12 United States Patent

Jain et al.

US010958590B2

US 10,958,590 B2
Mar. 23, 2021

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC RESIZING OF WEBSERVER
CONNECTION POOL SIZE

(71)

(72)

(73)
(%)

(21)

(22)

(65)

(1)

(52)

Applicant: Adobe Inc., San Jose, CA (US)

Inventors: Mayur Jain, Bangalore (IN); Nikhil
Siddhartha, Patna (IN)

Assignee:

Notice:

ADOBE INC., San Jose, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 16/408,174

Filed:

Int. CI.
HO4L 12/917
HO4L 12911
HO4L 12/24
HO4L 12/861

U.S. CL

CPC

May 9, 2019

Prior Publication Data

US 2020/0358713 Al

Nov. 12, 2020

(2013.01)
(2013.01)
(2006.01)
(2013.01)

HO4L 47/76 (2013.01); HO4L 41/22

(2013.01); HO4L 47/781 (2013.01); HO4L
47/822 (2013.01); HO4L 47/823 (2013.01);
HO4L 47/826 (2013.01); HO4L 49/9005

(2013.01)

(38) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2015/0288759 Al* 10/2015 Lunaccovvvvnnne, GO6F 9/542

709/203
2018/0019922 Al* 1/2018 Robison HO4L 47/826
2018/0123939 Al* 5/2018 Raman HO4L 47/828
2018/0248871 Al* 82018 Tsirkin HO4L 63/0876
2019/0020629 Al* 1/2019 Baird, IIT HO4W 12/02

* cited by examiner

Primary Examiner — Jellrey R Swearingen
(74) Attorney, Agent, or Firm — Keller Jolley Preece

(57) ABSTRACT

The present disclosure relates to systems, non-transitory
computer-readable media, and methods for dynamically
updating the connection pool for a web server without any
interruption to the resource. In particular, 1n one or more
embodiments, the disclosed systems can continuously moni-
tor load data for various web servers. Further, the disclosed
systems can utilize load data, historical load data, and/or
user settings to predict a number of connections over a future
time period and can determine an updated connection pool
s1ze for a web server based on that predicted number of
connections. The disclosed systems can also dynamically
modily the connection pool size for the web server based on
the updated connection pool size without interrupting the
resource or any of 1ts ongoing connections in any way.

20 Claims, 9 Drawing Sheets

602

Determining A Number Of Allocated Connections For A Web Server

604

Detecitng An Increase In Agtual Connections For The Web Server

- 608

And The

Determining A Predicted Number Of Connections Based On Historical Data
nerease '

.

Determining That The Predicted Number Of Connections Exceeds A
Threshold

Dynamically Increasing, Based On The Predicted Number Exceeding The
Tnreshold, The Number Of Allocated Connections Without Restaring The

wWebh Server

US 10,958,590 B2

Sheet 1 of 9

Mar. 23, 2021

U.S. Patent

10] WasAg uswabeuey

LONOBULOY) JILIBUAQY

077 JOJUON 8JUBWIOLSd

511 90IA8(]
juatusbeue)y JoAIeS 0oAN

¢ [uoneaiddy sonAjeuy
gl [a%iAa(] JojensiuiupY

. L_wamm co_“mo__&,q

R

041

¢ b4

b1 100d
MBN 04 UOROSLUON
ButobuQ Adon

US 10,958,590 B2

217 suogoauuoy
POSHUM MaN oZliEliy]

(L7 1004 M| 81eall)

80¢ 8ZI3
1004 pajepdn suiLeisg

Sheet 2 of 9

90¢ ereq [eoloisiH
pUY Ble(] PEo 8}BnjeA

0 Ble(] peoT pueg

Mar. 23, 2021

UORD3ULIOD JIWRUA(

m 0Li
- J2ABG Uopedlday

82UBWIONSY

1T Jojluo

Fii 9oneQ
juatiabeuely JoA8S gop

U.S. Patent

U.S. Patent Mar. 23, 2021 Sheet 3 of 9 US 10,958,590 B2

300 \

initialize Connections According To
Configuration File 302

Receive Updated Connection Pool Size
304

initialize New Connections 306

Copy Ongoing Connections To New
Connections 308

De-Allocate Memory From Old
Connections 310

Fig. 3A

g€ [00d UOIOBUUCD MBN Z 1€ 1004 uoyosuuo)

US 10,958,590 B2

LOI1D3UUO0Y) 3jgejleAy

Sheet 4 of 9

UOITDBUU0D) DAY

Mar. 23, 2021

opLE

U.S. Patent

US 10,958,590 B2

Sheet 5 of 9

Mar. 23, 2021

U.S. Patent

S

5

-
-

-
-
[y

L RO M R N AN
N
A P A]
)
L)
[

-
-
-
-

L]
L
L]
L]
L]

'Y
L *
i“i”l”i“‘”l“‘“‘”l” “ l.ll.
L M)
L O SR SN
M MM

et)

g wt gy W b by b Ay g iy W SR W A

Lo B L B L B L B B B L B N

e o i e W o

004

002

-
o

00%

SPLOOBSHII

Al | asuodsoy abeloay

%001

Y000}

apepiepSepSenepepSepfepepSepiepfepSepSepS e el epianSepSapanepSepSeenepSepSaenSapS eSS eSS eSS apianenS e unenepSenSunSenSepS eSS el eSS e enSanS e apSenSenSapSunSenSepS i)

¢ SHS

| 9SS

UHEeSH S

SIS IV 40 1817

l'.‘"".‘l"'“‘_-

g P g N F By gF g gt ANy R B B

oot gy

O
~F

*#ili!ilil@

~
.

-

2

SUOH3IBUUOY

L
o0

Q01

SUOIoBUL0N ASng

abesony

U.S. Patent Mar. 23, 2021 Sheet 6 of 9 US 10,958,590 B2

Web Server 102
Connection Pool Updater 502

Server Memory 504
Non-Persistent Memory 505

Persistent Memory 206

Configuration File 508

Connector 104

Back End Communicator 510

Scheduler 106
L.oad Monitor 5712

1@8 i

Webserver Management Device 114

Performance Monitor 116

Connection Size Engine 514

Toolset Data Storage 516

Historical Data 518

Load Data 520

User Setlings 522

Server Data 524

JJJ

U.S. Patent Mar. 23, 2021 Sheet 7 of 9 US 10,958,590 B2

600

602

Determining A Number Of Allocated Connections For A Web Server

Detecting An Increase In Actual Connections For The Web Server

Determining A Predicted Number Of Connections Based On Historical Data |
' And The Increase '

608

Determining That The Predicted Number Of Connections Exceeds A
Threshold

; 610
- Dynamically Increasing, Based On The Predicted Number Exceeding The /
Threshold, The Number Of Allocated Connections Without Restarting The '

Web Server

Fig. 6

U.S. Patent Mar. 23, 2021 Sheet 8 of 9 US 10,958,590 B2

700

702

Monitoring Ongoing Connections At A Web Server

Determining A Predicted Number Of Connections Based On Historical
Request Trends And The Ongoing Connections

Determining That The Predicted Number Of Connections Exceeds A
Threshold

708

Dynamically Increasing The Number Of Allocated Collections By Initializing /
5 New Connections And Copying Ongoing Connections To The New :
Connections

FIg. 7

US 10,958,590 B2

Sheet 9 of 9

Mar. 23, 2021

U.S. Patent

Memory
804

. 3
2 < o
& £ 3
m S
Q. O
—

Computing Device
800

Do i o o e "] T " R R R O R o R R SR Rk R R YRR R R R Rk R o o e ke cmm |

Fig. 8

US 10,958,590 B2

1

DYNAMIC RESIZING OF WEBSERVER
CONNECTION POOL SIZE

BACKGROUND

Recent years have seen significant improvements in the
fiecld of online resource management. Due to various
advances, conventional online resource management sys-
tems are now able to service large numbers of connections
at web servers. Conventional systems can utilize a configu-
ration file to mmitialize settings for a web server. More
specifically, conventional systems can utilize a configuration
file to allot a number of allocated connections available for
a web server at the time that the connections are 1mtialized.
Further, conventional systems are able to modify settings for
web servers by taking the web server oflline and manually
moditying the configuration file. Then, when conventional
systems re-start the web server, the updated settings are 1n

eflect.

BRIEF SUMMARY

One or more embodiments of the present disclosure
provide benefits and/or solve one or more of problems 1n the
art with systems, non-transitory computer-readable media,
and methods that can dynamically tune a connection pool
size of a web server. More specifically, in one or more
embodiments, the disclosed systems can monitor the traflic
and health of a web server to determine how many connec-
tions to allocate to the web server. Further, the disclosed
systems and methods can dynamically modity the number of
connections allocated to a web server. Furthermore, the
disclosed systems can dynamically modily the connection
pool size of a web server without taking the web server
oflline.

To 1llustrate, the disclosed systems and methods can
detect an increase in the number of connections to a web
server over a time period. Then, based on that detected
increase and based on historical request trends, the systems
and methods can determine a predicted number of connec-
tions over a future time period. IT the predicted number of
connections exceeds a threshold number of allocated con-
nections, the systems and methods can dynamaically increase
the number of allocated connections for the web server
without restarting the web server or taking the web server
oflline.

Additional features and advantages of one or more
embodiments of the present disclosure are outlined 1n the
description which follows, and 1n part will be obvious from
the description, or may be learned by the practice of such
example embodiments.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

The detailed description provides one or more embodi-
ments with additional specificity and detail through the use
of the accompanying drawings, as briefly described below.

FIG. 1 1llustrates a diagram of an exemplary environment
in which a dynamic connection management system can
operate 1 accordance with one or more embodiments.

FI1G. 2 illustrates a sequence diagram of acts 1n a process
of dynamically altering the number of available connections
for a web server 1n accordance with one or more embodi-
ments.

FIG. 3A illustrates a flowchart for a process of dynami-
cally adjusting a connection pool size by a dynamic con-
nection management system 1n accordance with one or more
embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 3B illustrates schematic diagram of dynamically
adjusting a connection pool size by a dynamic connection

management system 1in accordance with one or more
embodiments.

FIG. 4 illustrates an example graphical user interface for
interacting with a dynamic connection management system
in accordance with one or more embodiments.

FIG. 5 1llustrates an exemplary architecture of a dynamic
connection management system in accordance with one or
more embodiments.

FIG. 6 illustrates a flowchart of a series of acts of
dynamically adjusting a connection pool size in accordance
with one or more embodiments.

FIG. 7 illustrates a flowchart of a series of acts of
dynamically adjusting a connection pool size in accordance
with one or more additional embodiments.

FIG. 8 illustrates a block diagram of an example com-
puting device for implementing one or more embodiments
of the present disclosure.

DETAILED DESCRIPTION

This disclosure describes one or more embodiments of a
dynamic connection management system that can dynami-
cally and automatically tune the number of connections
allocated to web servers. More specifically, the dynamic
connection management system can collect and utilize con-
nection data from web servers and automatically tune the
connection pool size for the web servers to handle spikes 1n
connection requests. Thus, the dynamic connection manage-
ment system can utilize analytics signals from the web
servers to efliciently and accurately modily the connection
s1ze pool for each web server to meet connection demands.

More specifically, the dynamic connection management
system can i1dentily the number of connections currently
allocated to a web server. The dynamic connection manage-
ment system can also detect a number of the allocated
connections currently being utilized. Additionally, the
dynamic connection management system can predict a num-
ber of connections needed over a time period based on
historical trends. Then, upon determining that the predicted
number of connections exceeds a threshold relative to the
number of allocated connections, the dynamic connection
management system can dynamically increase the number of
allocated connections. The dynamic connection manage-
ment system can automatically and dynamically increase the
number of allocated connections without restarting the web
server, taking the web server oflline, or interrupting any
ongoing connections to the web server.

As discussed briefly above, the dynamic connection man-
agement system can monitor the connections to web servers.
For example, the dynamic connection management system
can monitor current connections and connection requests for
the web server at regular intervals (e.g., every 1-30 seconds).
In one or more embodiments, the dynamic connection
management system can identily the number of connections
occurring during each regular interval to determine whether
the allocated number of connections will be suthicient.

The dynamic connection management system can predict
the number of connections needed at a web server over a
future time period and can automatically adjust the number
ol available or allocated connections based on that predic-
tion. More specifically, the dynamic connection manage-
ment system can determine a predicted number of needed
connections based on the number of current connections for
the web server, the health of the web server, and historical
request trends. The dynamic connection management sys-

US 10,958,590 B2

3

tem can adjust the number of available or allocated connec-
tions to ensure that there will be enough allocated connec-
tions for the predicted number of connections.

Further, as mentioned above, the dynamic connection
management system can dynamically adjust the number of
available connections without requiring a restart of the web
server. In particular, the dynamic connection management
system can modily the number of available connections by
moditying the number of allocated connections 1n a non-
persistent memory of a web server. In other words, the
dynamic connection management system can modily the
number of allocated connections without modifying the
persistent memory of the web server (1.e., the configuration
file). Thus, the dynamic connection management system can
modily the number of allocated connections without requir-
ing a restart of the web server.

Additionally, the dynamic connection management sys-
tem can dynamically adjust a number of allocated connec-
tions to a web server without interrupting current connec-
tions. For example, the dynamic connection management
system can create a new connection pool with an updated
number of available connections. The dynamic connection
management system can copy any ongoing connections with
the web server to connections in the new connection pool
and 1nitialize any new unused connections. Accordingly, the
dynamic connection management system can adjust the
number of available connections for web servers without
interruption to existing connections.

The dynamic connection management system can provide
many advantages and benefits over conventional systems
and methods. In particular, although conventional online
resource management systems have progressed in recent
years, they still have several sigmificant shortcomings with
regard to accuracy, efliciency and flexibility. For example,
though some conventional systems can allot a number of
allocated connections for a web server, this allotment
requires guesswork and 1s subject to human error. These
systems lack accuracy in determining an optimal number of
connections to allot, particularly for web servers that expe-
rience fluctuation in demand. Further, these inaccuracies
lead to significant problems with the systems. If allotment 1s
too low, potential users will not be able to connect to the
online resource. It allotment 1s too high, the system wastes
valuable system resources (e.g., system memory) on unuti-
lized connections. Further, due to fluctuations in demand for
online resources, many web servers experience both prob-
lems.

Additionally, though some conventional systems can
modily the allocation of allocated connections for a web
server, these conventional systems require taking the web
server ollline and manually modifying the configuration file
in order to do so. This down time reduces the efliciency of
the system by not allowing users to connect to the online
resource during the modification process. Further, such an
arduous process for modifying the allocation of allocated
connections for the online resource reduces the flexibility of
the system because the cost for changes to the configuration
file 1s so high.

In contrast, by momitoring the current number of connec-
tions and the health of web servers, the dynamic connection
management system can improve accuracy relative to con-
ventional systems. Specifically, by continuously (e.g., over
intervals) determining how many available connections to
allocate to a web server, the dynamic connection manage-
ment system more can accurately predict the needs of the
web server, thereby, avoiding downtown and efliciently
using computing resources.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

More specifically, the dynamic connection management
system can improve efliciency by moditying the number of
connections 1 the memory of a web server rather than
modifying a configuration file. As alluded to above, this
allows the dynamic connection management system to
modily the number of allocated connections without restart-
ing the web server. That 1s, the dynamic connection man-
agement system can dynamically modily the number of
available connections for a web server without taking the
web server oflline and without interrupting any ongoing,
connections. By enabling this seamless transition, the
dynamic connection management system can allow web
servers to remain available online without interruption dur-
ing modification of the size of a connection pool. This
increases efliciency by eliminating downtime for the web
SErver.

Additionally, the dynamic connection management sys-
tem provides increased tlexibility by allowing the number of
connections for a web resource to be modified with reduced
or eliminated negative consequences for the system. This
flexibility to modily the number of allocated connections at
any time, allows the system to avoid allocating excess
resources to a web server at low demand times. Further, by
continuously monitoring the web server, the dynamic con-
nection management system can quickly adjust to unex-
pected spikes 1n demand without any connection requests
resulting in error.

As 1llustrated by the foregoing discussion, the present
disclosure utilizes a variety of terms to describe features and
advantages of the dynamic connection management system.
Additional detail 1s now provided regarding the meaning of
such terms. For example, as used herein, the term “allocated
connection” refers to a connection available to a web server.
In particular, the term “allocated connection” can include
memory allocated to receive a connection to a web server
from another computing device.

Additionally, as used herein, the term “ongoing connec-
tion” refers to an ongoing connection to a web server. In
particular, the term “ongoing connection” can include
memory allocated to a currently utilized connection with a
web server. To 1llustrate, an ongoing connection can include
an ongoing connection between a web server and a client
device via a web server and/or an application server.

Further, as used herein, the term “predicted number of
connections” refers to an anticipated number of connections
needed over a future time period. In particular, the term
“predicted number of connections” can include a number of
connections determined to likely be requested at a future
time based on load data, historical load data, and trends of
that data.

Also, as used herein, the term “updated number of con-
nections” refers to a number of connections 1 a new
connection pool for a web server. In particular, the term
“updated number of connections™ can include a number of
connections determined based on a predicted number of
connections and/or one or more system settings.

Additionally, as used herein, the term “new connections™
refers to allocated connections that have recently been
initialized, regardless of whether an ongoing connection has
been assigned to the new connection. In particular, the term
“new connections” can include any connection 1n a recently
updated connection pool, or any new connection that has
been recently imitialized. As used herein, the term “new
unused connections” refers to allocated connections that
have recently been initialized, but that do not have an
ongoing connection assigned.

US 10,958,590 B2

S

Further, as used herein, the term ‘“web server” refers to
hardware and/or software that hosts a web-based resource,
which the web server makes available to client devices over
the Internet. In particular, a “web server” can provide access
to a web site, an online database, a web-based application,
or web-based resource.

Also, as used herein, the term “application server” refers
computing devices and/or software dedicated to hosting one
or more applications. In particular, the term “application
server’ can include computing devices and/or software
dedicated to hosting a service or application for an end user.

Additionally, as used herein, the term “time period” refers
to an increment of time. In particular, the term “time period”
can include a measurable increment of time over which or
alter which an event takes place. To illustrate, a time period
can include a regular 1nterval at which a system sends and/or
provides data or a future time period over which a system
makes a prediction.

Further, as used herein, the term “persistent memory”™
refers to software or hardware for storing data structures
such that can be accessed after the end of the process that
created or last modified them. As used herein, the term
“non-persistent memory” refers to software or hardware for
storing data structures such that cannot be accessed atter the
end of the process that created or last modified them.

Additionally, as used herein, the term “historical load
data” refers to historical connection data for a web server. To
illustrate, a historical load data can include historical num-
bers of connections to a resource, historical rates of new
connections to a resource, the historical health of a resource,
historical percentages of the available connections at the
resource that were 1n use, or other historical connection data.

Also, as used herein, the term “‘user settings™ refers to
user-determined parameters that aflect system functioning.
In particular, the term “‘user settings” can include user-
determined preferences dictating the function of features. To
illustrate, a user setting can include preferences for time
intervals to be utilized by a system, preferences for inclu-
sions within a graphical user interface, threshold values, or
other preferences determined by one or more users.

Additional detail will now be provided regarding the
dynamic connection management system in relation to 1llus-
trative figures portraying exemplary embodiments. In par-
ticular, FIG. 1 illustrates an exemplary environment 100 in
which a dynamic connection management system 101 can
operate. In particular, FIG. 1 illustrates an exemplary envi-
ronment 100 that includes web servers 102a, 1025, 102#. In
the embodiment shown 1n FIG. 1, each of the web servers
102a-1027 includes a respective connector 104 and sched-
uler 106. The web servers 102a-1027 can communicate, via
a protocol 108 with an application server 110. The applica-
tion server 110 can also communicate with a web server
management device 114, which hosts a performance monitor
116. The dynamic connection management system 101 can
also be hosted, at least i part, by the web server manage-
ment device 114. Accordingly, the web servers 102a-1027
can communicate with the web server management device
114 through the application server 110.

Although FIG. 1 illustrates a plurality of web servers
102a-1027, 1t will be appreciated that the environment 100
can include any number of servers. That 1s, the dynamic
connection management system 101 can be implemented
with any number of web servers, application servers, and
web server management devices. For example, the environ-
ment can include a single web server. In any event, the
dynamic connection management system 101 can allocate
available connections to a variety of web servers in a

10

15

20

25

30

35

40

45

50

55

60

65

6

clustered environment and can do so via any number of
application servers and web server management devices.

The web servers 1024-1027 can include various types of
computing devices and/or software dedicated to hosting one
or more web servers. That 1s, the web servers 102a-102# can
host a web server that can receive and/or maintain connec-
tions. For example, the web servers 102q-102# can host an
online database, website(s), or any other web server. The
web servers 1024-102# can include a connector 104, which
can allow the web servers 102q-102# to receive and tulfil
connection requests with a variety of client devices. The
connector 104 can also facilitate communication between
the web servers 102a-102# and the application server 110. In
one or more embodiments, the connector 104 {facilitates
connections for various web servers at once.

Additionally, the web servers 102a¢-102» can include a
scheduler 106, which can collect load data for the web
server(s). More specifically, the scheduler 106 can monitor
the service load for the web server(s) 102a-102z. In one or
more embodiments, the scheduler 106 can be part of the
connector 104. The scheduler 106 can monitor the number
ol ongoing connections at a web server and the health of a
web server. Then, the web servers 1024-102» can commu-
nicate that data to the web server management device 114
via the protocol 108. More specifically, the protocol 108 can
facilitate communications between the web servers 102a-
1027 and the application server 110.

As discussed briefly above, 1n one or more embodiments,
the dynamic connection management system 101 may oper-
ate with multiple web servers and application servers 1n a
clustered environment. However, regardless of the configu-
ration, the protocol 108 can allow communication with the
web servers 102a-1027 via the application server 110. For
example, a single web server can commumnicate with mul-
tiple application servers, and a single application server can
communicate with multiple web servers. Accordingly, the
dynamic connection management system 101 can balance
the connection load across a plurality of web servers and
application servers.

Further, the dynamic connection management system 101
can dynamically adjust the number of connections available
at a given web server 102a-1027 without adjusting the
number of connections available at other web-servers. Alter-
natively, the dynamic connection management system 101
can dynamically adjust the number of connections available
to various web-servers at once. The dynamic connection
management system 101 can balance the load between
various web servers and can evaluate load data and historical
data from one web server to determine the number of
connections to allocate to another web server in the dynamic
connection management system 101.

As shown by FIG. 1, the environment 100 can also
include an application server 110. The application server 110
can include various types of computing devices and/or
soltware dedicated to hosting one or more applications. The
application server 110 may {facilitate various connections
between the web servers 102q-1027 and various client
devices. Further, the web servers 102¢-10272 may commu-
nicate with the web server management device 114 through
the application server 110.

Further, the dynamic connection management system 101
can 1mclude a web server management device 114. The web
server management device 114 can be any of various types
of computing devices, as described in greater detail below
with regard to FIG. 8. Additionally, the web server manage-
ment device 114 can 1nclude or host the performance moni-
tor 116 and the dynamic connection management system

US 10,958,590 B2

7

101. The dynamic connection management system 101 can,
based on the data received from the web servers 102a-102#,
determine a number of connections to make available for a
web server. While FIG. 1 shows the application server 110
and the web server management device 114 as separate
devices, 1n one or more embodiments they can be the same
device or hosted together across the same plurality of
devices.

As suggested by previous embodiments, the dynamic
connection management system 101 can be implemented 1n
whole or 1n part by the individual elements of the environ-
ment 100. Although FIG. 1 illustrates the dynamic connec-
tion management system 101 implemented within the web
server management device 114, components of the dynamic
connection management system 101 can be implemented 1n
any of the components of the environment 100. This dis-
closure describes the components of the dynamic connection
management system 101 further below with regard to FIG.
5. For example, 1n one or more embodiments, the connection
104 and scheduler 106, 1n whole or 1n part, form part of the
dynamic connection management system 101.

As further shown 1n FIG. 1, in some embodiments, the
administrator device 118 comprises a computing device that
enables an administrator to send and receive digital com-
munications. For example, the administrator device 118 can
include a desktop computer, laptop computer, smartphone,
tablet, or other electronic device. In some embodiments, the
administrator device 118 further includes one or more soft-
ware applications (e.g., an analytics application) that enables
the administrator to send and receive digital communica-
tions. For example, the analytics application 120 can be a
software application installed on the administrator device
118 or a software application hosted on the web server
management device 114. When hosted on the web server
management device 114, the analytics application 120 may
be accessed by the administrator device 118 through another
application, such as a web browser.

In some 1mplementations, the analytics application 120
includes instructions that, when executed by a processor,
cause the administrator device 118 to present one or more
graphical user interfaces, such as various user interfaces
described below. For example, 1n certain embodiments, the
analytics application 120 includes instructions that, when
executed by a processor, cause the administrator device 118
to present graphical user interfaces comprising options to
select one or more options for controlling the connections of
the web servers 102a-1027 or providing information about
the connections or health of the web servers 102a-102z.

As discussed above, the dynamic connection management
system 101 can modity the number of allocated connections
for a web server quickly and etliciently with no interruption
to the web server. In particular, FIG. 2 shows a sequence
diagram showing an embodiment of a process of dynami-
cally altering the number of available connections for a web
server. As 1llustrated i FIG. 2, a web server 102 (e.g., one
of web servers 102a-1027) can perform act 202 of moni-
toring the service load. More specifically, the web server 102
can, via the scheduler 106, monitor a web server for “load
data” including the current number of ongoing connections,
the rate of new connections, the current health of the web
server, and the percentage of the available connections of the
web server 102 that are currently 1n use. More specifically,
the web server 102 can detect a site name for the site to
which the data belongs (e.g., a web site or application hosted
by the web server 102), data regarding the port at which the
site 1s operational, and the name of the web server for the
site. The web server 102 can also monitor the current

10

15

20

25

30

35

40

45

50

55

60

65

8

number of ongoing connections in use for the site, the array
of each instance on the site, the current site health, the
current number of available connections, data regarding the
load balance, and a time stamp for the data.

For example, the web server 102 can monitor a number of
ongoing connections and/or requested new connections for
the web server 102 repeatedly at a monitoring time 1nterval.
For example, the web server 102, and more particularly the
scheduler 106, can determine the number of ongoing con-
nections for the web server every second, every two second,
every five seconds, or at another time interval.

Further, as illustrated by FIG. 2, while monitoring the
service load of the web server 102, the web server 102 can
also perform the act 204 of sending load data to the web
server management device 114 via the application server
110. As described above, the web server 102 can commu-
nicate load data to the web server management device 114
and the performance monitor 116 via the connector 104 and
protocol 108 by transmuitting the load data to the application
server 110.

More specifically, the web server 102 can send the load
data at reporting time interval (e.g., every 30 seconds, every
minute, or every 90 seconds). The dynamic connection
management system 101 can automatically set the monitor-
ing and reporting time intervals, or the monitoring and
reporting time intervals can be determined according to user
settings. The reporting time interval can be longer than the
monitoring time interval. For example, the web server 102
can monitor (e.g., determine the currently utilized connec-
tions) every second and can send the load data to the
application server 110 every minute.

In one or more embodiments, the web server 102 can
determine a high or average number of ongoing connections
during the reporting time interval from the determined
number of ongoing connections determined at the monitor-
ing time interval. For example, the web server 102 can
determine the number of ongoing connections every second
(e.g., at the monitoring time interval). Then for a given
reporting time interval, the web server 102 can determine the
highest monitored number of ongoing connections. Alterna-
tively, the web server 102 can average all of the monitored
number of ongoing connections during the reporting time
interval. Thus, when the monitoring time interval i1s one
second and the reporting time interval 1s one minute, the web
server 102 can average 60 instances ol the number of
ongoing connections for the web server 102 or identify the
highest instance ol ongoing connections from the 60
instances of ongoing connections.

In one or more embodiments, at the end of a reporting
time 1interval, the web server 102 sends the maximum or
average number ol concurrent requests that occurred during
the reporting time interval to the application server 110 for
use 1n determining a predicted number of connections.

Further, the dynamic connection management system 101
can 1instruct the web server 102 to override the normal
reporting time interval 1n the case of a spike 1n connections.
More specifically, 1f the scheduler 106 detects that the
number of connections meets or exceeds a certain threshold
percentage ol available connections, the web server 102 can
send the load data immediately rather than sending at the end
of the regular reporting time interval. The dynamic connec-
tion management system 101 can automatically set the
percentage threshold, or 1t can be determined by user set-
tings. For example, a web server 102 could have a regular
reporting time interval of 90 seconds and a percentage
threshold of 90%. With these settings, 11 the scheduler 106

detects that 90% of the available connections were 1n use 4

US 10,958,590 B2

9

seconds 1nto the regular reporting time interval, the web
server 102 can immediately (or within a shortened time
frame) send the load data to the dynamic connection man-
agement system 101 via the application server 110.

In another example, a web server 102 can have a regular
reporting time interval of 1 minute and a percentage thresh-
old of 95%. With these settings, 1f the scheduler 106 detects
that 95% of the available connections are 1n use at any point
betore the completion of the regular interval, the web server
102 can send the load data to the dynamic connection
management system 101 upon detecting the 95% load rather
than upon detecting the end of the regular reporting time
interval.

Further, the web server 102 can send the load data in
response to detecting that various site data meets a threshold
value or undergoes a sudden change. For example, the web
server 102 can detect changes or values for the site health,
site 1nstances, or load balance. For example, the web server
102 can, 1n response to detecting that a site 1s at 25% site
health, send load data to the dynamic connection manage-
ment system 101 without regard to the regular reporting time
interval. In another example, the web server 102 can send
the load data to the dynamic connection management system
101 without regard to the regular reporting time interval 1n
response to detecting a 30% change to the load balance at the
web server 102.

Additionally, as illustrated by FIG. 2, the dynamic con-
nection management system 101 can perform act 206 of
evaluating load data and historical data. In one or more
embodiments, the dynamic connection management system
101 may store historical data for various web servers at the
application server 110 and/or at the web server management
device 114. Historical data may be archived load data for the
web server 102, including historical numbers of connections
to the web server 102, historical rates of new connections to
the web server 102, the historical health of the web server
102, and the historical percentages of the available connec-
tions at the web server 102 that are currently in use. The
dynamic connection management system 101 can track
these historical metrics for various dates, times, days of the
week, holidays, seasons, etc. The dynamic connection man-
agement system 101 can, at the web server management
device 114, recognize trends from the historical data and the
load data from the web servers 102a-1027.

As 1llustrated by FIG. 2, the dynamic connection man-
agement system 101 can perform act 208 of determining an
updated pool size. Based on system settings, the 1dentified
trends, historical data, and current load data, the dynamic
connection management system 101 can determine an
updated pool size (1.e., a number of connections) to allocate
to the web server 102. In one or more embodiments, the
dynamic connection management system 101 can determine
a predicted number of connections over a future time period
and utilize a threshold number of connections or threshold
percentage of available connections to determine an updated
pool size. That 1s, the dynamic connection management
system 101 can determine a predicted number of connec-
tions over a future time period based on load data and
historical data and can then determine an updated pool size
based on the predicted number of connections. In one or
more embodiments, the dynamic connection management
system 101 can determine an updated pool size based on a
“butler” of a percentage threshold or threshold number of
connections over the predicted number of connections. The
dynamic connection management system 101 can automati-
cally implement these thresholds, or they may be determined
via user settings. Then, the dynamic connection manage-

10

15

20

25

30

35

40

45

50

55

60

65

10

ment system 100 can send the updated pool size to the web
server 102, including sending the name of the site and/or
server to mcrease and the increase ratio or updated pool size
as a number ol connections.

Upon receiving the updated pool size, the web server 102
can perform the act 210 of creating a new connection pool.
More specifically, the dynamic connection management
system 101 can update the number of available connections
for a web server 102 by modifying the non-persistent
memory of the resource. That 1s, the dynamic connection
management system 101 may not modily the configuration
file for the web server 102, and instead changes the value for
the number of available connections 1n the non-persistent
memory of the web server 102.

More specifically, the web server 102 can perform act 212
ol mitializing new unused connections. The dynamic con-
nection management system 101 can cause the web server
102 to mitialize the full new connection pool with each new
connection empty. Then, the web server 102 can perform act
214 of copying ongoing connections to connections in the
new connection pool. That 1s, the web server 102 can point
copy each of the ongoing connections to the new connection
pool. Then, the system can de-allocate the memory previ-
ously dedicated to the ongoing connections to reduce or
climinate redundancies and free up computing resources.

FIGS. 3A and 3B provide additional detail for an embodi-
ment of a process of dynamically adjusting a connection
pool size. FIG. 3A illustrates series of acts 300, which may
be pertormed at the web server 102. The acts 300 can be
performed by a component of the dynamic connection
management system 101 on the web server 102 or per-
formed by the web server 102 1n response to instructions
sent to the web server 102 from the dynamic connection
management system 101.

For example, as illustrated by FIG. 3A, the web server
102 can perform the act 302 of imtializing connections
according to a configuration file stored on the web server
102. That 1s, the dynamic connection management system
101 can mitialize the web server 102 and allocate the
number of connections specified 1in the configuration file.
More specifically, the web server 102 can read the number
ol connections indicated in the configuration file stored 1n
persistent memory on the web server 102 to non-persistent
memory. In response to which, the web server 102 can
initialize a connection pool 312, as shown by FIG. 3B,
having the number of connections specified 1n the configu-
ration file. The example shown by FIG. 3B, illustrates a
connection pool 312 with five connections 314a-314e.

Additionally, as shown 1n FIG. 3A, the web server 102
can perform act 304 of receiving an updated connection pool
size. As discussed above, the web server 102 can receive a
new connection pool size from the dynamic connection
management system 101 through the application server 110,
including via the protocol 108. In particular, as described
above, the dynamic connection management system 101 can
determine a need to increase the number of connections at
the web server 102 beyond the number of connections 1n the
connection pool 312. In particular, as described above, the
scheduler 106 can send analytics data indicating that con-
nections 314qa, 314b, 314¢, and 3144 are active. In response
to the number of active connections and historical data, the
dynamic connection management system 101 can determine
to increase the number of connections at the web server 102
to avoid receive more requests than available connections.
For example, the dynamic connection management system
101 can determine to increase the number of connections
from five to eight. In particular, the dynamic connection

US 10,958,590 B2

11

management system 101 can send a trigger to the connector
104 at the web server 102 via the application server 110 to
increase the number of connections.

Upon receipt of the updated connection pool size and
trigger recerved form the dynamic connection management
system 101, as shown in FIG. 3A, the web server 102 can
perform act 306 of iitializing new connections. In one or
more embodiments, the web server 102 modifies the number
ol available connections for the web server 102 by modi-
tying the indicated number of connections in the non-
persistent memory of the web server 102. More specifically,
the web server 102 can allocate available memory to each
connection 3184-318/2 1n a new connection pool 316, as
shown by FIG. 3B. That 1s the web server 102 can imtialize
the new connection pool 316 to have the updated connection
pool size (e.g., 8 1n the example embodiment shown 1n FIG.
3B).

Then, as shown in FIG. 3A, the web server 102 can
perform act 308 of copying ongoing connections 314a,
3145, 314c¢, 3144 to new connections 318a, 3185, 318c,
3184 in the new connection pool 316. More specifically, the
web server 102 can cause each of the ongoing connections
314a, 314b, 314c, 3144 to point to a new connection 318a,
318b, 318c, 3184 1n the new connection pool 316. Then, the
web server 102 can copy each of the ongoing connections
314a, 314b, 314c, 3144 from the “old” connection pool 312
to a connection 318a, 31856, 318¢, 3184 in the new or
updated connection pool 316, as shown by FIG. 3B. The web
server 102 can copy the ongoing connections 314a, 3145,
314c¢, 314d to the new connection pool 316 without inter-
rupting the ongoing connections 314a, 3145, 314¢, 3144. In
other words, from the perspective of a client device access-
ing a web resource at the web server 102 via an ongoing
connection, the transition of the ongoing connection from
the connection pool 312 to the new connection pool 316 1s
seamless or undetectable.

As shown 1in FIG. 3A, the web server 102 can also
perform act 310 of de-allocating memory from the old
connections 314a-314e. To reduce or eliminate redundan-
cies, the web server 102 can then de-allocate the memory
dedicated to ongoing connections 314a, 3145, 314¢, 314d
from the “old” connection pool 312. The web server 102 can
de-allocate this memory after the ongoing connections have
cach been point copied to the new connection pool 316.
Consequently, the web server 102 can modily the number of
available connections without any interruption to the ongo-
ing connections to the web server 102.

As mentioned above, the analytics application 120 on the
administrator device 118 can present graphical user inter-
faces comprising options to select one or more options for
controlling the connections of the web servers 102a-1027 or
providing information about the connections or health of the
web servers 102a-1027. FIG. 4 shows an example embodi-
ment of a graphical user interface for the dynamic connec-
tion management system 101. More specifically, the graphi-
cal user interface 400 includes various interactable data
displays for web servers of the dynamic connection man-
agement system 101. The graphical user interface 400
includes interactable data displays for two example web
servers, Site 1 and Site 2. Though FI1G. 4 shows the graphical
user 1interface 400 including four charts and graphs, 1t will be
appreciated that the graphical user interface 400 can 1include
any of a variety of charts and/or graphs that visualize load
data and/or historical data from the dynamic connection
management system 101.

More specifically, the graphical user interface 400 can
include the busy connections graph 402. FIG. 4 shows busy

10

15

20

25

30

35

40

45

50

55

60

65

12

connections graph 402 including historical trends for the
average number of connections over time. It will be appre-
ciated that while FIG. 4 shows the graph as a line graph
differentiated by solid and dashed lines, the busy connec-
tions graph 402 could be presented 1n accordance with a
variety of designs, including various colors and/or patterns.
The busy connections graph 402 can include any historical
connection data from the dynamic connection management
system 101. For example, in one or more other embodi-
ments, the busy connections graph 402 could display his-
torical trends for the maximum number of new connections
over various time periods, the average number of new
connections over various time periods, or any other connec-
tion data from the dynamic connection management system
101.

Further, in one or more embodiments, 1n response to
detecting user 1nput (e.g. a mouse hover, tap, click, etc.) at
a portion of the busy connections graph 402, the dynamic
connection management system 101 can display additional
information about the portion of the busy connections graph
402. More specifically, the dynamic connection manage-
ment system 100 can display the number of active connec-
tions and the number of available connections at the selected
time for the selected site.

Additionally, the busy connections graph 402 can include
the dynamic update icon 403. The busy connections graph
402 can include dynamic update icon 403 at each time at
which the dynamic connection management system 101
caused the number of available connections for a web server
to dynamically increase. In one or more embodiments, the
dynamic connection management system 101 can present
additional 1nformation upon detecting a selection at a
dynamic update icon 403 or at another location on the busy
connections graph 402. For example, upon interaction with
a dynamic update icon 403, the dynamic connection man-
agement system 101 can display the load data that caused the
update to the connection pool.

Additionally, the graphical user interface 400 can include
the average response time graph 404. FIG. 4 shows the
average response time graph 404 including historical trends
for the average response of the web servers over time.
Similar to the discussion above with regard to the busy
connections graph 402, it will be appreciated that the aver-
age response time graph 404 can be presented 1n accordance
with a variety of designs. Further, 1n response to receiving
interaction at the average response time graph 404, the
dynamic connection management system 101 can present
additional information to the user regarding the response
time of various web servers.

Further, the graphical user interface 400 can include the
web server health chart 406. FIG. 4 illustrates the web server
health chart 406 visualizing the current health of Site 1 and
Site 2 via health “bars.” It will be appreciated that the web
server health chart could visualize the health of any number
web servers from the dynamic connection management
system 101 in a vaniety of ways. Further, in one or more
embodiments, the web server health chart 406 can visualize
the health of the web servers over time rather than the
current health. Additionally, in response to detecting user
interaction at the web server health chart, the dynamic
connection management system 101 can present additional
data regarding the health of various web servers.

The graphical user interface 400 can also include the load
distribution chart 408. FIG. 4 illustrates the load distribution
chart 408 as a pie chart showing the current distribution of
connections across Site 1 and Site 2. The load distribution
chart 408 can visualize the distribution of current connec-

US 10,958,590 B2

13

tions of various web servers 1 a variety of ways. For
example, the load distribution chart 408 could show the
distribution via a line graph, a bar graph, or any other chart
or graph. Further, the load distribution chart 408 can be
presented according to a variety of designs and can present
additional data regarding the load distribution for the
dynamic connection management system 101 upon receiv-
ing user interaction at the load distribution chart 408.

Turning to FIG. 5, additional detail will be provided
regarding capabilities and components of the dynamic con-
nection management system 101 1n accordance with one or
more embodiments. In particular, FIG. 5 shows a schematic
diagram of example architecture of the dynamic connection
management system 101 hosted on a web servers 102a-
1027, an application server 110, and a web server manage-
ment device 114. The dynamic connection management
system 101 can represent one or more embodiments of the
dynamic connection management system 101 described
previously.

As 1llustrated 1n FIG. 5, the dynamic connection manage-
ment system 101 includes various components for perform-
ing the processes and features described heremn. For
example, the dynamic connection management system 101
can include a web servers 102a-1027, as described above.
Further, the web servers 102a-102# can include the connec-
tion pool updater 502.

Additionally, the web servers 102a-102# can include the
server memory 504. The server memory 504 can include the
non-persistent memory 305 and the persistent memory 506.
Further, the persistent memory 506 can include the configu-
ration file 508. As discussed above, the dynamic connection
management system 101 can modily the non-persistent
memory 505 of a web server 1n order to dynamically update
the number of available connections for that resource.

As discussed above, the web servers 102a-102# can also
include the connector 104, which can facilitate communi-
cations between the web servers 102a-102#, the application
server 110, and the web server management device 114.
More specifically, the connector 104 can include the back
end communicator 510. The back end communicator can
facilitate communications between the web servers 102a-
1027, the application server 110, and the web server man-
agement device 114.

Further, as discussed above, the web servers 102a-102#
can 1nclude the scheduler 106. In one or more embodiments,
the scheduler 106 1s included as part of the connector 104.
The scheduler 106 can continuously monitor load data for
web servers of the dynamic connection management system
101, such as the current number of connections, the health
of the web server, and the percentage of allocated connec-
tions currently used. More specifically, the scheduler 106
can include the load monitor 512. The load monitor 312 can
monitor the “load data” for a web server, including current
number of connections to the resource, the rate of new
connections to the resource, the current health of the
resource, and the percentage of the available connections at
the resource that are currently 1n use.

Also as discussed above, the dynamic connection man-
agement system 101 may include the application server 110.
The application server 110 may facilitate connections
between client devices and various web servers of the
dynamic connection management system 101. The web
servers 102a-10272 may communicate with the web server
management device 114 through the application server 110.
Further, 1n one or more embodiments, the application server
110 can store historical load data.

10

15

20

25

30

35

40

45

50

55

60

65

14

As shown 1n FIG. 3, the web server management device
114 may include the performance monitor 116. The perfor-
mance monitor can evaluate load data and historical load
data to predict a number of connections for a future time
period and determine an updated connection pool size for a
web server. As discussed above 1n greater detail with regard
to FIGS. 2-3, the performance monitor can identify trends
from the historical load data and utilize these trends 1n 1ts
predictions and/or determinations.

More specifically, as shown in FIG. 5, the performance
monitor 116 can include the connection size engine 514. The
connection size engine 314 can continuously determine an
updated connection pool size for one or more web servers.
As discussed above, this determination can be based on a
predicted number of connections over a future time period,
current load data, and historical load data. Additionally, as
shown 1n FIG. 5, the performance monitor 116 can include
the toolset data storage 516. The toolset data storage 516 can
include historical data 518, load data 520, user settings 522,
server data 524, and site data 526.

FIG. § illustrates a schematic diagram of an example
configuration on which the dynamic connection manage-
ment system 101 could be implemented 1n accordance with
one or more embodiments. Each of the components 102-526
of the dynamic connection management system 101 can
include software, hardware, or both. For example, the com-
ponents 102-526 can include one or more nstructions stored
on a computer-readable storage medium and executable by
processors of one or more computing devices, such as the
web servers 102a-102#n, application server 110, or web
server management device 114. When executed by the one
or more processors, the computer-executable nstructions of
the dynamic connection management system 101 can cause
the computing device(s) to perform the methods described
herein. Alternatively, the components 102-526 can include
hardware, such as a special-purpose processing device to
perform a certain function or group of functions. Alterna-
tively, the components 102-526 of the dynamic connection
management system 101 can include a combination of
computer-executable instructions and hardware.

Furthermore, the components 502-526 of the dynamic
connection management system 101 may, for example, be
implemented as one or more operating systems, as one or
more stand-alone applications, as one or more modules of an
application, as one or more plug-ins, as one or more library
functions or functions that may be called by other applica-
tions, and/or as a cloud-computing model. To illustrate, the

components 502-526 may be implemented 1n an application,
including but not limited to ADOBE® COLDFUSION®,

ADOBE® COLDFUSION® BUILDER™, ADOBE®
CONTENT SERVER, ADOBE® MEDIA SERVER,
ADOBE® FRAMEMAKER® PUBLISHING SERVER,
and/or ADOBE® INDESIGN® SERVER.

FIGS. 1-5, the corresponding text, and the examples
provide a number of different methods, systems, devices,
and non-transitory computer-readable media of the dynamic
connection management system 101. In addition to the
foregoing, one or more embodiments can also be described
in terms of flowcharts comprising acts for accomplishing a
particular result, as shown 1n FIGS. 6-7. FIGS. 6-7 may be
performed with more or fewer acts. Further, the acts may be
performed 1n differing orders. Additionally, the acts
described herein may be repeated or performed in parallel
with one another or parallel with different instances of the
same or similar acts. Further, the series of acts 600, 700 may
be performed 1n a clustered environment comprising two or
more web servers and two or more application servers.

US 10,958,590 B2

15

As mentioned, FIGS. 6-7 illustrates a flowchart of a series
of acts 600, 700 1n accordance with one or more embodi-
ments. While FIGS. 6-7 illustrate acts according to one
embodiment, alternative embodiments may omit, add to,
reorder, and/or modily any of the acts shown 1n FIGS. 6-7.
The acts of FIGS. 6-7 can be performed as part of a method.
Alternatively, a non-transitory computer-readable medium
can comprise instructions that, when executed by one or
more processors, cause a computing device to perform the
acts of FIGS. 6-7. In some embodiments, a system can
perform the acts of FIGS. 6-7.

As shown 1n FIG. 6, the series of acts 600 includes an act
602 for determining a number of allocated connections for
a web server. Additionally, as shown 1n FIG. 6, the series of
acts 600 i1ncludes an act 604 of detecting an increase 1n
ongoing connections for the web server. In particular, the act
604 can include detecting an increase 1n actual connections
for the web server over a first time period. In particular, the
act 604 can include 1dentifying an increase in a number of
ongoing connections for the web server over a first time
period. Further, the act 604 can include identifying the
increase 1 a number of ongoing connections for the web
server over a first time period by recerving, from a scheduler
at the web server, a number ol ongoing connections or
requests for connections.

Additionally, as shown in FIG. 6, the series of acts 600
includes an act 606 of determining a predicted number of
connections based on historical data and the increase. In
particular, the act 606 can include determining, based on
historical request trends and the detected increase, a pre-
dicted number of connections over a second time period.

Additionally, as shown 1n FIG. 6, the series of acts 600
includes an act 608 of determining that the predicted number
of connections exceeds a threshold. In particular, the act 608
can include determining that the predicted number of con-
nections exceeds a predetermined threshold relative to the
number of allocated connections for the web server.

Specifically, the act 608 can include determining, based at
least on the number of ongoing connections for the web
server and historical load data, an updated number of
connections for the web server. Further, the act 608 can
include receiving, via a graphical user interface, one or more
user settings, and determining, based on the one or more user
settings, the predetermined threshold. The act 608 can also
be performed wherein the predetermined threshold relative
to the number of allocated connections for the web server 1s
a predetermined threshold for a difference between the
number of allocated connections and the predicted number
of connections over the second time period. The act 608 can
also include determining, based at least on the number of
ongoing connections for the web server and historical load
data, an updated number of connections for the web server

Additionally, as shown 1n FIG. 6, the series of acts 600
includes an act 610 of dynamically increasing, based on the
predicted number exceeding the threshold, the number of
allocated connections without restarting the web server. In
particular, the act 610 can include dynamically increasing,
based on the predicted number of connections exceeding the
predetermined threshold, the number of allocated connec-
tions for the web server without restarting the web server.
The act 610 can also include dynamically increasing the
number of allocated connections for the web server by
sending the updated number of connections to the web
server along with a trigger to increase the number of
allocated connections for the web server to the updated
number of connections. Additionally, the act 610 can include
dynamically increasing the number of allocated connections

10

15

20

25

30

35

40

45

50

55

60

65

16

for the web server by dynamically altering a number of
allocated connections indicated 1n non-persistent memory of
the web server. Further, the act 610 can include dynamically
increasing the number of allocated connections for the web
server without altering a number of allocated connections
stored 1n persistent memory of the web server. Specifically,
the act 610 can include allocating memory for new connec-
tions, copying ongoing connections to the memory for the
new connections, de-allocating the memory previously uti-
lized for the ongoing connections, and initializing new
unused connections.

As shown 1n FIG. 7, the series of acts 700 includes an act
702 of monitoring ongoing connections at a web server. In
particular, the act 702 can include monitoring, at the at least
one web server, a number of ongoing connections for the at
least one web server. Additionally, the act 702 can include
determining, at the number of ongoing connections repeat-
edly at a first time 1nterval, determining a high number of
ongoing connections during a second time interval from the
numbers of ongoing connections determined at the first time
interval, the second time interval being longer than the first
time interval, and reporting the high number of ongoing
connections repeatedly at the second time interval for use 1n
determining the predicted number of connections.

The act 702 can also include determining that a first
number of ongoing connections determined at the first time
interval 1s within a predetermined percentage of the number
ol allocated connections for the at least one web server and
reporting the first number of ongoing connections prior to
the second time 1nterval for use 1n determining the predicted
number of connections. Further, the act 702 can include
sending, by a scheduler at the at least one server, the high
number ol ongoing connections to the at least one applica-
tion server. Additionally, the act 702 can include detecting a
change in the health of the at least one web server, and
wherein the predicted number of connections over the
second time period 1s further based on the change in the
health of the at least one web server.

As shown 1n FIG. 7, the series of acts 700 also includes
an act 704 of determining a predicted number of connections
based on historical request trends and the ongoing connec-
tions. In particular, the act 704 can include determining,
based on historical request trends and the monitored number
ol ongoing connections, a predicted number of connections.

Additionally, as shown in FIG. 7, the series of acts 700
also 1ncludes an act 706 of determining that the predicted
number of connections exceeds a threshold. In particular, the
act 706 can include determiming that the predicted number of
connections exceeds a predetermined threshold relative to a
number of allocated connections for the at least one web
Server.

Further, as shown 1in FIG. 7, the series of acts 700 also
includes an act 708 of dynamically increasing the number of
allocated collections by initializing new connections and
copying ongoing connections to the new connections. In
particular, the act 708 can include dynamically increasing
the number of allocated connections for the at least one web
server by 1nitializing a set of new connections and copying
the ongoing connections to new connections of the set of
new connections. Additionally, the act 708 can include
dynamically increasing the number of allocated connections
automatically 1n response to an increase 1n the number of
ongoing connections and without further input or istruction
from an administrator. Further, the act 708 can include
dynamically increasing the number of allocated connections
for the at least one web server without restarting the at least
one web server or interrupting the ongoing connections. The

US 10,958,590 B2

17

act 708 can also include sending, from the at least one
application server, an updated number of connections to the
at least one web server along with a trigger to increase the
number of allocated connections to the updated number of
connections.

In addition (or in the alternative) to the acts described
above, some embodiments, include a step for dynamically
increasing the number of allocated connections for the web
server. The methods and acts described 1n relation to FIGS.
2-3B can comprise the corresponding acts for performing a
step for dynamically increasing the number of allocated
connections for the web server.

Embodiments of the present disclosure may comprise or
utilize a special purpose or general-purpose computer
including computer hardware, such as, for example, one or
more processors and system memory, as discussed 1n greater
detail below. Embodiments within the scope of the present
disclosure also include physical and other computer-read-
able media for carrying or storing computer-executable
instructions and/or data structures. In particular, one or more
of the processes described herein may be implemented at
least 1n part as instructions embodied 1n a non-transitory
computer-readable medium and executable by one or more
computing devices (e.g., any ol the media content access
devices described herein). In general, a processor (e.g., a
miCroprocessor) receives instructions, from a non-transitory
computer-readable medium (e.g., memory), and executes
those structions, thereby performing one or more pro-
cesses, mcluding one or more of the processes described
herein.

Computer-readable media can be any available media that
can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are non-transitory computer-
readable storage media (devices). Computer-readable media
that carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation,
embodiments of the disclosure can comprise at least two
distinctly different kinds of computer-readable media: non-
transitory computer-readable storage media (devices) and
transmission media.

Non-transitory computer-readable storage media (de-

vices) includes RAM, ROM, EEPROM, CD-ROM, solid
state drives (“SSDs”) (e.g., based on RAM), Flash memory,
phase-change memory (“PCM”), other types of memory,
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer.

A “network™ 1s defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When mformation 1s transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry desired
program code means in the form of computer-executable
istructions or data structures and which can be accessed by
a general purpose or special purpose computer. Combina-
tions of the above should also be included within the scope
of computer-readable media.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

able 1nstructions or data structures can be transierred auto-
matically from transmission media to non-transitory
computer-readable storage media (devices) (or vice versa).
For example, computer-executable instructions or data
structures received over a network or data link can be
buflered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system
RAM and/or to less volatile computer storage media (de-
vices) at a computer system. Thus, 1t should be understood
that non-transitory computer-readable storage media (de-
vices) can be included 1n computer system components that
also (or even primarily) utilize transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed by a processor,
cause a general-purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. In some embodi-
ments, computer-executable instructions are executed by a
general-purpose computer to turn the general-purpose com-
puter mnto a special purpose computer implementing ele-
ments of the disclosure. The computer-executable mnstruc-
tions may be, for example, binaries, imntermediate format
instructions such as assembly language, or even source code.
Although the subject matter has been described 1n language
specific to structural features and/or methodological acts, it
1s to be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the described
features or acts described above. Rather, the described
features and acts are disclosed as example forms of 1imple-
menting the claims.

Those skilled 1n the art will appreciate that the disclosure
may be practiced 1n network computing environments with
many types ol computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. The disclosure may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. In a distributed system environment, program
modules may be located 1n both local and remote memory
storage devices.

Embodiments of the present disclosure can also be imple-
mented 1n cloud computing environments. As used herein,
the term “cloud computing” refers to a model for enabling
on-demand network access to a shared pool of configurable
computing resources. For example, cloud computing can be
employed in the marketplace to offer ubiquitous and con-
venient on-demand access to the shared pool of configurable
computing resources. The shared pool of configurable com-
puting resources can be rapidly provisioned via virtualiza-
tion and released with low management eflort or service
provider interaction, and then scaled accordingly.

A cloud-computing model can be composed of various
characteristics such as, for example, on-demand self-service,
broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud-computing model
can also expose various service models, such as, for
example, Solftware as a Service (“SaaS”), Platform as a
Service (“PaaS”™), and Infrastructure as a Service (“laaS™). A
cloud-computing model can also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In addition, as used

US 10,958,590 B2

19

herein, the term “cloud-computing environment”™ refers to an
environment 1n which cloud computing 1s employed.

FIG. 8 illustrates a block diagram of an example com-
puting device 800 that may be configured to perform one or
more of the processes described above. One will appreciate
that one or more computing devices, such as the computing
device 800 may represent the computing devices described
above (e.g., such as the web servers 102aq-102#, application
server 110, or web server management device 114). In one
or more embodiments, the computing device 800 may be a
mobile device (e.g., a mobile telephone, a smartphone, a
PDA, a tablet, a laptop, a camera, a tracker, a watch, a
wearable device, etc.). In some embodiments, the computing,
device 800 may be a non-mobile device (e.g., a desktop
computer or another type of client device). Further, the
computing device 800 may be a server device that includes
cloud-based processing and storage capabailities.

As shown in FIG. 8, the computing device 800 can
include one or more processor(s) 802, memory 804, a
storage device 806, input/output interfaces 808 (or “I/O
interfaces 808”), and a communication interface 810, which
may be communicatively coupled by way of a communica-
tion inirastructure (e.g., bus 812). While the computing
device 800 1s shown in FIG. 8, the components 1llustrated 1n
FIG. 8 are not intended to be limiting. Additional or alter-
native components may be used in other embodiments.
Furthermore, in certain embodiments, the computing device
800 includes fewer components than those shown 1n FIG. 8.
Components of the computing device 800 shown 1n FIG. 8
will now be described 1n additional detail.

In particular embodiments, the processor(s) 802 includes
hardware for executing instructions, such as those making
up a computer program. As an example, and not by way of
limitation, to execute instructions, the processor(s) 802 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 804, or a storage device 806 and
decode and execute them.

The computing device 800 includes memory 804, which
1s coupled to the processor(s) 802. The memory 804 may be
used for storing data, metadata, and programs for execution
by the processor(s). The memory 804 may include one or
more of volatile and non-volatile memories, such as Ran-
dom-Access Memory (“RAM™), Read-Only Memory
(“ROM”™), a solid-state disk (*“SSD”’), Flash, Phase Change
Memory (“PCM™), or other types of data storage. The
memory 804 may be internal or distributed memory.

The computing device 800 includes a storage device 806
for storing data or instructions. As an example, and not by
way ol limitation, the storage device 806 can include a
non-transitory storage medium described above. The storage
device 806 may include a hard disk drive (HDD), flash
memory, a Universal Serial Bus (USB) drive or a combina-
tion these or other storage devices.

As shown, the computing device 800 includes one or
more I/O interfaces 808, which are provided to allow a user
to provide input to (such as user strokes), receive output
from, and otherwise transter data to and from the computing
device 800. These 1I/0 interfaces 808 may include a mouse,
keypad or a keyboard, a touch screen, camera, optical
scanner, network interface, modem, other known I[/O
devices or a combination of such I/O interfaces 808. The
touch screen may be activated with a stylus or a finger.

The 1/0 interfaces 808 may include one or more devices
for presenting output to a user, including, but not limited to,
a graphics engine, a display (e.g., a display screen), one or
more output dnivers (e.g., display drivers), one or more
audio speakers, and one or more audio drivers. In certain

10

15

20

25

30

35

40

45

50

55

60

65

20

embodiments, I/O interfaces 808 are configured to provide
graphical data to a display for presentation to a user. The
graphical data may be representative of one or more graphi-
cal user interfaces and/or any other graphical content as may
serve a particular implementation.
The computing device 800 can further include a commu-
nication interface 810. The communication interface 810
can include hardware, software, or both. The communica-
tion interface 810 provides one or more interfaces for
communication (such as, for example, packet-based com-
munication) between the computing device and one or more
other computing devices or one or more networks. As an
example, and not by way of limitation, communication
interface 810 may include a network intertace controller
(NIC) or network adapter for communicating with an Eth-
ernet or other wire-based network or a wireless NIC (WNIC)
or wireless adapter for communicating with a wireless
network, such as a WI-FI. The computing device 800 can
further include a bus 812. The bus 812 can include hardware,
soltware, or both that connects components ol computing
device 800 to each other.
In the foregoing specification, the invention has been
described with reference to specific example embodiments
thereof. Various embodiments and aspects of the invention
(s) are described with reference to details discussed herein,
and the accompanying drawings illustrate the wvarious
embodiments. The description above and drawings are 1llus-
trative of the invention and are not to be construed as
limiting the vention. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present invention.
The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. For
example, the methods described herein may be performed
with less or more steps/acts or the steps/acts may be per-
formed in differing orders. Additionally, the steps/acts
described herein may be repeated or performed in parallel to
one another or in parallel to different instances of the same
or similar steps/acts. The scope of the invention 1s, therefore,
indicated by the appended claims rather than by the fore-
going description. All changes that come within the meaning
and range of equivalency of the claims are to be embraced
within their scope.
What 1s claimed 1s:
1. A non-transitory computer readable medium storing
instructions thereon that, when executed by at least one
pProcessor, cause one or more computing devices to:
determine a number of allocated connections and a cor-
responding allocated memory for a web server, wherein
the number of allocated connections comprises a num-
ber of possible connections available to the web server
based on the allocated memory;
identify an increase in a number of ongoing connections
for the web server over a first time period;

determine, based on historical request trends and the
identified increase, a predicted number of connections
over a second time period;
determine that the predicted number of connections
exceeds a predetermined threshold relative to the num-
ber of allocated connections for the web server; and

dynamically increase, based on the predicted number of
connections exceeding the predetermined threshold,
the number of allocated connections and the corre-
sponding allocated memory for the web server without
restarting the web server.

US 10,958,590 B2

21

2. The non-transitory computer readable medium of claim
1, wherein the instructions when executed by at least one
processor, cause the one or more computing devices to
dynamically increase the number of allocated connections
and the corresponding allocated memory for the web server
by:
allocating additional memory for new connections;
copying ongoing connections to the new connections;
de-allocating memory previously utilized for the ongoing
connections; and
initialize new unused connections.
3. The non-transitory computer readable medium of claim
1, wherein the instructions when executed by at least one
processor, cause the one or more computing devices to
dynamically increase the number of allocated connections
for the web server by dynamically altering a number of
allocated connections indicated 1n non-persistent memory of
the web server.
4. The non-transitory computer readable medium of claim
3, wherein the instructions when executed by at least one
processor, cause the one or more computing devices to
dynamically increase the number of allocated connections
for the web server without altering a number of allocated
connections stored in persistent memory of the web server.
5. The non-transitory computer readable medium of claim
1, further comprising instructions that, when executed by the
at least one processor, cause the one or more computing
devices to determine, based at least on the number of
ongoing connections for the web server and historical load
data, an updated number of connections for the web server.
6. The non-transitory computer readable medium of claim
5, wherein the instructions when executed by at least one
processor, cause the one or more computing devices to
dynamically increase the number of allocated connections
for the web server by sending the updated number of
connections to the web server along with a trigger to
increase the number of allocated connections for the web
server to the updated number of connections.
7. The non-transitory computer readable medium of claim
1, further comprising instructions that, when executed by the
at least one processor, cause the one or more computing
devices to identily the increase in a number of ongoing
connections for the web server over a first time period by
receiving, from a scheduler at the web server, a number of
ongoing connections or requests for connections.
8. The non-transitory computer readable medium of claim
1, further comprising instructions that, when executed by the
at least one processor, cause the one or more computing
devices to:
receive, via a graphical user interface, one or more user
settings; and
determine, based on the one or more user settings, the
predetermined threshold.
9. A system comprising:
at least one web server;
at least one application server;
at least one processor; and
at least one non-transitory computer-readable storage
medium storing 1instructions thereon that, when
executed by the at least one processor, cause the system
to:
monitor, at the at least one web server, a number of
ongoing connections and a corresponding allocated
memory for the at least one web server, wherein a
number of allocated connections comprises a number
of possible connections available to the web server
based on the allocated memory;

5

10

15

20

25

30

35

40

45

50

55

60

65

22

determine, based on historical request trends and the
monitored number of ongoing connections, a predicted
number of connections;

determine that the predicted number of connections

exceeds a predetermined threshold relative to the num-
ber of allocated connections for the at least one web
server; and

dynamically increase the number of allocated connections

and the corresponding allocated memory for the at least
one web server by mitializing a set ol new connections
and copying the ongoing connections to new connec-
tions of the set of new connections.

10. The system of claim 9, wherein the 1nstructions, when
executed by the at least one processor, cause the system to
dynamically increase the number of allocated connections
automatically 1n response to an increase 1n the number of
ongoing connections.

11. The system of claim 9, wherein the 1nstructions, when
executed by the at least one processor, cause the system to
monitor the number of ongoing connections for the at least
one web server by:

determining the number of ongoing connections repeat-

edly at a first time interval;

determining a high number of ongoing connections dur-

ing a second time interval from the numbers of ongoing
connections determined at the first time interval, the
second time interval being longer than the first time
interval; and

reporting the high number of ongoing connections repeat-

edly at the second time 1nterval for use 1n determining,
the predicted number of connections.

12. The system of claim 11, further comprising nstruc-
tions that, when executed by the at least one processor, cause
the system to:

determine that a first number of ongoing connections

determined at the first time interval 1s within a prede-
termined percentage of the number of allocated con-
nections for the at least one web server; and

report the first number of ongoing connections prior to the

second time interval for use 1n determining the pre-
dicted number of connections.

13. The system of claim 11, wherein reporting the high
number of ongoing connections comprises sending, by a
scheduler at the at least one server, the high number of
ongoing connections to the at least one application server.

14. The system of claim 11, further comprising nstruc-
tions that, when executed by the at least one processor,
turther cause the system to detect a change 1n the health of
the at least one web server, and wherein the predicted
number of connections over the second time interval 1s

turther based on the change 1n the health of the at least one
web server.

15. The system of claim 9, wherein the 1nstructions, when
executed by the at least one processor, cause the system to
dynamically increase the number of allocated connections
for the at least one web server without restarting the at least
one web server or mterrupting the ongoing connections.

16. The system of claim 9, wherein the instructions when
executed by at least one processor, cause the system to
dynamically increase the number of allocated connections
for the at least one web server by sending, from the at least
one application server, an updated number of connections to
the at least one web server along with a trigger to increase
the number of allocated connections to the updated number
ol connections.

US 10,958,590 B2

23

17. A method comprising;:

determining a number of allocated connections for a web
Server;

detecting an 1increase in a number of ongoing connections
for the web server over a first time period;

determining, based on historical request trends and the
detected increase, a predicted number of connections
over a second time period;
determining that the predicted number of connections
exceeds a predetermined threshold relative to the num-
ber of allocated connections for the web server; and

performing a step for dynamically increasing the number
of allocated connections for the web server.

18. The method of claim 17, further comprising deter-
minming, based at least on the number of ongoing connections
for the web server and historical load data, an updated
number of connections for the web server.

19. The method of claim 17, further comprising:

receiving, via a graphical user interface, one or more user

settings; and

determining, based on the one or more user settings, the

predetermined threshold.

20. The method of claim 17, wherein the predetermined
threshold relative to the number of allocated connections for
the web server 1s a predetermined threshold for a difference
between the number of allocated connections and the pre-
dicted number of connections over the second time period.

¥ H H ¥ ¥

10

15

20

25

24

	Front Page
	Drawings
	Specification
	Claims

