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SAMPLING TRAFFIC TELEMETRY FOR
DEVICE CLASSIFICATION WITH
DISTRIBUTED PROBABILISTIC DATA
STRUCTURES

TECHNICAL FIELD

The present disclosure relates generally to computer net-
works, and, more particularly, to sampling trathic telemetry
for device classification with distributed probabailistic data
structures.

BACKGROUND

An emerging area ol interest in the field of computer
networking 1s the “Internet of Things” (IoT), which may be
used by those in the art to refer to umquely identifiable
objects/things and their virtual representations 1n a network-
based architecture. In particular, the next frontier 1 the
evolution of the Internet 1s the ability to connect more than
just computers and communications devices, but rather the
ability to connect “objects” in general, such as lights,
appliances, vehicles, window shades and blinds, doors,
locks, etc.

As more non-traditional devices join the IoT, networks
may eventually evolve from a brng-your-own-device
(BYOD) model to a model that enables bring-your-own-
thing (BYOT), bring-your-own-interface (BYOI), and/or
bring-your-own-service (BYOS) paradigms. In other words,
as the Io'T grows, the number of available services, etc., will
also grow considerably. For example, a single person in the
future may transport sensor-equipped clothing, other por-
table electronic devices (e.g., cell phones, etc.), cameras,
pedometers, or the like, into an enterprise environment, each
of which may attempt to access the wealth of new IoT
services that are available on the network.

From a networking perspective, the network can auto-
matically configure access control policies, other security
policies, and the like, 11 the device type of a particular IoT
device 1s known to the network. For example, the network
may limit a particular type of sensor to only communicating
with 1its supervisory. However, with the ever-increasing
number and variety of IoT devices, 1t may also be the case

that the device type 1s not mnitially known to the network.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIGS. 1A-1B 1illustrate an example communication net-
work;

FIG. 2 illustrates an example network device/node;

FIG. 3 illustrates an example of the capture of traflic
telemetry data;

FIG. 4 1llustrates an example of a device classification
service 1n a network;

FIG. 5 1illustrates an example flow diagram of selective
telemetry reporting;

FIGS. 6A-6C illustrate an example of the merging of
telemetry reporting data structures;

FIG. 7 illustrates an example of distributed coordination
of telemetry reporting; and
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2

FIG. 8 1illustrates an example simplified procedure for
sending tlow telemetry data to a device classification ser-

vice.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
a network element 1n a network maintains a probabilistic
data structure indicative of devices 1n the network for which
telemetry data 1s not to be sent to a device classification
service. The network element detects a tratlic flow sent {from
a source device to a destination device. The network element
determines whether the probabailistic data structure includes
entries for both the source and destination devices of the
traflic flow. The network element sends tlow telemetry data
regarding the trailic tlow to the device classification service,
based on a determination that the probabilistic data structure
does not include entries for both the source and destination
of the trafhic flow.

DESCRIPTION

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types ol networks are available, with
the types ranging from local area networks (LLANs) to wide
area networks (WANs). LANs typically connect the nodes
over dedicated private communications links located 1n the
same general physical location, such as a building or cam-
pus. WANSs, on the other hand, typically connect geographi-
cally dispersed nodes over long-distance communications
links, such as common carrier telephone lines, optical light-
paths, synchronous optical networks (SONET), or synchro-
nous digital hierarchy (SDH) links, or Powerline Commu-
nications (PLC) such as IEEE 61334, IEEE P1901.2, and
others. The Internet 1s an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-
defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
consists of a set of rules defimng how the nodes interact with
cach other. Computer networks may further be intercon-
nected by an intermediate network node, such as a router, to
extend the eflective “size” of each network.

Smart object networks, such as sensor networks, in par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e€.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects mclude actua-
tors, €.g., responsible for turning on/ofl an engine or perform
any other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less networks. That i1s, 1n addition to one or more sensors,
cach sensor device (node) 1n a sensor network may generally
be equipped with a radio transceiver or other communication
port, a microcontroller, and an energy source, such as a

battery. Often, smart object networks are considered field
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arca networks (FANs), neighborhood area networks
(NANSs), personal area networks (PANSs), etc. Generally, size
and cost constraints on smart object nodes (e.g., sensors)
result 1n corresponding constraints on resources such as
energy, memory, computational speed and bandwidth.

FIG. 1A 1s a schematic block diagram of an example
computer network 100 1illustratively comprising nodes/de-
vices, such as a plurality of routers/devices iterconnected
by links or networks, as shown. For example, customer edge
(CE) routers 110 may be interconnected with provider edge
(PE) routers 120 (e.g., PE-1, PE-2, and PE-3) 1n order to
communicate across a core network, such as an illustrative
network backbone 130. For example, routers 110, 120 may
be imterconnected by the public Internet, a multiprotocol
label switching (MPLS) virtual private network (VPN), or
the like. Data packets 140 (e.g., traflic/messages) may be
exchanged among the nodes/devices of the computer net-
work 100 over links using predefined network communica-
tion protocols such as the Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP),
Asynchronous Transier Mode (ATM) protocol, Frame Relay
protocol, or any other suitable protocol. Those skilled 1n the
art will understand that any number of nodes, devices, links,
etc. may be used in the computer network, and that the view
shown herein 1s for simplicity.

In some implementations, a router or a set of routers may
be connected to a private network (e.g., dedicated leased
lines, an optical network, etc.) or a virtual private network
(VPN), such as an MPLS VPN, thanks to a carrier network,
via one or more links exhibiting very diflerent network and
service level agreement characteristics. For the sake of
illustration, a given customer site may fall under any of the
following categories:

1.) Site Type A: a site connected to the network (e.g., via
a private or VPN link) using a single CE router and a single
link, with potentially a backup link (e.g., a 3G/4G/LTE
backup connection). For example, a particular CE router 110
shown 1n network 100 may support a given customer site,
potentially also with a backup link, such as a wireless
connection.

2.) Site Type B: a site connected to the network using two
MPLS VPN links (e.g., from different service providers),
with potentially a backup link (e.g., a 3G/4G/LTE connec-
tion). A site of type B may itsell be of diflerent types:

2a.) Site Type B 1: a site connected to the network using
two MPLS VPN links (e.g., from diflerent service provid-
ers), with potentially a backup link (e.g., a 3G/4G/LTE
connection).

2b.) Site Type B2: a site connected to the network using

one MPLS VPN link and one link connected to the public
Internet, with potentially a backup link (e.g., a 3G/4G/LTE
connection). For example, a particular customer site may be
connected to network 100 via PE-3 and via a separate
Internet connection, potentially also with a wireless backup
link.

2¢.) Site Type B3: a site connected to the network using,
two links connected to the public Internet, with potentially
a backup link (e.g., a 3G/4G/LTE connection).

Notably, MPLS VPN links are usually tied to a commuitted
service level agreement, whereas Internet links may either
have no service level agreement at all or a loose service level
agreement (e.g., a “Gold Package” Internet service connec-
tion that guarantees a certain level of performance to a
customer site).

3.) Site Type C: a site of type B (e.g., types B1, B2 or B3)
but with more than one CE router (e.g., a first CE router
connected to one link while a second CE router 1s connected
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to the other link), and potentially a backup link (e.g., a
wireless 3G/4G/LTE backup link). For example, a particular
customer site may include a first CE router 110 connected to
PE-2 and a second CE router 110 connected to PE-3.

FIG. 1B illustrates an example of network 100 in greater
detail, according to various embodiments. As shown, net-
work backbone 130 may provide connectivity between
devices located 1n different geographical areas and/or dii-
ferent types of local networks. For example, network 100
may comprise local networks 160, 162 that include devices/
nodes 10-16 and devices/nodes 18-20, respectively, as well
as a data center/cloud environment 150 that includes servers
152-154. Notably, local networks 160-162 and data center/
cloud environment 150 may be located in different geo-
graphic locations.

Servers 152-154 may include, in various embodiments, a
network management server (NMS), a dynamic host con-
figuration protocol (DHCP) server, a constrained application
protocol (CoAP) server, an outage management system
(OMS), an application policy infrastructure controller
(APIC), an application server, etc. As would be appreciated,
network 100 may include any number of local networks,
data centers, cloud environments, devices/nodes, servers,
etc.

The techniques herein may also be applied to other
network topologies and configurations. For example, the
techniques herein may be applied to peering points with
high-speed links, data centers, etc. Further, in various
embodiments, network 100 may include one or more mesh
networks, such as an Internet of Things network. Loosely,
the term “Internet of Things” or “IoT” refers to uniquely
identifiable objects/things and their virtual representations 1n
a network-based architecture. In particular, the next frontier
in the evolution of the Internet 1s the ability to connect more
than just computers and communications devices, but rather
the ability to connect “objects” 1n general, such as lights,
appliances, vehicles, heating, ventilating, and air-condition-
ing (HVAC), windows and window shades and blinds,
doors, locks, etc. The “Internet of Things” thus generally
refers to the interconnection of objects (e.g., smart objects),
such as sensors and actuators, over a computer network
(e.g., via IP), which may be the public Internet or a private
network.

Notably, shared-media mesh networks, such as wireless
networks, etc., are often on what 1s referred to as Low-Power
and Lossy Networks (LLLNs), which are a class of network
in which both the routers and their interconnect are con-
strained. In particular, LLN routers typically operate with
highly constramned resources, e.g., processing power,
memory, and/or energy (battery), and their interconnections
are characterized by, illustratively, high loss rates, low data
rates, and/or instability. LLNs are comprised of anything
from a few dozen to thousands or even millions of LLN
routers, and support point-to-point traflic (e.g., between
devices inside the LLN), point-to-multipoint traflic (e.g.,
from a central control point such at the root node to a subset
of devices inside the LLN), and multipoint-to-point traflic
(e.g., from devices inside the LLN towards a central control
point). Often, an IoT network i1s implemented with an
LLN-like architecture. For example, as shown, local net-
work 160 may be an LLN 1n which CE-2 operates as a root
node for nodes/devices 10-16 in the local mesh, 1n some
embodiments.

FIG. 2 1s a schematic block diagram of an example
node/device 200 that may be used with one or more embodi-
ments described herein, e.g., as any of the computing
devices shown 1n FIGS. 1A-1B, particularly the PE routers
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120, CE routers 110, nodes/device 10-20, servers 152-154
(e.g., a network controller located 1n a data center, etc.), any
other computing device that supports the operations of
network 100 (e.g., switches, etc.), or any of the other devices
referenced below. The device 200 may also be any other
suitable type of device depending upon the type of network
architecture in place, such as IoT nodes, etc. Device 200
comprises one or more network interfaces 210, one or more
processors 220, and a memory 240 interconnected by a
system bus 230, and 1s powered by a power supply 260.

The network interfaces 210 include the mechanical, elec-
trical, and signaling circuitry for communicating data over
physical links coupled to the network 100. The network
interfaces may be configured to transmit and/or receive data
using a variety of different communication protocols. Nota-
bly, a physical network interface 210 may also be used to
implement one or more virtual network interfaces, such as
for virtual private network (VPN) access, known to those
skilled 1n the art.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor(s) 220 and the
network interfaces 210 for storing software programs and
data structures associated with the embodiments described
herein. The processor 220 may comprise necessary elements
or logic adapted to execute the software programs and
manipulate the data structures 245. An operating system 242
(c.g., the Internetworking Operating System, or IOS®, of
Cisco Systems, Inc., another operating system, etc.), por-
tions of which are typically resident in memory 240 and
executed by the processor(s), functionally organizes the
node by, inter alia, invoking network operations 1n support
of software processors and/or services executing on the
device. These software processors and/or services may coms-
prise a device classification process 248 and/or a telemetry
capture process 249.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
istructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, it 1s
expressly contemplated that various processes may be
embodied as modules configured to operate 1n accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while processes may be
shown and/or described separately, those skilled in the art
will appreciate that processes may be routines or modules
within other processes.

In general, device classification process 248 may execute
one or more machine learning-based classifiers to classity a
device 1 a network, based on 1ts corresponding network
traflic. In one embodiment, device classification process 248
may assess captured telemetry data regarding one or more
traflic flows 1nvolving the device, to determine the device
type associated with the device. In further embodiments,
device classification process 248 may classify the operating
system of the device, based on 1ts captured traflic telemetry
data.

Device classification process 248 may employ any num-
ber of machine learning techniques, to classify the gathered
telemetry data and apply a device type label to a device
associated with the traflic. In general, machine learning is
concerned with the design and the development of tech-
niques that receive empirical data as mput (e.g., telemetry
data regarding traflic in the network) and recognize complex
patterns 1n the input data. For example, some machine
learning techniques use an underlying model M, whose
parameters are optimized for minimizing the cost function
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6

associated to M, given the input data. For instance, 1n the
context of classification, the model M may be a straight line
that separates the data into two classes (e.g., labels) such that
M=a*x+b*y+c and the cost function 1s a function of the
number ol misclassified points. The learning process then
operates by adjusting the parameters a,b,c such that the
number of misclassified points 1s mimmal. After this opti-
mization/learning phase, device classification process 248
can use the model M to classity new data points, such as
information regarding new trailic flows in the network.
Often, M 1s a statistical model, and the cost function 1s
inversely proportional to the likelihood of M, given the input
data.

In various embodiments, device classification process 248
may employ one or more supervised, unsupervised, or
semi-supervised machine learning models. Generally, super-
vised learning entails the use of a training set of data, as
noted above, that 1s used to train the model to apply labels
to the input data. For example, the training data may include
sample telemetry data that 1s labeled as “1Phone 6,” or “10S
10.2.” On the other end of the spectrum are unsupervised
techniques that do not require a tramning set of labels.
Notably, while a supervised learning model may look for
previously seen patterns that have been labeled as such, an
unsupervised model may attempt to analyze the data without
applying a label to it. For example, supervised learning can
be used to cluster devices that behave similarly to one
another, based on their captured telemetry data. Semi-
supervised learning models take a middle ground approach
that uses a greatly reduced set of labeled training data.

Example machine learning techniques that device classi-
fication process 248 can employ may include, but are not
limited to, nearest neighbor (NN) techniques (e.g., k-NN
models, replicator NN models, etc.), statistical techniques
(e.g., Bayesian networks, etc.), clustering techniques (e.g.,
k-means, mean-shiit, etc.), neural networks (e.g., reservoir
networks, artificial neural networks, etc.), support vector
machines (SVMs), logistic or other regression, Markov
models or chains, principal component analysis (PCA) (e.g.,
for linear models), multi-layer perceptron (MLP) ANNs
(e.g., for non-linear models), replicating reservoir networks
(e.g., Tor non-linear models, typically for time series), ran-
dom forest classification, or the like.

The performance of a machine learning model can be
evaluated 1n a number of ways based on the number of true
positives, Talse positives, true negatives, and/or false nega-
tives of the model. For example, the false positives of the
model may refer to the number of trathic flows that are
incorrectly classified as associated with a particular device
type (e.g., make and/or model number, operating system,
etc.). Conversely, the false negatives of the model may refer
to the number of traflic flows that the model incorrectly
classifies as belonging to a certain device type. True nega-
tives and positives may refer to the number of traflic flows
that the model correctly classifies as not being of a certain
class or being of a certain class, respectively. Related to
these measurements are the concepts of recall and precision.
Generally, recall refers to the ratio of true positives to the
sum of true positives and false negatives, which quantifies
the sensitivity of the model. Similarly, precision refers to the
ratio of true positives the sum of true and false positives.

In some cases, device classification process 248 may
assess the captured telemetry data on a per-flow basis. In
other embodiments, device classification process 248 may
assess telemetry data for a plurality of traflic flows based on
any number of different conditions. For example, traflic
flows may be grouped based on their sources, destinations,
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temporal characteristics (e.g., flows that occur around the
same time or within the same time window, etc.), combina-
tions thereol, or based on any other set of flow character-
1stics.

As shown 1n FIG. 3, various mechanisms can be lever-
aged to capture information about traflic 1n a network, such
as telemetry data regarding a traflic tlow. For example,
consider the case in which client node 10 1nmitiates a traflic
flow with remote server 154 that includes any number of
packets 302. Any number of networking devices along the
path of the flow may analyze and assess packet 302, to
capture telemetry data regarding the traflic flow. For
example, as shown, consider the case of edge router CE-2
through which the traflic between node 10 and server 154
flows.

In some embodiments, a networking device may analyze
packet headers, to capture feature information about the
traflic flow. For example, router CE-2 may capture the
source address and/or port of host node 10, the destination
address and/or port of server 154, the protocol(s) used by
packet 302, the hostname of server 154, and/or other header
information by analyzing the header of a packet 302.
Example captured features may include, but are not limited
to, Transport Layer Security (TLS) information (e.g., from a
TLS handshake), such as the ciphersuite offered, User Agent
information, destination hostname, TLS extensions, etc.,
HTTP information (e.g., URI, etc.), Domain Name System
(DNS) information, ApplicationlD, virtual LAN (VLAN)
ID, or any other data features that can be extracted from the
observed tratlic flow(s). Further information, if available
could also 1nclude process hash information from the pro-
cess on host node 10 that participates in the traflic flow.

In further embodiments, the device may also assess the
payload of the packet to capture information about the trathic
flow. For example, router CE-2 or another device may
perform deep packet inspection (DPI) on one or more of
packets 302, to assess the contents of the packet. Doing so
may, for example, yield additional information that can be
used to determine the application associated with the trathic
flow (e.g., packets 302 were sent by a web browser of node
10, packets 302 were sent by a videoconferencing applica-
tion, etc.).

The networking device that captures the tlow telemetry
data may also compute any number of statistics or metrics
regarding the traflic flow. For example, CE-2 may determine
the start time, end time, duration, packet size(s), the distri-
bution of bytes within a flow, etc., associated with the trathic
flow by observing packets 302.

As noted above, device classification 1s an essential
function to support the ever-growing number and types of
devices that may join a computer network. One challenge,
however, 1s the capture and reporting of traflic telemetry data
to a device classification service for analysis. Notably, the
sheer volume of telemetry data that could be captured and
reported may exceed the available resources of the network,
potentially overloading the network and impacting data
trailic. In other words, 1t 1s simply not feasible to capture and
report all telemetry data possible for purposes of device
classification, 1n many network deployments.

Sampling Traflic Telemetry for Device Classification with
Distributed Probabilistic Data Structures

The techmiques herein introduce a mechanism for the
collection of telemetry data for consumption by a device
classification service. In some aspects, the telemetry report-
ing mechanism leverages a probabilistic approach, to deter-
mine the probability of selecting a device and start collecting,
telemetry. In further aspects, the telemetry reporting mecha-
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nism may further control the reporting, based on the nature
of telemetry, volume of data, duration of data collection
according to the confidence of classification, nature of the
device (risk level), policy, to dynamically activate the telem-
etry data reporting from devices in the network. In another
aspect, the techniques herein also allow for the enforcement
of certain maximum budgets for the volume of reported
telemetry data sent to the classification service per time
period.

In various embodiments, the techniques herein can be
applied equally to both centralized and distributed sampling.
In some cases, the telemetry data can be sent to a centralized
point 1n the network and subsampled there. The subsampled
telemetry can then be used for classification locally or sent
to remote (e.g., cloud-based) components for further pro-
cessing. However, the techniques herein can also be used to
sample closer to the network edge, such as directly on the
network elements producing the telemetry data. This
reduces the overall telemetry traflic and resource usage in
the network. Doing so 1s also useful 1n the case of asym-
metric network deployments where flows for a given device
can be observed at multiple network elements.

Specifically, according to one or more embodiments of the

disclosure as described 1n detail below, a network element 1n
a network maintains a probabilistic data structure indicative
of devices 1n the network for which telemetry data 1s not to
be sent to a device classification service. The network
clement detects a traflic flow sent from a source device to a
destination device. The network element determines
whether the probabilistic data structure includes entries for
both the source and destination devices of the traflic flow.
The network element sends flow telemetry data regarding
the trathc flow to the device classification service, based on
a determination that the probabilistic data structure does not
include entries for both the source and destination of the
traflic flow.
[lustratively, the techmiques described herein may be
performed by hardware, software, and/or firmware, such as
in accordance with the telemetry capture process 249, which
may include computer executable instructions executed by
the processor 220 (or independent processor ol interfaces
210) to perform functions relating to the techniques
described herein, e.g., 1n conjunction with device classifi-
cation process 248.

Operationally, FIG. 4 1llustrates an example of a device
classification service 1n a network, 1n various embodiments.
As shown, network 400 may generally include an endpoint
device 402 (e.g., a user device, a sensor, an actuator, efc.),
any number of resources 404, and any number of networking
devices 406 that are configured to provide connectivity
between endpoint device 402 and resource(s) 404. For
example, networking devices 406 may include access points,
wireless LAN controllers (WLCs), switches, routers, secu-
rity devices (e.g., firewalls, etc.), and the like. Network
resources 404 may include cloud-based services, specific
servers or other endpoints, webpages, or any other resource
with which endpoint device 402 could communicate.

Also as shown 1n FIG. 4 1s a device classification service
408 that may be hosted on one or more of networking
devices 406 or be in communication therewith. In general,
device classification service 408 1s configured to take as
input telemetry data 410 captured by networking device 406
regarding network trathic associated with endpoint device
402 and, based on the captured telemetry, identily the device
type 412 of endpoint device 402. For example, device type
412 may indicate the operating system (e.g., 10S, Android,
etc.), manufacturer (e.g., Apple, Samsung, etc.), make (e.g.,
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1IPhone, etc.), model (e.g., 5s, 6, 7, etc.), tunction (e.g.,
thermostat, temperature sensor, etc.), or any other informa-
tion that can be used to categorize endpoint device 402.

Note that the classification of endpoint device 402 by
service 408 can also, 1n some embodiments, be of varying
specificity, depending on the telemetry data 410 available to
service 408 and/or 1ts degree of confidence in a particular
classification. For example, device classification service 408
may determine, with a high degree of confidence, that
endpoint device 402 1s an Apple 1Phone, but may or may not
be able to determine whether device 402 1s an 1Phone 3s or
an 1Phone 6. Accordingly, 1n some embodiments, service
408 may also return the confidence values for the classifi-
cation label(s) in device type 412 to networking device 406.

The labeling of endpoint device 402 with a device type
412 by device classification service 408 may 1nitiate
enforcement of one or more network policies by networking
device 406 with respect to endpoint device 402. Such
network policies may include, but are not limited to, security
policies, network traflic or quality of service (QoS) policies,
access polices, and the like. For example, as shown, assume
that endpoint device 402 sends out a resource request 414 for
a particular one of resources 404. In turn, networking
devices 406 may determine whether to allow or block
resource request 414 from reaching its target resource 404,
based on the policy associated with the determined device
type 412 of endpoint device 402. For example, i1 endpoint
device 402 1s determined to be a smart thermostat, it may be
prevented from accessing certain online resources, such as
an email service. Similarly, 11 endpoint device 402 1s deter-
mined to be a safety-related sensor, a traflic or QoS policy
associated with device type 412 may cause networking
devices 406 to assign a higher prionty to traflic from
endpoint device 402.

In general, device classification (also known as “device
profiling™) to identily the device type of a device under
scrutiny has traditionally used static rules and heuristics for
the determination. For example, device type classification
can be achieved by using active and/or passive probing of
devices, to assign a device type and corresponding host
profile to a device. Notably, this probing may entail sending,
any or all of the following probes:

DHCP probes with helper addresses

SPAN probes, to get messages in INIT-REBOOT and

SELECTING states, use of ARP cache for IP/MAC
binding, etc.

Nettlow probes

HTTP probes to obtain information such as the OS of the

device, Web browser information, etc.

RADIUS probes

SNMP to retrieve MIB object or receives traps

DNS probes to get the Fully Qualified Domain Name

(FQDN)

etc.

A service may even trigger active scanning of the network
and SNMP scanning when the default community string 1s
set to public. This can be done, for example, to retrieve the
MAC address of the device or other types of information.
Such a variety to probes allows for the gathering of a rich set
of information that can be used for device profiling. A degree
of confidence can also be assigned to any such device type
classifications. Note also that the device profiling can be
performed at multiple points 1n the network, such as by
wireless LAN controllers (WLCs) 1n addition to, or in lieu
of, a centralized service.

In many networks, the number of devices that fall into the
‘UNKNOWN?” device type category has been found to be as
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high as 40%. In other words, up to 40% of the devices on a
given network may not match any existing device profiling
rules 1 use. This 1s expected to grow over time, 1llustrating
the need for a more dynamic device profiling approach.
Indeed, it 1s estimated that the number of endpoint devices
will reach 3.6 billion by 2021. Accordingly, 1n various
embodiments, device classification service 408 may use
machine learning to train and update a machine learning-
based classifier able to learn and classily new devices types
that a network may encounter.

In general, the techmques herein introduce the following
sub-sampling strategy to report telemetry data 410 to device
classification service 408 for ingestion:

Whenever a device 1s seen for the first time (e.g., as
identified by a primary key such as a MAC or IP),
report telemetry data for that device for a fixed duration
of time (e.g., one hour, etc.). This includes all trafhc,
flows, or packet data that has the device as one of 1ts
endpoints. For example, if device 402 1s new to the
network and of a type not previously seen, network
clement(s) 406 may send telemetry data 410 for traflic
involving endpoint device 402 for a set observation
window to device classification service 408.

Once the 1itial observation period has elapsed, telemetry
data for that device can be dropped for a much longer
duration (e.g., 6 hours, one or more days, etc.). For
example, after the initial observation period, network
clement(s) 406 may stop sending telemetry data 410 to
device classification service 408 for a period 1f time.

Once the longer time period has elapsed, the traflic 1s
cligible to have 1ts telemetry data reported again to the
device classification service. For example, after stop-
ping the reporting of telemetry data 410 regarding
device 402 to device classification service 408 for six
hours, telemetry data 410 may again be eligible for
reporting.

MAC addresses may be preferable as keys to represent

different devices, although IPs can be used as well, in further
embodiments. However, using IP addresses may risk that a
grven [P address 1s placed back 1n a pool of available IP
addresses and reassigned to another device. Of course, this
could be mitigated through appropriate DHCP settings or the
like. As would be appreciated, the reporting mechanism
introduced herein guarantees that all tratfic for a given
device 1s seen and reported during a given time period.
In one embodiment, a naive implementation of the tech-
niques herein would maintain lists of all the devices cur-
rently active, as well as all of the devices currently 1gnored,
along with corresponding timestamps. However, this poses
multiple 1ssues:

Storing the full list of IPs can require a lot of memory. In
addition, 1t can be very fragile and lacks robustness. For
istance, scans or tratlic patterns involving a lot of 1Ps
may require a lot of memory (e.g., retail stores may see
a large amount of ephemeral MACs or IPs, etc.).

Looking up IPs must be very fast and storing everything
requires the development of fast lookup methods.
While this may be possible, in some cases, doing so
may also require memory to make the lookups fast
enough.

This approach also does not operate 1 a distributed
manner, meaning that each network element will need
to maintain its own records.

Instead, in further embodiments, the techniques herein
propose using probabilistic data structures, to control the
telemetry data reporting process and potentially in a distrib-
uted manner. Various probabilistic data structures exist that
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may be suitable for this purpose, many of which have
varying characteristics. In general, of the various forms of
probabilistic data structures:

Most support merging

Some support infinite streams better than others

Some support counting (e.g., Cuckoo filters or Counting

Bloom f{ilters)

Some support deleting (e.g., Cuckoo filters)

Some support forgetting (e.g., Stable Bloom filters or A2
Bloom filters, or combining multiple Bloom or Cuckoo

filters)

The following mechanisms can be adapted based on the
data structures available 1n the implementation environment,
be they Cuckoo filters, Bloom filters, or the like. In a
preferred embodiment, the probabilistic data structure
selected for use 1n the network supports some form of
forgetting, as well as deleting and merging operations.

In various embodiments, one primary component of the
techniques herein 1s a software module present on network
clements 406 and/or on device classification service 408 that
1s responsible for downsampling flow records. To better
understand this, assume that every device D seen on the
network can be described by a set of key-value pairs that
indicate the attributes of the device. These key-value pairs
constitute the telemetry data 410 that can be pushed to
device classification service 408. In turn, service 408 may
use the received telemetry data 410 for purposes of identi-
tying the device type of the device and/or for building a
training dataset from which service 408 trains 1ts classifi-
cation model(s).

As shown, device classification service 408 may include
a device hashing module (DHM) 414 that builds a frequency
table of every device 1n the dataset, 1n various embodiments.
In its stmplest embodiment, DHM 414 may produce a hash
table that maps every device, as represented by its under-
lying attributes, to a frequency of occurrence 1n the dataset.
In this case, the hashing algorithm 1s merely used as a way
to compress the representation of devices. Importantly, the
hashing function shall be somewhat robust to minor changes
in the underlying attributes. For mstance, 1f the key, *Manu-
tacturer,” has the value “Apple,” for a device D1 and a value
of ‘Apple Inc.” for a device D2, but all other fields are
identical, D1 and D2 should have the same hash. DHM 414
may use different techniques to achieve this eflect, ranging
from handcrafted normalization prior to the hashing, to the
use of feature extraction techniques, such as term frequency-
iverse document frequency (TF-IDF), i order to build a
normalized vocabulary. In yet another embodiment, DHM
414 can use a counting Bloom filter, to achieve extremely
compressed representations of the frequency table.

In further embodiments, a device selection module 416
may be executed on-premise (e.g., on one or more of
network elements 406, a device in communication there-
with, etc.) to select devices for which telemetry data should
be forwarded to device classification service 408 based on
the frequency table constructed by DHM 414. During opera-
tions, DSM 416 may evaluate every new device seen on the
network by applying the same hashing technique as DHM
414 and therefore recover the frequency of occurrence of the
device. In general, the higher the frequency of a device, the
lower the probability that 1t will be selected by DSM 416.
Indeed, the scarcest devices are those that have the most
value from a learning perspective. In some embodiments,
DSM 416 may base 1ts decision to select a device for
telemetry reporting based on other parameters, such as the
amount of bandwidth used in the past for telemetry data
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reporting (e.g., so as not to consume more than a threshold
amount of network resources for telemetry reporting).

Upon receiving telemetry data for a new device, DHM
414 may update the frequency table and push the updated
version to the DSMs 416 in any number of monitored
networks.

In one embodiment, DSM 416 may also be used to specily
the type of telemetry data that 1s to be reported (e.g., types
of data sources, etc.). The types of telemetry data, as noted
above, can range from packet captures (PCAP), to Nettlow
or other flow records, or the like, that may be explicitly
requested by device classification service 408. In yet another
embodiment, the telemetry data may first start with more
granular data while, as time goes by, less granular data may
be captured for the device under scrutiny. Note that the first
packets sent by a new device are likely to be strong indicator
of the nature of the device, while granular data collection
strategies may be used 1n a second step of telemetry collec-

tion.
DSM 416 and/or DHM 414 may also specily diflerent

durations for the telemetry data collection which can be
governed by various factors such as a confidence measure-
ment for the device type classifier of device classification
service 408, the nature of the device (e.g., risk level), or the
like. For example, if endpoint device 402 belongs to a device
category flagged as “high risk,” the capture of its telemetry
data 410 by network element(s) 406 may be for a longer time
period than for another endpoint device that 1s 1n a lower risk
category. In yet another embodiment, DSM 416 may make
use of a user-defined policy that specifies the telemetry data
collection and reporting window for devices that are of an
unknown type.

In general, a flow record 1s supposed to include a source
primary key and a destination primary key. Usually, these
will be source IP and destination IP, but could also be the
MAC addresses of these devices or other device identifiers.

FIG. 5 illustrates an example tflow diagram 500 of selec-
tive telemetry reporting, according to various embodiments.
As shown, the device(s) implementing the techniques herein
may maintain two data structures:

A first data structure 506 that includes entries indicative of
“active devices” for which telemetry data should be
collected and sent to the device classification service.
In addition, this data structure may also indicate other
information, such as when the device was first observed
in the network, when telemetry data for the device was
first forwarded, etc. For a given flow, telemetry data
regarding the tlow may only be forwarded 1f, and only
if, at least one of the source or destination of the flow
has an entry in the active devices data structure. By
design, there may be a limit as to the number of device
entries allowed at any given time 1n the active devices
data structure. In some cases, this data structure can
also be a probabilistic data structure, but doing so
would 1ncrease the complexity of the techniques herein
considerably.

A second data structure 508 that includes entries 1indica-
tive of “silenced devices” and 1s a probabilistic data
structure, 1n various embodiments. This data structures
may 1nclude, for example, all of the IPs or other device
identifiers that have been active for a configurable
amount of time or recorded flows and have since been
moved to the “silenced devices™ data structure. During
operation, a flow that has both endpoints silenced does
not have its telemetry data sent to the classification
service, 1n one embodiment. Note that there may be
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many silenced devices at any given time, but a space-
cilicient probabilistic data structure could be used.

Thus, when a new flow 1s processed (block 502), the
processing device may determine whether both the source
(src) and destination (dst) of the flow are silenced (block
504). In other words, the processing network element may
check whether the source and destination of the flow each
have entries 1n the silenced devices data structure 508. If so,
then the element may drop the tlow for purposes of reporting,
its telemetry to the device classification service. Note that
this could entail either not forwarding already collected
telemetry data or, alternatively, not sending the flow on for
sampling.

If one of the endpoints of the flow 1s not silenced, or i
neither are, the processing network element may then deter-
mine whether either 1s active (block 3512). Notably, the
clement may determine whether either the source or desti-
nation has an entry in the active devices data structure 506.
If so, the network element may forward the flow (e.g., or
flow telemetry data) on to the device classification service.

If neither the source, nor destination of the flow, has an
entry in either of data structures 506-508, this means that the
device 1s newly observed 1n the network. In such a case, the
network element may attempt to add at least one of the two
to the active devices data structure 306, based on any
number of conditions. For example, as noted, active devices
data structure 506 may have a predefined maximum number
of devices that 1t can contain at any given time. If this limait
has not been met, and if any other conditions have also been
satisiied, the element may forward the flow data on to the
device classification service and add an entry to active
devices data structure 506 for at least one of the two
endpoints of the traflic tlow (block 518). Conversely, 11 the
active devices data structure 506 1s currently full, the pro-
cessing element may drop the flow reporting of the flow to
the device (block 520).

Note that the maximum size of the active device data
structure 506 1s 1mportant, as this data structure 1s not
space-eflicient. By first checking silenced devices data struc-
ture S08 first, this allows most of the processing to be
tast-tracked, dropping the reporting for most traflic.

In some embodiments, the network element may also
employ a garbage collection mechanism whereby device
entries 1n active devices data structure 506 are moved to
silenced devices data structure 508 over time. For example,
if an active device has been active for more than configur-
able amount of time, or has seen more than a configurable
number of flows, 1t may be removed from the list of active
devices, and add to the silenced devices. In addition, the
probabilistic data structure of silenced devices data structure
508 may implement some sort of forgetting, so that devices
added to the silenced list are eventually removed from the
structure.

In some embodiments, the network element responsible
for sampling and/or reporting telemetry data to the device
classification service may also employ a configurable report-
ing budget, to control when and what 1s reported. For
example, such budget parameters may define the number of
flows per time period (e.g., minute, hour, etc.) for a particu-
lar device that may be sent to the service, the overall amount
of telemetry trailic to be sent, or the like. In one embodi-
ment, the budget may be static while, 1n another embodi-
ment, the budget may vary with time and type of devices as
already pointed out. However, such a reporting budget may
also be governed by the set of available resources on the
network. Indeed, one of the key challenges in telemetry
being sent to the cloud lies in the volume of data. Although
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probabilistic approaches and down sampling can be used to
optimize such approaches, a cap can also be set on the
budget according to the available resources 1n the network
(e.g. saturation of the WAN link, etc.).

Another optional mechanism ntroduced herein coordi-
nates down sampling from multiple distributed instances of
the mechanism shown 1n FIG. 5. For example, FIGS. 6 A-6C
illustrate an example 600 of the merging of telemetry
reporting data structures. As shown, assume that there are
any number of network elements 602 (e.g., a first through n”
network element), each of which may employ the techniques
described with respect to FIG. 5. In particular, each network
clement 602 shown may maintain its own active devices
data structure 506 and a probabilistic, silent devices data
structure 508.

In some embodiments, as shown in FIG. 6A, to propagate
the local data structure(s) 506 and/or 508 of a network
element 602 to another network element 602, the network
clement may send 1ts data structure(s) to a coordinator 604.
For example, coordinator 604 may be the device classifica-
tion service itsell or another service that operates in con-
junction therewith.

As shown in FIG. 6B, 1n response to receirving data
structures 506 and/508 from network elements 602, coordi-
nator 604 may merge the received data structures. For
example, coordinator 604 may merge the recerved active
devices data structures 508 into a merged active devices data
structure 512. Similarly, coordinator 604 may merge the
silenced devices data structures 508 into a merged silenced
devices data structure 510.

In FIG. 6C, once coordinator 506 has formed the merged
data structures 510 and/or 512, it may propagate the merged
data structures to the network elements 602. In turn, a
receiving network element 602 may replace 1ts correspond-
ing local data structure with the merged data structure. Once
replaced, the network element 602 may begin using the
merged data structure(s) for purposes of making telemetry
reporting decisions, as detailed above.

Alternatively, 1n another embodiment, the network ele-
ments themselves may take on some of the responsibility of
propagating the data structures. For example, FIG. 7 1llus-
trates an example 700 of distributed coordination of telem-
etry reporting. As shown, assume that there are network
clements 602a-602¢ in the network, each of which main-
tains 1ts own data structures 506-508. In this embodiment,
coordinator 604 may construct and propagate the tree struc-
ture to elements 602 via which the elements share and merge
their data structures. With N network elements, to avoid
about 2*N messages going 1n and out of the elements 602,
coordinator 604 may employ techniques such as MPI All-
reduce, which builds up a tree of nodes, and has nodes pass
messages up and down the tree, 1n order to merge their data
structures.

Regardless of whether a centralized merging or distrib-
uted merging approach 1s taken, the messages involved are
considerably lightweight, because the data structures
involved are compressed and space-eflicient by design. In
some embodiments, only the silenced devices data structures
may be shared, so as to reduce communications and limit
inconsistencies. Further, the frequency at which messages
are exchanged can be configured based on the amount of
network traflic, and on the other parameters of the system
(e.g., the eviction policy for active device or the forgetting
parameters for the silenced devices).

In yet another embodiment, multicast trees can be used, to
optimize the telemetry gathering. The deeper the device
selection module (DSM) 1s executed 1n the network (e.g.,
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tarther away from the edge), the more likely all devices seen
on the network will be detected and classified. For example,
consider the case of an attacking device performing lateral
moves at the edge of the network. Unfortunately, not all
network elements may be equipped with storage and pro-
cessing power to implement the proposed techniques. Con-
sequently, DSM models may be activated in places 1n the
network where such capabilities are supported, which could
be dynamically discovered thanks to IGP routing extensions
advertising node capabilities. In yet another embodiment, a
node running out of processing power may dynamically
deactivate such functionality, leaving the responsibility of
data gathering to “upper” nodes 1n the network at the risk of
missing the new device.

FIG. 8 illustrates an example simplified procedure for
sending flow telemetry data to a device classification ser-
vice, 1n accordance with one or more embodiments
described herein. For example, a non-generic, specifically
configured device (e.g., device 200) may perform procedure
800 by executing stored instructions (e.g., process 248
and/or 249). Such a device may be, in some embodiments,
a network element (e.g., a router, switch, Netflow flow
exporter, etc.). The procedure 800 may start at step 805, and
continues to step 810, where, as described 1n greater detail
above, the network element may maintain a probabilistic
data structure indicative of devices 1n the network for which
telemetry data 1s not to be sent to a device classification
service. Any number of probabilistic data structures may be
used such as, but not limited to, various forms of Bloom
filters or Cuckoo filters.

At step 815, as detailed above, the network element may
detect a tratlic flow sent from a source device to a destination
device. As would be appreciated, any number of traflic
characteristics may be extracted from the flow by the
network element. For example, the element may assess the
header information of the flow packets, perform DPI on the
payload of the packets, capture copies of the packets them-
selves, or the like.

At step 820, the network element may determine whether
the probabilistic data structure includes entries for both the
source and destination devices of the trathic flow, as
described 1n greater detail above. Notably, in various
embodiments, 1f both the source and destinations of the
traflic flow are “silenced” for purposes of reporting, as
indicated by the probabilistic data structure, the network
clement may determine that flow telemetry reporting regard-
ing the tlow to the device classification service 1s not needed.

At step 8235, as detailed above, the network element may
send flow telemetry data regarding the traflic flow to the
device classification service, based on a determination that
the probabilistic data structure does not include entries for
both the source and destination of the traflic flow. In some
embodiments, the element may also determine whether an
entry exists in an active device data structure that lists the
devices for which telemetry data should be forwarded. If an
entry exists for either the source or destination of the flow,
and neither 1s silenced, the element may forward telemetry
data to the service. Otherwise, 11 neither data structure
includes an entry for either the source or destination, the
clement may determine whether ether should be added to the
active device data structure based on any number of rules
(e.g., a size limit on the active device list, etc.) and the traflic
telemetry reported to the classification service. Procedure
800 then ends at step 830.

It should be noted that while certain steps within proce-
dures 800 may be optional as described above, the steps
shown 1 FIG. 8 are merely examples for illustration, and
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certain other steps may be included or excluded as desired.
Further, while a particular order of the steps 1s shown, this
ordering 1s merely illustrative, and any suitable arrangement
ol the steps may be utilized without departing from the scope
of the embodiments herein.

While there have been shown and described illustrative
embodiments that provide for sampling traflic telemetry for
device classification with distributed probabilistic data
structures, 1t 1s to be understood that various other adapta-
tions and modifications may be made within the spirit and
scope of the embodiments herein. For example, while cer-
tain embodiments are described herein with respect to using
certain models for purposes of device type classification, the
models are not limited as such and may be used for other
functions, 1n other embodiments. In addition, while certain
protocols are shown, other suitable protocols may be used,
accordingly.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, 1t 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereof. Accordingly this description 1s to be taken only by
way ol example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the
appended claims to cover all such variations and modifica-
tions as come within the true spirit and scope of the
embodiments herein.

What 1s claimed 1s:
1. A method comprising:
maintaining, by a network element 1n a network, a first
probabilistic data structure and a second data structure
separate from the first probabilistic data structure,
wherein the first probabilistic data structure includes
entries mndicative of devices in the network for which
telemetry data 1s not to be sent to a device classification
service, and the second data structure includes entries
indicative of devices in the network for which telem-
etry data 1s to be sent to the device classification
service;
detecting, by the network element, a traflic flow sent from
a source device to a destination device;

determining, by the network element, whether the first
probabilistic data structure includes entries for both the
source and destination devices of the trathc flow; and

when 1t 1s determined that the first probabilistic data
structure does not include entries for both the source
and destination devices of the trathic flow, sending, by
the network element, tlow telemetry data regarding the
tratlic flow to the device classification service.

2. The method as 1in claim 1, wherein the device classi-
fication service uses the flow telemetry data as part of a
training dataset to train a machine learning-based device
classifier.

3. The method as in claim 1, further comprising:

determining, by the network element, whether the second

data structure includes an entry for either of the source
or destination devices of the trathic flow, wherein the
network element sends the flow telemetry data regard-
ing the trathc tflow to the device classification service
based in part on a determination that the second data
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structure includes an entry for either of the source or
destination devices of the traflic tlow.

4. The method as 1n claim 1, further comprising;:

determining, by the network element, that the second data
structure does not include an entry for either the source
and destination of the tratlic flow; and

adding, by the network element, an entry for the source or
destination device to the second data structure, if the
second data structure includes less than a threshold
number of entries.

5. The method as 1n claim 1, further comprising;:

moving, by the network element, an entry in the second
data structure to the first probabilistic data structure
alter a predefined amount of time has elapsed.

6. The method as in claim 1, further comprising:

sending, by the network element, the first probabilistic
data structure to a coordinator; and

receiving, at the network element and from the coordina-
tor, an updated probabilistic data structure that merges

the first probabilistic data structure with one or more
data structures from one or more other network ele-
ments.

7. The method as in claim 1, wherein the entries in the first
probabilistic data structure are based on a hash table that
maps device types to frequencies of occurrence of telemetry
data key-value pairs.

8. The method as 1n claim 1, further comprising:

when 1t 1s determined that the first probabilistic data

structure does include entries for both the source and
destination devices of the traflic flow, dropping, by the
network element, the flow telemetry data regarding the
tratlic flow.

9. An apparatus, comprising;:

one or more network interfaces to communicate with a

network;

a processor coupled to the network interfaces and con-

figured to execute one or more processes; and

a memory configured to store a process executable by the

processor, the process when executed configured to:

maintain a {irst probabilistic data structure and a second
data structure separate from the first probabilistic
data structure, wherein the first probabilistic data
structure 1includes entries indicative of devices 1n the
network for which telemetry data 1s not to be sent to
a device classification service, and the second data
structure includes entries indicative of devices in the
network for which telemetry data is to be sent to the
device classification service;

detect a tratlic flow sent from a source device to a
destination device:

determine whether the first probabilistic data structure
includes entries for both the source and destination
devices of the traftic flow; and

when 1t 1s determined that the first probabilistic data
structure does not include entries for both the source
and destination devices of the traflic flow, send flow
telemetry data regarding the trailic flow to the device
classification service.

10. The apparatus as 1 claim 9, wherein the device
classification service uses the tlow telemetry data as part of
a training dataset to train a machine learning-based device
classifier.

11. The apparatus as in claim 9, wherein the process when
executed 1s further configured to:
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determine whether the second data structure includes an
entry for either of the source or destination devices of
the tratlic flow, wherein the network element sends the
flow telemetry data regarding the tratlic flow to the
device classification service based in part on a deter-
mination that the second data structure includes an
entry for either of the source or destination devices of
the traflic flow.

12. The apparatus as 1n claim 9, wherein the process when
executed 1s further configured to:

determine that the second data structure does not include

an entry for either the source and destination of the
trattic flow; and

add an entry for the source or destination device to the

second data structure, 1f the second data structure
includes less than a threshold number of entries.

13. The apparatus as 1n claim 9, wherein the process when
executed 1s further configured to:

move an entry in the second data structure to the first

probabilistic data structure after a predefined amount of
time has elapsed.

14. The apparatus as 1n claim 9, wherein the process when
executed 1s further configured to:

send the first probabilistic data structure to a coordinator;

and

recerve, from the coordinator, an updated probabilistic

data structure that merges the first probabilistic data
structure with one or more data structures from one or
more other network elements.

15. The apparatus as 1n claim 9, wherein the entries 1n the
first probabilistic data structure are based on a hash table that
maps device types to frequencies of occurrence of telemetry
data key-value pairs.

16. The apparatus as 1n claim 9, wherein the process when

executed 1s further configured to:
when i1t 1s determined that the first probabilistic data
structure does include entries for both the source and
destination devices of the traflic flow, drop the tlow
telemetry data regarding the trathic flow.
17. A tangible, non-transitory, computer-readable medium
storing program instructions that cause a network element to
execute a process comprising:
maintaining, by the network element, a first probabilistic
data structure and a second data structure separate from
the first probabilistic data structure, wherein the first
probabilistic data structure includes entries indicative
of devices 1n the network for which telemetry data 1s
not to be sent to a device classification service, and the
second data structure includes entries indicative of
devices 1n the network for which telemetry data is to be
sent to the device classification service;
detecting, by the network element, a traflic flow sent from
a source device to a destination device:

determining, by the network element, whether the first
probabilistic data structure includes entries for both the
source and destination devices of the trathc flow; and

when 1t 1s determined that the first probabilistic data
structure does not include entries for both the source
and destination devices of the trathic flow, sending, by
the network element, flow telemetry data regarding the
tratlic flow to the device classification service.
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