Patent

tOLo
—IoquInu

Jpou]
JPOU] A dd

POL9

PO8

6 DIA

[ASVHJ Aq . pajepijea deus,, se

POSTEUI JOU (],

c0€6
—Iaqunu
apou]

- opou] 3y

HdddAd

9019

106
—TOQ UL
apou]

03

00£6=2PpoU] | 00E6=pPOUT] |
001 V41 01 vdT1}|
VNOT | 'VNOTO

0} g AMIM V M

qo19 t019

0LY

c09

US 10,983,951 Bl

Sheet 10 of 11

Apr. 20, 2021

U.S. Patent

01 DIA

‘3071 BIep AY) JO SALNUD Ul SUONRIAJO PapIodl

Ay} surmropad/Sunuawaydwn AQa1aY) Wd)SAS 1) 0] S0 BIep ysny]

98] JUIISISUOD ©
0] WIA)SAS 1 Y} 2I0)SAI PUR SIATOUSISUOIUT JOILI0D

DUE 10213P 0} SUISSA001d AIDAOIAX ADUIWIUO!] 006

SHA

guissasoxd 10y10) AOUQ)SISUOOUT WISAS L]

706 ON 06

806

[T "DIA

(. pajeprreA deus,, se payIew SOPOUL IULILID “39) 3uIssadord dn ued[d wWiIofidg

0101

US 10,983,951 Bl

‘900 d2JS JO JNSAI B SB 924J SB PIIRIIPUI ISTMIIYIO JO PIAOUIAI PAIRID SI Jey) apoul joysdeus ALIp € 10] dpoul

UR SOOUDIJAT AJUD YY) UM ILIM B S (Jons ()/] Uk $20UdP Iy S0 BIRP 2] WOL ANUd AUR SIA0UWI JRY] SuIssasoxd
surtofrad dags sty ‘sprom 1aylo uy (9001 dais AQ) paAOWIAL JO PAILAO U] SBY Yd1ym apoul deus ALIp pI{eAUul Ue
YOUAIJAL MOU SALIIUD Yons 21y sjoysdeus App 03 SALM/SuoneIddo ()/[I0J SALIUI JAOWAL PuUR SO| BIep I} ISIdARI],

8001
'PadniIod 10 JSO[Udaq sey puewituod joysdeus aeard
A} 10J ANud o1 elep Surpuodsarrod oyl sueaw 31 © _pajepieA deus , se paseur Jou sem apour jJoysdeus Aup
AU} J1 ‘SPIOM IAYI0 UJ "ISN I0J J[qR[IBAR IO 231J 0} 21B)S ApOUI Y] SUISURYD AQIIN) POUI Y} 2AOWIAL IO IBID
" paepifea deus,, se payaeur jou st pue (apour jJoysdeus ALIp B $aJe0Ipul IpOUI JO el U0 paseq '3-9) joysdeus Auup e
IO ST opoul ue J1 -~ paepijea deus,, se podrew udaq sey apour joysdeus Aup AIdA Jey) 2IMSU 0] ISI] JPOUT ISIABL],

Sheet 11 of 11

9001
' [pareprea deus,, se payrewr st opout joysdeus Aup ay) aroym apout joysdeus Avip sy pue uonerado

joysdeus 2)ea10 © I0] BO] BIEP UL AIJUD (ORI UM [DIBUI B SQUTUIAP 3Urssadord yong -, pajepiea deus, |

® apout Jjoysdeus AJIip o) yrew pue ‘(apout joysdeus Aurp “3-9) joysdeus ALIp v 10J SI Jey) SpOUl SUTPUOdsariod |
© 9J820] I_quInu apoul 3y} urejqo ‘vonerado joysdeus 218210 € FUIPIOIAL AU (OB I0] PuB 30 BIep YY) ISIdARI], |
‘uorye1ddo joysdeus 91eard € JOJ SALIUI 0] Blep 3ANII09 JO SUISSI AUR 3JeI0]/QUIWIIAP 0) SuIssad01d w0k |

Apr. 20, 2021

001

DAL ST AIJUD JY) IIBIIPUL AQIIY) 03 JNO PAOIIZ IO PAZI[RIIUT “PAIBI[D 3(ABW SO BIBP Y UL JOIALIOSIP/ANIUD U] “PI[RAUI SB
POUIULIdIAP SI/PAIBPI[RA UIIQ JOU SBY JoqUINU 3poul Y} J1 (921 10U SI/Pajedo[[e uddq Sey/asn Ul SI pour Y} SUneOIpur
dJe)S PIJBA)RS B SBY 2pOUl I 213Uy "3'3) doeds sSappe S, WIdISAS J[1J Ay} Ul IpOUl Uk JBI0[0} Pasn pue paurelqo st 30
P1ep Y} UL AQUd UB JO IdquInu Ipoul) “djduiexa 10, "WDISAS J[1] 93 JO dpOUl PI[BA [en)Or UR SIOUIIJAI 103dL10sap/Anud
2} JO JoquInu Spour a3 181} ePI[eA 0] I2qunu 3poul ue SurdUaId]aI JOMIILIOSIP/ANUD Jord Je JOO[puk 301 BIep 9SId9ARI] | ZO0OI

U.S. Patent

US 10,983,951 Bl

1

RECOVERY PROCESSING FOR
PERSISTENT FILE DATA CACHE TO
REDUCE DATA LOSS

BACKGROUND
Technical Field

This application generally relates to data storage and more
particularly to recovery processing due to file system incon-
sistencies.

Description of Related Art

Systems may include different resources used by one or
more host processors. Resources and host processors in the
system may be interconnected by one or more communica-
tion connections, such as network connections. These
resources may include, for example, data storage devices
such as those included 1n the data storage systems manu-
factured by EMC Corporation. These data storage systems
may be coupled to one or more host processors and provide
storage services to each host processor. Multiple data stor-
age systems from one or more different vendors may be
connected and may provide common data storage for one or
more host processors 1n a computer system.

A host may perform a variety of data processing tasks and
operations using the data storage system. For example, a
host may perform basic system I/O (input/output) operations
in connection with data requests, such as data read and write
operations.

Host systems may store and retrieve data using a data
storage system containing a plurality of host interface unaits,
disk drives (or more generally storage devices), and disk
interface units. Such data storage systems are provided, for
example, by EMC Corporation of Hopkinton, Mass. The
host systems access the storage devices through a plurality
of channels provided therewith. Host systems provide data
and access control information through the channels to a
storage device of the data storage system and data of the
storage device 1s also provided from the data storage system
to the host systems also through the channels. The host
systems do not address the disk drives of the data storage
system directly, but rather, access what appears to the host
systems as a plurality of files, objects, logical units, logical
devices or logical volumes. These may or may not corre-
spond to the actual physical drives. Allowing multiple host
systems to access the single data storage system allows the
host systems to share data stored therein.

SUMMARY OF THE INVENTION

In accordance with one aspect of the techniques herein 1s
a method of performing processing for a file system com-
prising: determining, for the file system, an inconsistency
between a data log for the file system and inodes (index
nodes) of the file system, wherein the data log includes
entries corresponding to logged operations requested with
respect to the file system; and responsive to determining the
inconsistency, performing recovery processing including:
performing first processing of the data log, wherein said first
processing includes, for each entry of the data log that
records a create snapshot operation to create a snapshot of a
file having an associated inode of the file system that is a
dirty snapshot inode, marking said associated inode as snap
validated; performing second processing of the imnodes of the
file system, wherein said second processing includes freeing

10

15

20

25

30

35

40

45

50

55

60

65

2

cach mode of the file system that 1s a dirty snapshot 1node
and where said each inode 1s not also marked as snap
validated; and performing third processing of the data log
alter said second processing, wherein said third processing
includes freeing any entry of the data log where said any
entry references an mode of the file system that 1s freed by
said second processing. The imnconsistency may include any
one or more of: a write operation having an entry 1n the data
log that refers to an invalid 1mnode 1n the file system; a dirty
snapshot 1node for a first snapshot of a file in the file system
that does not have a corresponding entry in the data log for
an operation that creates the first snapshot; and an entry 1n
the data log for an operation that creates a second snapshot
of a file 1n the file system and the second snapshot does not
have a corresponding dirty snapshot inode. The {file system
may nclude a first file that implements a logical device
having storage provisioned from the file system. The logical
device may be a virtually provisioned logical device. The
first file may have a corresponding index node of the file
system. The index node may include metadata for the first
file and the mndex node may include a mapping structure of
one or more mdirect blocks and one or more data blocks that
are mapped, using the one or more indirect blocks, to the
index node for the first file. The data log may include a first
entry that records a first operation to create a first snapshot
of the first file, wherein the first snapshot of the first file may
denote a first snapshot of the logical device. Responsive to
receiving the first operation to create the first snapshot of the
first file, processing may be performed 1ncluding: allocating
a {irst index node of the file system for the first snapshot of
the first file; and recording information in the first entry, the
information including a first inode number of the first index
node. The method may include flushing the data log imnclud-
ing flushing the first entry; and responsive to said flushing
the first entry, completing initialization of metadata of the
first 1ndex node to reference a same set of data blocks
allocated for the first file.

In accordance with another aspect of the techmniques
described herein 1s a system comprising: one or more
processors; and a memory comprising code stored therein
that, when executed by at least one of the one or more
processors, performs a method of performing processing for
a file system comprising: determining, for the file system, an
inconsistency between a data log for the file system and
inodes (index nodes) of the file system, wherein the data log
includes entries corresponding to logged operations
requested with respect to the file system; responsive to
determining the inconsistency, performing recovery pro-
cessing including: performing first processing ol the data
log, wherein said first processing includes, for each entry of
the data log that records a create snapshot operation to create
a snapshot of a file having an associated inode of the file
system that 1s a dirty snapshot mmode, marking said associ-
ated 1node as snap validated; performing second processing
of the modes of the file system, wherein said second
processing includes freeing each mode of the file system that
1s a dirty snapshot imnode and where said each i1node 1s not
also marked as snap validated; and performing third pro-
cessing of the data log after said second processing, wherein
said third processing includes freeing any entry of the data
log where said any entry references an inode of the file
system that 1s freed by said second processing.

In accordance with another aspect of techniques described
herein 1s a computer readable medium comprising code
stored thereon that, when executed, performs a method of
processing for a file system comprising: determining, for the
file system, an inconsistency between a data log for the file

US 10,983,951 Bl

3

system and 1nodes (1ndex nodes) of the file system, wherein
the data log includes entries corresponding to logged opera-

tions requested with respect to the file system; and respon-
sive to determining the inconsistency, performing recovery
processing including: performing first processing of the data
log, wherein said first processing includes, for each entry of
the data log that records a create snapshot operation to create
a snapshot of a file having an associated inode of the file
system that 1s a dirty snapshot imnode, marking said associ-
ated 1node as snap validated; performing second processing
of the imodes of the file system, wherein said second
processing includes freeing each inode of the file system that
1s a dirty snapshot inode and where said each 1node 1s not
also marked as snap validated; and performing third pro-
cessing of the data log after said second processing, wherein
said third processing includes freeing any entry of the data
log where said any entry references an inode of the file
system that 1s freed by said second processing. The incon-
sistency may 1nclude any one or more of: a write operation
having an entry in the data log that refers to an 1invalid inode
in the file system; a dirty snapshot mnode for a first snapshot
of a file 1n the file system that does not have a corresponding
entry 1n the data log for an operation that creates the first
snapshot; and an entry 1n the data log for an operation that
creates a second snapshot of a file in the file system and the
second snapshot does not have a corresponding dirty snap-
shot mmode. The file system may include a first file that
implements a logical device having storage provisioned
from the file system. The logical device may be a virtually
provisioned logical device. The first file may have a corre-
sponding index node of the file system. The index node may
include metadata for the first file and a mapping structure of
one or more 1ndirect blocks and one or more data blocks that
are mapped, using the one or more 1ndirect blocks, to the
index node for the first file. The data log may include a first
entry that records a first operation to create a first snapshot
of the first file, wherein the first snapshot of the first file may
denote a first snapshot of the logical device. Responsive to
receiving the first operation to create the first snapshot of the
first file, processing may performed including: allocating a
first index node of the file system for the first snapshot of the
first file; and recording information in the first entry, the
information mcluding a first inode number of the first index
node. The method may include flushing the data log includ-
ing tlushing the first entry; and responsive to said tlushing
the first entry, completing 1nitialization of metadata of the
first 1ndex node to reference a same set of data blocks
allocated for the first file.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention waill
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken 1n conjunction
with the accompanying drawings in which:

FIG. 1 1s an example of components that may be included
in a system 1n accordance with techniques described herein;

FIG. 2 1s an example illustrating a thin or virtually
provisioned LUN that may be implemented using a file 1n an
embodiment 1n accordance with techniques herein;

FIG. 3 1s an example illustrating a file system address
space 1n an embodiment in accordance with techmiques
herein;

FIGS. 4 and 5 are example representations of diflerent
layers that may be used in implementing a LUN and 1ts
snapshot 1 an embodiment 1n accordance with techmiques
herein;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 1s an example 1llustrating a representation of a data
log 1n an embodiment 1n accordance with techniques herein;

FIGS. 7, 8 and 9 are examples 1llustrating use of tech-
niques 1 an embodiment 1 accordance with techniques
herein; and

FIGS. 10 and 11 are flowcharts of processing steps that
may be performed in an embodiment 1n accordance with
techniques herein.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Referring to FIG. 1, shown 1s an example of an embodi-
ment of a system that may be used in connection with
performing the techniques described herein. The system 10
includes a data storage system 12 connected to host systems
14a-14n through communication medmum 18. In this
embodiment of the computer system 10, and the n hosts
14a-14n may access the data storage system 12, for
example, 1n performing input/output (I/O) operations or data
requests. The communication medium 18 may be any one or
more of a variety of networks or other type of communica-
tion connections as known to those skilled in the art. The
communication medium 18 may be a network connection,
bus, and/or other type of data link, such as a hardwire or
other connections known 1n the art. For example, the com-
munication medium 18 may be the Internet, an intranet,
network (including a Storage Area Network (SAN)) or other
wireless or other hardwired connection(s) by which the host
systems 14a-14» may access and communicate with the data
storage system 12, and may also communicate with other
components included 1n the system 10.

Each of the host systems 14a-14» and the data storage
system 12 included 1n the system 10 may be connected to the
communication medium 18 by any one of a vaniety of
connections as may be provided and supported in accor-
dance with the type of communication medium 18. The
processors included in the host computer systems 14a-14#
may be any one of a variety of proprietary or commercially
available single or multi-processor system, such as an Intel-
based processor, or other type of commercially available
processor able to support traflic 1n accordance with each
particular embodiment and application.

It should be noted that the particular examples of the
hardware and software that may be included in the data
storage system 12 are described herein in more detail, and
may vary with each particular embodiment. Each of the host
computers 14a-14n» and data storage system may all be
located at the same physical site, or, alternatively, may also
be located in different physical locations. Examples of the
communication medium that may be used to provide the
different types of connections between the host computer
systems and the data storage system of the system 10 may
use a variety of diflerent communication protocols such as
block-based protocols (e.g., SCSI, Fibre Channel, 1SCSI),
file system-based protocols (e.g., NFS), and the like. Some
or all of the connections by which the hosts and data storage
system may be connected to the communication medium
may pass through other communication devices, such
switching equipment that may exist such as a phone line, a
repeater, a multiplexer or even a satellite.

Each of the host computer systems may perform different
types of data operations in accordance with different types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data
storage system 12 to perform a data operation. For example,
an application executing on one of the host computers

US 10,983,951 Bl

S

14a-14» may perform a read or write operation resulting 1n
one or more data requests to the data storage system 12.

It should be noted that although element 12 1s illustrated
as a single data storage system, such as a single data storage
array, element 12 may also represent, for example, multiple
data storage arrays alone, or in combination with, other data
storage devices, systems, appliances, and/or components
having suitable connectivity, such as m a SAN, in an
embodiment using the techniques herein. It should also be
noted that an embodiment may include data storage arrays or
other components from one or more vendors. In subsequent
examples illustrated the techmiques herein, reference may be
made to a single data storage array by a vendor, such as by
EMC Corporation of Hopkinton, Mass. However, as will be
appreciated by those skilled 1n the art, the techniques herein
are applicable for use with other data storage arrays by other
vendors and with other components than as described herein
for purposes of example.

The data storage system 12 may be a data storage array
including a plurality of data storage devices 16a-16n. The
data storage devices 16a-16» may include one or more types
of physical data storage devices (PDs or physical devices
denoting backend, non-volatile storage) such as, {for
example, one or more rotating disk drives and/or one or
more solid state drives (S5Ds). An SSD 1s a data storage
device that uses solid-state memory to store persistent data.
An SSD using SRAM or DRAM, rather than flash memory,
may also be referred to as a RAM drive. SSD may refer to
solid state electronics devices as distinguished from elec-
tromechanical devices, such as hard drives, having moving
parts. Flash devices or flash memory-based SSDs are one
type of SSD that contains no moving mechamical parts.

The flash devices may be constructed using nonvolatile
semiconductor NAND flash memory. The flash devices may
include one or more SLC (single level cell) devices and/or
MLC (mult1 level cell) devices.

The techniques herein may be generally used 1n connec-
tion with any type of flash device, or more generally, any
SSD technology. The flash device may be, for example, a
flash device which 1s a NAND gate flash device, NOR gate
flash device, flash device that uses SL.C or MLC technology,
and the like, as known 1n the art. In one embodiment, the one
or more flash devices may include MLC flash memory
devices although an embodiment may utilize MLC, alone or
in combination with, other types of flash memory devices or
other suitable memory and data storage technologies. More
generally, the techniques herein may be used 1n connection
with other SSD technologies although particular flash
memory technologies may be described herein for purposes
of illustration. For example, consistent with description
clsewhere herein, an embodiment may define multiple stor-
age tiers including one tier of PDs based on a first type of
flash-based PDs, such as based on SLC technology, and also
including another different tier of PDs based on a second
type of tlash-based PDs, such as MLC. Generally, the SLC
PDs may have a higher write endurance and speed than
MLC PDs.

The data storage array may also include different types of
adapters or directors, such as an HA 21 (host adapter), RA
40 (remote adapter), and/or device iterface 23. Each of the
adapters may be implemented using hardware including a
processor with local memory with code stored thereon for
execution i connection with performing different opera-
tions. The HAs may be used to manage communications and
data operations between one or more host systems and the
global memory (GM). In an embodiment, the HA may be a
Fibre Channel Adapter (FA) or other adapter which facili-

10

15

20

25

30

35

40

45

50

55

60

65

6

tates host communication. The HA 21 may be characterized
as a front end component of the data storage system which
receives a request from the host. The data storage array may
include one or more RAs that may be used, for example, to
facilitate communications between data storage arrays. The
data storage array may also include one or more device
interfaces 23 for facilitating data transiers to/from the data
storage devices 16a-16x. The data storage interfaces 23 may
include device interface modules, for example, one or more
disk adapters (DAs) (e.g., disk controllers), adapters used to
interface with the flash drives, and the like. The DAs may
also be characterized as back end components of the data
storage system which interface with the physical data stor-
age devices.

One or more internal logical communication paths may
exist between the device interfaces 23, the RAs 40, the HAs
21, and the memory 26. An embodiment, for example, may
use one or more internal busses and/or communication
modules. For example, the global memory portion 2556 may
be used to facilitate data transiers and other communications
between the device interfaces, HAs and/or RAs 1n a data
storage array. In one embodiment, the device interfaces 23
may perform data operations using a cache (e.g., data cache)
that may be included 1n the global memory 235, for example,
when communicating with other device interfaces and other
components of the data storage array. The other portion 254a
1s that portion of memory that may be used in connection
with other designations that may vary in accordance with
cach embodiment.

The particular data storage system as described in this
embodiment, or a particular device thereot, such as a disk or
particular aspects of a flash device, should not be construed
as a limitation. Other types of commercially available data
storage systems, as well as processors and hardware con-
trolling access to these particular devices, may also be
included in an embodiment.

Host systems provide data and access control information
through channels to the storage systems, and the storage
systems may also provide data to the host systems also
through the channels. The host systems do not address the
drives or devices 16a-16n of the storage systems directly,
but rather access to data may be provided to one or more host
systems from what the host systems view as a plurality of
logical devices, logical volumes (LVs) which may also
referred to herein as logical units (e.g., LUNs). A logical unit
(LUN) may be characterized as a disk array or data storage
system reference to an amount of disk space that has been
formatted and allocated for use to one or more hosts. A
logical umit may have a logical umit number that 1s an I/O
address for the logical unit. As used herein, a LUN or LUNSs
may refer to the different logical units of storage which may
be referenced by such logical unit numbers. The LUNs may
or may not correspond to the actual or physical disk drives
or more generally physical storage devices. For example,
one or more LUNs may reside on a single physical disk
drive, data of a single LUN may reside on multiple difierent
physical devices, and the like. Data 1n a single data storage
system, such as a single data storage array, may be accessed
by multiple hosts allowing the hosts to share the data
residing therein. The HAs may be used in connection with
communications between a data storage array and a host
system. The RAs may be used 1n facilitating communica-
tions between two data storage arrays. The DAs may be one
type ol device interface used 1n connection with facilitating
data transfers to/from the associated disk drive(s) and
LUN (s) residing thereon. A flash device interface may be
another type of device interface used 1in connection with

US 10,983,951 Bl

7

facilitating data transfers to/from the associated flash
devices and LUN(s) residing thereon. It should be noted that
an embodiment may use the same or a different device
interface for one or more diflerent types of devices than as
described herein.

In an embodiment in accordance with techniques herein,
the data storage system as described may be characterized as
having one or more logical mapping layers in which a
logical device of the data storage system 1s exposed to the
host whereby the logical device 1s mapped by such mapping
layers of the data storage system to one or more physical
devices. Additionally, the host may also have one or more
additional mapping layers so that, for example, a host side
logical device or volume 1s mapped to one or more data
storage system logical devices as presented to the host.

The device mterface, such as a DA, performs 1I/O opera-
tions on a physical device or drive 16a-16%. In the following
description, data residing on a LUN may be accessed by the
device 1nterface following a data request 1n connection with
I/0 operations that other directors originate. The DA which
services the particular physical device may perform process-
ing to either read data from, or write data to, the correspond-
ing physical device location for an I/O operation. An I/O
operation, such as to read or write data, may i1dentily a
logical device, such as a LUN, and an offset denoting a
logical address or location on the LUN. Data storage at the
LUN and offset may be stored at a physical storage location
on one or more PDs. Thus, processing performed on the data
storage system for the I/O operation may include mapping
the LUN, oflset to its corresponding physical storage loca-
tion on one or more PDs of the data storage system.

In at least one embodiment in accordance with techniques
herein, data read from, and/or data written to PDs denoting,
the backend non-volatile physical storage devices may uti-
lize a data cache that 1s a form of fast memory, such as a
form of solid state storage. The data cache, also sometimes
referred to herein as a cache, may be implemented, for
example, using a portion of global memory 255 as noted
above. In connection with a read 1/O operation, processing
may include first determining whether the requested read
data 1s stored in the cache thereby denoting a read cache hat.
If there 1s a read cache hit, the requested read data may be
retrieved from cache and returned to the requester without
having to actually access the data on the PDs thereby greatly
reducing the response time for the read 1/0 operation. It the
requested read data 1s not in cache thereby denoting a read
cache miss, the requested read data 1s read from 1ts corre-
sponding location on the one or more PDs, stored 1n the data
cache, and then returned to the requester. In connection with
a write I/O operation, the write data 1s first written to the
cache 1n a cache location and marked as write pending (WP).
Once the write data has been stored in cache, an acknowl-
edgement regarding completion of the write operation may
be returned to the requester even without actually writing the
write data out to its corresponding location on the one or
more PDs. At some time later, the WP data may be destaged
from the cache to 1ts location on the one or more PDs. Once
the WP data has been destaged from cache, the cache
location including the write data may be updated to clear the
WP state, and more generally, the cache location may be
reused.

Also shown 1n FIG. 1 1s a management system 22q that
may be used to manage and monitor the system 12. In one
embodiment, the management system 22a may be a com-
puter system which includes data storage system manage-
ment software or application such as may execute 1n a web
browser. A data storage system manager may, for example,

10

15

20

25

30

35

40

45

50

55

60

65

8

view information about a current data storage configuration
such as LUNSs, storage pools, and the like, on a user interface
(UI) 1n a display device of the management system 22a.
Alternatively, and more generally, the management software
may execute on any suitable processor in any suitable
system. For example, the data storage system management
soltware may execute on a processor ol the data storage
system 12.

Each of the different adapters, such as HA 21, DA or disk
interface, RA, and the like, may be implemented as a
hardware component including, for example, one or more
processors, one or more forms of memory, and the like.
Code may be stored 1n one or more of the memories of the
component for performing processing.

An embodiment of a data storage system may include
components having different names from that described
herein but which perform functions similar to components as
described herein. Additionally, components within a single
data storage system, and also between data storage systems,
may communicate using any suitable technique that may
differ from that as described herein for exemplary purposes.
For example, element 12 of FIG. 1 may be a data storage
system, such as the VNXe® data storage system by EMC
Corporation of Hopkinton, Mass., that includes multiple
storage processors (SPs). Each of the SPs 27 may be a CPU
including one or more “cores” or processors and each may
have their own memory used for communication between
the different front end and back end components rather than
utilize a global memory accessible to all storage processors.
In such embodiments, memory 26 may represent memory of
cach such storage processor.

An embodiment of a data storage system in accordance
with techniques heremn may include one or more data
facilities or services such as may be performed with respect
to physical and/or logical data storage entities of the data
storage system. For example, a LUN and a file are each a
storage entity for which the data storage system may include
one or more data replication facilities. For example, a
snapshot facility may be a local data replication facility or
service on the data storage system that may be used to create
one or more snapshots of a file, file system, LUN, and the
like. As known 1n the art, a snapshot technique used by a
snapshot facility may be used to create a logical or virtual
copy of the data source, such as a file or LUN. For example,
a snapshot facility may be used in an embodiment 1n
accordance with techniques herein to create a snapshot
characterized as a logical point 1n time copy of data. In
connection with a LUN or file, or more generally any storage
entity, software of a data storage system may provide one or
more data replication services or facilities whereby a snap-
shot 1s one such facility that may be used to create point 1n
time snapshot of a data source such as a LUN. A snapshot
may appear like a normal LUN and may be used for backup,
testing, read operations, write operations, and the like.
Snapshots may rely, for example, on copy on {first write
(COFW) and other techniques to track source LUN changes
from the time when a snapshot was created. Any writes to
the source may result in processing by snapshot software, for
example, to copy the original data prior to changes into
another area of storage. With respect to COFW techniques,
the COFW occurs only once for each data block modified on
the source. Since only changed data blocks of the source are
retained rather than make a complete copy of the source, the
storage capacity required to implement snapshots may be
considerably less than that of the source. Though a snapshot
of a source LUN may be presented to a user as a separate
LUN along with the current source LUN, a snapshot of the

US 10,983,951 Bl

9

source LUN 1s a virtual point in time copy and requires
access to the unchanged data 1n the source LUN. Therefore
tailures affecting the source LUN also affect the snapshot of
the source LUN. Snapshots of a source LUN may be
contrasted, for example, with the physically complete bit-
for-bit replicas of the source LUN.

In connection with the foregoing, COFW 1s only one
example of a technology or technique that may be used 1n
connection with snapshots. More generally, any suitable
technique may be used in connection with snapshot creation
and techniques described herein. As another example, redi-
rect on Write (ROW) 1s another techmque that may be used
in connection with a snapshot implementation. With ROW,
alter a snapshot 1s taken, new writes to the primary source
LUN are redirected (written) to a new location.

A data storage system may support one or more different
types of logical devices presented to a host or other client as
LLUNs. For example, a data storage system may provide for
configuration of thick or regular LUNs and also virtually
provisioned or thin LUNs. A thick or regular LUN 1s a
logical device that, when configured to have a total usable
capacity such as presented to a user for storing data, has all
the physical storage provisioned for the total usable capacity.
In contrast, a thin or virtually provisioned LUN having a
total usable capacity (e.g., a total logical capacity as pub-
lished or presented to a user) 1s one where physical storage
may be provisioned on demand, for example, as data 1s
written to different portions of the LUN’s logical address
space. Thus, at any point 1n time, a thin or virtually provi-
sioned LUN having a total usable capacity may not have an
amount of physical storage provisioned for the total usable
capacity. The granularity or the amount of storage provi-
sioned at a time for virtually provisioned LUN may vary
with embodiment. In one embodiment, physical storage may
be allocated, such as a single allocation unit of storage, the
first time there 1s a write to a particular target logical address
(e.g., LUN and location or offset on the LUN). The single
allocation unit of physical storage may be larger than the
s1ze of the amount of data written and the single allocation
unit of physical storage 1s then mapped to a corresponding,
portion of the logical address range of a LUN. The corre-
sponding portion of the logical address range includes the
target logical address. Thus, at any point in time, not all
portions of the logical address space of a virtually provi-
sioned device may be associated or mapped to allocated
physical storage depending on which logical addresses of
the virtually provisioned LUN have been written to at a point
in time.

In at least one embodiment, thin or virtually provisioned
LUNs may be implemented with and organized as a type of
mapped LUN. In such an embodiment, each thin LUN may
be implemented as a file of a file system such as described,
for example, 1n U.S. Pat. No. 9,367,393, Issued, Jun. 14,
2016, MANAGING DATA INCONSISTENCIES IN STOR -
AGE SYSTEMS, Bono, et al., which 1s mcorporated by
reference herein. Following examples make reference to a
thin LUN 1n connection with 1llustrating techniques herein.
However, it will be appreciated by those of ordinary skill 1n
the art that techniques herein are not limited to use with thin
LLUNs and may more generally be used 1n connection with
other types of LUNSs.

Referring to FIG. 2, shown 1s an example 100 1llustrating
a thin LUN 101 that may be used in connection with an
embodiment in accordance with techniques herein The
example 100 includes LUN 101 implemented as file 104 on
file system 102. The LUN 101 1s a 100 GB capacity thin or

virtually provisioned LUN having a logical address space as

10

15

20

25

30

35

40

45

50

55

60

65

10

denoted by 110. In at least one embodiment, the 100 GB
LUN 101 may be implemented using file 104 whereby the
file 104 1s a 100 GB file. In this manner, a relative file offset
in 104 corresponds to a logical address or oflset i the
logical address space 110 of the LUN 101. Consistent with
discussion elsewhere herein, physical storage for the thin
LUN may be allocated in 8 kilobyte (KB) blocks in an
on-demand manner. For example, the first time there 1s a
write to a target logical address of the thin LUN’s logical
address space, the physical storage for the target logical
address may be allocated and mapped to the thin LUN’s
logical address space. For example, a block of physical
storage (at which the write data 1s stored) may be mapped to
a particular block of the LUN’s logical address space.

In at least one embodiment in accordance with techniques
herein, file system 102 may be a UNIX-style file system. In
such a file system, an 1ndex node (1node) 1s a data structure
used to represent a filesystem object, such as a directory or
file 104. In connection with thin LUN 101 implemented as
file 104, the inode 106 for the file 104 stores various file
attributes and a mapping structure 108 1dentifying the data
block location(s) of the thin LUN. The data block locations
may denote the allocated physical storage blocks for the thin
LUN.

Generally, the mode 106 contains file metadata such as,
for example, the size of the file, date of last modification,
ownership, permissions, and the like. There 1s one 1node for
cach file in the file system 102. Additionally, each inode such
as mnode 106 may be uniquely 1dentified in the file system
102 by an mode number. The mode structure 106 also
includes a tree structure 108, more generally referred to as
a mapping structure 108. The structure 108 may include
indirect blocks (IBs) which ultimately identity the data
blocks (DBs) (e.g., physical storage locations) including the
thin LUN data or contents. In 108, elements 108a-5 denote
IBs used to map to a single DB 108c¢ that may correspond to
a single block of the LUN 101 and 1its file 104. More
generally, the structure 108 may include similar mappings
between IBs and other DBs as physical storage 1s allocated
for the thin LUN 101. The structure 108 may be character-
1zed 1n one aspect as an address map that converts a logical
address of the file (and thus of thin LUN 101) to a physical
address (DB) of the file. It should be noted that an IB such
as 108a-b may be an IB pointer that points to an indirect
block that contains an array of block pointers (to either other
IBs or to DBs). There may be many levels of IBs arranged
in a hierarchy depending upon the size of a file where each
level of 1Bs includes pointers to IBs at the next lower level.
IBs may be considered metadata blocks in contrast to DBs
which are data blocks.

In connection with the thun LUN 101 in at least one
embodiment, the first time there 1s a write to a logical block
address (LBA) of the LUN’s logical address space 110, there
1s no existing data block or physical storage mapped to the
LBA. As a result, 1n response to the first write to the LBA,
physical storage 1n the form of a data block may be allocated
and mapped to the LUN’s logical address space. In this
manner, the IBs and DBs of the tree structure 108 are also
created 1n a dynamic manner as storage 1s allocated respon-
sive to first writes to LBAs 1n the logical address space 110
of the thin LUN 101.

Referring to FIG. 3, shown 1s an example of a logical
address space of a file system, such as file system 102 of
FIG. 2, in an embodiment 1n accordance with techniques
herein. The example 200 illustrates that the file system
address space, such as of file system 102, may include

address space mapped to DBs 202, IBs 204, inodes 206, and

US 10,983,951 Bl

11

other metadata (MD) 208 used by the file system. Generally
with reference back to FIG. 2, when thin LUN 101 1s
created, mmode 106 may be allocated from the file system
102’°s address space portion 206. One or more writes to LUN
101 result 1n creating a portion of the tree or mapping
structure 108 including allocated DBs from 202 and IBs
from 204.

In at least one embodiment, space for the file system 102
may be provisioned 1n physical storage portions referred to
as slices which are then mapped into the address space 200
of the file system 102. The file system 102 may then allocate
blocks of storage for DBs, IBs, modes, and other MD as
needed. Physical storage for the file system may be provi-
sioned 1n slices of storage from one or more RAID (redun-
dant array of inexpensive disks) groups. A RAID group may
be characterized as a logical storage entity defined from a
group ol physical storage devices, such as rotating disk
drives, flash-based storage devices or other forms of non-
volatile back end data storage devices. Physical devices of
a RAID group are logically bound together to represent
contiguous data storage space for applications. A RAID
group represent a logically contiguous address space dis-
tributed across a set of physical storage devices of the group.
Each physical storage device 1s subdivided into pieces used
to spread the address space of the RAID group across the
group (along with parity information 1f applicable to the
RAID level). The physically contiguous pieces of the physi-
cal storage devices that are joined together to create the
logically contiguous address space of the RAID group are
called stripes. Stripes may form blocks and blocks may be
allocated to create logical representations of storage space
for use by applications within a data storage system. Each
slice may denote an amount of storage, such as 256 MB
(megabytes) although any suitable size may be used.

Referring to FIG. 4, shown 1s an example representing
generally how storage may be configured for use with
techniques herein. Element 302 denotes the one or more
RAID groups as described above providing the physical
storage from which slices of storage are allocated and
included 1n slice pool 304. Slices from slice pool 304 may
then be generally mapped, using possibly one or more other
logical layers, into one or more file systems 306, such as file
system 102 of FIG. 1. In each of the file systems of 306, one
or more files 308 may be created to implement one or more
corresponding LUNs 310. Consistent with other discussion
herein, each file of 308 (e.g., 104 of FIG. 2) may implement
a single corresponding LUN (e.g., LUN 101). U.S. Pat. No.
9,367,395, which 1s incorporated by reference herein,
describes additional detail regarding how an embodiment
may 1mplement the layers of FIG. 4 and other aspects of
techniques 1n an embodiment.

With reference back to FIG. 3, generally, in typical file
systems, modes, which include the metadata for a file, are
stored alongside the data that comprises the content of the
file 1n a physical storage media (e.g. disks) in a data storage
system. As such, physical storage devices store both the user
or file data 1tself and the file system metadata that 1s related
to 1t. Further, each file system block of a file of a file system
1s associated with a per block metadata (also referred to
herein as “BMD”) that stores metadata (e.g., attributes
related to sharing, checksum and the like) for that particular
file system block and maintains imnformation regarding the
particular file system block. For example, the BMD for a DB
may include the inode number of the file for the LUN having,
its data stored on the DB. The BMD for an allocated DB may
identity the logical ofiset 1n the file for the LUN where the
logical DB has been allocated for the logical offset.

10

15

20

25

30

35

40

45

50

55

60

65

12

In the example 200 of FIG. 3, the other MD 208 of the file
system may include the BMD structures allocated and used
by the file system. A different BMD 1s associated with each
file system block, such as each IB and each DB. Addition-
ally, the other MD 208 of the file system may also include
one or more allocation bitmaps denoting which blocks of
storage provisioned for the file system are allocated and
which are unallocated (e.g., iree or available for use by the
file system). Each of the allocation bitmaps, also referred to
as a cylinder group (CG), may be a bitmap for a logically
contiguous sequence of physical storage blocks. A single CG
may denote, for example, a logically contiguous sequence of
physical storage blocks having a corresponding logically
contiguous address space of a RAID group (e.g., such as
may be included in a stripe of a RAID group). Thus,
generally, blocks of physical storage mapped to the logically
contiguous address space ol a RAID group as included 1n
302 may be mapped to one or more CGs. In this manner,
cach block of physical storage that may be allocated or used
by the file system 102 may have a corresponding bit 1n one
of the CGs, or more generally, 1n an allocation bitmap. Each
bit in the allocation bitmap may denote whether the asso-
ciated physical storage block 1s currently allocated (e.g.,
b1t=1) or 1s otherwise free and available for allocation (e.g.,
b1t=0). Thus, the logically contiguous sequence of physical
storage blocks may denote a sequence of logical addresses
where the sequence denotes an order 1n which data may be
written and stored on physical storage devices of the RAID
group.

Logging may be performed in connection with many
applications. For example, logging may be performed for
file system operations of the file system 102 of FIG. 2 where
the file system includes files used to implement LUNSs as
noted above and elsewhere herein. Thus, such logging may
be used to log operations performed with respect to a file
used to implement the LUN. In such an embodiment, a file
operation that 1s recorded 1n a log for the file system may
thus correspond, for example, to different operations per-
tformed on the LUN (e.g., operation performed with respect
to the LUN 1s mapped to/corresponds to one or more logged
file operations with respect to the file of the system used to
implement the LUN). Logging may include logging a trans-
action or complex operation performed with respect to the
LUN and its corresponding file of the file system. The
transaction or complex operation may include performing
one or more sub-steps or sub-operations to complete the
transaction or complex operation. For example, the transac-
tion or complex operation recorded 1n the log may be an
operation such as to create a file 1n a file system correspond-
ing to an operation to create a thin LUN, create a snapshot
of an existing thin LUN, write to a thin LUN, write to a
snapshot of a thin LUN, and the like. In at least one
embodiment, an entry may be created in the data log, for
example, for each of the foregoing operations 1ssued, where
cach enftry may denote a corresponding file/file system
operation to accomplish the requested operation on the LUN
or its snapshot. One logging approach 1s to write a log record
recording the particular operation to be performed prior to
actually performing the logged operation. Upon the occur-
rence of a system failure (e.g., power failure) or other event
occurrence that may cause the logged operation to fail or not
complete, the log can be replayed as part of recovery
processing to make sure the logged operation and associated
changes were actually completed.

Logging may also allow for faster acknowledgement to be
returned to the requester of the logged operation that the
logged operation has completed. For example, one embodi-

US 10,983,951 Bl

13

ment may log a requested operation and return such
acknowledgement to the requester even though processing
for the requested operation may not have yet completed.
In at least one embodiment, data logging may be per-
formed for a file system used to mmplement LUNs as
described herein (e.g., such as illustrated 1n FIG. 2). Such a
data log may be used to log file and file system operations.
The file system enabled for data logging may also be
referred to herein as a persistent file data cache (PFDC)
enabled file system. Thus, the data log (or simply log) used
to record the operations may also be referred to as a PFDC
where logged operations may be stored persistently to
non-volatile physical storage. In at least one embodiment,
the data log itself may be stored on a logical device, such as
LUN, at a logical address, off:

set or location on the LUN
having its physical storage provisioned on non-volatile
physical storage (e.g., one or more PDs) whereby writes to
the data log may be persistently stored as described else-
where herein (e.g., write data 1s stored 1n the data cache as
WP data, and then destaged/written out to non-volatile
physical storage at a later point 1n time).

Additionally, the operations of the file system may be
recorded 1n the data log with the intention of improving
performance where the logged operation once recorded may
actually be performed or implemented as a later point in time
subsequent to 1ts recording. In this manner the PDFC or data
log for the file system operations may be included 1n the I/0
path such as 1llustrated 1n FIG. 5. In the example 400 of FIG.
5, the I/O path for an I/O, such as a write operation, 1ssued
to thin LUN A 402 implemented using file system 406 may
include multiple layers. In at least one embodiment, the I/O
path for the write operation may include the PFDC 404
(denoting the persistent file system data log 404 for the file
system 406), the file system 406, and one or more other 1/O
path layers 408 where the write data of the write operation
1s then written out to the backend non-volatile physical
storage 410. The other I/O path layers 408 may include, for
example, one or more caching layers such as the multi-core
cache (MCC) layer, multi-core fast cache (MCF) layer and
multi-core RAID cache (MCR) layer such described 1n U.S.
Pat. No. 9,367,395, which 1s incorporated by reference
herein and also noted elsewhere herein. In at least one
embodiment, the write I/O may have an I/O path as denoted
generally in FIG. 5 where the write I/O operation may write
data to a logical oflset or location of a thun LUN A 402
implemented as file 405 1n file system 406. The write 1/O
may be logged 1n the PDFC 404. At a later point 1n time, the
logged write I/O may be flushed from the PDFC 404 to the
file system 406, through the other lower layers 408, and then
to backend non-volatile physical storage 410. The write to
the LUN A 402 may be to a target location denoting a logical
address, oflset or location 1n the LUN A 402. The log entry,
corresponding to the logged write I/O as stored 1n the PFDC
404, may include a descriptor describing the logged write
I/0. The descriptor 1n the PFDC 404 for the logged write 1/0
may, for example, i1dentily the file 405 (used to implement
the LUN A 402), the target location (of where the data 1s to
be written 1n the file 405), the write data (or pointer thereto),
and the like. At a later point in time, the logged entry in the
PFDC 404 for the write I/O 1s flushed from the PFDC 404.

In a similar manner, more generally, any file or file system
operation performed with respect to file system 406 may be
logged i the PFDC 404 by creating a corresponding entry
and descriptor including information on the logged opera-
tion. Such operations may include file system/file operations
tor the file system 406. For example, such operations may
corresponding to various operations performed with respect

10

15

20

25

30

35

40

45

50

55

60

65

14

to a LUN having a corresponding file in the file system 406
such as creating a new LUN (e.g., creating a new {ile 1n the
file system 406 where the new file implements the new
LUN), deleting an existing LUN (e.g., deleting an existing
file 1n the file system 406 where the existing file implements
the existing LUN), performing a write to an existing LUN
(e.g., writing to an existing file 1n the file system 406 where
the existing file implements the existing LUN being written
to), creating a snapshot (SNAP) of a LUN (e.g., creating a
new file denoting the SNAP of the LUN), performing a write
to an existing SNAP of a LUN (e.g., writing to an existing
file 1n the file system 406 where the existing file implements
the existing SNAP of a LUN being written to), deleting an
existing SNAP of a LUN (e.g., deleting an existing {file
denoting the SNAP of the JU\T) and the like. In this
manner, operations such as the foregoing performed with
respect to a LUN (e.g., such as LUN 402) may be imple-
mented as file system operations performed with respect to
files 1n the file system 406.

In at least one embodiment in accordance with techniques
herein, a SNAP of the LUN A 402 (where the LUN 402 1s
implemented as file 405) may be implemented as the second
file 407 of the file system 406. Element 403 may denote the
SNAP of LUN A 402. In such an embodiment, the second
file 407, denoting the SNAP 403 of LUN A, may share the
data blocks of the file 405 (corresponding to the snapshot’s
data source, LUN 402). Consistent with discussion herein, a
snapshot may be characterized as a logical point 1n time
copy ol a source. The create operation that creates the SNAP
403 of LUN A may include creating an inode for the file 407
where the inode for file 407 includes structures or pointers
that map to the same set of data blocks as used for file 405
(for LUN A 402). In this manner, the file 407 may be
characterized as a logical or virtual copy of the file 405,
where both 405 and 407 may 1nmitially share the same set of

data blocks storing data for the LUN A 402 (e.g., before any
modifications are made to either LUN A 402 or 1ts SNAP
403 once the SNAP 403 15 created).

Referring to FI1G. 6, shown 1s an example of a data log that
may be used in an embodiment in accordance with tech-
niques herein. As described above, 1n an embodiment in
accordance with techniques herein, processing may be per-
formed to log operations of a file system, such as the file
system 406 used to implement thin LUNs (e.g., element 402
of FIG. 5) on the data storage system. Such logged opera-
tions may be recorded in a data log illustrated in FIG. 6
where the data log may be the PFDC or persistent file system
data log 404 of FIG. 5. In at least one embodiment, the data
log 510 may be stored at a particular location or offset on a
LUN having provisioned physical storage on physical stor-
age devices (e.g., non-volatile backend PDs) of the data
storage system. Thus, each log record may be stored at a
logical location represented by a LUN and LBA or offset
which 1s then further mapped to physical storage. In the
example 500, the data log 510 includes N records 520. One
of the N log records may be used to record logged infor-
mation for each logged operation. A log record may include,
for example, iformation, such as the descriptor noted
above, 1dentitying the one or more sub-steps or operations to
be performed for the recorded transaction or complex opera-
tion. An embodiment may have a data log with an upper
bound or maximum size N in order to ensure that the log
does not grow indefinitely. Thus, N denotes the maximum
number of transactions or operations that may be pending or
in-thght at any point 1n time in this particular embodiment.

As with other files or data written to a LUN, as log records
are written to the data log 3510, such write data may be

US 10,983,951 Bl

15

mitially written to cache and then later destaged to non-
volatile physical storage storing the log data. In connection
with the file system having its file operations recorded in the
data log 510, a log record of the data log 510 may be reused
once the recorded operation in the log record has been
completed. In one embodiment, processing may log opera-
tions in records beginning with the first record 1 of the data
log 510 and continue sequentially until the end of the data
log 1s reached at record N. Subsequently, processing may
continue to log the next N+1” operation by again cycling
through the log records 1 through N of the log file and record
the N+17 operation in one of the N previously used log
records 11 the recorded operation in the previously used log
record has completed. It should be noted that in this par-
ticular example, 11 all N records of the log file are associated
with transactions or operations that are still pending and an
N+1th operation 1s received, the N+1th operation may not
logged until one of the pending transactions or operations
currently logged 1n one of the N records has completed.

In at least one embodiment, the data log 510 may be
implemented as a circular log as generally described above
where entries are made sequentially 1n the data log.

Referring to FIG. 7, shown 1s an example 600 1llustrating,
an 1mmode space 620 and data log 602 with entries 1n an
embodiment 1n accordance with techmiques herein. The
example 600 illustrates 4 entries 610a-d that may be
recorded i1n the data log 602 of the PFDC 404 in an
embodiment 1n accordance with techniques herein for the
file system 406. Entries 610-d may be written to the data log
602 for 4 corresponding file operations performed at four
different sequential points 1n time (e.g., entry 610q at {first
point 1n time A, entry 61056 at second point i time B
(following A), entry 610c¢ at third point 1n time C (following
B), and entry 6104 at fourth point 1n time D (following C).
Consistent with discussion herein, an operation may be
recorded as an entry 1n the log 602 where the operation may
not be implemented (or not completely implemented) until
the log entry for the operation 1s flushed from the PFDC. In
the following example with reference to data log 602 of FIG.
6, assume there 1s an existing LUN A 402 as illustrated 1n
FIG. 5 but the SNAP of LUN A 403 has not yet been created.

A first write that writes data A to LUN A, LBA (logical
block address or location) 10 1s 1ssued at a first point 1n time.
The first write 1s recorded as entry 610a 1n the data log. The
write data A of 610a 1s not actually written out to the file
system 406, and thus the non-volatile physical storage 410,
until entry 610q and entries corresponding to prior point in
time operations, are tlushed from the log 600.

Element 620 denotes modes of the address space of file
system 406 at the first point 1n time when the above-
mentioned first write 1s 1ssued whereby only mode 620a has
been allocated for use with LUN A. At this first point 1n time,
inodes 9301, 9302 and 9303 are all {free. The entry 610a may
identily the inode number of the file to which the write 1s
directed. Thus, i this case, entry 610a includes inode
number 9300 identilying mnode 620a for the LUN A.

While 610a 1s still pending 1n the log 602, a second write
1s 1ssued that writes data B to LUN A, LBA 100 at a second
point 1n time. The second write 1s recorded as entry 6105 1n
the data log. The write data B of 61056 1s not actually written
out to the file system 406, and thus the non-volatile physical
storage 410, until entry 6105 and entries corresponding to
prior point in time operations, are flushed from the log 602.

Element 620 also denotes 1modes of the address space of
file system 406 at the second point in time when the
above-mentioned second write 1s 1ssued whereby only 1ode

620a has been allocated for use with LUN A. At this second

10

15

20

25

30

35

40

45

50

55

60

65

16

point 1n time, 1nodes 9301, 9302 and 9303 are all free. The
entry 61056 may identily the mmode number of the file to
which the write 1s directed. Thus, 1n this case, entry 61056

includes inode number 9300 1dentitying inode 620a for the
LUN A.

While 610a and 6106 are pending 1n the log 602, a third
operation 1s 1ssued that creates a SNAP of LUN A at a third
point 1n time. The third operation 1s 1ssued to create the
SNAP 403 of LUN A implemented as another file 1n the file
system 406 as discussed above. The third operation 1s
recorded as entry 610¢ in the data log. All processing steps
to fully create the SNAP 403 of LUN A may not be
performed until entry 610c, and entries corresponding to
prior point 1n time operations, are flushed from the log 602.
In connection with 610c¢, the SNAP 403 of LUN A created
at the fourth point in time may not be created/implemented
until any other writes to LUN A occurring prior to the fourth
point 1n time have been performed, or more generally, have
their corresponding entries tlushed from the data log. In this
particular example, the writes having entries 610a and 61056
need to be flushed from the data log prior to actually
completing processing to implement creation of the SNAP
403 of LUN A. In at least one embodiment, at the time the
entry 610c¢ 1s recorded 1n the log for the create snapshot third
operation, processing performed may include allocating or
reserving an mode for SNAP 403 of LUN A from the mode
space 206. In at least one embodiment, there may be a
limited number of 1odes available for use 1n a file system
address space Thus, when recording the create snapshot
third operation 1n the log, processing may include ensuring
one or more resources, such as an mode, needed for snapshot
creation are available for use 1n connection with implemen-
tation of the third operation. However, the processing per-
formed 1 connection with recording the create snapshot
operation 1n the log does not complete all processing to fully
create or implement the snapshot creation. Rather such
processing performed when logging the create snapshot
operation 1 610c may be characterized as a first step that
partially completes processing to create the snapshot. In at
least one embodiment, such processing performed for the
first step when recording in the data log the create snapshot
operation includes reserving or allocating the mnode for the
snapshot without, for example, further imitializing other
inode metadata to establish the relationship with the data
source, LUN A 402. Remaining processing to create the
snapshot, including completing initialization of the mode
metadata for SNAP 403 of LUN A, may be performed 1n a
second step responsive to flushing the entry 610c¢ from the
log 602. Upon completing this second step for the snapshot
creation, all processing for creating the snapshot SNAP 403
of LUN A 1s complete and the SNAP 403 1s available and
ready for use. For example the second step of creating the
SNAP 403 may include establishing the relationship
between the reserved mode for the SNAP 403 and the data
source, LUN A (e.g., establish connection/relationship
between reserved 1node for SNAP 403 and the allocated data
blocks for LUN A). In connection with creating the entry
610c¢ to record the create SNAP LUN A operation, the inode
of the allocated or reserved descriptor for the SNAP 403 of
LUN A may be included 1n the entry’s descriptor.

In this particular example 600, 1node 9301 may be allo-
cated or reserved for use with the file corresponding to the
SNAP of LUN A for the above-noted third operation. The
allocated or reserved mnode 1s denoted by the imnode number
9301 which 1s recorded in entry 610c¢. Element 630 denotes
inodes of the address space of file system 406 after the
allocation of mnode 9301 for use with the third operation to

US 10,983,951 Bl

17

create the SNAP of LUN A whereby 1mnodes 620a and 6205
(inode number 9301) have been allocated for use. Thus,
clement 630 denotes a revised or updated state (e.g., updated
from the state of 620 to 630) of the 1node space of the file
system 406 after the operation to create SNAP of LUN A has
been logged 1n entry 610c.

While 610a-c are pending 1n the log 602, a fourth opera-
tion 1s 1ssued that writes data C to the SNAP of LUN A at
LBA 120 at a fourth point 1n time. The fourth operation 1s
recorded as entry 6104 1n the data log. The write data C of
6104 1s not actually written out to the file system 406, and
thus the non-volatile physical storage 410, until entry 610d
and entries corresponding to prior point 1n time operations,
are flushed from the log 602. The entry 6104 may 1dentity
the 1node number of the file to which the write 1s directed.
Thus, 1n this case, entry 6104 includes inode number 9301
identifying inode 62056 for the SNAP 403 of LUN A.

In connection with discussion herein, a “dirty” snapshot
or dirty snap may denote a state of a snapshot and 1its
allocated or reserved mmode (e.g., dirty snap 1node), where
the 1node for the snapshot has been allocated or reserved as
in the first step for creating a snapshot denoted above with
the third operation, the “create SNAP of LUN A” operation.
However, 1n this dirty state, the mode (e.g., dirty inode or
dirty snap 1node) has only been allocated or reserved for use
with the snapshot without further completing remaining
processing, such as in connection with the second step of the
snapshot creation processing noted above, to establish and
complete implementation of the snapshot so that the snap-
shot, such as SNAP 403 of LUN A, 1s available for use.

Thus, 1n a consistent file system having a data log of the
PFDC, the mnode number stored 1n a data log entry may be
used to 1dentily the corresponding inode 1 the mode space
of the file system. For example, each of the entries 610a-d
as 1llustrated in FIG. 7 1s consistent in that there 1s an
established pairing between the entry and the mode of the
file to which the recorded operation of the entry 1s directed.
For example, entry 610c¢ for the dirty snapshot 403 1s well
paired and thus consistent in that entry 610c¢ includes a valid
inode number 9301 which identifies an actual dirty snap
inode 62056 of the file system (e.g., where the mode 62056
may be located 1n the file system address space and validated
as having the indicated inode number 9301 and also vali-
dated as having an associated state denoting a dirty snapshot
inode). Thus, 1n at least one embodiment, the mnode number
for the dirty snapshot operation may be stored 1n the data
log. However, the dirty snapshot’s inode, such as 6205, does
not store any information (e.g., pointers to) any data log
record(s) of 602 referencing the dirty snapshot inode. Thus,
clements 602, 620 and 630 illustrate a consistent file system
including a dirty snap mode 6206 and dirty snap data log
entries 610c-d where each of 610c-d validly reference the
dirty snap mode number 9301. More generally, each of the
entries 610a-d reference an imnode number of a valid 1node of
the file system.

However, 1t may be possible for there to be a corruption
to data of one or more inodes and/or data of one or more data
log entries. Detection of a corrupted or missing dirty snap-
shot 1mnode may be detected as an inconsistency in the file
system 406 by examining the data log such as part of
recovery processing 1n attempts to recover the file system
and prevent or minimize data loss. However, additional
extensive data loss may occur depending on the particular
techniques utilized, for example, 1f there 1s a corruption or
missing data of the data log of the PFDC. For example, a {file
system check utility (FSCK) may perform processing that
detects one or more file system inconsistencies and then may

10

15

20

25

30

35

40

45

50

55

60

65

18

attempts to recover the file system using the data log of the
PFDC. In a case where the FSCK utility 1s unable to recover
a file, a user may lose data thereby causing a data loss or
unavailability. Described 1n following paragraphs are tech-
niques which provide for a two phase data log recovery
approach. In at least one existing implementation not using
the two phase data log recovery approach described herein,
a one phase data log recovery approach may be utilized
which may result in larger data losses 1n the event of data log
corruption when compared to the two phase data log recov-
ery approach using techniques herein.

When a dirty snapshot inode in inode space has been
corrupted, such as mode 6205 having inode number 9301,
but there 1s no corruption to the data log entries, an 1ncon-
sistency may be determined by examiming entry 610c¢ rei-
erencing inode number 9301 and determining 1f the entry
610c 1s well paired with a valid but dirty snapshot mode
having inode number 9301. In other words, processing may
first attempt to locate an mmode (such as 6206) 1n the file
system address space 630 having inode 9301. Further, the
inode 6206 having inode number 9301 may be examined to
determine that 1t has a corresponding imitialization state
corresponding to that of a dirty snapshot (e.g., where the
metadata of the mmode may not be initialized, for example,
where there 1s no relationship or connection to a data source
such as LUN A). If no such mmode 6205 with mmode number
9301 can be located, or il located, does not have a state
corresponding to that of a dirty snapshot mode, an incon-
sistency may be determined. However, 1f there 1s a corrup-
tion or missing data log entry for a dirty snapshot, use of the
one phase data log recovery 1n an implementation not using
techniques herein may not be able to determine the precise
cause of the inconsistency and thus may not be able to return
the file system (e.g., data log and 1nodes) to a consistent state
(e.g., where such inconsistency may be due to missing or
corrupted dirty snap inodes and/or missing or corrupted data
log entries for snapshot operations (e.g., snapshot creation
and/or writes to a snapshot). In such an existing implemen-
tation not using techniques herein, guaranteeing that the file
system may be returned to a consistent state by recovery
processing may result in losing/removing all data log entries
that create a dirty snapshot, all dirty snapshot inodes, and
losing/removing all data log entries that point to or reference
a dirty snapshot 1node, thereby resulting in potentially a
large amount of data loss even 1n cases where such data may
not actually be corrupted.

In order to further reduce or minimize data loss, the two
phase data log recovery techniques described in following
paragraphs may be utilized. Such techniques may be used to
provide for protecting and/or minmimizing data loss such as
with respect to, non-corrupted dirty snapshot inodes, non-
corrupted data log entries creating snapshots and thereby
having an associated dirty snapshot mmode, and non-cor-
rupted data log entries performing I/Os such as writes to
dirty snapshots. Thus, the two phase data log recovery
processing described 1n following paragraphs provides pro-
tection of non-corrupted data by removing only corrupted or
invalid data thereby minimizing or reducing data loss 1n
comparison to other existing techniques which may make
overly general or broad assumptions regarding what data 1s
corrupted 1n order to guarantee the file system 1s returned to

a consistent state after recovery processing.

The first phase, PHASE 1, of techniques herein may
include a step A. In step A, processing may include travers-
ing the data log and examining each entry’s descriptor that
references an 1mode number to validate that the inode
number of the entry/descriptor refers to an actual valid inode

US 10,983,951 Bl

19

of the file system. For example, the inode number of an entry
in the data log 1s obtained and used to locate an inode in the
file system’s address space (e.g. where the 1node has a state
indicating the mode 1s 1n use/has been allocated/is not free).
I1 the mmode number has not been validated/is determined as
invalid, the entry/descriptor in the data log may be cleared,
iitialized or zeroed out to thereby indicate the entry’s
descriptor 1s mnvalid/not to be used.

PHASE I of techmiques herein may also include a step B
(which may be performed following step A). In step B,
processing may be performed to generally determine
whether there 1s a missing or corrupt data log entry for a
create snapshot operation. Step B may include traversing the
data log and searching for all entries logging a correspond-
ing create SNAP operation. For each create SNAP operation
having a corresponding entry in the data log, obtain the
inode number 1ncluded 1n the entry. The 1node number 1s
supposed to i1dentily a dirty snapshot inode thus step B
includes performing processing to validate the inode number
of the logged create SNAP operation. Such validation pro-
cessing includes attempting to locate a corresponding 1node
in the file system where the corresponding 1node matches the
inode number of the log entry for the create SNAP operation.
Furthermore, processing validation processing of step B
may include examining the state of the matching 1node to
ensure that the 1node’s state corresponds to that of a dirty
snapshot inode (e.g., metadata of the mode has not been
initialized whereby, for example, there 1s no relationship to
a data source, no tree structure or mapping structure (e.g.,
108 of FIG. 2) in the dirty snapshot inode. For each entry 1n
the data log for which a match i1s determined between the
entry in the log for a create snapshot operation and 1ts dirty
snapshot mode, the dirty snapshot 1node 1s marked as “snap
validated” (to denote the matching and validated correspon-
dence/consistency between the entry of the create snapshot
operation and 1ts dirty snapshot mnode that has been allo-
cated).

The second phase, PHASE 2, of techmiques herein may
include a step C. In step C, the mode list for the file system
may be traversed to ensure that every dirty snapshot inode
has been marked as “snap validated”. If an inode 1s for a
dirty snapshot/is a dirty snapshot inode (e.g., as may be
determined based on state of mode) and 1s not marked as
“snap validated”, the dirty snapshot inode may be cleared or
removed thereby changing the dirty snapshot mode state to
free or available for use. It should be noted that 11 step C
determines that a dirty snapshot inode was not marked as
“snap validated” by step B, it means the corresponding data
log entry for the create snapshot command has been lost or
corrupted.

Following performing step C of PHASE 2, step D of
PHASE 2 may be performed. Step D may include traversing
the data log and removing entries for I/O operations, such as
writes, to a dirty snapshot which now reference an invalid
dirty snap 1mode which has been cleared or removed 1n step
C of PHASE 2. In other words, this step D performs
processing that removes any entry from the data log that
denotes an I/O such as a write where the entry includes
references a dirty snapshot mnode that has been cleared,
removed or otherwise indicated as free as a result of pro-
cessing performed 1n step C of PHASE 2 described above.

Following step D of PHASE 2, step E may be performed
as part ol clean up processing. Step E may include, for
example, clearing the mmodes previously marked as “snap
validated” in PHASE 1 processing described above.

The foregoing processing steps may be included as pro-
cessing performed 1n connection with recovery processing 1n

10

15

20

25

30

35

40

45

50

55

60

65

20

an embodiment 1n accordance with techniques herein. Such
recovery processing as described above may be performed
responsive to determining a file system inconsistency. In at
least one embodiment, the file system inconsistency may be
determined by a utility known 1n the art, such as FSCK
mentioned above. The above-noted recovery processing
steps of the two phase data log recovery, or more generally
two phase recovery processing, may be used to establish a
consistent file system state with a data log that can then be

flushed.

To further illustrate use of the two phase recovery pro-
cessing described above, reference 1s made below to an
example 1llustrated 1n connection with FIGS. 8 and 9. The
following example 1s generally a vanation of the prior
example described above 1n connection with FIG. 7. In FIG.
7 as described above, the file system state 1llustrated 1n the
example 600 1s consistent. Consistent with other discussion
herein, a consistent file system generally has consistent and
valid correspondence between data log entries for the file
system operations and inodes of the file system. More
specifically, in a consistent file system, conditions including,
the following are true:

1. Each operation, such as a write operation, having an entry
in the data log refers to a valid inode in the file system. The
inode may be determined as having a valid state, for
example, based on the information and state of the inode
(e.g., the metadata of 1node structure, the mmode having an
allocated state as may be denoted by one or more flags, and
the like).

2. Each dirty snapshot inode for a snapshot of a file 1n the
file system has a corresponding entry in the data log for an
operation that creates the snapshot.

3. Each entry 1n the data log for an operation that creates a
snapshot of a file 1n the file system has a corresponding dirty
snapshot mode for the snapshot. The inode may be deter-
mined as being a dirty snapshot inode, for example, based on
the information and state of the mode (e.g., the metadata of
inode structure not being initialized, the mmode having an
allocated state as may be denoted by one or more flags, the
inode not having a mapping structure 108, and the like).

It should be noted that the above-noted conditions regard-
ing file system consistencies are only a portion of the
conditions or properties generally known in the art that
characterize a consistent file system.

In connection with the example 700 1llustrated 1n FIG. 8,
assume the create SNAP LUN A entry 610c¢ has been
corrupted so that entry 610c¢ 1s denoted as FREE 702 (rather
than as illustrated in FIG. 7). PHASE 1 processing of
techniques herein may result in 710 not marking inode 62056
as “snap validated”. (If entry 610c was uncorrupted and as
in FIG. 7, PHASE 1 processing using techniques herein
would have marked mode 620 as “snap validated”.) Thus,
FIG. 8 denotes the result of PHASE 1 processing using
techniques as described herein for this particular example.

Referring to FIG. 9, shown 1s an 1illustration of the result
of processing of PHASE 2 1n an embodiment 1n accordance
with techniques herein. Continuing with the example 700 of
FIG. 8, PHASE 2 processing may be performed. In PHASE
2, step C results 1 updating the state of inode 6206 (1node
number 9301) to a state of FREE (as denoted by 802).
Additionally, PHASE 2 step D results 1n clearing of freeing
the data log entry 610d (as denoted by 804, entry 610d 1s
cleared/Ireed since it recorded an I/O operation referencing
inode number 9301, and the mode 6205 having inode

number 9301 was cleared/freed in step C of PHASE 2
processing.

US 10,983,951 Bl

21

Referring to FIGS. 10 and 11, shown are tlowcharts of
processing steps that may be performed 1n an embodiment in
accordance with techniques herein. The flowcharts 900 and
1000 generally summarize processing described above that
may be performed 1n an embodiment 1n accordance with
techniques herein.

Referring to FIG. 10, flowchart 900 includes step 902
where a determination 1s made as to whether a file system
inconsistency has been detected. Diflerent types of file
system 1nconsistencies are known in the art and some are
discussed herein. For example, such inconsistencies for the
file system may generally include an inconsistency between
a data log for the file system and modes of the file system,
wherein the data log includes entries corresponding to
logged operations requested with respect to the file system.
I step 902 evaluates to yes, control proceeds to step 906
where recovery processing 1s commenced to detect and
correct file system inconsistencies and restore the file system
to a consistent state. From step 906, processing continues
with step 908 In step 908, the data log for the file system
may be flushed to thereby mmplement or perform the
recorded operations 1n the data log of the file system. If step
902 evaluates to no, control proceeds to step 904 to gener-
ally perform other processing besides recovery processing.

Referring to FIG. 11, flowchart 1000 includes processing
steps that may be performed 1n accordance with the two
phase recovery processing described above. At step 1002,
processing may be performed to traverse the data log and
look at each entry referencing an 1node number to validate
that the 1node number of the entry references an actual valid
inode of the file system. For example, the inode number of
an entry in the data log 1s obtained and used to locate an
inode 1n the file system’s address space (e.g. where the 1node
has a state valid state indicating the inode 1s 1n use/has been
allocated/is not free). If the mmode number has not been
validated/is determined as invalid, the entry in the data log
may be cleared, imtialized or zeroed out to thereby indicate
the entry 1s free.

From step 1002, processing continues with step 1004. At
step 1004, processing may be performed to determine/locate
any missing or corrupt data log entries for a create snapshot
operation. Step 1002 may include traversing the data log
and, for each entry recording a create snapshot operation,
obtain the mnode number from the entry, locate a correspond-
ing inode that 1s for a dirty snapshot (e.g., dirty snapshot
inode), and mark the dirty snapshot mode as ““snap vali-
dated”. Such processing determines a match between each
entry 1n data log for a create snapshot operation and its dirty
snapshot inode where the dirty snapshot inode 1s marked as
“snap validated”.

From step 1004, processing continues with step 1006. At
step 1006, processing may include traversing the imnode list
of the file system to ensure that every dirty snapshot mnode
has been marked as “snap validated”. If an inode 1s for a
dirty snapshot (e.g., based on state of inode indicates a dirty
snapshot inode) and i1s not marked as “snap validated”,
processing 1s performed to clear or remove the inode thereby
changing the 1node state to free or available for use. In other
words, 11 the dirty snapshot mnode was not marked as “snap
validated 1n step 1004, it means the corresponding data log
entry for the create snapshot command has been lost or
corrupted.

From step 1006, processing continues with step 1008. At
step 1008, processing may include traversing the data log
and removing entries for I/O operations, such as writes, to
dirty snapshots where such entries now reference an invalid
dirty snap inode which has been cleared or removed by step

10

15

20

25

30

35

40

45

50

55

60

65

22

1006). In other words, this step 1008 includes processing
that removes any entry from the data log that denotes an I/O,
such as a write, where the entry references an mnode for a
dirty snapshot inode that 1s cleared, removed or otherwise
indicated as free as a result of step 1006.

From step 1008, processing continues with step 1010. At
step 1010, any needed clean up processing may be per-
formed. Step 1010 may include, for example, clearing the
inodes marked previously as “snap validated™.

The techmiques herein may be performed by executing
code which 1s stored on any one or more different forms of
computer-readable media. Computer-readable media may
include different forms of volatile (e.g., RAM) and non-
volatile (e.g., ROM, flash memory, magnetic or optical
disks, or tape) storage which may be removable or non-
removable.

While the invention has been disclosed in connection with
preferred embodiments shown and described 1n detail, their
modifications and improvements thereon will become read-
1ly apparent to those skilled 1n the art. Accordingly, the spirit
and scope of the present invention should be limited only by
the following claims.

What 1s claimed 1s:

1. A method of performing processing for a file system
comprising;

determiming, for the file system and using a processor, an

inconsistency between a data log for the file system and
inodes (index nodes) of the file system, wherein the
data log includes entries corresponding to logged
operations requested with respect to the file system; and
responsive to determining the inconsistency between the
data log for the file system and 1nodes of the file system,
performing recovery processing using a processor, said
recovery processing including:
performing {first processing of the data log, wherein
said first processing includes:
determining whether each entry of the data log, that
records a create snapshot operation to create a
snapshot of a file, has an associated mode of the
file system that 1s a dirty snapshot 1node; and
responsive to determining said each entry of the data
log, that records the create snapshot operation, has
the associated 1node that 1s a dirty snapshot 1node,
marking said associated inode, that 1s a dirty
snapshot 1node, as snap validated denoting vali-
dated consistency determined between said each
entry of the data log recording the create snapshot
operation and the associated node that 1s a dirty
snapshot 1mode;
performing second processing of the inodes of the file
system after performing said first processing of the
data log, wherein said second processing includes:
identifying each inode of the file system that 1s not
marked by the first processing as snap validated
wherein said each inode not marked as snap
validated 1s a dirty snapshot nmode without a
corresponding data log entry; and
responsive to 1dentifying said each inode that 1s not
marked by the first processing as snap validated,
removing said each mode of the file system that 1s
identified as a dirty snapshot mmode without a
corresponding data log entry and that 1s not
marked by the first processing as snap validated;
and
performing third processing of the data log after said
second processing of the mmodes of the file system,
wherein said third processing includes removing

US 10,983,951 Bl

23

other entries of the data log referencing an invalid
dirty snapshot inode that 1s removed by said second
processing, wherein said other entries of the data log
are not created for a snapshot creation operation.

2. The method of claim 1, wherein the inconsistency
includes any one or more of:

a write operation having an entry in the data log that refers

to an invalid 1node 1n the file system;

a dirty snapshot mnode for a first snapshot of a file in the
file system that does not have a corresponding entry 1n
the data log for an operation that creates the first
snapshot; and

an entry in the data log for an operation that creates a
second snapshot of a file 1n the file system and the
second snapshot does not have a corresponding dirty
snapshot 1node.

3. The method of claim 1, wherein the file system includes

a lirst file that implements a logical device having storage
provisioned from the file system.

4. The method of claim 3, wherein the logical device 1s a
virtually provisioned logical device.

5. The method of claim 3, wherein the first file has a
corresponding index node of the file system, the index node
including metadata for the first file and the index node
including a mapping structure of one or more indirect blocks
and one or more data blocks that are mapped, using the one
or more 1ndirect blocks, to the index node for the first file.

6. The method of claim 5, wherein the data log includes
a first entry that records a first operation to create a {first
snapshot of the first file, wherein the first snapshot of the first
file denotes a first snapshot of the logical device.

7. The method of claim 6, wherein, responsive to receiv-
ing the first operation to create the first snapshot of the first
file, processing 1s performed including:

allocating a first index node of the file system for the first
snapshot of the first file; and

recording information in the first entry, the mformation
including a first inode number of the first index node.

8. The method of claim 7, further comprising:

flushing the data log including flushing the first entry; and

responsive to said flushing the first entry, completing
initialization of metadata of the first index node to
reference a same set of data blocks allocated for the first
file.

9. The method of claim 1, wherein said other entries of the

data log are created for write operations.

10. A system comprising:

one or more processors; and

a memory comprising code stored therein that, when
executed by at least one of the one or more processors,
performs a method of performing processing for a file
system comprising:
determining, for the file system and using a processor,

an 1nconsistency between a data log for the file
system and imodes (index nodes) of the file system,
wherein the data log includes entries corresponding
to logged operations requested with respect to the file
system;
responsive to determining the inconsistency between
the data log for the file system and inodes of the file
system, performing recovery processing using a pro-
cessor, said recovery processing ncluding:
performing first processing of the data log, wherein
said first processing includes:
determining whether each entry of the data log,
that records a create snapshot operation to cre-

10

15

20

25

30

35

40

45

50

55

60

65

24

ate a snapshot of a file, has an associated mode
of the file system that 1s a dirty snapshot inode;
and

responsive to determining said each entry of the
data log, that records the create snapshot opera-
tion, has the associated mode that 1s a dirty

snapshot inode, marking said associated inode,
that 1s a dirty snapshot inode, as snap validated
denoting wvalidated consistency determined
between said each entry of the data log record-
ing the create snapshot operation and the asso-
ciated mode that 1s a dirty snapshot inode;
performing second processing of the inodes of the
file system after performing said first processing
of the data log, wherein said second processing
includes:
identifying each inode of the file system that 1s not
marked by the first processing as snap validated
wherein said each inode not marked as snap
validated 1s a dirty snapshot immode without a
corresponding data log entry; and
responsive to identifying said each inode that 1s
not marked by the first processing as snap
validated, removing said each inode of the file
system that 1s identified as a dirty snapshot
inode without a corresponding data log entry
and that 1s not marked by the first processing as
snap validated; and
performing third processing of the data log after said
second processing of the inodes of the file system,
wherein said third processing includes removing
other entries of the data log referencing an mvalid
dirty snapshot inode that 1s removed by said
second processing, wherein said other entries of
the data log are not created for a snapshot creation
operation.

11. The system of claim 10, wherein said other entries of
the data log are created for write operations.

12. A non-transitory computer readable medium compris-
ing code stored thereon that, when executed using a proces-
sor, performs a method of processing for a file system
comprising:

determiming, for the file system and using a processor, an

inconsistency between a data log for the file system and
inodes (index nodes) of the file system, wherein the
data log includes entries corresponding to logged
operations requested with respect to the file system; and
responsive to determining the inconsistency between the
data log for the file system and 1nodes of the file system,
performing recovery processing using a processor, said
recovery processing including:
performing {first processing of the data log, wherein
said first processing includes:
determining whether each entry of the data log, that
records a create snapshot operation to create a
snapshot of a file, has an associated 1mnode of the
file system that 1s a dirty snapshot 1node; and
responsive to determining said each entry of the data
log, that records the create snapshot operation, has
the associated mode that 1s a dirty snapshot inode,
marking said associated inode, that 1s a dirty
snapshot 1node, as snap validated denoting vali-
dated consistency determined between said each
entry of the data log recording the create snapshot
operation and the associated node that 1s a dirty
snapshot 1ode;

US 10,983,951 Bl

25

performing second processing of the inodes of the file
system after performing said first processing of the
data log, wherein said second processing includes:
identitying each 1node of the file system that 1s not
marked by the first processing as snap validated
wherein said each 1node not marked as snap
validated 1s a dirty snapshot imode without a
corresponding data log entry; and
responsive to identifying said each mode that 1s not
marked by the {first processing as snap validated,
removing said each mode of the file system that 1s
identified as a dirty snapshot inode without a
corresponding data log entry and that 1s not
marked by the {irst processing as snap validated;
and
performing third processing of the data log after said
second processing of the mmodes of the file system,
wherein said third processing includes removing
other entries of the data log referencing an invalid
dirty snapshot mnode that 1s removed by said second
processing, wherein said other entries of the data log
are not created for a snapshot creation operation.
13. The non-transitory computer readable medium of
claam 12, wherein the inconsistency includes any one or
more of:

a write operation having an entry in the data log that refers
to an invalid inode 1n the file system;

a dirty snapshot mnode for a first snapshot of a file in the
file system that does not have a corresponding entry 1n
the data log for an operation that creates the first
snapshot; and

an entry in the data log for an operation that creates a
second snapshot of a file 1n the file system and the
second snapshot does not have a corresponding dirty
snapshot 1node.

10

15

20

25

30

35

26

14. The non-transitory computer readable medium of
claiam 12, wherein the file system includes a first file that
implements a logical device having storage provisioned
from the file system.

15. The non-transitory computer readable medium of
claiam 14, wherein the logical device 1s a virtually provi-
sioned logical device.

16. The non-transitory computer readable medium of
claim 14, wherein the first file has a corresponding index
node of the file system, the index node including metadata
for the first file and the index node including a mapping
structure of one or more indirect blocks and one or more data
blocks that are mapped, using the one or more indirect
blocks, to the index node for the first file.

17. The non-transitory computer readable medium of
claim 16, wherein the data log includes a first entry that
records a first operation to create a first snapshot of the first
file, wherein the first snapshot of the first file denotes a first
snapshot of the logical device.

18. The non-transitory computer readable medium of
claam 17, wherein, the method includes, responsive to
receiving the first operation to create the first snapshot of the
first file, performing processing ncluding:

allocating a first index node of the file system for the first

snapshot of the first file; and

recording information 1n the first entry, the information

including a first inode number of the first index node.

19. The non-transitory computer readable medium of
claim 18, wherein the method further comprises:

flushing the data log including flushing the first entry; and

responsive to said flushing the first entry, completing

initialization of metadata of the first index node to
reference a same set of data blocks allocated for the first
file.

20. The non-transitory computer readable medium of
claam 12, wherein said other entries of the data log are

created for write operations.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

