a2y United States Patent
Kolychev et al.

US010965708B2

US 10,965,708 B2
Mar. 30, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR MACHINE
LEARNING BASED APPLICATION
SECURITY TESTING

Applicant: WHITEHAT SECURITY, INC., Santa
Clara, CA (US)

Sergey Kolychev, Portland, OR (US);
Robert Stone, Fremont, CA (US);
James Richardson, Houston, TX (US)

Inventors:

WHITEHAT SECURITY, INC., Santa
Clara, CA (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 186 days.

Appl. No.: 16/001,812
Filed: Jun. 6, 2018

Prior Publication Data

US 2019/0377880 Al Dec. 12, 2019

Int. CI.

HO4L 29/06 (2006.01)

GO6F 21/57 (2013.01)

GO6N 3/04 (2006.01)

GO6N 3/08 (2006.01)

U.S. CL

CPC HO4L 63/1433 (2013.01); GO6F 21/577

(2013.01); GO6N 3/0445 (2013.01); GO6N
3/0454 (2013.01); GO6N 3/08 (2013.01);
GO6F 2221/034 (2013.01)

Field of Classification Search
CPC GO6F 21/577; GO6F 2221/034; GO6N
3/0445; GO6N 3/0454: GO6N 3/08; HO4L
63/1433

See application file for complete search history.

Scanner

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,166 A * 11/1996 Mizuno GO6K 9/6254
706/20
9,083,556 B2* 7/2015 Chorcc.ccovvvvennnn, HO4L 51/12
10,558,809 B1* 2/2020 Joycecoooevvrvnnnnn, GO6N 20/00
10,565,498 B1* 2/2020 Zhiyanov GO6N 3/0445
2003/0004689 Al* 1/2003 Guptaoeeeeveeeee, GO6F 21/55
702/188

(Continued)

FOREIGN PATENT DOCUMENTS

WO W0O-2011019720 A1 * 2/2011 HO4L 51/12

OTHER PUBLICATTIONS

Lianbing, Zhou; “Study on Applying the Neural Network in Com-
puter Network Security Assessment”, Eighth International Confer-
ence on Measuring Technology and Mechatronics Automation

(ICMTMA), IEEE, Mar. 11-12, 2016, pp. 639-642.*
(Continued)

Primary Examiner — Victor Lesniewska
(74) Attorney, Agent, or Firm — Polsinelli PC

(57) ABSTRACT

Discloses are systems, methods and computer readable
mediums for automated verifications of potential vulner-
abilities of one or more sites or code utilizing one or more
neural networks. The systems, methods and computer read-
able mediums can transmit one or more scan operations to
one or more sites, receive one or more responses to the one
Or more scan operations, tokenize the one or more responses,
transmit to one or more neural networks the one or more
tokenized responses, receive from the one or more neural
networks verification of the one or more tokenized
responses, and determine one or more confidences of the one
or more verified responses.

24 Claims, 10 Drawing Sheets

)

Scanning Operations L“\ Site /

Application Code

Results

e,
Security #'“—{} Neural Network

]
T,
-"-—.-_._._'_

\

114 >

N (T
E

106

US 10,965,708 B2
Page 2

References Cited

U.S. PATENT DOCUMENTS

(56)

2013/0174262 Al* 7/2013
2014/0047546 Al* 2/2014
2016/0315961 Al* 10/2016
2017/0011738 Al1* 1/2017
2017/0264378 Al* 9/2017
2017/0318035 Al* 11/2017
2017/0366562 Al* 12/2017
2018/0026944 Al* 1/2018
2018/0101681 Al* 4/2018
2018/0268298 Al* 9/2018
2018/0275642 Al* 9/2018
2018/0285186 Al* 10/2018
2018/0293488 Al* 10/2018
2018/0367561 Al* 12/2018
2019/0050319 Al* 2/2019
2019/0052665 Al* 2/2019
2019/0273509 Al* 9/2019
2019/0273510 Al* 9/2019
2019/0327259 Al* 10/2019
2019/0370473 Al* 12/2019

Amit ..oooooviivivinnnnnn, GO6F 21/577
726/25

Sidagni GO6F 21/577
726/25

Duercooevvvennn. HO41. 63/1433
SENIOT ..vvvevvriinininens G10L 15/063
SIMPSON GO6F 21/577
Baughman GO6N 3/08
Zhang GO6N 20/00
Phillips HO04L. 63/1433
726/4

Davis ..oovvvininnnnnn, GO6F 21/564
Johansen GO6F 40/30
Tajima GO6N 3/0472
Godetroid HO4I. 63/1433
Dang (G06N 3/082
Givental GO6N 20/00
Gondalia GO6F 11/3664
Mahieuco...... GO6N 3/04
Elkind GO6F 21/562
Elkindooo.. GO6F 8/74
DeFelice GO6N 3/0472
Matrosov GO6K 9/6256

OTHER PUBLICATIONS

Ito, Michiaki; Iyatomi, Hitoshi; “Web Application Firewall using

Character-level Convolutional Neural Network™, 14th International
Colloquium on Signal Processing & Its Applications (CSPA), IEEE,

Mar. 9-10, 2018, pp. 103-106.%

* cited by examiner

US 10,965,708 B2

Sheet 1 of 10

Mar. 30, 2021

U.S. Patent

001

9501

3pon) uonediddy
“ / 3US

VI Old

...,._..:........E..i....iu.....i...tii 111111111 Iitf...lr...........fr...rpf
g aseqele(N
] A314NIDS i
SN =

4 N\
20T
e ,.,
$1|nsay
; 801 ™
... w7 A‘
suoiesadp suiuuedg R
JSUURD
\] .. > /

US 10,965,708 B2

Sheet 2 of 10

Mar. 30, 2021

U.S. Patent

0&1

2p0) uoijedijddy
/ BUS

d1 Old

$3NSay

N

Jauuess

Ott

el el e

gy ..l.liirlnt......:-ll'-{rri-f-.

asegeieq ™
AMINIBS

111111

US 10,965,708 B2

Sheet 3 of 10

Mar. 30, 2021

U.S. Patent

00¢

—

14T -
\

LY L L L.] T P e o -1]11..1.-1.!}-1...‘-1!11‘1411‘ L]

8p0) uopeosiddy

V< Old

(AT

ol bt ek el et e b ol B e ok e bl et

9a¢ .
.

>

o ™
NI SisAjeuy |

[T F L T

Ueds apo)

iiiiiii

% 3003 _.i

rrrrrr

N Bjeq sisAjeuy pajielsg

el
[

SisAjeuy
_PoIERG

F
t
E
F
k
¥
[
F
+
]
F
1
sy vy o] v o e e o =] ... o tmir e sl iy k- e -k

suonetddD ueds S04
vid

suonesado uess U1Sor

Pz .,

90¢

IS

N

~ suonesad uess payieIaq

“ QN __...___.-1:-lv
=T, puripr sy eyl iy oy gy ‘/\ llllllllll

J/

YZE7 asegeled

o ke o Ay s il e s e e g g = s b e A e e W i o e i i sk o i i e ke

- V A3LIND3G

suoneiadp ueasg 23.4ing

Buueds

US 10,965,708 B2

Sheet 4 of 10

Mar. 30, 2021

U.S. Patent

04%¢

P

AT

SN

PO uohedddy

N
3

d¢ Old

414
-

9Gc

i,

\1

UB3% apo’)

0C -

N

g

Uidoy %m& I
A suonesadp uess uIdol

t
[
[
E
r
E
¥
k
]
¥
[
[
]
E
r
[
E
L e p Y et '
r
[
E
r
E
E
F
t
E
E

x
)
\..

A N

SisAjeuy

= | L

NJOMISN
CIGETY A

4

\

HIOMISN \

JBINBN [\

F
[]
H E
H F
i E
1 F
i F
1 []
1 E
- 3
! E
4 E
E
;
E
-. T L L L Y
3
b L |
1 i
H E
1
i E
i [
[§
'
¥
3
1
F
E |
1

SiSAjeuy n
payelsg

/
\... 309¢

.. 409¢

C

8¢l

vl

vic .
{

1
|
L - M e el e AT T I W .._.‘il.

~ suonesadg ueds pajesq

907

axs

POl ..

4
1
E
A —— A T A T .. — -
1

suollelad(uess a7eins

NHOMISN
jEANON f/

NIOMIBN
jeINapn

NIOMIDN
LILEIY A

$9Z7)

- 9401¢

)

A0M m
V* “mz X 4 :ai:%:.wvm
(eiNaN N “

J 29z)

J2uuRIS

— uz. S L

vooz - .

aseqeleq
Al1iNdag

US 10,965,708 B2

Sheet 5 of 10

Mar. 30, 2021

U.S. Patent

m _.:-U_...._ 00t

Bk R & E R R o Rk kR ok d d ok k d d A E A E b E koA Rk ko ok ko d Ak d o a ko o oa oa ok od e E E kb Ak E d d d ko d d E E d E E E d d kR ko ok kb d oa ok A d ok d d d d E d d E R R R ko ok b od d ok d d d ke d E E d E E E b ok b ok ki k d d d ok d d ki d E b E b E e ok b d o ok k d d d k d d b E o E E o ok b ok ki ok d od d ok d d o d d R E d d E E ke kb d d ok ko d d kM d bl E E E b o ok b d ok kb ok d d ok d d d E b E kA ok bk ok b od d ok d d d d d d d b E E ke kb d o ok k d d d kb 4 d k d d a a E d d A a &

62:0€:T0:LT/S/¢ | X' T yoied SDA [piisay [pajielaq

6£:91:00 :L1/S/¢€ SAISOd 3s|e | SENEY . b L860T/L860T
00:60:00 :L1/5/¢€ 9AI}ISOd as{ed pajielag . 1% mmoHQmmoHN
p€:90:00 :L1/S/€ %;_8& 95{e E pajielad

TV 90:00 (L1/S/E | X¥'T yored ~ plisel | pajielng
PET0:00 (LT/S/¢ w>_tmom_ Js|e4 E pajielaq

8BS €T LT/V/E OAIJISOd asjeq| piisa} pajielaq | b ZEPS9/TERS9
CTISSIEC ULT/V/E SAJSOd asied| spioi} wiof | wiod | £ €PS9L/EVS9L
O0SVSET LT/V/E T SDA Spi9l Wioj | wiod | ¢ 199L8/199L8
BT TS ET LT Y/E BALLISOd as{ed| Spiol wioj | wiod . ¢ G9/86/99.86
6 LVET ILT/Y/E OAIHSOd 3s{eq| Spiolj wioj | WwJo4 . ¢ €CTI06/E€CT06
OOV €T LT/V/E IAIISOd 95{e4| Spi{oy wioy | uuo4 | € CT068/71068
QOTEET LT/V/E INISOd dsied| ssed/ulwpe | W80T | ¢ T068L/T068L
2E0EET ULT/V/E IAILISOd sjed| ssed/uiwpe | uiso | Z 068/9/068L9
VSISTET ULT/V/E IAI}SOd asjed| ssed/uiwpe [uig07 | ¢ 68/£9S/68£99

POECET LT /V/E IANISOd asieq] | ssed/uiwipe | uigo] | ¢ 8/9SY/8L95Y
bTSTEC (LT/V/E 9AI1SOd asje4 D Q0BLINS T L9SVE//L9SYE

SYvTEC (LT/V/€ IAIHSOd mm_E HE T 9SHET/9SVET
10OV €T LT/V/E X'T EEQ HE T SYETT/SveeT

duielsauil] UOIIRIpaWaYy _umm_._m> ejepelainN |9dA) ueds| ans uedg | hed pi-asuodsas/pl| JaIIUSPY

~3sanbat 411H

US 10,965,708 B2

Sheet 6 of 10

Mar. 30, 2021

U.S. Patent

7 Ol

00t

T N, N
/ ﬂ._}.,, ’ f._,‘,
| Apjigelauna Ao A ooy
_.,,u,]
,,,f ;;;) e ;i...\‘,i
| U013e4300 UBJS 0} 9SU0US3J BAI9I9Y W AN
ST vop
HH_..M ,.,.,ﬂ
| uoijesado ueds jjuwisued | N
/ ,,;..fra\..,,.ﬂ

US 10,965,708 B2

Sheet 7 of 10

Mar. 30, 2021

U.S. Patent

VS Old

00§

UOIIBILIIDA JO 3IUDPIIUOD BUILIRIA(Q

L B B P L L I o P e ol P 7 P P It It P P P ot

— 01§

— - — - — ——r—— ——r——

Alljiges2ulna [eiiualod ayl AJLUDA

— 805§

asu0dsal Yyl aziu|o]

uonesado ueds 03 3suodsal aAIDIBY

o B [o—] o'l ek il

UOI3elad0 UBDS Jlusues |

LT TELERTTRTY P IEE IY [LEL T [EELTURL FERL T A AT RS R R R R R R BT T BT R R R R T BT R R R R T R R R R R R I BT T R R R R R T BT R R R R R BT R R R R R R R R R R RS RS R R R AT [TLEn Y R

— P0§

— 20S

US 10,965,708 B2

Sheet 8 of 10

Mar. 30, 2021

U.S. Patent

YA

45 Dl

5UD0] 940U 10 a0 0L S10480Xa oly} JI9AUQ) |

!

sy18uay Jo10RIRYD BIOW JO BUO

ayy1 Jo Alpigesauina jenualod ayl uo SuiaIuad $1dis0Xe ey

At e . At e — —_ —_ —_ —_

—_ At e . At e .

URJS IXoU
Huwisues |

*

SYIBUD| 1910kIRYD 8J0W JO BUO BUILIBIRG |

S4dA

PUNO}

AIBIGRISUINA — $I9

ON (e11U2104

— —

SRHUIGEISUINA

jeiruslod siow 10 U0 Ajlluspl Ajjesijewony ——

— 815

CiS

US 10,965,708 B2

Sheet 9 of 10

Mar. 30, 2021

U.S. Patent

9¢5

055

uoIeIH}I0Uu
puss

JS D4

¢ punoy

fupqessunpy - VES

ON

NAOMIDU [BINDU BIA ALIgEIDUINA [BDL AJIIUDDI

44"

US 10,965,708 B2

Sheet 10 of 10

Mar. 30, 2021

U.S. Patent

9 "Ol4

1B ISARE]

UOoIEJIUnNuIIQO)

\
99

D2IAJ(] 33L.I01S

019 ¢19
N
|
J0S5Sa20.4d 4P YOBd
509
T
| «
m
ﬁ.u_uuw:cou
ANVH NOY AJOWB|A
o ¢ DIIAIDS
| | %.
y Z NAIBG TAS. (7Y $19
L T @31A195

009

AINS(]
nding

221N

GE9

79

US 10,965,708 B2

1

SYSTEMS AND METHODS FOR MACHINE
LEARNING BASED APPLICATION
SECURITY TESTING

TECHNOLOGY

The present technology pertains to vulnerability detection
in application code and more particularly using machine
learning techniques for autonomous detection of vulnerabili-
ties 1 application code.

BACKGROUND

Modern computer systems can provide access to services
using web-based interfaces. In such an access model, clients
connect to servers over a network such as the Internet,
through a web-based interface, which can allow access to
services operating on the servers using Internet protocols or
interfaces. Maintaining the security of such web-based inter-
faces and the security of the services that are supported by
those interfaces can be difficult, particularly when client
devices are not always trusted. Maintaining the security of
such systems can be made more diflicult when the scope and
type of security vulnerabilities frequently change, along
with 1dentification and verification of theses security vul-
nerabilities.

In some situations, a finer level of verification 1s required
for the security vulnerabilities. Machine learning tech-
niques, for example neural networks, can be taught to
perform the finer level of verification. Machine learning 1s
capable of analyzing large data sets that continue to increase
(1.e., highly scalable). Utilizing various machine learning
techniques and frameworks data sets can be analyzed to
extract patterns and correlations that may otherwise have
never been noticed when subject to only human analysis.
Tailored data mputs can enable machine learning system to
learn a desired operations, functions, and/or patterns. The
training process can be complicated by the fact that the
machine learning system’s inner functionality remains
largely nontransparent to human analysis and the that the
training data can easily be biased, too small, or both of
which result i faulty and/or msuflicient training.

BRIEF DESCRIPTION OF THE FIGURES

Disclosed are systems, methods and non-transitory com-
puter-readable mediums for verifying potential vulnerabaili-
ties using neural networks. The systems, methods and non-
transitory computer-readable medium can include being
configured to transmit one or more scan operations, receive
one or more responses to the one or more scan operations,
tokenize the one or more responses, transmit to one or more
neural networks the one or more tokemzed responses,
receive from the one or more neural networks verification of
the one or more tokenized responses, and determine one or
more confidences of the one or more verified responses.

The systems, methods and non-transitory computer-read-
able medium can also include the scan operations being a
hypertext transport protocol request and the response 1s a
hypertext transport protocol response.

The systems, methods and non-transitory computer-read-
able medium can also 1include being configured to automati-
cally identify one or more potential vulnerabilities in the one
Oor more responses, 1n response to the identification of the
one or more potential vulnerability determine one or more
lengths of the excerpts of one or more responses (e.g., array
of characters for mput into a neural network), take one or

10

15

20

25

30

35

40

45

50

55

60

65

2

more excerpts of varied lengths from the one or more
responses, and convert the one or more excerpts into one or
more tokens.

The systems, methods and non-transitory computer-read-
able medium can also include the identification being per-
formed using matched expressions. The systems, methods
and non-transitory computer-readable medium can also
include the one or more neural networks being trained by
historical request and response pairs. The systems, methods
and non-transitory computer-readable medium can also
include the one or more neural networks being one of a
character-level convolutional neural network or long short
term memory recurrent neural networks.

The systems, methods and non-transitory computer-read-
able medium can also 1nclude the one or more confidences
associated with the one or more responses being based on a
ratio the neural network has properly identified the one or
more potential vulnerability.

BRIEF DESCRIPTION OF THE FIGURES

In order to describe the manner in which the above-recited
and other advantages and features of the disclosure can be
obtained, a more particular description of the principles
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated 1n the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and
are not therefore to be considered to be limiting of its scope,
the principles herein are described and explained with
additional specificity and detail through the use of the
accompanying drawings 1n which:

FIG. 1A illustrates an example environment for scanning,
a site 1n accordance with an embodiment:

FIG. 1B illustrates an example machine learming environ-
ment for scanning a site 1n accordance with an embodiment;

FIG. 2A illustrates an example environment for scanning,
sites 1n accordance with an embodiment;

FIG. 2B illustrates an example machine learning environ-
ment for scanning sites 1n accordance with an embodiment;

FIG. 3 1llustrates an example data set in accordance with
an embodiment;

FIG. 4 1llustrates an example process for traiming neural
networks 1in accordance with an embodiment;

FIGS. 5A-C 1illustrate example processes for determining,
vulnerabilities with a neural network 1n accordance with an
embodiment; and

FIG. 6 1illustrates an example system in which various
embodiments can be implemented.

DETAILED DESCRIPTION

Various embodiments of the disclosure are discussed 1n
detail below. While specific implementations are discussed.,
it should be understood that this 1s done for illustration
purposes only. A person skilled in the relevant art will
recognize that other components and configurations can be
used without parting from the spirit and scope of the
disclosure.

Overview

Additional features and advantages of the disclosure will
be set forth 1n the description which follows, and 1n part wall
be obvious from the description, or can be learned by
practice of the herein disclosed principles. The features and
advantages of the disclosure can be realized and obtained by
means of the mstruments and combinations particularly
pointed out 1n the appended claims. These and other features

US 10,965,708 B2

3

of the disclosure will become more fully apparent from the
following description and appended claims, or can be
learned by the practice of the principles set forth herein.

Techniques described and suggested herein include meth-
ods, systems and processes to detect potential vulnerabilities
of sites hosting web services (also referred to herein as
“websites” or, more simply, as “sites”), source code and/or
representations thereol. The methods, systems and processes
can be configured to perform site security analyses of a
plurality of websites. These site security analyses can be
used to more quickly and accurately i1dentily security vul-
nerabilities associated with those websites and to identify
and verily the vulnerabilities via machine learning. Potential
vulnerabilities can be broken into two classes: vulnerability
or a false positive. For example, imitial review of the
responses can indicate a potential vulnerability, however,
upon verification of the potential vulnerability 1t can be
determined the potential vulnerability 1s not an actual vul-
nerability, 1.e. 1t 1s a false positive.

In some situations, a finer level of verification 1s required
for confirmation of the potential vulnerabilities. This finer
level of venfication can include machine learning tech-
niques. In some 1nstances, the finer level of venfication,
along with the potential vulnerability, remediation and any
associated metadata can be used to train a neural network. A
trained neural network can provide the finer level of veri-
fication, for example, provide fully autonomous detection,
verification and remediation of potential vulnerabilities.

In some 1nstances, determining potentially vulnerabilities
can be performed through an attempt to gain access to the
website using a simulated attack. Such a simulated attack
can cause a site with vulnerabilities to fail, become unre-
sponsive, or become modified in unintended and/or danger-
ous ways, which can have drastic consequences. Such a
simulated attack can also be expensive or computationally
difficult and, with more complex sites, can require authen-
tication and/or knowledge about the site structure 1n order to
provide a full vulnerability analysis. The authentication can
be based on one or more authentication attributes including,
but not limited to, usernames, passwords, certificates, cryp-
tographic keys, site profiles, security policies, or other such
attributes. The vulnerability analysis can be performed while
limiting potentially negative effects on the site to determine
real and/or implied vulnerabilities without doing a destruc-
tive scan of the site. The vulnerability analysis can be
configured to perform authorized attacks (e.g., by attempting
potentially damaging actions) and can also be configured to
perform scans on sites to note potential vulnerabilities for
later analysis. For example, an authorized attack can attempt
a demial of service attack and can gather data about the site
based on the response to that attack. Such an authorized
attack 1s a type of scan, which can be configured to 1dentily
vulnerabilities 1n a site. In some examples, the vulnerability
analysis can be configured to detect data stored 1n a public
location that can appear to be usernames and passwords.
Such detections (also referred to herein as a “crawls” of a
site) are configured to identify portions of a site where
vulnerabilities can exist. Crawls of a site can also be
configured to, for example, detect insecure forms submis-
s10n actions, or to detect improperly protected site cookies,
or to detect other such potential security vulnerabilities.

In some examples, the systems and methods can be
referred to as a scanner. A scanner can be a computer system
that 1s configured to scan the security of sites (e.g., websites,
source code, application code, etc.) by scanning those sites
and to perform one or more operations to analyze security
vulnerabilities associated with those sites. A scanner can be

10

15

20

25

30

35

40

45

50

55

60

65

4

a physical computer system with executable code operating
thereon, or can be a virtual computer system with executable
code operating thereon, or can be a collection of such
physical and/or virtual computer systems operating collec-
tively. For example, the scanner can operate as a collection
of virtual machines on a network such as the Internet and
using computer resources provided by a computing
resources service provider. In another example, a scanner
can be configured to operate on a server, wherein the server
1s a physical computer system that 1s connected to a network
such as the Internet and that 1s configured to use that network
connection to scan other sites on the network. In some
examples, metrics can be established by first establishing
one or more criteria such as, the length of time that the site
has had scans performed by the scanner (1.e., how long the
scanner has been 1n service and scanning the site), how
frequently the site 1s scanned by the scanner, whether
vartous compliance metrics associated with the site have
been met, how complex the site 1s, or other such critena.

A scanner can then be configured to measure parameters
and their values associated with the one or more criteria, and
can also be configured to examine both current and past
parameters and their values 1n order to establish a history of
those parameters. In an embodiment, the lack of an expected
parameter and/or an expected parameter value can also be
measured (or noted) by the scanner. For the purposes of
illustration, the criteria and/or the parameters can be collec-
tively referred to herein as “factors™ or as “security factors.”
A scanner can also be configure to measure, for example, a
change in value of that parameter from one value (e.g., a
value that represents the lack of a vulnerability) to another
value (e.g., a value that represents the presence of a vulner-
ability). From the parameter history, a probability distribu-
tion can be determined for one or more of the parameters
and, from that probability distribution, a distribution func-
tion (also referred to herein as a cumulative distribution
function) can be determined. The distribution function can
then be used to model, based on the parameter history, the
probability that a parameter will have a certain value at a
point i the future, the length of time that a parameter 1s
likely to remain in a changed state, the length of time
between parameter changes, or other parameter relation-
ships.

For example, one factor associated with a metric can be
whether a site 1s compliant with the Payment Card Industry
Data Security Standard (“PCI DSS” or simply “PCI”) for
processing, storing, or transmitting cardholder data. Com-
pliance with PCI DSS can require, for example, that a site
conforms to validation types, performs validations, main-
tains security standards, performs timely software updates,
submits to periodic scans, or other such requirements. A
system can be configured to measure one or more param-
cters with these PCI DSS requirements to determine whether
the site 1s compliant. A system can also be configured to
allow a third-party system to determine compliance. In an
embodiment, the PCI DSS compliance parameter 1s a binary
value with a value of one (or true) 1t the system 1s compliant
when the parameter 1s measured and a value of zero (or
false) 1f the system 1s not compliant when the parameter 1s
measured. Based on a plurality of measurements of this
parameter, machine learning, for example neural networks,
can be trained to determine the probability that the site can,
for example, be compliant with PCI DSS at some deter-
mined point i the future (i.e., the probability that the
vulnerability will be fixed by a certain date). Such a prob-
ability, and other parameters and factors, can be used to train

US 10,965,708 B2

S

future neural networks. Such a probability can also be used
to correct for calculations based on different service levels as
described herein.

Description

The disclosed technology addresses the need 1n the art for 5
autonomous detection, verification and remediation of
potential vulnerabilities 1n websites, source code, etc. Dis-
closed are systems, methods, and computer-readable storage
media for detecting vulnerabilities using static and dynamic
techniques, using the detection results and historical detec- 10
tion results to train one or more neural networks, verifying,
the detected vulnerabilities using the trained neural networks
and remediating the detected vulnerabilities. A description
ol an example machine learning environments, as illustrated
in FIGS. 1A-2B, are first disclosed herein. A discussion of 15
example data sets as illustrated 1n FIG. 3 will then follow. A
discussion of example processes for training neural net-
works as 1llustrated 1n FIG. 4 will then follow. A discussion
of an example process for detecting vulnerabilities using the
neural networks as illustrated 1n FIGS. SA-C will then 20
tollow. The discussion then concludes with a description of
example devices, as i1llustrated 1n FIG. 6. These variations
shall be described herein as the various embodiments are set
forth. The disclosure now turns to FIG. 1A.

FIG. 1A illustrates an example environment 100 for 25
scanning (e.g., detect vulnerabilities) a site. In some
examples, a scanner can be utilized to monitor and scan
source code, application code, representations thereof, efc.
Scanner 102 can perform one or more scanning operations
108 on site 106. Site 106 (¢.g., a website, source code, etc.) 30
can be one of a plurality of sites (e.g., provided by a site
operator, the owner and/or operator of the site) that can be
part of one or more domains. An operator can be a trusted
operator such as a customer (e.g., a client or user of the
scanner), can be an untrusted operator such as a non- 35
customer, or can be unknown. A site can be a domain with
a plurality of hosts (for example, “example.com™), or a
subdomain with a plurality of hosts (for example, “subdo-
main.example.com™), or a single host (for example,
“host.example.com™), or a service running on a host (for 40
example, “https://host.example.com/service”), or can be
some other site type. Scanner 102 can perform the one or
more scanning operations 108 on the site 106 for one or
more potential vulnerabilities, as described herein. In some
examples, one or more scanmng operations 108 can include 45
transmitting one or more HTTP requests to site 106 and
receiving back from site 106 one or more HT'TP responses.
The one or more potential vulnerabilities can be at least a
portion of the one or more HITP responses.

The responses can be analyzed and/or combined by 50
scanner 102 to produce one or more results 114 which can
be stored 112 in security database 110 (also referred to
herein as a “data store”) as described herein. For example,
scanner 102 can utilizes one or more match expressions to
automatically determine potential one or more strings of 55
characters within the response that are potential vulnerabili-
ties. For example, match expressions can be one or more
sequences of characters that define one or more search
patterns. In some examples, the match expressions can
include one or more combinations of logic statements and 60
regular expressions. The potential vulnerabilities can then be
verified (e.g., vulnerability or false positive).

As used herein, security database 110 can be a database,

a data store, a flat file, a hierarchical file system, a document
storage system, or some other data storage schema. Results 65
114 can include potential vulnerabilities (e.g., tokenized,
etc.) for site 106, any associated metadata and can also

6

include one or more derived results based on data obtained
from other sites and/or stored 1n security database 110. The
data store can also include verifications and remediation
options for the one or more stored vulnerabilities. In some
examples, the verifications and remediation options can be
determined by an operator, when the verifications and reme-
diation options have been tested and confirmed.

FIG. 1B illustrates an example machine learming environ-
ment 150 for scanning a site. As previously described,
scanner 102 can perform scanning operations 108 on site
106. Results 114 (e.g., HI'TP response, forms, etc.) of the
scanning operation can be returned to the scanner. When
neural network 160 1s trained, results 114 can be transmitted
120 to neural network 160 to verily 1f results 114 1s a
vulnerability. Neural network 160 can respond 116 with
verification of the vulnerability. In some examples, the
results can be tokenized before being transmitted to the
neural networks. In some examples, the verification can
include a confidence score. The confidence score can include
a percentage or ratio of confidence that the verification
provided by the neural network 1s accurate. The scanner can
include a threshold confidence score, where when the con-
fidence score 1s greater than or equal to the threshold the
verification 1s considered correct. When the confidence
score 1s below the threshold, a notification can be transmait-
ted to an operator. In some examples, the verfication, i
successiul, can also include remediation options.

FIG. 1B also illustrates training of the neural network via
security database 118.

Security database 118 can include historical scan data
sets, Tor example, scan data from one or more sites over a
period of time. The historical scan data sets can include the
vulnerability, identifier, verification, remediation options,
relationship to other vulnerabilities, etc. The historical data
sets can be continuously updated with each scan. The
vulnerabilities detected (e.g., historically) can be stored in
the data store, along with associated metadata. Each vulner-
ability can have an 1dentifier. The 1dentifier can be unique to
the vulnerability. The corresponding metadata can also be
used 1n i1dentifying the potential vulnerability. When the
vulnerability 1s being stored in the data store, the data store
can determine 1 the vulnerability has been previously 1den-
tified (via the identifier). If the vulnerability has previously
been identified, the data store (e.g., via scanner or other
computing device) can determine 11 verification options and
remediation options that corresponding to the potential
vulnerability are stored at the data store. When verifications
and remediation options that correspond to the potential
vulnerability exist, during the store operation the verification
options and remediation options can be associated with the
newly stored potential vulnerability and the associated meta-
data. When verifications and remediation options do not
exist, a notification can be set to the operator for further
manual 1nvestigation. Subsequent, the vulnerability and
associated data can be stored. In some examples, the veri-
fications can determine the potential vulnerability 1s not a
vulnerability, for example a false positive. An example
historical scan data 1s 1illustrated 1n FIG. 3.

FIG. 2A illustrates an example environment 200 for
performing security scans as described herein in connection
with FIG. 1A. The different security scans can have a level
of detail based at least in part on the site being scanned
and/or based at least in part on a level of service (also
referred to herein as a “service level”) associated with the
site being scanned. For example, a site operator can operate
a site with a low service level, which can indicate that the
site can only be scanned with a surface scan or with simple

US 10,965,708 B2

7

and/or 1nexpensive scans. A site operator can also operate a
site with a medium service level, which can 1indicate that the
site can be scanned with more detailed scans. A site operator
can operate a site with a high service level, which can
indicate that the site can be scanned with a still more detailed
scans. Examples of such scans include login scans (1.e., a
scans that are authenticated to the site) and forms scans (1.e.,
a scan that attempts to use and/or misuse forms associated
with the site). For example, a medium service level can
indicate the performance of login scans and forms scans and
all sites with a medium service level can have such scans
performed while a high service level can indicate the per-
formance of login scans and forms scans, plus the perfor-
mance ol manual scans, simulated attacks, or other such
additional data gathering techmiques. Different service levels
can correspond to different scan configurations so, for
example, the highest service level can include regular sur-
face scans, regular detailed scans, regular login scans, regu-
lar forms scans, and regular detailed scan analysis. In some
examples, there can be a custom service level, which can
include one or more scan operations selected by the operator.
While the examples 1llustrate a single scanner, this 1s not
limiting, and multiple scanner are appreciated, for example,
cach neural network can have one or more associated
scanners.

In the first example illustrated 1n FIG. 2A for performing,
one or more surface scan operations 204 on site 206. Surface
scan operations 204 (also referred to herein as unauthenti-
cated scans or scans that perform no form submissions) can
be configured to only access publicly available interfaces
and/or obtain publicly available information associated with
site 206. The surface scan operations can be configured to
use information that 1s available without an agreement with
the site operator, without login credentials, without knowl-
edge of the forms associated with the site, or without other
such privileged information (e.g., similar to the level of
penetration of a website that might be performed by, for
example, a web crawler application). The surface scan
operations can also be configured to gather information
about a site and/or to correlate relations between sites. A
surface scan can also be configured to look for vulnerabili-
ties. Publicly available interfaces (e.g., web-based applica-
tion programming interfaces) can allow the surface scan to
query site 206 for information. The publicly available infor-
mation associated with site 206 can be obtained from site
206 or can also be obtained from a third party. For example,
various web search engines collect data associated with a
site that can be made available to a query to those web search
engines.

Surface scan operations 204 might not be configured to
access privileged nformation associated with site 206
including, for example, forms on site 206, the version of the
operating system ol site 206, or other such privileged
information. Surface scan operations 204 can be configured
to record instances where information that should not be
publicly available from the site 206 1s publicly available to
the surface scan. Result 208 of the surface scan operations
204 can be stored 210A 1n security database 212 1n a scan
record associated with an 1dentifier of the site 206 and also
associated with the time of the one or more surface scan
operations 204. The result can also include potential vul-
nerabilities for verification.

In the second example illustrated in FI1G. 2A for perform-
ing one or more detailed scan operations 214 of site 216
which can be operated by a site operator as described herein.
Detailed scan operations 214 can be configured to obtain
information similar to the information obtained from a scan

10

15

20

25

30

35

40

45

50

55

60

65

8

such as surface scan operations 204 and can also be con-
figured to obtain additional information about site 216.
Detailed scan operations 214 of site 216 can be configured
to obtain this additional information because scanner 202
can be provided with credentials and/or application pro-
gramming 1interface (“API”) access by the site operator.
Scanner 202 can be provided with credentials by the site
operator to make an API call to site 216 to obtain this
additional information. For example, a site operator can
have information regarding PCI DSS compliance for site
216 and can be configured to provide that information to
scanner 202 1n response to detailed scan operations 214.
Result 220 of detailed scan operations 214 can also be stored
222 A 1n security database 212 1n a scan record associated
with an 1dentifier of site 216 and/or with the time of detailed
scan operations 214. The result can also include potential
vulnerabilities for verification.

The other examples illustrated in FIG. 2A show more
detailed scans based upon a level of service associated with
a site operator and/or one or more sites. Scanner 202 can
perform one or more login scan operations 224 that can be
based on credentials for site 226 provided by a site operator.
For example, login scan operations 224 can be configured
with functionality to allow scanner 202 to execute opera-
tions to login 228 to site 226 and to perform one or more
privileged operations to gather additional security informa-
tion associated with site 226. Result 230 of login scan
operations 224 can then be stored 232A 1n security database
212 as described herein. The result can also include potential
vulnerabilities for verification.

The site operator can also provide form layout informa-
tion for forms 236 associated with site 226 to allow scanner
202 to perform one or more forms scan operations 234
associated with site 226. Forms scan operations 234 can be
configured to access the forms associated with the site 226,
to use the form layout information to programmatically {ill
in the forms, and to use the results of the filling 1n those
forms to gather additionally detailed security information.
Forms scan operations 234 can also include automatic forms
training wherein the scanner determines form layout infor-
mation. Forms scan operations 234 can also include manual
forms training wherein an operator of the scanner deter-
mines form layout information. Results 238 of forms scan
operations 234 can be stored 240A 1n security database 212
as described herein. The result can also include potential
vulnerabilities for verification.

In some embodiments, the scanner has credentials from
the site operator to access highly privileged data to perform
detailed analysis data 242 from site 244. In such embodi-
ments, detailed analysis data 242 1s used by scanner 202 to
perform detailed analysis 246 of the security of site 244 that
can provide the most detailed security imnformation associ-
ated with the site. The results of this detailed analysis can be
stored 248A 1n security database 212 as described herein.
The result can also include potential vulnerabilities for
verification.

In some embodiments, scanner 202 can perform code
scan 252 (e.g., static code analysis, dynamic code analysis,
etc.) on application code 254 (e.g., source code, machine
code, representations of code, etc.). In such embodiments,
scan code 252 1s used by scanner 202 to perform a scan of
application code 254 that can provide potential vulnerabili-
ties 1n application source code 254. Results 256 (e.g.,
potential vulnerabilities) of this code scan can be stored
258 A 1n security database 212.

FIG. 2B illustrates an example machine learming environ-
ment 250 for performing security scans as described herein

US 10,965,708 B2

9

in connection with FIG. 1. As previously described, scanner
202 can perform scanning operations (e.g., 204, 214, 224,
234, 242, e¢tc.) on one or more sites (e.g., 206, 216, 226, 244,
etc.). Results (e.g., 208, 220, 230, 238, 246, ctc.) of the
scanning operations can be returned to the scanner. In some
examples, scanner 202 can be more than one scanner, for
example each neural network can have one or more asso-

ciated scanners. The results can be transmitted (e.g., 2108,
2228, 2328, 2408, 2488, 2588 ctc.) to one or more neural

networks (e.g., 260A, 2608, 260C, 260D, 260K, 260F, etc.).
The neural networks can be, but are not limited to convo-
lutional neural network (e.g., character-based, etc.), recur-
rent neural networks (e.g., long short term memory, etc.),
etc. The convolutional neural networks (CNN) can classity
the 1input text utilizing parameters such as length of the input
array ol numbers, vocabulary and convolutional filter con-
figuration to enable vulnerability detection and verification.
CNNs can be directly applied to distributed or discrete
embedding of words, without any knowledge on the syn-
tactic or semantic structures of a language. CNNs can also
use character-level features for language processing, for
example, using character-level n-grams with linear classifi-
ers and 1ncorporating character-level features to CNNs. In
particular, these approaches use words as a basis, 1n which
character-level features extracted at word or word n-gram
level form a distributed representation. The long short term
memory networks (LSTMN) can classily, process and pre-
dict time series given time lags of unknown size and
duration between important events (e.g., vulnerabilities,
etc.). LSTMNs are popular 1n processing Natural Language
Processing (NLP) tasks because of its recurrent structure,
that 1s very suitable to process varnable-length text, for
example, distributed representations of words by first con-
verting the tokens comprising each text into vectors, which
form a matrix that can include two dimensions: the time-step
dimension and the feature vector dimension.

The one or more neural networks can be trained and
correlated based on the type of scanning operation. For
example, neural network 260A can correlate to surface scan
operations 204, neural network 260B can correlate to
detailed scan operations 214, neural network 260C can
correlate to login scan operations 224, neural network 260D
can correlate to form scan operations 234, neural network
260F can correlate to detailed analysis data 242, and so
forth. In some examples, each scan operation can have one
or more trained neural networks to ensure a higher confi-
dence level. That 1s, the neural networks can be specifically
trained by sets of data in order to provide highly accurate
results for the types of data sets used to train the network. In
response to recerving results (e.g., 2108, 2228, 2328, 2408,
2488, 25818, etc.) from a scan operation, the neural network
(e.g., when trained) can provide responses (e.g., 262, 264,
266, 268, 270, 282, ctc.) to the scanner. The responses can
include verification of the vulnerability. The results and
responses can also be stored 1n security database 212 to train
future networks. In some examples, the results can first be
tokenized belfore being transmitted to the neural network.

Each neural network can be trained from historical data
from security database 212 as described above. For example,
historical data classified as a surface scan can be transmitted
272 to train neural network 260A, historical data classified
as a detailed scan can be transmitted 274 to train neural
network 260B, historical data classified as a login scan can
be transmitted 276 to train neural network 260C, historical
data classified as a form scan can be transmitted 278 to train
neural network 260D, historical data classified as a detailed
analysis can be transmitted 280 to train neural network

10

15

20

25

30

35

40

45

50

55

60

65

10

260F, historical data classified as code analysis can be
transmitted 284 to train neural network 260F, and so forth.
The tramning data (and the traiming process 1itself, as will be
later described) can be adjusted for various categories of
machine learning, including supervised learning, unsuper-
vised learning, semi-supervised learning, reinforcement
learning, eftc.

FIG. 3 illustrates example entries 300 1n security database
(e.g., 112, 212, etc.). The entries in the database can be the
results of a scan of a site (e.g., alter a match from match
expression), along with supervised mput (e.g., from an
operator). For example, site A could be scanned at a first
time of a scan type login. The scan could result 1n a potential
vulnerability (e.g., shown in the HTTP request/response
pair). This vulnerability could be vernified by an operator
(e.g., verified—Yes). In some examples, the vulnerability
could be verified by a neural network that has been trained.
In some examples, the vulnerability could be a false positive
(e.g., not a vulnerability). The operator could also supply
potential remediation options (e.g., patch versions, API
updates, etc.). The database can also include associated
metadata with the scan of a site, for example, the URL
(uniform resource locator) or code scanned, login informa-
tion, forms fields scanned, test 1d (e.g., the test or scan
performed by the scanner, etc.). When a neural network 1s
trained, new vulnerabilities can be 1dentified and vernified by
correlations to the data sets (e.g., shown 1n FIG. 3) used to
train the neural network. The compilation of this data can be
stored as one or more entries 1n the database. The potential
vulnerabilities can be stored in the database at different
lengths (of 1nput array of characters) of the excerpts of the
response. For example, when the matched expression 1s 5
bytes 1n length, the potential vulnerability stored can include
extra characters on either side of the 5 bytes. The length of
input array of characters can be of varied length (e.g.,
powers of 2-128, 256, 512, 1024, 2048, 4096, etc.). The
varied lengths can be used to train one or more neural
networks (shown below). The different lengths of input array
of characters can enable the neural network to derive hidden
relationships between the structures of the text (e.g., in the
length) and the vulnerability. For example, some lengths of
input array of characters might be more suited for veritying
vulnerabilities and/or deriving hidden relationships of detail
scans, while other lengths of input array of characters might
be more suited of login or surface scans. Multiple neural
networks can be trained at varying lengths of input array of
characters to determine the length of input array of charac-
ters which provided the highest accuracy (e.g., confidence)
in the verification.

The method shown in FIG. 4 1s provided by way of
example, as there are a variety of ways to carry out the
method. Additionally, while the example method 1s illus-
trated with a particular order of blocks, those of ordinary
skill 1in the art will appreciate that FIG. 4 and the blocks
shown therein can be executed in any order that accom-
plishes the technical advantages of the present disclosure
and can include fewer or more blocks than 1illustrated.

Each block shown in FIG. 4 represents one or more
processes, methods or subroutines, carried out in the
example method. The blocks shown i FIG. 4 can be
implemented in the examples environment shown 1 FIGS.
1A-2B. The flow chart illustrated in FIG. 4 will be described
in relation to and make reference to at least the elements of
neural networks 160/260 shown in FIGS. 1B and 2B.

FIG. 4 shows a flow diagram of an example method 400
for training a neural network. Method 400 can begin at block
402. At block 402, one or more scan operations can be

US 10,965,708 B2

11

transmitted, from a computing system (e.g., scanner, etc.) to
one or more sites. For example, the one or more scan
operations can be of diflerent scan types as illustrated 1n
FIG. 2B. In some examples, the scan operations can be
HTTP requests. In some examples, the scan operations can
be static or dynamic code analysis commands. At block 404,
one or more responses to the one or more scan operations
can be received. For example, the one or more responses can
be HTTP responses. In other examples, the responses can be
results of the static or dynamic code analysis.

At block 406, the potential vulnerabilities can be verified.
For example, the potential vulnerabilities can be verified,
when 1t 1s confirmed the potential vulnerability 1s an actual
vulnerability and not, for example, a false positive. The
verification can be performed by an analysis of the text of
the vulnerability with text of known vulnerabilities or pat-
tern recognition processes of the text. For example, a match
expression of the response can determine potential vulner-
abilities—that 1s, strings in the response that could be
vulnerabilities, but may not be. The match expressions are
designed to capture a broad range of potential vulnerabili-
ties, since vulnerabilities can vary 1n how they are presented
in the response and/or code. That 1s, the match expressions
capture a broad range of potential vulnerabilities, as to avoid
initial misidentifying a potential vulnerability that could
subsequently be verified as a vulnerability or false positive.
In some examples, the match expressions can be finer tuned,
however, the risk of missing a potential vulnerability would
increase the more finer tuned the matched expressions
becomes. In other examples, verification, before a neural
network 1s trained, can be performed manually. When the
potential vulnerabilities are verified, the tokenized
responses, associated metadata, vulnerability, verification,
etc. can be stored in the security database.

At block 410, the verified vulnerability be used to train the
neural network. For example, the response can be prepared
for input 1nto one or more neural networks (e.g., to train a
neural network, to identity vulnerabailities, etc.). The training,
of the neural network can also include historical data, for
example, stored in the security database (or other data
storage). The historical data can also be verified 1n order to
maintain and properly train the neural network for detecting
and verification future potential vulnerabilities. In some
examples, the HI'TP reply/response pairs, along with the
verification, metadata, and remediation data (as shown in
FIG. 3) can be used as input into the neural network. In some
examples, more than one neural network can be trained, for
example, based on a fixed length of mput array of numbers
(e.g., tokenized string ol characters used as input into a
neural network) extracted from the HTTP reply/response
pairs. For example, the neural network can be trained, by
mapping the received iputs (the strings extracted from
HTTP reply/responses) with the outputs (verified vulnerabil-
ity or false positive). In some examples, the lengths of array
of numbers can be, for example, powers of 2-128, 256, 512,
1024, 2048, 4096, etc. During this training process, the
neural network can learn hidden patterns between the mputs
and outputs, and combination thereof, to enables the neural
network, when trained, to predict outputs of inputs that 1t has
not previously received.

The method shown 1 FIGS. 5A-C are provided by way
of examples, as there are a variety of ways to carry out the
methods. Additionally, while the example methods are illus-
trated with a particular order of blocks, those of ordinary
skill 1n the art will appreciate that FIGS. SA-C and the
blocks shown therein can be executed in any order that

5

10

15

20

25

30

35

40

45

50

55

60

65

12

accomplishes the technical advantages of the present dis-
closure and can include fewer or more blocks than 1llus-
trated.

Each block shown in FIGS. 5A-C represents one or more
processes, methods or subroutines, carried out in the
example method. The blocks shown in FIGS. 5A-C can be
implemented in the examples environment shown 1 FIGS.
1A-2B. The flow chart illustrated m FIGS. SA-C will be
described 1n relation to and make reference to at least the
clements of neural networks 160/260 shown in FIGS. 1B
and 2B.

FIG. SA shows a flow diagram of an example method 500
for detecting and verifying vulnerabilities by a neural net-
work. Method 500 can begin at block 502. At block 502, one
Or more scan operations can be transmitted, from a comput-
ing system (e.g., scanner, injector, etc.) to one or more sites.
For example, the one or more scan operations can be of
different scan types as illustrated i FIG. 2B. In some
examples, the scan operations can be HTTP requests. In
some examples, the scan operations can be static or dynamic
code analysis commands. At block 504, one or more
responses to the one or more scan operations can be
received. For example, the one or more responses can be
HTTP responses. In other examples, the responses can be
results of the static or dynamic code analysis.

At block 506, potential vulnerabilities can be determined
from the received response and the response can be token-
1zed. For example, the match expression of the response
determines potential vulnerabilities—that 1s, strings in the
response that could be vulnerabilities, but may not be. The
match expressions are designed to capture a broad range of
potential vulnerabilities, since vulnerabilities can vary in
how they are presented 1n the response and/or code. That 1s,
the match expressions capture a broad range ol potential
vulnerabilities, as to avoid mnitial misidentifying a potential
vulnerability that could subsequently be verified as a vul-
nerability or false positive. In some examples, the match
expressions can be finer tuned, however, the risk of missing
a potential vulnerability would increase the more finer tuned
the matched expressions becomes. The tokenization can
umquely 1dentify the vulnerability. In some examples, the
tokenization can create a unique 1dentifier of the vulnerabil-
ity. In other examples, strings of diflerent sizes can be
extracted from the response centering on the vulnerability
and then can be tokenized for vulnerability determination by
the neural network. For example, the lengths of strings
betfore the tokenization process can be, for example, powers
of 2-128, 256, 312, 1024, 2048, 4096, etc. In some
examples, the tokenization can include breaking the strings
into characters and translating strings into arrays of integers
using the custom vocabulary (and then used as input into a
neural network for verification). In some examples, the
response can be prepared for mput into one or more neural
networks (e.g., to 1identify and verity vulnerabilities, etc.).
An example tokenization process 1s illustrated in method
525 of FIG. 5B.

At block 508, the potential vulnerabilities can be verified.
For example, the potential vulnerabilities can be verfied,
when 1t 1s confirmed a potential vulnerability 1s an actual
vulnerability and not, for example, a false positive. The
verification can be performed by an analysis of the text of
the vulnerability with text of known vulnerabilities or pat-
tern recognition processes of the text (for example, via
neural networks). The tokenized potential vulnerabilities
(e.g., string of characters) can be transmitted to one or more
neural networks, traimned, for example at different lengths of
input array of numbers (e.g., excerpts). In some examples, a

US 10,965,708 B2

13

plurality of neural networks can be trained to each receive
different lengths (of numbers 1n an array) of the tokenized
potential vulnerabilities. Each of the plurality of neural
networks can verily the potential vulnerability, that 1s,
whether the potential vulnerability 1s an actual vulnerability
or a false positive. In some examples, diflerent lengths of
input array ol numbers can provide more accurate result
(e.g., higher confidence of an actual vulnerability or false
positive). In some examples, certain lengths of input array of
numbers can be better suited for verifying certain vulner-
abilities. In other examples, combinations of neural net-
works (at different lengths of input array of numbers) can be
provide a higher confidence of accuracy for verilying certain
type of vulnerabilities. An example of verification 1s 1llus-
trated 1n method 450 of FIG. 5C. When the potential
vulnerabilities are verified, the tokenized responses, associ-
ated metadata, vulnerability, verification, etc. can be stored
in the security database.

At block 510, a determination can be made as to whether
the confidence level of the verification 1s greater than or
equal to a threshold confidence. For example, a threshold
confidence can be set at a percentage or ratio 1 which 1t 1s
determined the identification and/or verification from the
neural network 1s correct. The threshold confidence can have
a default setting, can be manually set or can be set based of
usage of the neural network. For example, the more the
neural network has been used and has provided accurate
results (e.g., negligible number of false positives), the lower
then threshold confidence can be set while still provided
accurate results. When the confidence level of the verifica-
tion 1s less than the threshold confidence, the verification 1s
considered unfit for automated verification and a notification
1s transmitted to the operator for further review. When the
confidence level of the verification 1s equal or greater than
the threshold confidence, the verification of the vulnerability
can be correctly classified as either real vulnerability or a
talse positive and the method can proceed to processing the
next potential vulnerability. In some examples, when veri-
fication 1s correct remediation options can be automatically
implemented and/or a notification of the remediation options
can be transmitted to the operator.

In some instances, the neural network can determine a
confidence level of the potential vulnerability. For example,
the neural networks can output either a 0 or a 1 for a given
mput (e.g., 0 1s for a false positive, 1 1s for a real vulner-
ability). In some examples, the neural network can provide
a percentage or ratio of the accuracy the potential vulner-
ability 1s a real vulnerability or a false positive. For example,
the neural network previously “seen” mputs (e.g., potential
vulnerabilities), the output can be very close to 0 or 1, but
for previously “unseen” inputs (e.g., potential vulnerabili-
ties), the output can be a set of neural network operations
(c.g., on the tokemized input) that provided a number
between 0 and 1. This number can be taken as the confidence
level. For example, when the confidence level 1s 0.8, that 1s
taken as 80% confident the potential vulnerability 1s a real
vulnerability. In an example where the threshold 1s set to
80%, all outputs greater or equal to 80% can be outputted as
a real vulnerability and all outputs less than 20% can be
outputted as a false positives and the remainder can be sent
to the operator for verification. In some examples, the neural
network can output two values (e.g., that when summed
equal 1). For example, the neural network can output a {first
value related to the potential vulnerability being an actual
vulnerability and a second value related to the potential
vulnerability being a false positive. The ratio of the first
value and second value can be the confidence level.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 5B illustrates an example method 525 for tokenizing,
the received response. At block 512, one or more vulner-
abilities can be automatically identified (e.g., via the match
expression) in the response. For example, the match expres-
sion of the response determines potential vulnerabilities—
that 1s, strings in the response that could be vulnerabilities,
but may not be. The match expressions are designed to
capture a broad range of potential vulnerabilities, since
vulnerabilities can vary in how they are presented in the
response and/or code. That 1s, the match expressions capture
a broad range of potential vulnerabailities, as to avoid 1nitial
misidentiiying a potential vulnerability that could subse-
quently be verified as a vulnerability or false positive. In
some examples, the match expressions can be finer tuned,
however, the risk of missing a potential vulnerability would
increase the more finer tuned the matched expressions
becomes. For example, the vulnerabilities can be 1dentified
in the text and/or headers of the response (e.g., HITP
response). If no vulnerability 1s 1dentified at block 514, the
method can return to block 502 to proceed with the next
scan. When a vulnerability 1s found at block 514, the method
can proceed to block 516. At block 516, one or more lengths
of mnput array of characters can be determined. For example,
a length of mput array of characters can be a length of
characters before, after and including the vulnerability. In
some examples, the response can be an HT'TP response, and
the length of input array of characters can include at least
characters of a status line, header, and body of the HITP
response. The length of mput array of characters can be
based on the one or more neural networks to be trained
and/or used to verity a potential vulnerability. For example,
neural networks can have inputs of fixed length (e.g., size,
number of characters, etc.) and as such, the length of input
array ol characters can be determined based on which neural
network(s) are to be used 1n the training and/or verification.
In some examples, multiple lengths and/or neural networks
can be utilized, for example, different lengths of input array
of characters can produce different accuracies in outputs
from the neural networks. In some examples, the responses
can be portions of scanned source code and/or representa-
tions thereol. In some examples, the lengths of input array
of characters can be, for example, powers of 2-128, 256,
512, 1024, 2048, 4096, etc. In some examples, even 1f a
vulnerability 1s not 1dentified, the response can be tokenized
and used to train the neural network to detect false positives.

At block 518, excerpts of the response, including the
potential vulnerability can be taken at the determined
lengths of input array of characters. In an example when the
length 1s 128 bytes, and the vulnerability 1s 64 bytes, the
excerpt can be the 32 bytes before the vulnerability, the 6
byte vulnerability and the 32 bytes aiter the vulnerability. In
some examples, the vulnerability can be oflset 1n the excerpt.
The oflset can be calculated based on a set of bytes and/or
a factor.

At block 520, the one or more excerpts can be tokenized.
For example, the tokenization can be character based where
the excerpt including the vulnerability can be broken into
separate characters and then translated into integers by hash
function, MD5, memorization, etc. In some examples, the
tokenization can be customized based on breaking the
excerpt by HTML tag boundary, space boundary, regular
expression using a delimiter and then applying the transla-
tion as explained in the above example.

In some examples, the tokenization of the one or more
excerpts can be i1dentifiers for the one or more excerpts. In
some examples, the characters of the excerpt can be replaced
by characters of different values. In some examples, the

US 10,965,708 B2

15

characters of diflerent values can be more or less characters
than the characters in the excerpts. The identifiers, along
with other associated information can be stored in the
security database or used as mnput to train a neural network
for identification and verification of the vulnerability. When
the vulnerability 1s tokened the method 325 can return to
block 506 of method 4500.

FIG. 5C illustrates example method 550 of the verifica-
tion process ol a potential vulnerability. At block 522, a real
vulnerability can be identified by the neural network. For
example, the tokenized response (e.g., ol the potential
vulnerability) can be used as input into one or more neural
networks to verity the potential vulnerability (e.g., real or
talse positive). For example, one or more trained neural
networks can receive the tokenized response (e.g., one or
more potential vulnerabilities at varying length of input
array of characters). The one or more trained neural net-
works can receive the tokemzed response and venty 1if the
potential vulnerability 1s an actual vulnerability or a false
positive. Each trained neural network can be trained to
receive the potential vulnerability at a different length of
input array of characters. At block 524, a determination can
be made was to whether a vulnerability 1s verified or a false
positive (e.g., via the trained neural network). When there 1s
not a confident match, a notification can be transmitted to an
operator at block 426. When there 1s a match, the method can
proceed to back to block 408.

In other examples, the tokenized response(s) can be
transmitted to the neural network. The neural network, 1n
this instance, can be a trained neural network, that 1s, able to
provide i1dentification and/or verification of the potential
vulnerability which 1s tokenized. Upon receiving the token-
1zed response, the neural network can determine, whether
the potential vulnerability 1s a wvulnerability or a false
positive. For example, the neural network can use character-
level classification and analysis to determine whether the
potential vulnerability contained within the tokenized
response(s) (at the varying lengths of mput array of char-
acters) was previously identified and verified through the
historical data used to train the network. The neural network
can also analyze the text present in the varying lengths of
input array of characters around the vulnerability to deter-
mine 11 hidden relationships exist around potential vulner-
abilities. For example, a potential vulnerability could be
unknown 1n 1ts current form (but previously known in
another form), but the text present around the unknown
vulnerability can be analyzed to determine the potential
vulnerability 1s a vulnerability, 1n a diflerent form, that
requires Turther consideration based on character correlation
between the surrounding text. A response, to the transmitted
tokenized response, can be transmitted to the scanner).
When the potential vulnerability has been 1dentified and/or
verified, a verification and confidence level for that verifi-
cation can be received. When the potential vulnerability has
not been verified, a false positive can be returned, along with
a notification to the operator for investigation into the false
positive. Upon review of the operator, the false positive can
be used to further train the neural network for future
verification processes. FIG. 6 shows an example of com-
puting system 600 in which the components of the system
are 1n communication with each other using connection 605.
Connection 605 can be a physical connection via a bus, or
a direct connection into processor 610, such as 1n a chipset
architecture. Connection 605 can also be a virtual connec-
tion, networked connection, or logical connection.

In some embodiments computing system 600 1s a distrib-
uted system 1n which the functions described in this disclo-

"y

5

10

15

20

25

30

35

40

45

50

55

60

65

16

sure can be distributed within a datacenter, multiple data-
centers, a peer network, etc. In some embodiments, one or
more of the described system components represents many
such components each performing some or all of the func-
tion for which the component 1s described. In some embodi-
ments, the components can be physical or virtual devices.

Example system 600 includes at least one processing unit
(CPU or processor) 610 and connection 605 that couples
various system components imncluding system memory 6135,
such as read only memory (ROM) and random access
memory (RAM) to processor 610. Computing system 600
can include a cache of high-speed memory connected
directly with, 1n close proximity to, or integrated as part of
processor 610.

Processor 610 can include any general purpose processor
and a hardware service or software service, such as services
632, 634, and 636 stored in storage device 630, configured
to control processor 610 as well as a special-purpose pro-
cessor where software 1nstructions are incorporated into the
actual processor design. Processor 610 may essentially be a
completely self-contained computing system, containing
multiple cores or processors, a bus, memory controller,
cache, etc. A multi-core processor may be symmetric or
asymmetric.

To enable user interaction, computing system 600
includes an input device 6435, which can represent any
number of mput mechanisms, such as a microphone for
speech, a touch-sensitive screen for gesture or graphical
input, keyboard, mouse, motion mput, speech, etc. Comput-
ing system 600 can also include output device 635, which
can be one or more of a number of output mechanisms
known to those of skill in the art. In some instances,
multimodal systems can enable a user to provide multiple
types of mput/output to communicate with computing sys-
tem 600. Computing system 600 can include communica-
tions interface 640, which can generally govern and manage
the user input and system output. There 1s no restriction on
operating on any particular hardware arrangement and there-
fore the basic features here may easily be substituted for
improved hardware or firmware arrangements as they are
developed.

Storage device 630 can be a non-volatile memory device
and can be a hard disk or other types of computer readable
media which can store data that are accessible by a com-
puter, such as magnetic cassettes, flash memory cards, solid
state memory devices, digital versatile disks, cartridges,
random access memories (RAMs), read only memory
(ROM), and/or some combination of these devices.

The storage device 630 can include software services,
servers, services, etc., that when the code that defines such
soltware 1s executed by the processor 610, 1t causes the
system to perform a function. In some embodiments, a
hardware service that performs a particular function can
include the software component stored 1n a computer-read-
able medium 1n connection with the necessary hardware
components, such as processor 610, connection 603, output
device 635, etc., to carry out the function.

Methods according to the aforementioned description can
be implemented using computer-executable mstructions that
are stored or otherwise available from computer readable
media. Such mstructions can comprise mstructions and data
which cause or otherwise configure a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of func-
tions. Portions of computer resources used can be accessible
over a network. The computer executable instructions may
be binaries, intermediate format instructions such as assem-

US 10,965,708 B2

17

bly language, firmware, or source code. Computer-readable
media that may be used to store instructions, imformation
used, and/or information created during methods according
to the aforementioned description include magnetic or opti-
cal disks, flash memory, USB devices provided with non-
volatile memory, networked storage devices, and so on.

For clarity of explanation, 1n some instances the present
technology may be presented as including 1individual func-
tional blocks including functional blocks comprising
devices, device components, steps or routines in a method
embodied in software, or combinations of hardware and
software.

The computer-readable storage devices, mediums, and
memories can include a cable or wireless signal containing,
a bit stream and the like. However, when mentioned, non-
transitory computer-readable storage media expressly
exclude media such as energy, carrier signals, electromag-
netic waves, and signals per se.

Devices implementing methods according to these dis-
closures can comprise hardware, firmware and/or software,
and can take any of a variety of form factors. Such form
tactors can include laptops, smart phones, small form factor
personal computers, personal digital assistants, rackmount
devices, standalone devices, and so on. Functionality
described herein also can be embodied 1n peripherals or
add-1in cards. Such functionality can also be implemented on
a circuit board among different chips or different processes
executing in a single device.

The 1nstructions, media for conveying such instructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are means for
providing the functions described in these disclosures.

Although a variety of information was used to explain
aspects within the scope of the appended claims, no limita-
tion ol the claims should be implied based on particular
features or arrangements, as one ol ordinary skill would be
able to derive a wide variety of implementations. Further
and although some subject matter may have been described
in language specific to structural features and/or method
steps, 1t 1s to be understood that the subject matter defined
in the appended claims 1s not necessarily limited to these
described features or acts. Such functionality can be distrib-
uted differently or performed 1n components other than those
identified herein. Rather, the described features and steps are
disclosed as possible components of systems and methods
within the scope of the appended claims. Moreover, claim
language reciting “at least one of” a set indicates that one
member of the set or multiple members of the set satisty the
claim.

The various embodiments further can be implemented in
a wide variety ol operating environments, which 1n some
cases can mnclude one or more user computers, computing
devices or processing devices, which can be used to operate
any of a number of applications. User or client devices can
include any of a number of general-purpose personal com-
puters, such as desktop, laptop or tablet computers running
a standard operating system, as well as cellular, wireless and
handheld devices running mobile software and capable of
supporting a number ol networking and messaging proto-
cols. Such a system can also include a number of worksta-
tions running any of a variety of commercially available
operating systems and other known applications for pur-
poses such as development and database management.
These devices can also include other electronic devices, such
as dummy terminals, thin-clients, gaming systems and other
devices capable of communicating via a network. These
devices can also include virtual devices such as virtual

10

15

20

25

30

35

40

45

50

55

60

65

18

machines, hypervisors and other virtual devices capable of
communicating via a network.

Various embodiments of the present disclosure can utilize
at least one network that would be familiar to those skilled
in the art for supporting communications using any of a
variety of commercially available protocols, such as Trans-
mission Control Protocol/Internet Protocol (““TCP/IP”),
User Datagram Protocol (“UDP”), protocols operating in
various layers of the Open System Interconnection (“OSI”)
model, File Transier Protocol (“FTP”), Universal Plug and
Play (“UpnP”), Network File System (“NFS”), Common

Internet File System (“CIFS™) and AppleTalk. The network

can be, for example, a local area network, a wide-area
network, a virtual private network, the Internet, an intranet,
an extranet, a public switched telephone network, an infra-
red network, a wireless network, a satellite network, and any
combination thereof.

In embodiments utilizing a web server, the web server can
run any ol a variety of servers or mid-tier applications,
including Hypertext Transfer Protocol (“HTTP”) servers,
Hypertext Transfer Protocol Secure (“HTTPS”) servers,
Transport Layer Security (““TLS”) servers, SPDY™ servers,
File Transier Protocol (“FTP”) servers, Common Gateway
Interface (“CGI”) servers, data servers, Java servers, Apache
servers, Internet Information Services (“I1IS™) servers, Zeus
servers, Nginx servers, lighttpd servers, proxy servers (e.g.,
F5®, Squid, etc.), business application servers, and other
servers (e.g., Incapsula™, CloudFlare®, DOSarrest, Aka-
mai®, etc.). The server(s) can also be capable of executing
programs or scripts in response to requests from user
devices, such as by executing one or more web applications
that can be implemented as one or more scripts or programs
written 1n any programming language, such as Java®, C, C#
or C++, or any scripting language, such as Ruby, PHP, Perl,
Python®, JavaScript®, or TCL, as well as combinations
thereof. The server(s) can also include database servers,
including without limitation those commercially available

from Oracle®, Microsoft®, Sybase®, and IBM® as well as

open-source servers such as MySQL, NoSQL, Hadoop,
Postgres, SQLite, MongoDB, and any other server capable

of storing, retrieving, and accessing structured or unstruc-
tured data. Database servers can include table-based servers,
document-based servers, unstructured servers, relational
servers, non-relational servers or combinations of these
and/or other database servers.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside 1n a variety of locations, such as on a storage
medium local to (and/or resident 1n) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation can reside 1n a storage-area network (“SAN™) famil-
1ar to those skilled 1n the art. Stmilarly, any necessary files
for performing the functions attributed to the computers,
servers or other network devices can be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware
clements that can be electrically coupled via a bus, the
clements including, for example, at least one central pro-
cessing unit (“CPU” or “processor’”), at least one 1nput
device (e.g., a mouse, keyboard, controller, touch screen or
keypad) and at least one output device (e.g., a display
device, printer or speaker). Such a system can also include
one or more storage devices, such as disk drives, optical
storage devices and solid-state storage devices such as

US 10,965,708 B2

19

random access memory (“RAM™) or read-only memory
(“ROM™), as well as removable media devices, memory
cards, flash cards, etc.

Such devices can also include a computer-readable stor-
age media reader, a commumnications device (e.g., a modem, 5
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed, 10
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser- 15
vices or other elements located within at least one working
memory device, including an operating system and appli-
cation programs, such as a client application or web browser.

It should be appreciated that alternate embodiments can
have numerous variations from that described above. For 20
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets) or
both. Further, connection to other computing devices such as
network input/output devices can be employed. 25

Storage media and computer-readable media for contain-
ing code, or portions of code, can include any appropriate
media known or used 1n the art, including storage media and
communication media, such as, but not limited to, volatile
and non-volatile, removable and non-removable media 30
implemented 1n any method or technology for storage and/or
transmission of information such as computer-readable
instructions, data structures, program modules or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (“EEPROM™), flash memory or other 35
memory technology, Compact Disc Read-Only Memory
(“CD-ROM?”), digital versatile disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices or any other
medium which can be used to store the desired information 40
and which can be accessed by the system device. Based on
the disclosure and teachings provided herein, a person of
ordinary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

The specification and drawings are, accordingly, to be 45
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes can be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims. 50

Other variations are within the spint of the present
disclosure. Thus, while the disclosed techniques are suscep-
tible to various modifications and alternative constructions,
certain 1llustrated embodiments thereol are shown in the
drawings and have been described above 1n detail. It should 55
be understood, however, that there 1s no intention to limait the
invention to the specific form or forms disclosed, but on the
contrary, the intention 1s to cover all modifications, alterna-
tive constructions and equivalents falling within the spirit
and scope of the invention, as defined in the appended 60
claims.

The use of the terms “a” and “an” and *“‘the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially 1n the context of the following claims) are
to be construed to cover both the singular and the plural, 65
unless otherwise indicated herein or clearly contradicted by

22

context. The terms “comprising,” “having,” “including”™ and

20

“containing” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected,” when unmodified and refer-
ring to physical connections, 1s to be construed as partly or
wholly contained within, attached to or joined together, even
if there 1s something intervening. Recitation of ranges of
values heremn are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein,
and each separate value 1s incorporated into the specification
as 11 1t were individually recited herein. The use of the term
“set” (e.g., “a set of 1tems”) or “subset,” unless otherwise
noted or contradicted by context, 1s to be construed as a
nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by context,
the term “subset” of a corresponding set does not necessarily
denote a proper subset of the corresponding set, but the
subset and the corresponding set can be equal.

Conjunctive language, such as phrases of the form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, 1s otherwise understood with the
context as used 1n general to present that an item, term, etc.,
can be either A or B or C, or any nonempty subset of the set
of A and B and C. For instance, in the 1llustrative example
of a set having three members, the conjunctive phrases “at
least one of A, B, and C” and “at least one of A, B and C”
refer to any of the following sets: {A}, {B}, {C}, {A, B},
{A, C} {B, C}, {A, B, C}. Thus, such conjunctive language
1s not generally intended to imply that certain embodiments
require at least one of A, at least one of B and at least one
of C each to be present.

Operations ol processes described herein can be per-
formed 1n any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. Pro-
cesses described herein (or variations and/or combinations
thereol) can be performed under the control of one or more
computer systems configured with executable instructions
and can be implemented as code (e.g., executable 1nstruc-
tions, one or more computer programs Or Oone Or more
applications) executing collectively on one or more proces-
sors, by hardware or combinations thereof. The code can be
stored on a computer-readable storage medium, for example,
in the form of a computer program comprising a plurality of
instructions executable by one or more processors. The
computer-readable storage medium can be non-transitory
(referred to herein as a “non-transitory computer-readable
storage medium™) and/or can be tangible (referred to herein
as a “‘tangible non-transitory computer-readable storage
medium™).

The use of any and all examples, or exemplary language
(e.g., “such as”) provided herein, 1s intended merely to better
illuminate embodiments of the imnvention and does not pose
a limitation on the scope of the invention unless otherwise
claimed. No language i the specification should be con-
strued as indicating any non-claimed element as essential to
the practice of the invention.

Embodiments of this disclosure are described herein,
including the best mode known to the inventors for carrying
out the invention. Variations of those embodiments can
become apparent to those of ordinary skill in the art upon
reading the foregoing description. The inventors expect
skilled artisans to employ such varnations as appropriate and
the mventors intend for embodiments of the present disclo-
sure to be practiced otherwise than as specifically described
herein. Accordingly, the scope of the present disclosure
includes all modifications and equivalents of the subject

US 10,965,708 B2

21

matter recited 1n the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements 1n all possible variations thereof 1is
encompassed by the scope of the present disclosure unless
otherwise 1indicated herein or otherwise clearly contradicted
by context.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby 1ncorporated by
reference to the same extent as 1f each reference were
individually and specifically indicated to be incorporated by
reference and were set forth 1n 1ts entirety herein.

What 1s claimed 1s:

1. A system for verifying vulnerabilities, the system
comprising:

a processor; and

a computer-readable medium storing instructions, which

when executed by the processor causes the processor

to:

transmit one or more scan operations to scan for
potential vulnerabilities of one or more sites;

receive one or more responses to the one or more scan
operations including at least one potential vulner-
ability of the potential vulnerabilities;

tokenize the one or more responses in to one or more
input arrays of varied lengths;

transmit, to one or more neural networks of a plurality
ol neural networks based on the varied lengths of the
one or more mput arrays, the one or more tokenized
responses, wherein a first neural network of the
plurality of neural networks 1s configured to receive
an input array of a first length of the varied lengths
and a second neural network of the plurality of
neural networks 1s configured to receive an 1nput
array of a second length of the varied lengths;

receive, from the one or more neural networks, verifi-
cation of the one or more tokenized responses; and

determine one or more confidences of the one or more
verified responses.

2. The system of claim 1, wherein the one or more scan
operations are one or more hypertext transport protocol-
requests and the one or more responses are one or more
hypertext transport protocol responses.

3. The system of claim 1, further comprising instructions
which when executed by the processor causes the processor
to:

automatically 1dentily one or more potential vulnerabaili-

ties 1 the one or more responses;

in response to the identification of the one or more

potential vulnerabilities, determine the varied lengths,
wherein the varied lengths are associated with the one
Or more input arrays;

take one or more excerpts of the one or more responses of

the varied lengths; and

convert the one or more excerpts into one or more tokens.

4. The system of claim 3, wherein the i1dentification 1s
performed using matched expressions.

5. The system of claim 1, wherein the one or more neural
networks are trained by historical request and response pairs.

6. The system of claim 1, wherein the one or more neural
networks are one of character-level convolutional neural
networks or long short term memory recurrent neural net-
works.

7. The system of claim 1, wherein the one or more
confldences associated with the one or more verified
responses are based on a ratio the one or more neural
networks have properly identified the one or more potential
vulnerabilities.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

8. The system of claim 1, wherein tokenizing the one or
more responses Comprises:

taking at least one excerpt of the one or more responses

at the specific length, wherein the at least one excerpt
includes the at least one potential vulnerability.
9. A computer-implemented method for verifying vulner-
abilities, the method comprising:
transmitting, by a scanner, one or more scan operations to
scan for potential vulnerabilities of one or more sites;

recerving, at the scanner, one or more responses to the one
or more scan operations including at least one potential
vulnerability of the potential vulnerabilities;

tokenizing, by the scanner, the one or more responses 1n
to one or more iput arrays of varied lengths;

verifying, by one or more neural networks of a plurality
of neural networks based on the varnied lengths of the
one or more 1nput arrays, the one or more tokenized
responses, wherein a first neural network of the plural-
ity ol neural networks 1s configured to recerve an mput
array of a first length of the varied lengths and a second
neural network of the plurality of neural networks 1s
configured to receive an mput array of a second length
of the varied lengths; and

determining one or more confidences of the one or more

verified responses.

10. The method of claim 9, wherein the one or more scan
operations are one or more hypertext transport protocol
requests and the one or more responses are one or more
hypertext transport protocol responses.

11. The method of claim 9, wherein the tokenizing further
comprising;

automatically identifying one or more potential vulner-

abilities 1n the one or more responses;

in response to identifying the one or more potential

vulnerabilities, determining the varied lengths, wherein
the varied lengths are associated with the one or more
input arrays;

taking one or more excerpts of the one or more responses

of the varied lengths; and

converting the one or more excerpts mmto one or more

tokens.

12. The method of claaim 11, wherein the i1dentifying 1s
performed using matched expressions.

13. The method of claim 9, wherein the one or more
neural networks are tramned by historical request and
response pairs.

14. The method of claim 9, wherein the one or more
neural networks are one of character-level convolutional
neural networks or long short term memory recurrent neural
networks.

15. The method of claim 9, wherein the one or more
confidences associated with the one or more responses are
based on a ratio the one or more neural networks have
properly 1dentified the one or more potential vulnerabilities.

16. The method of claim 9, wherein tokenizing the one or
more responses further comprising:

taking at least one excerpt of the one or more responses

at the specific length, wherein the at least one excerpt
includes the at least one potential vulnerability.

17. A non-transitory computer-readable medium storing
instructions, which when executed by a processor causes the
processor to:

transmit one or more scan operations to scan for potential

vulnerabilities of one or more sites:

receive one or more responses to the one or more scan

operations including at least one potential vulnerability
of the potential vulnerabilities;

US 10,965,708 B2

23

tokenize the one or more responses 1n to one or more 1nput

arrays ol varied lengths;

transmit, to one or more neural networks of a plurality of

neural networks based on the varied lengths of the one
or more iput arrays, the one or more tokenized
responses, wherein a first neural network 1s configured
to recerve an mput array of a first length of the varied
lengths and a second neural network 1s configured to
receive an input array of a second length of the varied
lengths;

receive, from the one or more neural networks, verifica-

tion of the one or more tokenized responses; and
determine one or more confidences of the one or more
verified responses.

18. The non-transitory computer-readable medium of
claim 17, wherein the one or more scan operations are one
or more hypertext transport protocol requests and the one or
more responses are one or more hypertext transport protocol
responses.

19. The non-transitory computer-readable medium of

claam 17, further comprising instructions which when 20

executed by the processor causes the processor to:
automatically identily one or more potential vulnerabaili-
ties 1 the one or more responses;
in response to the identification of the one or more

10

15

potential vulnerabilities, determine the varied lengths, 35

wherein the varied lengths are associated with the one
Or more nput arrays;

24

take one or more excerpts of the one or more responses of
the varied lengths; and

convert the one or more excerpts into one or more tokens.

20. The non-transitory computer-readable medium of
claam 19, wherein the identification 1s performed using
matched expressions.

21. The non-transitory computer-readable medium of
claim 17, wherein the one or more neural networks are
trained by historical request and response pairs.

22. The non-transitory computer-readable medium of
claim 17, wherein the one or more neural networks are one
of character-level convolutional neural networks or long
short term memory recurrent neural networks.

23. The non-transitory computer-readable medium of
claim 17, wherein the one or more confidences associated
with the one or more responses are based on a ratio the one
or moreneural networks have properly i1dentified the one or
more potential vulnerabilities.

24. The non-transitory computer-readable medium of
claam 17, wherein tokenizing the one or more responses
COmMprises:

taking at least one excerpt of the one or more responses
at the specific length, wherein the at least one excerpt
includes the at least one potential vulnerability.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

