12 United States Patent

Xu et al.

US010951212B2

US 10,951,212 B2
*Mar. 16, 2021

(10) Patent No.:
45) Date of Patent:

(54) SELF-TIMED PROCESSORS IMPLEMENTED
WITH MULTI-RAIL NULL CONVENTION
LOGIC AND UNATE GATES

(71) Applicant: Eta Compute, Inc., Westlake Village,
CA (US)

(72) Inventors: Chao Xu, Thousand Oaks, CA (US);
Gopal Raghavan, Thousand Oaks, CA
(US); Ben Wiley Melton, Thousand
Oaks, CA (US); Vidura Manu
Wijayasekara, Thousand Oaks, CA
(US); Bryan Garnett Cope, Austin, TX
(US); David Cureton Baker, Austin,

TX (US); John Whitaker Havlicek,

Thousand Oaks, CA (US)

(73) Assignee: Eta Compute, Inc., Westlake Village,

CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 244 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 16/270,323

(22) Filed: Feb. 7, 2019

(65) Prior Publication Data
US 2019/0190520 Al Jun. 20, 2019

Related U.S. Application Data

(63) Continuation of application No. 15/948,733, filed on
Apr. 9, 2018, now Pat. No. 10,205,453.

(Continued)
(51) Inmt. CL
HO3K 19/003 (2006.01)
HO3K 19/177 (2020.01)
HO3K 19/017 (2006.01)

AT —

(52) U.S. CL
CPC ... HO3K 19/003 (2013.01); HO3K 19/01707
(2013.01); HO3K 19/177 (2013.01)

(38) Field of Classification Search
CPC ... HO3K 19/003; HO3K 19/01707;, HO3K
19/177

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

1/2003 Kerr GOO6F 15/17337
712/19

6,513,108 B1*

6,681,341 Bl 1/2004 Fredenburg et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2341981 Al 3/2000

Primary Examiner — Dylan C White

(74) Attorney, Agent, or Firm — SoCal 1P Law Group
LLP; Angelo 1. Gaz; Steven C. Sereboll

(57) ABSTRACT

There 1s disclosed a self-timed processor. The self-timed
processor includes a plurality of functional blocks compris-
ing null convention logic. Each of the functional blocks
outputs one or more multi-raill data values. A global
acknowledge tree generates a global acknowledge signal
provided to all of the plurality of functional blocks. The
global acknowledge signal switches to a first state when all
of the multi-rail data values output from the plurality of
functional blocks are 1n respective valid states, and the
global acknowledge signal switches to a second state when
all of the multi-rail data values output from the plurality of
functional blocks are 1n a null state.

17 Claims, 6 Drawing Sheets

US 10,951,212 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 62/483,657, filed on Apr.
10, 2017.

(56) References Cited
U.S. PATENT DOCUMENTS

8,990,466 B2 3/2015 Bacigalupo

10,205,453 B2* 2/2019 Xu ..o, HO3K 19/003

2002/0188912 Al* 12/2002 Kondratyev GOO6F 30/35
716/103

2008/0012612 Al 1/2008 Lepek

2008/0059773 Al* 3/2008 Fant ..., GO6F 9/4484
712/220

2014/0247088 Al 9/2014 Prager et al.

2014/0292371 Al 10/2014 D et al.

2016/0142057 Al 5/2016 Melton et al.

2019/0097634 Al* 3/2019 Baker HO3K 19/20

* cited by examiner

S. Patent

Unate Gates
(FIG. 1B}

Th Gates
{(FIG. 1A}

.l'.I'FI'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'...l'.l'.....l'...l'.....l'.l'.l'.l'.l'.l'.l'.l'.l'.l'.l'....

(AB}

§ h p f " ba n g

P

N NN
a 5§ sy Ess NN NN

E P, E T Py L, L Py L L o] L L, L= o

T -
B M N NN NFNENENENENEEFNNENFNFINEFENEIN 'O OF O OF O O OF O OF W' W I
A E E L b O O O M il

AT

;
E

Mar. 16, 2021

(AB)

o
S

e { ABYF

e e

.l'.l'.l'.l'i

NN N NN NN NN

L L L L L

BF

e TR A R R

;
E
E

Sheet 1 of 6

+ + + + ¥ + + + +
+ + ¥yt + + + + F +
+ + +

+ + + + + ¥ + + + + + + + + + +

+
L LI N N B N L L L B L L L B +*
+ + + + F F F o FFFFFFFFFEFAFEFAFEAFFFEFFEFEAFEFEFEFEEFEAFEFEFEFEF A

+ + + + + + + + + + + + + + ¥ + +
+ * + + + + + + +++++ + + + + + + + +

+ + + + +
+ + + + + + +

+ +

:

THAND ¢

G, 1A

‘aalal™. CaFaFat Catary aaal™ CaFaat FaFaltr aFalal CalFatal Calats Fatal™r C‘alata matals el altr

m
=

S 10,951,212 B2

FiG. 10

“H” = hold previous state

(AB)

--..!u-l.l..!u-u-_

FiG, 1B

B F N NN NN NN

S. Patent Mar. 16, 2021 Sheet 2 of 6 S 10.951.212 B2

+ + + + + + + ++ Attt A
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ + + + F + + + + + + + F + + + + ¥ + + + + + + + + ¥ + + + + + + ¥+ 4+ + + +
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF
+ + + + + + + + + + + + + + + + + + + F ¥ + F F FFFFFFFF + + + + +
++++++ +++ L L N N N N L N O L L B
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF

+* ¥ +
+ + + + + + + ++ + ottt
* ¥ + F F FFFFFFFFEFEFFEFFFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEEFEFFFFFFA
+ + F F + F o F A FFFFFFFFEFFEFEEFEFFE A FEFEFFEFEEFEE
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ + + + + + + + + + +

+ + + + * + + F + + + + * + + F + + + + * + + * + + F + + + H
+ + + ¥+ ¥ + + + + + + + ¥+ + + + + + + +
+ + + + +oF + F + + F + o+ + + + + F + + + + + +uF F F o+ + +
+ + + + ¥+ + + ¥+ + + + + + + ¥+ + + + + + ¥+ ¥ + ¥ + +
+ + ¥+ ¥ + ¥ ¥ + + + + + + + + + + + + + ¥ ¥+ + + + + H H

+* + L L L N * + ok * + + ko F
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF
* + + F ¥ + + ¥ + + + + ¥+ ¥ + + + + + F ¥ + F F FFFFFFFF + + + + + + + 4
L N L N I I I I D O L O L L D O O L B L D L
+ + + + + + + + + + + + + F ¥ + F ¥ FFFFFFFF + + +
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ + + + + + + ++ + ottt
* ¥ + F F FFFFFFFFEFEFFEFFFEFFEFEFEFEFEFFEFEFEFEEFEEFEFEFEFEFEEFEFFFFFFA
+ + F F + F o F A FFFFFFFFEFFEFEEFEFFE A FEFEFFEFEEFEE
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ + + + + + + ++ + ottt
* + + ¥+ + + + + ¥+ ¥ + ¥+ + + + + F ¥ + + + + F F FFF * + + F + + F ¥+ FFFFFF
L N L N I I I I D O L O L L D O O L B L D L
+ + + + + + F + F F FFFFFFEFFFEFFFEAFFEFFEFEFFFEFEFEFEFEFEFEFEFFFEFFEFEFF A
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
L L N B N N N U L O L B L L +*
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF

(FIG. 2B)
{A+B]

Unate Gates

+ * + + F + + + + + + * + * + + * + + + + + + + + + + + + + + + + + 4
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ F +F F F o+ FF A F A FFEFFE A+ + + + + + + + + + + + + + + + + + 4
+ + * + + + + * + + *+ + +++ ottt
+ + + + + + + + + ¥+ + + + + + + + + + + + + + + ¥+ ¥ + + + + + + + + + 4
+ + + + + + + F F F F o+ FF A F A FFFFFFFFFFEFEFE R FEFE A+
+ * + + F + ¥ + + *+ + + 4
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
L L L B +* L +* + +* +* + +* + +* + +* + * + kA
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF
+ + + + + + + + + ¥+ + + + + + + + + + + + + + ¥+ + + + 4
* 4k ok F L N N B L N N R O D I
+ + + ¥ + + + ¥+ + + F + ¥+ + + + ¥ + + + ¥+ F FFFFFFEFFFFEFFFEFFFEFFFF A

M * + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
L L L N N L O I I D D O L O L L L D O D O B
+ + + + + + + ++ + ottt
+ + + + + +* + + ¥ F + F FFFFFFFFFFFFFEFFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFF A
+ + + + + F F F F o+ FF A F A FFFFFFFFFFEFEFE R FEFE A+
+ * + + * + + + + ¥ + + * + + Ft+ +F+ ottt A
+ + +* + F ¥ + F F FFFFFFFFEFFFEFEFFFT + + F+ + + F ¥ +F F F FFFFFHF

+ + + + + ¥ + F FFFFF L F o+ + + + + + + + + F + + Fu+ + 4 H] H
+ + + + * + + F + + + + * + + F + + + + * + + * + + F + + +
+ + + + + ¥+ + + ¥+ + * + + + ¥ + ¥+ + + + ¥+ ¥ + ¥+ + + + + 4
+* + * ok ko + ¥ * ok ok * o ko +* + +* +

+ + + + + ¥+ + + ¥+ + H I + + + ¥ + ¥ + + + + ¥+ ¥ + ¥ + + H B Mt K | H H [] H H
+ + + +* + F + + F F FF o FFFFFFFFFEFEFF + + + ¥ + + + ¥ + ¥ F + + F +
+ ¥ +* L N L L R I D L L L L L D D B
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF
+* + + + + + F F F FFFFFFFEFFFEFFEFEFEAFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFFF A
L N L N I I I I D O L O L L D O O L B L D L
+ + + + + + F + F F FFFFFFEFFFEFFFEAFFEFFEFEFFFEFEFEFEFEFEFEFEFFFEFFEFEFF A
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
+ F +F F FFFFF A FF A FFFFFEFFFEFFEFFFEFFEFEFEFEFEE A FF A
+ + + + + + + ++ + ottt
+* + + + + + F F F FFFFFFFEFFFEFFEFEFEAFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFFF A
+ + F F + F o F A FFFFFFFFEFFEFEEFEFFE A FEFEFFEFEEFEE
+ * + + * + + + + ++ A
w * + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
L L L N N L O I I D D O L O L L L D O D O B
* + F ¥ F F F FFFFFFFFFFFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFFEEFEFEEFFEFFF
+* + + + + + F F F FFFFFFFEFFFEFFEFEFEAFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFFF A
L N L N I I I I D O L O L L D O O L B L D L
+ + + + + + F + F F FFFFFFEFFFEFFFEAFFEFFEFEFFFEFEFEFEFEFEFEFEFFFEFFEFEFF A
* + F + F F F FFFFFEFFEFFFEFEFFEFFFEFFEFEFEEFEFEFEFEFEFEFEFEEFEFEEFEFFFFF
L L L N N L O I I D D O L O L L L D O D O B

Th Gates

(FIG. 2A)
{A+B)

1

& e =
<

N NN N N NN E NN N NN NENENEEENENEENEENEEEEEEENENENEEENEEEENENEEEEFEEFEENEENENEENEEENEENNENEENEEEEENENEENEENEEENENENNENEER

FiGa, 20

“H” = hoid previous state

el V-EN).
{A+B)

:

I _IF_Nr_I.

THAND ¢

I I I I I W N

AN

_Ir_r NI

Fi(a. 2A

.._._._._._.Jf

E L, L L L e] L, L [] L, Tl WL L, L=]
. =l ™t L " o o] [o' " " o' " alalr el ™™ al el [" " o] i =l el

:
H
E
E
E
:
E
:
:

BF

A E =31 SN F . rersE Sy FrFyFryE S S FFSFFySFSEFSE N FNEFNFFENFE NN XK NN

A i N e or or or o W TF BF BT BT Br BF BF X BF OF N BT BT ONC NF N NF N

LYY HONd
£ Dl

US 10,951,212 B2

rrrrE R FFE NI T Er PR FPEFPFEFL LT TR CNFEENE R FF SIS IO FFPESFPEF T LT TN rrrrrFiAE FI TSI PR R FRFRFFPITIASRERRRFAASAF FASSIORRFRFF I 2SS IAFEEERFF) rrrrr R rFrF IR FPRFFPFPLIITIANAEERIFASASF A SSIFARREFFPFF L TIAENEEEER FF) d
Ly ¥y FrErE] frr rrn; [F N FF T d_ ki [T T h N N [N F F F I ¥ e e bk, mmlowron_al_ W s KN I [F EFFEF [F I TR E N} FrF ¥y Ly [F rrFr Fr L TN rs LI (FrFEFF FIrrErEn ok i ey e o ik, kb e ot oo el FaEy ¥ [F FF Lo e ol [F X FFFFJ wil

P Ty

Sheet 3 of 6

3
m

m

m

m _ _—
mg ” IYE
|

B

B

m

m

N

ZE€
(59185 Y1}
| 1 507 , pTE |
“ 1335188y | IRLIOTBUIGUCD ! 1215183y

CLE
(SPIED UL} | Ade
3807 fepi OTE
BLIOIBUIGLUIOT | 15133y |

ooy, ASBIED YL} | A \Xi
P 131sIgeY L BLICIBUGICD w
S ‘ ‘ ‘
OVE || 0EE || 0Z% |
T3 AI0IG {BUOIIoOUN mm g No0IQ 1BUCIIoUN m_ ¢ Y200 IBUSIIoUN _

LE ¥ 2 T AAn_gh i L E N N Al L o AN N E Y AR . oL e A . L L F Y] gt s iF L AR pLE E T N A L AL A Lt AR R L LE F AT LK ol L, L Y E F N N ot onL N ol e e, Ly EF F F) At b onl . R L Qe P FEE T AL AL .

Mar. 16, 2021

] |
ll‘l‘l‘l‘l‘-l‘. ‘E‘l‘

U.S. Patent

e (O

N m\ amw S vm pm..m _ﬂ% m Qm m .nm

~ _ ,,,w . _ v Ol
iy Nf:
N

m Q e Ly R TR o g T g T T h.lﬁ”..l. A I I A A I I \i“(ﬁ‘&\

ﬁv-v A L, PELTEFTRELEFN N VI “m m

US 10,951,212 B2

++++++++++

trF..-.v g

H o
-l

Sheet 4 of 6

<,)

w

5 w4
4"
’ o plwm
--

."-I.I-I.I‘I.I.I.-..I.I"I-.I.IH..I-I.J.I.I.-.II.I.JII.IH .I.u..l.l..l.l‘H.I‘.I.I"u‘l.l"u‘l.l”‘l.l”.l.l”.l.l%
"ﬂhsﬂ‘l AT EFEFEEFTEFrFrFFIEFEEET N E RN ENNEENR, -.I.I”.I.I-.I-I.I-I.I-u.-l.l-u
G M\ .w)
)
t..-J. =
ﬂ. X4
R I R R R R R T R R R R R R R R R R R R R P R R P R R T R R R T R R T RE RT ERE .
r]
*
.
J ko)

wwwmwwwwmmmE

Mar. 16, 2021

L

. Sy ot

;.fffrfx._op »\rt\‘rd\\ ...éﬁ.ﬂﬁtﬁ..._ *
4 . A
I R/

A
-
<%
AN
i
<I.

U.S. Patent
-

US 10,951,212 B2

Sheet 5 of 6

Mar. 16, 2021

U.S. Patent

G "B

™ ki ki

2USIS 33D MOLIZE USLILIOD

hhhhhhhhhhhh

[}
:
:
:
“
_ :
P
P
:
7
%i:%i:%é 'ty .l....i,..l_“
:
[|
| “
:
:
:

el

(s218) 3jRUN)
2E0T

IPLIOTRUIGLLOD

£iG

{Saien a3eun}
HEOT

{ELIOIBUIQUIOD

“ {Sa1eny aleun)
S [3807
J2siday ELIQIBUIQUIOTD

v 44"

m 0TS
jaisiday |

1315198y

ML R LW

|
m
“
|
D |
e

l..ll.ll.qH.-H.l.lh-.q.l.q.-...l”.lh.ll”-ln!.l.l‘.l.l [F L BN FY F N F L L ENEFY NN, ENFY [_F [R F o b N Ny w R My Wy NNy Ny NN

| w
i 0£S | ﬁmm |
T3 200G _UOIOUN mm . . w
I - m

L o ' o i or ' o o g o | i i g gl r] L™ ar i g gt gt g b g gt o e e e Tl Tl .

[k K N3 1 [F 3 B N Ry e N Ny RNy NNy

g e b e ey] L' N e] o e e L W e e e T e e B e Q‘hl\'lli
L B 8§ L 8§ ML A
L

aaaaaTy 2 "aFaaeraTa 0 aaeeamal™] a0 e et e Faaaaay00 EFeaaaaT00 o aaaaTae 000 Saataaaar

- 00S

US 10,951,212 B2

Sheet 6 of 6

Mar. 16, 2021

U.S. Patent

a
'
w
'
L F o
.I.l l! Eéé > A F EEFIFEFEFFES IS FEI SRR SLES RS E SRR FRENELIL RN FRE N EE)

9 5

BUBIS 22P3IMOUNDE {2GO|D

i

M _

W | | 0£9
m w - *,

W

m

G A A A A .I:_I...l_..q.i....lu.l...i..ﬁ.l.!.I.E*qql.!.h..!.t.iﬂl.nqul.l..l...‘1l|l|..n.h1l|la_ﬂ;.!.=1t|h..l1l|l|.ﬂ.h.i1th Mﬁln.l..!.‘.i:ﬂ:k..lqlq‘l.ﬁ.‘i;tnl. W.l...l..I..I...I_...i1.I|.l|.ﬂ...l1.I|.Int..ﬂ.*lnqﬂ.lqlq:.&.*ﬁln.ﬂlqlqi:ﬂh.i::t.*‘:in

L & E L LEEY L & LA TN LY l“"ﬁ‘.‘l.ﬂ"&

R TR TR R R T

ol
n_“..
A A i A e e e A e e e .l:.'...!-.l..l....l....'r #* m
._.v“ m
H ’ "

FSUL0 WICJL/0]

1L kLSS El S S ES S S SRS S EA TSNS Ed NS EENEUERS

%lll‘,ll“lllﬂ.ﬂ,ll“llltﬂll“lllt&ll“

.!...!.:l:.laqql.!ﬁ

g W
L |
K
L3
LA
n
'y
E
LA
LA
LA
]
K
L3
LA
|
L3
LA
L
]
£

1-019
T 1315183y

A A T A g T S T O .

U-019
31513 Y

S

i ™ ™l ™ ™ T ™ T

A4S
(sa1ed aieun D1F0] UOITUSAUOD U [1BJ-11Nn)
2E0] [RLIOIPUIGUIOYD

el o o o o o o O o o o o o o o o o o ool o o ol o o o o ol o s o o o o o - o o o ool o o o o o ol o o o o o ol o o S 0 ol o B o o o o o o o ol o o o L

e 009

US 10,951,212 B2

1

SELF-TIMED PROCESSORS IMPLEMENTED
WITH MULTI-RAIL NULL CONVENTION
LOGIC AND UNATE GATES

RELATED APPLICATION INFORMATION

This patent 1s a continuation from U.S. patent application
Ser. No. 15/948,733, filed Apr. 9, 2018, titled SELF-TIMED

PROCESSORS IMPLEMENTED WITH MULTI-RAIL
NULL CONVENTION LOGIC AND UNATE GATES, to
1ssue on Feb. 12, 2019 as U.S. Pat. No. 10,205,453, which
claims priority from provisional patent application 62/483,
657, filed Apr. 10, 2017, titled ASYNCHRONOUS PRO-
CESSORS IMPLEMENTED WITH DUAL-RAIL LOGIC
AND UNATE GATES, the disclosures and figures of each of
these are incorporated by reference as 1f set forth herein in
their entirety.

NOTICE OF COPYRIGHTS AND TRADE
DRESS

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
This patent document may show and/or describe matter
which 1s or may become trade dress of the owner. The
copyright and trade dress owner has no objection to the
tacsimile reproduction by anyone of the patent disclosure as
it appears in the Patent and Trademark Oflice patent files or
records, but otherwise reserves all copyright and trade dress
rights whatsoever.

BACKGROUND

Field

This disclosure relates to asynchronous digital logic cir-
cuits.

Description of the Related Art

In this patent, the term “processor’” means a digital circuit
that performs some sequence of operations. A processor may
typically, but not necessarily, execute stored instructions to
accomplish 1ts assigned function. Processors that typically
execute stored 1nstructions include microprocessors, micro-
controllers, digital signal processors, and coprocessors. Pro-
cessors that do not execute stored instructions include
single-purpose processors such as encryption engines and
tast Fourier transform engines. The sequence of operations
performed by such engines may be controlled, for example,
by a hardware state machine rather than stored instructions.

Most digital processors 1 use today are synchronous,
which 1s to say various elements within the digital processor
operate synchronously 1n response to a common clock
signal. The power consumption of a synchronous processor
depends on the complexity of the processor (1.e. the number
ol gates and other functional elements), the clock rate, and
the operating voltage. In general, higher operating speed
requires higher operating voltage.

Asynchronous, or self-timed, processor circuits do not
operate from a common clock signal, such that the delay of
a self-timed processor 1s determined solely by the cumula-
tive delay of the gates and other logic elements within the
self-timed processor. Self-timed processors are typically
operated 1n a cyclic manner. A cycle 1s mitiated when 1nput
data 1s provided to the processor. The processor then per-
forms some operation upon the mput data, with the time

5

10

15

20

25

30

35

40

45

50

55

60

65

2

required to perform the operation determined by the accu-
mulated delays of the logic circuits within the processor.
When the operation 1s complete and all of the outputs of the
processor have assumed their final values, a feedback or
acknowledge signal may be generated to indicate comple-
tion of the current cycle and readiness to begin the next
cycle.

Null convention logic (NCL) 1s a delay-insensitive logic
paradigm in which each Boolean variable has three defined
states: ““True”, “False”, and “null”, where the null state
indicates that a valid value 1s not yet available. In this patent,
the term “valid” means a Boolean variable 1s 1n either the
True or False states. NCL processors typically employ a
combination of dual-rail logic and threshold gates.

Dual-rail logic 1s a form of NCL that uses two signals or
rails, each of which has two possible values (1 or 0), to
represent each Boolean variable. In this patent, the two
signals will be referred to as the “true” and “false” rail. For
a Boolean vanable “A”, the two rails will be designated as
AT, and AF. A Boolean “1” or “true” state 1s represented by
AT=1, AF=0, and a Boolean “0” or *“false” state is repre-
sented by AT=0, AF=1. Either of these are “valid” or “valid
states”. The null state 1s represented by AT=AF=0. The state
AT=AF=1 1s forbidden. Another form of NCL uses four rails
or signals to collectively represent two Boolean variables. In
this patent, the term “multi-rail” encompasses both dual-rail
and four-rail implementations of NCL. The term “single-
rail” means a conventional binary value.

An NCL processor 1s typically operated in a cyclical
manner. All of the mputs to an NCL processor are initially
set to the null state, which then propagates through the
processor until all of the outputs of the processor assume the
null state. This 1s considered the “null phase™ of the pro
cessing cycle. When all of the outputs of the processor are
in the null state, the processor sets an acknowledge signal
output to a {first state (commonly called “request for data™)
indicating the processor 1s ready for new data. The puts to
the processor are then set to valid states, which then propa-
gate through the processor until all of the outputs also
assume valid states. This 1s considered the “data phase™ of
the processing cycle. When all of the outputs have assumed
valid states, the cycle 1s complete and the acknowledge
signal 1s set to a second state (commonly called “request for
hull”) to 1mitiate the next cycle. An NCL processor may be
divided mnto multiple functional blocks typically arranged as
a pipeline. In this case, each functional block may generate
a respective acknowledge signal that 1s provided to the
predecessor functional block in the pipeline.

Threshold gates are a type of logic gate, where “gate” 1s
defined as a logic circuit having two or more 1mputs com-
bined 1nto a single output. The output of a threshold gate 1s
set to O only when all of 1ts mputs are 0. The output of a
threshold gate 1s set to 1 when a predetermined combination
of mputs are all 1. With other combinations of inputs, the
output of the threshold gate retains i1ts previous value. A
nomenclature commonly used to describe some types of
threshold gates 1s “THmn”, where n and m are integers
between one and four. “n” 1s the number of inputs to the gate,
and “m” 1s the number of mnputs that must be 1 for the output
of the gate to switch to 1.

The use of only threshold gates for combinatorial logic
provides both “input completeness” and “null complete-
ness.” Input completeness means all of the outputs of a block
of combinatorial logic can be 1n valid states only 11 all of the
inputs and all of the interval Boolean values within the block
are also 1n valid states. Null completeness means all of the
outputs can be in the null state only 1f all inputs and all of

US 10,951,212 B2

3

the imterval Boolean values within the block are 1n the “null”™
state. The completion of the data phase and the null phase of
NCL processor implemented with multi-rail logic and only
threshold gates can be unambiguously detected. Thus the
results provided by an NCL processor implemented with
multi-rail logic and only threshold gates are insensitive to

the propagation delays of the individual gates within the
Processor.

DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a circuit diagram of a circuit that performs a
logical AND operation on two dual-rail Boolean variables
using threshold gates.

FIG. 1B 1s a circuit diagram of a circuit that performs a
logical AND operation on two dual-rail Boolean vanables
using unate gates.

FI1G. 1C 1s a Truth Table summarizing the operation of the
circuits of FIG. 1A and FIG. 1B.

FIG. 2A 1s a circuit diagram of a circuit that performs a
logical OR operation on two dual-rail Boolean vaniables
using threshold gates.

FIG. 2B 1s a circuit diagram of a circuit that performs a
logical OR operation on two dual-rail Boolean varnables
using unate gates.

FI1G. 2C 1s a Truth Table summarizing the operation of the
circuits of FIG. 2A and FIG. 2B.

FIG. 3 1s a block diagram of an exemplary self-timed
processor using null convention logic and threshold gates.

FIG. 4 1s an example of an acknowledge tree.

FIG. 5 1s a block diagram of an exemplary self-timed
processor using null convention logic, unate gates, and a
global acknowledge tree.

FIG. 6 1s a block diagram of a generalized self-timed
processor using null convention logic, unate gates, and a
global acknowledge tree.

Throughout this description, elements appearing in fig-
ures are assigned three-digit reference designators, where
the most signmificant digit 1s the figure number where the
clement 1s mtroduced and the two least significant digits are
specific to the element. An element that 1s not described 1n
conjunction with a figure may be presumed to have the same
characteristics and function as a previously-described ele-
ment having the same reference designator.

DETAILED DESCRIPTION

Description of Apparatus

FIG. 1A 1s a schematic diagram of a circuit to perform a
logical AND of two dual rail Boolean variables A and B
using threshold gates. AT and AF are a dual-rail represen-
tation of variable A, BT, and BF are a dual-rail representa-
tion of varniable B, and (AB)T and (AB)F are a dual-rail
representation of the logical AND of variables A and B. As
shown, the logical AND of two dual-rail variables using
threshold gates requires five gates and incurs a delay of two
gates 1n series. In FIG. 1 and subsequent figures, the integer
number within a gate symbol indicates the number of mputs
that must be logical one to switch the output of the gate to
logical one. The gate 105 1s a TH22 gate and the gate 110 1s
a TH13 gate. The circuit of FIG. 1A provides input com-
pleteness, which 1s to say the (AB)T and (AB)F outputs will
not be asserted until both variables A and B are valid (1.e.
either True or False rather than Null). Similarly, the circuit
of FIG. 1A provides “NULL” completeness which 1s to say
the (AB)T and (AB)F outputs will not transit to NULL states
until both variables A and B are in NULL states.

10

15

20

25

30

35

40

45

50

55

60

65

4

A unate function 1s a Boolean logical function that is
monotonic for each variable. A unate gate 1s a logical circuit
that implements a unate function. In simpler terms, a unate
function 1s a function where a change 1n an mput 1 a
particular direction (1.e. either from O to 1, or from 1 to O)
can cause the output to change 1n only one direction. For
example, changing one mput to an AND gate from O to 1
may cause the output to change from O to 1 (if all of the other
inputs were already 1), but can never cause the output to
change from 1 to O. In contrast, changing an input to an
exclusive OR gate may cause the output to change from 1 to
0 or from 0 to 1 depending on the values of the other inputs
to the exclusive OR gate. AND gates and OR gates are unate
gates. Exclusive OR gates and multiplexers are examples of
non-unate gates. Although inversion 1s a unate function, an
inverter 1s not considered a unate gate as “gate” 1s defined 1n
this patent.

FIG. 1B 1s a schematic diagram of a circuit to perform a
logical AND of two dual-rail Boolean variables A and B
using unate gates. As shown the logical AND of two
dual-rail variables using unate gates requires two gates and
incurs only a single gate delay.

FIG. 1C 1s a truth table describing the operation of the
circuits of FIG. 1A and FIG. 1B. The circuit of FIG. 1A
provides input completeness 1n that the (AB)T and (AB)F
outputs remain 1n the null state, with (AB)T=(AB)F=0, until
both vanables A and B are valid (i.e. either True or False
rather than Null). However, the circuit of FIG. 1B does not
provide input completeness since the circuit does not hold a
previous output value when only one of the input vales 1s
valid (see the shaded elements 1n the table). In particular,
output (AB)F will be asserted when either A or B has a false
value, whether or not the other variable 1s valid. Note that
the circuit of FIG. 1B never provides an incorrect output but
may provide a correct valid output before all of the gate’s
inputs are valid.

FIG. 2A, FIG. 2B, and FIG. 2C provide a similar com-
parison of the logical OR function of two dual-rail Boolean
variables using threshold gates (FIG. 2A) or unate gates
(FIG. 2B). As was the case with the logical AND function,
the implementation using threshold gates requires more
gates and longer delay that the implementation with unate
gates. The circuit of FIG. 2A provides input completeness 1n
that the (A+B)T and (A+B)F outputs remain 1n the null state,
with (A+B)T=(A+B)F=0, until both variables A and B are
valid (1.e. either True or False rather than Null). However,
the circuit of FIG. 2B does not provide input completeness
since the circuit does not hold a previous output value when
only one of the input vales 1s valid (see the shaded elements
in the table). In particular, the output (A+B)T will be
asserted, when either A or B has a true value, whether or not
the other variable 1s valid. Note that the circuit of FIG. 1B
never provides an incorrect output.

FIG. 3 1s a block diagram of an exemplary asynchronous
or seltf-timed processor 300 implemented with multi-rail null
convention logic and threshold gates. The asynchronous
processor 300 includes an input register 310 and three
functional blocks 320, 330, 340 1n a pipelined configuration.
In the asynchronous processor 300, each of the register 310
and the functional blocks 320 and 330 provide multi-rail
data to the subsequent functional block 1n the pipeline. Each
of the functional blocks 320, 330, and 340 receives multi-
rail data from the previous element 1n the pipeline. In FIG.
3 and subsequent figures bold open arrows indicate multi-
rail data paths. Non-bold arrows indicate single-rail data
paths.

US 10,951,212 B2

S

Functional blocks within an asynchronous processor are
typically operated 1mn a cyclical manner. For example, in
processors using null convention logic, all of the inputs to a
functional block are initially set to the null state. The null
state propagates through the functional block until all of the
outputs of the functional block assume the null state. This
may be termed the “null phase” of the processing cycle. The
inputs are then set to valid states. The valid inputs propagate
through the functional block until all of the outputs of the
functional block also assume valid states. This may be
termed the “data phase” of the processing cycle. An
acknowledge signal 1s provided from the output side of the
processor to the mput side to manage the initiation of the
null and data phases of successive processing cycles.

The acknowledge signal 1s a binary signal having two
states. An acknowledge signal transitions into its first state
to indicate that all of the outputs of the corresponding
tunctional block have valid true or false states. The first state
of the acknowledge signal 1s commonly called “request for
null” since 1t indicates the associated functional block has
finished processing data and 1s ready for 1ts mputs to be set
to the null state to commence the next processing cycle. The
acknowledge signal transitions from the first state to the
second state to indicate that all of the output of the corre-
sponding functional block are in the null state. The second
state of the acknowledge signal 1s commonly called “request
for data” since 1t indicates the null state has propagated
through the associated functional block and the block 1s
ready to receive data to continue the processing cycle.

In the exemplary asynchronous processor 300, each of the
functional blocks 320, 330, 340 includes combinatorial logic
322, 332, 342, a register 324, 334, 344, and an acknowledge
tree (A1) 326, 336, 346. The combinatorial logic blocks 322,
332, 342 are implemented using threshold (Th) gates. Each
acknowledge tree 326, 336, 346 provides a respective
acknowledge output k_ indicating the state of the corre-
sponding functional block. Specifically, each acknowledge
output switches to “request for data” when all of the outputs
of the corresponding register are in the null state. Fach
acknowledge output switches to “request for null” when all
ol the outputs of the corresponding register are 1n valid true
or false states. An acknowledge tree may also be termed a
“completion tree” or “completion logic™.

The acknowledge output k_ from the acknowledge tree
within each block 320, 330, 340 provides an acknowledge
signal to a respective acknowledge 1mput k, of the predeces-
sor functional block 310, 320, 330 respectively, in the
pipeline. Since each functional block 310, 320, 330, 340 1s
implemented using threshold gates, each functional block
has 1mput completeness. One consequence ol mput com-
pleteness 1s that all of the outputs from each functional block
cannot have valid states unless all of the inputs to the block
also have valid states. Similarly, all of the outputs from the
block cannot be 1n the null state unless all of the inputs to the
block are in the null state. Specifically, an acknowledge
signal will not transition from “request for null” to “request
for data” until all of the inputs to the corresponding func-
tional block are 1n the null state. Similarly, an acknowledge
signal will not transition from “request for data” to “request
for null” until all of the puts to the corresponding func-
tional block are 1n valid true or false states.

Although not shown 1n FIG. 3, some or all of the registers
310 and the functional blocks 320, 330, 340 may receive
data from sources external to the processor 300 or provide
data to destinations external to the processor 300. For
example, the register 310 may receive data from sources
external to the processor 300, 1n which case register 310 may

10

15

20

25

30

35

40

45

50

55

60

65

6

provide an acknowledge signal (not shown) to the external
sources. The register 344 may provide data to destinations
external to the processor 300, 1n which case register 344 may
receive an acknowledge signal (not shown) from the exter-
nal destinations.

The structure of the asynchronous processor 300 1s exem-
plary and an asynchronous processor may contain fewer
than, or more than, three functional blocks, which may be
interconnected 1n a variety of ways other than a simple
pipeline. In general, each functional block 1n an asynchro-
nous processor provides data to and/or recerves data from at
least one other functional block. Further, each functional
block provides an acknowledge signal to and/or receives an
acknowledge signal from at least one other functional block.
Typically, each function block provides its acknowledge
signal to other function blocks from which it recerves data,
and each function block receirves an acknowledge signal
from other function blocks to which it provides data

FIG. 4 1s a logic diagram of an exemplary register 410 and
acknowledge tree 430. The register 410 may be, for
example, all or a portion of one of the registers 310, 324,
334, 344 shown in FIG. 3. The acknowledge tree 430 may
be, for example, all or a portion of one of the acknowledge
trees 326, 336, 346. In this example, the register 410
receives input data signals AT, through DF, representing four
dual-rail Boolean variables A, B, C, D. The register outputs
the four dual-rail Boolean variables as output data signals
AT through DF_. Each input data signal 1s applied to one
mput of a respective TH22 gate, such as gate 412. An
acknowledge mput k; 1s applied to the second input of each
TH22 gate. The output of each TH22 gates switches to 0
when the respective mput data signal 1s 0 and the acknowl-
edge mput 15 O (request for null 1n this example). The output
of each TH22 gates switches to 1 when the respective mput
data signal 1s 1 and the acknowledge 1mnput 1s 1 (request for
data 1n this example). For other combinations of inputs, each
TH22 gate holds 1ts previous state. The use of TH22 gates
in registers 1s exemplary and other forms of registers may be
used.

The register 410 also outputs four valid signals V ,, V,
V., V,. Each valid signal indicates whether or not the
respective Boolean output 1s in a valid state. The valid
signals may be generated by respective unate OR gates, such
as gate 414, or by TH12 gates (which have the same function
as a unate OR gate, or 1n some other manner. In this
example, a valid signal equal to 1 indicates the respective
Boolean output 1s 1n a valid state and a valid signal equal to
0 indicates the respective Boolean output 1s 1n the null state.

The acknowledge tree 430 combines the four valid signals
V,, Vo V., V,using a tree of three TH22 gates to generate
an acknowledge output k_. The output of the last TH22 gate
1s 1nverted. In this example, the acknowledge output k,
switches to 0 (request for null) when all four valid signals
V,, Vo V., Vyare 1, which 1s to say when all outputs of the
register 410 are valid. The acknowledge output k_ switches
to 1 (request for data) when all four valid signals V ,, V5, V -,
V , are 0, which 1s to say when all outputs of the register 410
are null. The acknowledge output k_ could have been gen-
crated by a single TH44 gate 435 1nstead of the three TH22
gates.

A register 1 a seli-timed NCL processor may output
tewer than or more than four multi-rail Boolean variables. A
respective valid signal may be associated with each Boolean
variable. All of the valid signals may be combined by a tree
consisting of TH22, TH33, and TH44 gates to provide an
acknowledge output that switches to a first state when all

US 10,951,212 B2

7

outputs of the register 410 are null, and switches to a second
state when all outputs of the register are valid.

FIG. 5 1s a block diagram of a self-timed processor 500
implemented using multi-rail null convention logic and
unate gates. The asynchronous processor 300 includes an
input register 510 and three functional blocks 520, 530, 540
in a pipelined configuration. Fach of the functional blocks
520, 530, 540 includes combinatorial logic 522, 532, 542, a
register 524, 534, 544, and an acknowledge tree (A1) 526,
536, 546. At least one of the combinatorial logic blocks 522,
532, 542 1s implemented using at least some unate gates. All
of the combinatonial logic blocks 522, 532, 542 may include
unate gates. Some or all of the combinatorial logic blocks
522, 532, 542 may include only unate gates. Each acknowl-
edge tree 526, 536, 546 provides a respective acknowledge
output k_ indicating the state of the corresponding functional
block as previously described. The register 510 also pro-
vides an acknowledge output k_ from a respective acknowl-
edge tree 516 indicating the state of the outputs from the
register. Since the combinatorial logic blocks 522, 532, 542
include unate gates, rather than exclusively threshold gates,
the self-timed processor 500 requires fewer gates (and
corresponding less silicon area 1n an integrated circuit) than
the processor 300 to perform the same functions with lower
propagation delays and lower power consumption.

However, since the combinatorial logic blocks 522, 532,
542 contain unate gates, input completeness 1s not guaran-
teed. Thus, the processing performed by the self-timed
processor 300 may be delay sensitive. For example, 1t may
be possible for a functional block to complete 1ts processing
tasks and switch 1ts acknowledge output before the prede-
cessor functional block completes 1ts respective tasks. This
can lead to errors in the processes performed by the seli-
timed processor.

To avoid the possibility of delay sensitivity, the acknowl-
edge outputs of the registers and functional blocks may be
collected and combined to provide a common or global
acknowledge mput to all functional blocks. To ensure that
the global acknowledge mput 1s not inserted until all the
acknowledge outputs from the register 510 and functional
blocks 520, 530, 540 are valid, the acknowledge outputs k_
from the register 510 and tunctional blocks 520, 530, 540 are
combined using one or more threshold gates. As shown 1n
FIG. 4, the acknowledge outputs may be combined using a
TH44 gate 550, which 1s to say a threshold gate having four
inputs. The output of a TH44 gate switches to “1” only when
all four inputs are *““1”. The output of the TH44 gates
switches to “0” only when all four mnputs are “0”. For other
combinations ol iputs, the output holds 1ts previous state.
The global acknowledge signal switches to the request for
null state when all of the outputs from all registers and
functional blocks are valid. The global acknowledge signal
switches to the request for data state when all of the outputs
from all registers and functional blocks are null.

Although not shown 1n FIG. §, some or all of the registers
510 and the functional blocks 520, 530, 540 may receive
data from sources external to the processor 500 or provide
data to destinations external to the processor 500. For
example, the register 510 may receive data from sources
external to the processor 500 and/or the register 544 may
provide data to destinations external to the processor 500.
The common acknowledge signal may be provided to the
external sources and/or destinations.

FIG. 6 1s a block diagram of a generalized self-timed
processor 600 using multi-rail null convention logic, unate
gates, and a global acknowledge tree. The self-timed pro-
cessor 600 includes n registers, where n 1s an integer greater

10

15

20

25

30

35

40

45

50

55

60

65

8

than one. The n registers are 1dentified 1n FIG. 6 as register
1 to register n, 610-1 to 610-x. The self-timed processor 600
also 1includes multi-rail null convention combinatorial logic
620 that receives multi-rail data values from the outputs of
some or all of the registers 610-1 to 610-» and provides
multi-rail data values to the mputs of some or all of the
registers 610-1 to 610-n. Although not shown in FIG. 6,
some or all of the registers 610-1 to 610-» and/or the
combinatorial logic 620 may receive data from sources
external to the processor 600 or provide data to destinations
external to the processor 600.

The combinatorial logic 620 may be implemented 1n
whole, or 1n part, using unate gates. At least two multi-rail
NCL data values output from one or more of the registers
610-1 to 610-» may be combined using unate gates to
provide at least one multi-rail NCL data value mput to one
of the registers. All, or nearly all, of the multi-rail NCL data
values mput to the registers 610-1 to 610-» from the com-
binatorial logic may be generated by combining multi-rail
NCL data values using unate gates.

The processor 600 includes a global acknowledge tree
(GAT) 630 to generate a global acknowledge signal pro-
vided to all of the registers 610-1 to 610-». The global
acknowledge signal may also be provided to destinations
external to the processor 600. The global acknowledge tree
630 combines valid (V) signals received from the registers
610-1 to 610-» using exclusively threshold gates to generate
the global acknowledge signal. The global acknowledge
signal switches to a first state (1.e. request for null) when all
of the multi-rail data values output from the registers 610-1
to 610-z are 1n respective valid states. The global acknowl-
edge signal switches to a second state (1.e. request for data)
when all of the multi-rail data values output from the
registers 610-1 to 610-» are 1n the null state.

Closing Comments

Throughout this description, the embodiments and
examples shown should be considered as exemplars, rather
than limitations on the apparatus and procedures disclosed
or claimed. Although many of the examples presented herein
involve specific combinations of method acts or system
elements, 1t should be understood that those acts and those
clements may be combined in other ways to accomplish the
same objectives. With regard to flowcharts, additional and
fewer steps may be taken, and the steps as shown may be
combined or further refined to achieve the methods
described herein. Acts, elements and features discussed only
in connection with one embodiment are not intended to be
excluded from a similar role 1n other embodiments.

As used herein, “plurality” means two or more. As used
herein, a “set” of items may include one or more of such
items. As used herein, whether 1n the written description or

the claims, the terms “comprising”, “including”, “carrying’,
- B 4

“having”’, “containing”’, “involving”, and the like are to be
understood to be open-ended, 1.e., to mean mcluding but not
limited to. Only the transitional phrases “consisting of” and
“consisting essentially of”, respectively, are closed or semi-
closed transitional phrases with respect to claims. Use of
ordinal terms such as “first”, “second”, “third”, etc., 1n the
claims to modify a claim element does not by 1tself connote
any priority, precedence, or order of one claim element over
another or the temporal order 1n which acts of a method are
performed, but are used merely as labels to distinguish one
claim element having a certain name from another element
having a same name (but for use of the ordinal term) to
distinguish the claim elements. As used herein, “and/or”
means that the listed items are alternatives, but the alterna-

tives also mclude any combination of the listed items.

US 10,951,212 B2
9 10

8. The seli-timed processor of claim 7, wherein the
Boolean gates are AND gates and OR gates.

9. The seli-timed processor of claim 7, further compris-
ng:

It 1s claimed:

1. A seli-timed processor comprising:

a plurality of functional blocks comprising multi-rail null
convention logic, each of the functional blocks to
output one or more multi-rall data values that each 5

alternate between a valid state and a null state, and
a global acknowledge tree to generate a global acknowl-

edge signal provided to all of the plurality of functional

a plurality of local acknowledge trees to each output a
local acknowledge signal for each of the plurality of
registers; and

the global acknowledge tree to combine the local

blO_CkS’ wherein the global acknowledge signal acknowledge signals mto the global acknowledge sig-
switches to a null state when all of the one or more 10 1
Iti-rail data values output from all of the plurality of Hes . . .
LU . . 10. The self-timed processor of claim 7, wherein
functional blocks are in the null state, wherein each of
: : . the combinatorial logic of all of the plurality of functional

the plurality of functional blocks further comprises: ock , hrechold. Bool

a register to receive the global acknowledge signal from OCRS COMPHSES Ohe O IOTe non-threshold, Boolean
the global acknowledge tree; and 5 gates, which do not provide input completeness.

combinatorial logic to output the one or more multi-rail
data values to the register,

wherein the combinatornial logic of at least one of the
plurality of functional blocks comprises one or more
non-threshold, Boolean gates that include AND gates
and OR gates.

2. The self-timed processor of claim 1, wherein the

Boolean gates are AND gates and OR gates.

3. The seli-timed processor of claim 1, wherein each of

20

11. The self-timed processor of claim 7, wherein at least

some of the plurality of registers comprise threshold gates.

12. The self-timed processor of claim 7, wherein

the global acknowledge tree comprises gates that are
threshold gates, and which provide input completeness.

13. A method of processing data within a selif-timed

Processor, comprising:

combining two or more multi-rail null convention logic
(NCL) data values output {from a {irst one or more of a

the plurality of functional blocks further comprises: 25 plurality of registers using one or more non-threshold,
a local acknowledge tree to output a local acknowledge Boolean gates to provide at least one multi-rail NCL
hSlinalbf?r thEegIIStZI; and . e el input to a second one of the plurality of registers,
the 1%11 O al dac _OW‘T gc trlele tfbcfmkllllle 1t§ ocd wherein the non-threshold, Boolean gates include AND
acl owledge signals mto the global acknowledge sig- gates and OR gates, wherein the two or more multi-rail
4 1%31‘1 foimed £ olaim 1. wheres 30 NCL data values each alternate between a valid state
. The self-timed processor of claim 1, wherein
the combinatorial logic of all of the plurality of functional and . null state, and . .
. generating a global acknowledge signal provided to all of
blocks comprises one or more non-threshold, Boolean the pluralitv of reeist 1
gates, which do not provide input completeness. . ehl.) urahltylobrlegliirs, ia 111 : nal 1 h
5. The self-timed processor of claim 4, wherein 35 switching the global acknowledge signala null state when

the registers included 1n the plurality of functional blocks

comprise threshold gates.
6. The self-timed processor of claim 1, wherein
the global acknowledge tree comprises gates that are

all of the two or more NCL multi-rail values data output
from all of the plurality of registers are 1n the null state.
14. The method of claim 13, wherein the Boolean gates

are AND gates and OR gates.

threshold gates, and which provide input completeness. 40 15. The method of claim 13, further comprising:
7. A self-timed processor comprising: combining two or more multi-rail null convention logic
a plurality of registers; and (NCL) data values output from each of the plurality of
a global acknowledge tree to generate a global acknowl- registers using one or more non-threshold, Boolean
edge signal provided to all of the plurality of registers, gates to provide at least one multi-rail NCL 1nput to a
wherein 45 second one of the plurality of registers; and
two or more multi-rail null convention logic (NCL) data wherein the non-threshold, Boolean gates do not provide
values output from a first one or more of the plurality input completeness.
of registers are combined b_Y ONE Or Iore non-th;esh- 16. The method of claim 13, further comprising:
old, Boolean gates of combinatorial logic to provide at outputting a local acknowledge signal for each register:;
least one multi-raill NCL mput to a second one of the 50 and
plyrahty ol registers, wherein the two or more Illul’[.l- combining the local acknowledge signals into the global
rail NCL data values each alternate between a valid .
. acknowledge signal.
state and a null state, wherein the non-threshold, Bool- . .
. 17. The method of claim 16, wherein
can gates include AND gates and OR gates, and e the olohal acknowledee sienal is verf ih
wherein the global acknowledge signal switches to a 55 SCNIETAtIE TE SIODAL ACRNOWICUSE STl 15 pIOHIEE bY

null state when all of the two or more NCIL, multi-rail
values data output from all of the plurality of registers
are 1n the null state.

an acknowledge tree comprising gates that are thresh-
old gates, and which provide mput completeness.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

