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DISTRIBUTED SAKFE DATA COMMIT IN A
DATA STORAGE SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a computer program
product, system, and method for distributed sate data com-
mit 1n data storage systems.

2. Description of the Related Art

A storage controller may control a plurality of storage
devices that may include hard disks, tapes, etc. A cache may
also be maintained by the storage controller, where the cache
may comprise a high speed storage that 1s accessible more
quickly 1n comparison to certain other storage devices, such
as, hard disks, tapes, etc. However, the total amount of
storage capacity of the cache may be relatively small by
comparison to the storage capacity of certain other storage
devices, such as, hard disks, etc., that are controlled by the
storage controller. The cache may be comprised of one or
more of random access memory (RAM), non-volatile stor-
age device (NVS), read cache, write cache, etc., that may
interoperate with each other in different ways. The NVS may
be comprised of a battery backed-up random access memory
and may allow write operations to be performed at a high
speed. The storage controller may manage Input/Output
(I/0) requests from networked hosts to the plurality of
storage devices.

Caching techniques implemented by the storage control-
ler assist 1n hiding I/O latency. The cache may comprise a
high speed memory or storage device used to reduce the
ellective time required to read data from or write data to a
lower speed memory or storage device. The cache 1s used for
rapid access to data staged from external storage to service
read data access requests, and to provide bullering of
modified data. Write requests are written to the cache and
then written (1.e., destaged) to the external storage devices.

NVS was mtroduced for allowing fast writes. Generally,
in the absence of NVS, data writes may have to be synchro-
nously written (1.e., destaged) directly to the storage device
to ensure consistency, correctness, and persistence. Other-
wise failure of the server may cause data stored in the cache
to be lost. Generally the rate of host writes exceeds the speed
of the storage devices, hence without NVS the rate of data
transier to storage devices may be slow. NVS enables fast
writes to cache where the writes are mirrored to and stored
sately 1n the NVS until the writes can be transferred to the
external storage device. The data 1s destaged from cache
later (and discarded from NVS) 1n an asynchronous fashion
thus hiding the write latency of the storage device. The cache
and NVS typically store updates intended for multiple
storage devices. To guarantee continued low latency for
writes, the data in the NVS may have to be drained so as to
ensure that there 1s always some empty space for incoming
writes; otherwise, follow-on writes may become eflectively
synchronous, which may adversely impact the response time
for host writes. On the other hand, 1f the writes are drained
too aggressively, then the benefits of write caching may not
be fully exploited since the average amount of NVS cache
utilized may be low.

Task Control Block (TCB) 1s a task control data structure
in the operating system kernel containing the information
needed to manage a particular process. Storage controllers
may move mformation to and from storage devices, and to
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and from the cache (including the NVS) by using TCBs to
manage the movement of data. When a write request 1ssues
from a host computer to a storage controller, a TCB may be
allocated from the operating system code. The TCB 1s used
to maintain information about the write process from begin-
ning to end as data to be written 1s passed from the host
computer through the cache to the storage devices. If the
cache 1s full, the TCB may be queued until existing data 1n
the cache can be destaged (i.e., written to storage devices),
in order to free up space. The destage operations may
involve the moving of information from cache to storage
such as a Redundant Array of Independent Disks (RAID)
storage “rank” and destage TCBs may be allocated for
performing the destage operations. A RAID storage “rank™
1s an array of storage devices configured in a RAID con-
figuration to facilitate data recovery in the event a storage
device of the RAID array fails.

TCBs may be classified on the basis of the task being
controlled by the particular TCB. For example, a “back-
ground” TCB 1s a TCB that controls an operation which 1s
not directly related to a host input/output operation. Thus.
one example of a background TCB 1s a TCB which controls
a destage operation as a background operation not required
as part of a particular host I/O operations. Another example
of a background TCB 1s a TCB which controls a prestage of
tracks from storage to cache 1n which the prestage operation
1s being performed as a background operation not required
as part of a particular host I/O operation. There 1s typically
a limit imposed on the number of background TCBs that can
be allocated for background operations directed to a storage
rank at any given point of time depending on the type of
storage rank. If a background TCB allocation operation
attempts to exceed the limit imposed for a particular storage
rank, the attempted allocation of the background TCB {fails.
In response to the failure, allocation of a background TCB
may be retried.

Another type of TCB 1s a “foreground” TCB that controls
an operation which 1s typically directly related to a host
input/output operation. For example, a foreground TCB may
be allocated to perform a destage or stage operation on
behalf of a host I/O operation. Thus, a cache miss on a host
read typically causes a stage operation controlled by a
foreground TCB, to stage one or more tracks from storage to
cache to satisty the host read operation.

In a manner similar to that of background TCBs, there 1s
typically a limit imposed on the number of foreground TCBs
that can be allocated to a storage rank at any given point of
time depending on the type of storage rank. However, 11 a
foreground TCB allocation operation exceeds the limait
imposed for a particular storage rank, the attempted alloca-
tion of the foreground TCB does not fail but instead, the
foreground TCB allocation attempt 1s queued. When a
toreground TCB 1s deallocated such as upon the completion
ol a foreground task, the foreground TCB allocation attempt
at the head of the queue 1s allocated a new foreground TCB
allocation.

A storage controller typically maintains a cache directory
which i1dentifies tracks having data stored in the cache as a
result of a prestage or stage operation which transtfers the
data of a track stored in the storage to the cache, or as a result
ol a host write operation which writes data to the cache for
subsequent destaging to the corresponding track or tracks of
the storage. Such a cache directory 1s frequently imple-
mented 1n the form a hash table of all tracks 1n cache. Each
track 1s hashed into a slot of the cache directory which
includes a track identification (ID) and an indication as to
whether the data of the track 1s “dirty”, that 1s, has not yet
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been safely destaged to the corresponding track of the
storage. Multiple tracks hashed into a slot are linked

together.

As previously mentioned, data may be destaged from
cache 1n a background process such that at any one particular
time, there may be dirty data stored 1n the cache which has
not yet been safely destaged to the storage. Dirty data to be
destaged from cache for a particular RAID rank may be
identified by a background destage process traversing rank
based b-trees. In the event of a power loss or device failure
in the cache, data not yet successiully destaged to storage
may be lost.

Accordingly, storage controllers frequently employ a safe
data commit process which scans the cache directory for
dirty data to be destaged to secondary storage. Such a scan
of the cache directory may be initiated on a periodic basis,
such as on the hour, for example. Storage controllers may
note the time when a safe data commit scan 1s started. When
the safe data commit process completes, the safe data
commit scan start time may be displayed in a log. As a
consequence, an operator may be assured that anything
written to cache prior to the safe data commit scan start time
has been successiully destaged and 1s safely stored on the
storage. In the event of a data loss, only data that was written
to cache after the safe data commit scan start time, may need
to be restored. However, a storage controller may exhibit an
increase 1n response time for host initiated 1I/O operations
which are imitiated during a safe data commit process.

In a known safe data commit process, TCBs are allocated
to scan the cache directory. The storage controller may
reserve a certain number of TCBs to be allocated for safe
data commit process. For a storage controller having mul-
tiple central processing units (CPUs), the number of TCBs
allocated for the cache directory scan may equal the number
of CPUs of the storage controller.

The cache directory may be subdivided for the sate data
commit process so that each CPU 1s assigned a portion of the
cache directory to scan for dirty data. The tracks represented
in each cache directory portion are a function of the par-
ticular host input/output operations and background opera-
tions which caused data to be staged or destaged. Thus, each
portion of the cache directory being scanned may represent
tracks from one or more RAID ranks. Conversely, each
RAID rank may have tracks represented in one or more
cache directory portions of the safe data commait process.

SUMMARY

One general aspect of distributed safe data commit pro-
cesses 1 accordance with the present description includes
distributed safe data commit logic which manages the allo-
cation of task control data structures such as task control
blocks (TCBs) for the safe data commuit process as a function
of the type of TCB to be allocated for destaging and as a
function of the 1dentity of the storage unit, such as a RAID
storage rank, for example, to which the data 1s being
destaged 1n a particular destage operation of the safe data
commit process. In one aspect, the safe data commait logic
destages data stored in a cache which has not yet been
destaged to storage 1n a manner which can reduce the impact
ol safe data commuit operations on response times of ongoing
input/output operations of the host, cache and storage. Other
aspects may be realized depending upon the particular
application.

In one aspect of the present description, distributed safe
data commit logic 1s configured to destage data stored 1n the
cache which has not yet been destaged for storage to an
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associated subunit of storage, such as a track, for example,
of a umit of storage, such as a RAID storage rank, for
example, In one embodiment, the distributed safe data
commit logic includes scan logic configured to i1dentify a
subunit of storage for which there 1s data stored in cache
which has not yet been destaged for storage to the associated
subunit of storage of a unit of storage. The distributed safe
data commuit logic further includes allocation logic config-
ured to 1dentify the unit of storage of the identified subunit
of storage and to allocate a task control data structure of a
first type (such as a background TCB, for example) to
destage the data of the i1dentified subunit of storage to the
unit of storage if a total of the task control data structures of
the first type allocated to the 1dentified unit of storage of the
identified subunit of storage remains within a limit imposed
for a total of task control data structures of the first type
allocated to the identified unit of storage. The allocation
logic 1s further configured to allocate a task control data
structure of a second type such as a foreground TCB, for
example, to destage the data of the i1dentified subunit of
storage to the unit of storage 1f a total of the task control data
structures of the first type allocated to the 1dentified unit of
storage of the i1dentified subunit of storage has reached the
limit imposed for a total of task control data structures of the
first type allocated to the i1dentified unit of storage.

In one embodiment, the unit of storage 1s a RAID array or
rank of storage devices and the subunit of storage 1s a track
of the RAID rank of storage devices. In another embodi-
ment, the task control data structure of the first type 1s a
background task control block (TCB) and where the task
control data structure of the second type 1s a foreground task
control block (TCB).

In another aspect, the distributed safe data commit logic
further includes destage logic configured to destage data
stored 1n the cache to the identified subunit of storage of the
identified unit of storage using the allocated task control data
structure. In addition, the allocation logic 1s further config-
ured to deallocate the allocated task control data structure in
association with completion of destaging data stored in the
cache to the identified subunit of storage of the identified
unit of storage using the allocated task control data structure.

In still another aspect, the allocation logic further includes
a queue memory configured to store a queue of requests for
allocation of task control data structures of the second type.
In addition, the allocation logic 1s further configured to place
requests for allocation of task control data structures of the
second type 1n the queue memory to await execution if a
total of the task control data structures of the second type
allocated to the identified unit of storage of the identified
subunit of storage has reached a limit imposed for a total of
task control data structures of the second type allocated to
the 1dentified unit of storage.

In yet another aspect, a storage controller includes a
plurality of processing units and the allocation logic 1s
turther configured to allocate a plurality of scan task control
blocks for the plurality of processing units of the storage
controller wherein a total of the allocated plurality of scan
task control blocks 1s a function of a total number of
processing units of the storage controller. The allocation
logic 1s further configured to assign an allocated scan task
control block to a processing unit of the storage controller to
scan an assigned portion of a directory data structure for
subunits of storage for which there i1s data stored 1n cache.
In one embodiment, the scan logic 1s further configured to
scan the assigned portion of the directory data structure for
subunits of storage for which there 1s data stored 1n cache
using the assigned allocated scan task control block.
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Implementations of the described techniques may include
hardware, a method or process, or computer software on a
computer-accessible medium. Other features and aspects
may be realized, depending upon the particular application.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1llustrates an embodiment of a computing envi-
ronment employing distributed safe data commit 1n a data
storage system 1n accordance with one aspect of the present
description.

FIG. 2 illustrates an example of a host 1n the computing
environment of FIG. 1.

FIG. 3 illustrates an example of distributed safe data
commit operations 1 accordance with one aspect of the
present description.

FIG. 4 illustrates an example of distributed safe data
commit logic 1n accordance with one aspect of the present
description.

FIG. 5 depicts an example of a known cache directory
which has been subdivided for distributed sate data commait
operations 1n accordance with one aspect of the present
description.

FIG. 6 depicts an example of a known entry of the cache
directory of FIG. 5.

FIG. 7 1llustrates an example of cache directory scan
operations of distributed safe data commit operations 1n
accordance with one aspect of the present description.

FIG. 8 illustrates an example of task control block allo-
cation operations of distributed safe data commit operations
in accordance with one aspect of the present description.

FIG. 9 illustrates a computer embodiment employing
distributed safe data commit in a data storage system 1n
accordance with the present description.

DETAILED DESCRIPTION

As set forth above, a storage controller may exhibit an
increase 1n response time for host initiated 1I/O operations
which are mitiated during prior safe data commit processes.
In one aspect of the present description, distributed sate data
commit logic 1s configured to destage data stored 1n a cache
which has not yet been destaged to storage 1n a manner
which can reduce the impact of sate data commit operations
on response times of ongoing input/output operations of the
host, cache and storage. In one aspect of the present descrip-
tion, distributed safe data commit logic manages the allo-
cation of TCBs for the sale data commit process as a
function of the type of TCB to be allocated for destaging and
as a Iunction of the i1dentity of the RAID storage rank to
which the data 1s being destaged 1n a particular destage
operation of the safe data commit process.

For example, 1n one embodiment, allocation of TCBs may
be limited based upon RAID storage rank to spread out the
allocation of sate data commit process TCBs amongst the
RAID storage ranks to reduce the impact of the safe data
commit process upon any one particular RAID storage rank.
In contrast, 1t 1s recognized herein that 1n a known prior safe
data commit process, TCBs are not allocated by RAID
storage rank but 1nstead are allocated as a function of the
locations of entries within the cache directory which indicate
the presence of dirty data in the cache. As a result, the
allocation of TCBs 1n the known prior sale data commut
process may not be spread out amongst the RAID storage
ranks but instead are spread out across the cache directory.

For example, 1n a known safe data commit process, the
cache directory i1s subdivided for the safe data commut
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process so that each CPU 1s assigned a portion of the cache
directory to scan for dirty data. The tracks represented 1n
cach cache directory portion are the result of particular host
input/output operations and background operations which
caused data to be staged or destaged. Thus, each portion of
the cache directory being scanned may represent tracks from
one or more RAID storage ranks. Conversely, each RAID
storage rank may have tracks represented in one or more
cache directory portions of the safe data commit process. As
a result, the allocation of TCBs resulting from the scan of
cach cache directory portion i1n the known prior safe data
commit process may not be spread out amongst the RAID
storage ranks but instead are spread out across the cache
dlrectory by the subdivision of the cache directory for
scanning without regard to limits for the RAID storage
ranks.

In another aspect of the present description, distributed
safe data commit logic prioritizes the allocation of back-
ground TCBs over the allocation of foreground TCBs for
destage operations of the safe data commit process for a
particular RAID storage rank. Using a background TCB
allocated to a requesting destage process, the safe data
commit destage operation to the particular RAID storage
rank may be completed. Because host-initiated read opera-
tions, for example, typically use foreground TCBs rather
than background TCBs, increasing the number of back-
ground TCBs being used for safe data commit destage
operations and decreasing the number of foreground TCBs
being used for sate data commit operations can reduce the
impact of safe data commit operations on the response times
ol host-initiated read operations.

In another aspect of the present description, the number of
background TCBs allocated to any one RAID storage rank
1s limited. For example, the number of background TCBs
allocated may be limited by RAID storage rank type, the
taster RAID storage rank types receiving a higher limit than
slower RAID storage rank types, for example. By limiting
the number of background TCBs being allocated for safe
data commit destage operations directed to a particular
RAID storage rank, the impact on other operations such as
host-initiated I/O operations directed to the same RAID
storage rank may be reduced.

In another aspect of the present description, once the limit
of background TCBs for a particular RAID storage rank 1s
reached, the distributed safe data commit logic switches to
allocating foreground TCBs 1nstead of background TCBs so
long as the number of background TCBs allocated to that
RAID storage rank remains at the limit. In a manner similar
to that of background TCBs, the number of foreground
TCBs allocated to any one RAID storage rank 1s limited by
the distributed safe data commit logic. Again, the number of
foreground TCBs allocated may be limited by RAID storage
rank type, the faster RAID storage rank types receiving a
higher limit than slower RAID storage rank types, for
example. Once the limit of foreground TCBs for a particular
RAID storage rank 1s reached, the request for allocation of
a foreground TCB 1s placed 1n a queue. When a foreground
TCB 1s deallocated making a new foreground TCB available
for allocation, the foreground TCB request at the front of the
queue 1s awarded an available foreground TCB to complete
the foreground TCB allocation. Using the foreground TCB
allocated to the requesting destage process, the safe data
commit destage operation to the particular RAID storage
rank may be completed.

It 1s appreciated that placing requests for allocation of
foreground TCBs 1n a foreground TCB queue can reduce the
number ol foreground TCBs available for host-initiated
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operations and thus can cause read operations to slow down.
However, because background TCBs are prioritized over
foreground TCBs 1n distributed safe data commit allocations
in one embodiment in accordance with the present descrip-
tion, allocation of foreground TCBs may be deferred until
the limit for background TCBs has been reached. As a
consequence, lower priority background operations may be
slowed instead of higher priority host-imtiated operations
which utilize foreground TCBs. Thus, slowing of higher
priority host-initiated operations may be reduced or elimi-
nated, particularly during initial intervals 1n which the limits
imposed upon background TCB allocation have not been
reached. Still further, because limits on allocation of TCBs
are imposed on a rank by rank basis, the impact of high rates
ol safe data commit destage operations directed to particular
RAID storage ranks which previously caused spikes in
host-mnitiated operation response times may be reduced. Still
turther, limiting the allocation of TCBs on a rank by rank
basis can increase availability of TCBs for allocations for
other RAID storage ranks having lower rates of operations.
Other aspects and advantages may be realized, depending
upon the particular application.

A system of one or more computers may be configured for
distributed safe data commit in a data storage system 1n
accordance with the present description, by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that in operation causes or cause the
system to perform distributed safe data commait operations 1n
accordance with the present description. For example, one or
more computer programs may be configured to perform
distributed safe data commit 1n a data storage system by
virtue of including instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
actions.

The operations described herein are performed by logic
which 1s configured to perform the operations either auto-
matically or substantially automatically with little or no
system operator intervention, except where indicated as
being performed manually. Thus, as used herein, the term
“automatic” includes both fully automatic, that 1s operations
performed by one or more hardware or software controlled
machines with no human intervention such as user mputs to
a graphical user selection interface. As used herein, the term
“automatic” further includes predominantly automatic, that
1s, most of the operations (such as greater than 50%, for
example) are performed by one or more hardware or soft-
ware controlled machines with no human intervention such
as user inputs to a graphical user selection interface, and the
remainder of the operations (less than 50%, for example) are
performed manually, that i1s, the manual operations are
performed by one or more hardware or software controlled
machines with human intervention such as user inputs to a
graphical user selection interface to direct the performance
of the operations.

Many of the functional elements described 1n this speci-
fication have been labeled as “logic,” in order to more
particularly emphasize their implementation independence.
For example, a logic element may be implemented as a
hardware circuit comprising custom VLSI circuits or gate
arrays, ofl-the-shelf semiconductors such as logic chips,
transistors, or other discrete components. A logic element
may also be implemented 1n programmable hardware
devices such as field programmable gate arrays, program-
mable array logic, programmable logic devices or the like.

A logic element may also be implemented 1n software for
execution by various types of processors. A logic element
which includes executable code may, for instance, comprise
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one or more physical or logical blocks of computer instruc-
tions which may, for instance, be organized as an object,
procedure, or function. Nevertheless, the executables of an
identified logic element need not be physically located
together, but may comprise disparate instructions stored in
different locations which, when joined logically together,
comprise the logic element and achieve the stated purpose
for the logic element.

Indeed, executable code for a logic element may be a
single instruction, or many instructions, and may even be
distributed over several diflerent code segments, among
different programs, among different processors, and across
several memory devices. Similarly, operational data may be
identified and illustrated herein within logic elements, and
may be embodied 1n any suitable form and organized within
any suitable type of data structure. The operational data may
be collected as a single data set, or may be distributed over
different locations including over diflerent storage devices.

Implementations of the described techniques may include
hardware, a method or process, or computer software on a
computer-accessible medium. FIG. 1 illustrates an embodi-
ment of a computing environment employing distributed
safe data commuit 1n a data storage system in accordance with
the present description. A plurality of hosts 1a, 16 . . . 1r
may submit Input/Output (I/0) requests over a network to
one or more data storage devices 2 to read or write data. The
hosts 1a, 15 . . . 1z may be separate physical devices or may
be virtual devices implemented using assigned resources of
partitions of a server, for example. In a similar manner, the
data storage device or devices 2 may be separate physical
devices or may be virtual devices implemented using
assigned resources of partitions one or more servers, for
example.

Each data storage device 2 includes a storage controller or
control unit 4 which accesses data stored 1n a plurality of
data storage units of storage 6. Each data storage unit of the
storage 6 may comprise any suitable device capable of
storing data, such as physical hard disks, solid state drives,
etc., known in the art. Thus, 1n one embodiment, the storage
6 may be comprised of one or more sequential access storage
devices, such as hard disk drives and magnetic tape or may
include non-sequential access storage devices such as solid
state drives (SSD), for example. Each device of storage 6
may comprise a single sequential or non-sequential access
device for data storage or may comprise an array ol devices
for data storage, such as a Just a Bunch of Disks (JBOD),
Direct Access Storage Device (DASD), Redundant Array of
Independent Disks (RAID) array, virtualization device, tape
storage, flash memory, etc.

In certain embodiments, for example, storage units may
be disks that are configured as a first type of Redundant
Array of Independent Disk (RAID) storage ranks 8a, . . . 8z,
in which each RAID storage rank 1s an array of hard disks
in a RAID configuration to facilitate data recovery in the
event of loss of a hard disk. The storage units of the storage
6 may also include RAID storage ranks 10a, . . . 10z of a
second type 1n which each RAID storage rank 1s an array of
storage ol another type such as solid state drives 1n a RAID
configuration to facilitate data recovery 1n the event of loss
of a solid state drive. The storage units of the storage 6 may
be configured to store data in subunits of data storage such
as volumes, tracks, etc.

Each storage controller 4 includes a CPU complex 12
including processor resources provided by one or more
processors or central processing units, each having a single
or multiple processor cores. In this embodiment, a processor
core contains the components of a CPU mnvolved 1n execut-
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ing instructions, such as an arithmetic logic umt (ALU),
floating point unit (FPU), and/or various levels of cache
(such as L1 and L2 cache), for example. It 1s appreciated that
a processor core may have other logic elements 1n addition
to or instead of those mentioned herein.

Each storage controller 4 further has a memory 20 that
includes a storage manager 24 for managing storage opera-
tions including writing data to or reading data from an
associated storage 6 1n response to an I/O data request from
a host. A cache 28 of the memory 20 may comprise one or
more of different types of memory, such as RAMs, write
caches, read caches, NVS, etc. The different types of
memory that comprise the cache may interoperate with each
other. Writes from the hosts 1a . . . 1z may mitially be
written to the cache 28 and then later destaged to the storage
6. Read requests from the hosts 1a . . . 1z may be satisfied
from the cache 28 1f the corresponding information 1is
available 1n the cache 28, otherwise the information 1s staged
from the storage 6 to the cache 28 and then provided to the
requesting host 1a . . . 1xn.

The memory 20 of the storage controller 4 includes a
cache directory 30 which i1dentifies tracks having data stored
in the cache 28 as a result of a prestage or stage operation
which transfers the data of a track stored in the storage 6 to
the cache 28, or as a result of a host write operation which
writes data to the cache 28 for subsequent destaging to the
corresponding track or tracks of the storage 6. In the
illustrated embodiment, and as explained in greater detail
below 1n connection with FIG. 6, the cache directory 30 1s
implemented 1in the form of a known data structure which 1s
a hash table of all tracks in cache 28. Each track is hashed
into a slot of the cache directory 30 which includes a track
identification (ID) and an indication as to whether the data
of the track 1s “dirty”, that 1s, has not yet been safely
destaged to the corresponding track of the storage 6. Mul-
tiple tracks hashed mto a slot are linked together. It 1s
appreciated that a suitable cache directory may be imple-
mented using other types of data structures.

Operations mcluding 1I/0 operations of the storage man-
ager 24, including stage, prestage and destage operations,
for example, utilize Task Control Blocks (TCBs) 32 of the
memory 20. Each TCB 1s a data structure in the operating
system kernel containing the information needed to manage
a particular process. Storage controllers may move infor-
mation to and from storage, and to and from the cache by
using TCBs to manage the movement of data. When a write
request 1ssues from a host to a storage controller, a TCB may
be allocated from the operating system code. The TCB 1s
used to maintain mformation about the write process from
beginning to end as data to be written 1s passed from the host
through the cache to the storage. If the cache 1s full, the TCB
may be queued until existing data in the cache can be
destaged (1.e., written to storage), 1n order to free up space.

As previously noted, TCBs may be classified on the basis
of the task being controlled by the particular TCB. For
example, a “background” TCB 1s a TCB that controls an
operation which 1s not directly related to a host input/output
operation. Another type of TCB 1s a “foreground” TCB that
controls an operation which 1s directly related to a host
input/output operation.

The storage manager 24 further includes distributed safe
data commit logic 40 which periodically scans the cache
directory 30 for dirty data to be destaged to storage 6. The
safe data commit process permits an operator to be assured
that anything written to cache 28 prior to the safe data
commit scan start time has been successtully destaged and
sately stored on the storage 6.

10

15

20

25

30

35

40

45

50

55

60

65

10

It 1s recogmized herein that prior sate data commit pro-
cesses may cause a significant increase 1n response time for
host mitiated 1/0 operations which are mitiated during a safe
data commit process. As explained in greater detail below,
the distributed safe data commit logic 40 manages the
allocation of TCBs during the safe data commit process 1n
a manner which can reduce or eliminate substantial 1impact
by the safe data commit process upon host imitiated 1/O
operations.

In the illustrated embodiment, the storage manager 24
including the distributed sate data commit logic 40, is
depicted as software stored in the memory 20 and executed
by the CPU complex 12. However, 1t 1s appreciated that the
logic functions of the storage manager 24 may be imple-
mented as hardware, software, firmware or combinations of
one or more thereof, depending upon the particular appli-
cation.

The storage manager 24 (FIG. 1) 1n one embodiment may
store data 1 the cache 28 and transfer data between the
cache 28 and storage 6 in tracks. As used herein, the term
track may refer to a subunit of data or storage of a disk
storage unit, a solid state storage unit or other types of
storage units. In addition to tracks, storage units may have
other subunits of storage or data such as a bit, byte, word,
segment, page, block (such as a Logical Block Address
(LBA)), cylinder, segment, extent, volume, logical device,
etc. or any portion thereof, or other subunits suitable for
transier or storage. Accordingly, the size of subumits of data
processed 1n safe data commit processes 1n accordance with
the present description may vary, depending upon the par-
ticular application. Thus, as used herein, the term *““track”™
refers to any suitable subunit of data storage or transier.

The system components 1a, 15 . .. 1n, 4, 6 are connected
to a network which enables communication among these
components. Thus, the network includes a fabric which may
comprise a Storage Area Network (SAN), Local Area Net-
work (LAN), Intranet, the Internet, Wide Area Network
(WAN), peer-to-peer network, wireless network, arbitrated
loop network, etc. Communication paths from the storage
subsystems to the hosts 1a, 15, . . . 12 may be based upon
a particular host attachment protocol such as Fibre Connec-
tion (FICON), for example. Other communication paths of
the fabric may comprise for example, a Fibre Channel
arbitrated loop configuration, a serial loop architecture or a
bus interface, such as a Peripheral Component Interconnect
(PCI) interface such as a PCI-Express interface. The com-
munication paths of the fabric may also be part of an
Ethernet network, for example, such that each node has an
individual network (internet protocol) address. Other types
of communication paths may be utilized, such as a modem
telephone path, wireless network, etc., depending upon the
particular application.

Communication software associated with the communi-
cation paths includes instructions and other software con-
trolling communication protocols and the operation of the
communication hardware in accordance with the communi-
cation protocols, 11 any. It 1s appreciated that other commu-
nication path protocols may be utilized, depending upon the
particular application.

A typical host as represented by the host 1a of FIG. 2
includes a CPU complex 202 and a memory 204 having an
operating system 206 and an application 208 that cooperate
to read data from and write data updates to the storage 6 via
a storage controller 4. An example of a suitable operating
system 1s the zZ/OS operating system. It 1s appreciated that
other types of operating systems may be employed, depend-
ing upon the particular application.
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FIG. 3 depicts one example of operations of a distributed
sale data commit process 1n accordance with one aspect of
the present description. In this example, upon mitiating
(block 304) a safe data commuit process, sate data commit
logic such as the logic 40 (FIG. 1) allocates (block 308)
TCBs for the safe data commit process as a function of TCB
type and RAID storage rank. In one embodiment, back-
ground TCBs are prioritized over foreground TCBs to
reduce impact on host-initiated I/O operations. In addition,
the number of foreground and background TCBs allocated
to each RAID storage rank 1s limited to reduce impact on I/O
operations directed to particular RAID storage ranks. Using
TCBs allocated 1n this manner, data which has not yet been
destaged to storage 1s destaged (block 310) from cache to
storage. If 1s determined (block 312) that the safe data
commit process has not yet been completed, TCBs continue
to be allocated (block 308) until the process 1s complete
(block 318). As explained in greater detail below, allocation
of TCBs for sate data commit processes in this manner can
reduce the impact of such safe data commit processes upon
host-mnitiated 1/O operations, reducing or ecliminating
increases 1n response times caused by the safe data commut
Processes.

FIG. 4 depicts one embodiment of the distributed safe
data commuit logic 40 of a data storage device 2 (FIG. 1) 1n
greater detail. In this embodiment, the distributed sate data
commit logic 40 (FIG. 3) 1s configured to destage data stored
in the cache 28 (FI1G. 1) which has not yet been destaged for
storage to an associated subunit of storage of a unit of
storage, 1n a manner which can reduce the impact of safe
data commit operations on response time of ongoing mput/
output operations of the host and cache. In one aspect of the
present description, the distributed safe data commit logic
40 manages the allocation of TCBs for the safe data scan
process as a function of both the type of TCB to be allocated
for destaging and as a function of the 1dentity of the RAID
storage rank to which the data i1s being destaged in a
particular destage operation of the safe data commuit process.
As previously mentioned, in one embodiment, background
TCBs are prioritized over foreground TCBs and the number
of background and foreground TCBs allocated to each
RAID storage rank 1s limited to reduce impact on other 1/0
operations directed to RAID storage ranks.

The distributed safe data commit logic 40 (FIG. 4)
includes scan logic 404 configured to i1dentify a subunit of
storage such as a track, for example, for which there 1s data
stored 1n cache 28 (FIG. 1) which has not yet been destaged
for storage to the associated track or other subunit of storage
of a unit of storage such as a RAID storage rank, for
example. As explained 1n greater detail below, the distrib-
uted safe data commit logic 40 (FIG. 4) further includes
allocation logic 408, destage logic 412 and a foreground
1CB queue memory 420.

In the illustrated embodiment, the scan logic 404 1s
configured to scan a cache directory which i1dentifies tracks
having data stored in the cache as a result of a prestage or
stage operation which transters the data of a track stored 1n
the storage to the cache, or as a result of a host write
operation which writes data to the cache for subsequent
destaging to the corresponding track or tracks of the storage.
FIG. § depicts an example of a suitable known cache
directory 30 which 1s implemented 1n the form a hash table
of all tracks 1n the cache 28 (FIG. 1). Each track 1s hashed
into an entry or slot of the cache directory.

FIG. 6 depicts 1n greater detail an example of a known
hash table entry, designated SlotAl (FIGS. 5, 6), in this
example, of the cache directory 30 (FIG. §5). In this embodi-
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ment, each slot or entry of the cache directory 30, as
represented by the entry SlotAl 1n FIGS. 5, 6, has a plurality
of fields including a Track ID field 602 (FIG. 6) which
identifies for a track or extent of tracks having data stored 1n
the cache 28 and hashed 1n that particular entry, the location
or locations of the track or tracks within the storage 6 (FIG.
1). In one embodiment, the Track ID field 602 (FIG. 6)
identifies 1 addition to other storage location information,
the particular RAID storage rank 8a . . . 8z or 10a . . . 10%
(FI1G. 1) storing the track or tracks of a cache directory entry
such as the entry SlotAl of the cache directory 30. The other
storage location information i1dentified by the Track ID field
602 for the track or tracks hashed by the particular slot or
entry of the cache directory may include a device 1dentifi-
cation, a logical block address, a track number and other
location address or identification information for the track or
tracks to which the cache directory entry 1s directed.

As shown in FIG. 6, each slot or entry of the cache
directory 30 further includes a “Cache Location” field 604
which 1dentifies the location or locations within the cache 28
in which the data of the track or tracks to which the cache
directory entry 1s directed, are stored. In addition, a “Dirty
Data Flag” field 606, indicates whether the data stored 1n the
cache for the track or tracks to which the cache directory
entry pertains has been modified by a write operation as
compared to orniginal data which may be currently stored 1n
the storage location or locations i1dentified by the Track ID
field of the cache directory entry. As previously mentioned
“dirty’” data 1s data stored in the cache that has not yet been
sately destaged to the corresponding track of the storage.
Multiple tracks hashed into a single slot or entry may be
linked together by one or both of the Track ID field 602 and
the Cache Location field 604.

The scan logic 404 (FIG. 4) 1s configured to scan the
cache directory 30 (FIG. 5) to identily a subunit of storage
such as a track or tracks, for example, for which there 1s data
stored 1n cache 28 (FIG. 1) which has not yet been destaged
for storage 1n the associated track, tracks or other subunit of
storage of a unit of storage such as a RAID storage rank, for
example. FIG. 7 depicts 1 greater detail, one example of a
cache directory scan operation of a safe data commit opera-
tion by the scan logic 404 together with the allocation logic
408 of the distributed sate data commit logic 40 (FIG. 4).
The allocation logic 408 1s configured to allocate (block 704,
FIG. 7) a plurality of scan task control blocks for the
plurality of processing units of the storage controller 4. As
previously mentioned, in this embodiment, the CPU com-
plex 12 (FIG. 1) of the storage controller 4 may have a
plurality of processors or central processing units, each
having a single or multiple processor cores. In this embodi-
ment, the total number of scan task control blocks allocated
(block 704) by the allocation logic 408 1s a function of the
total number of processing units of the storage controller 4.
For example, 1f the CPU complex 12 has N processing units,
the allocation logic 408 may allocate N scan TCBs for the
cache directory scan of the safe data commit process. Thus,
in one embodiment, the same number N of scan TCBs may
be allocated as the number N of processing units of the CPU
complex 12. It 1s appreciated that the number scan TCBs
which are allocated may differ from the number of process-
ing units of the CPU complex 12, depending upon the
particular application.

In this embodiment, the cache directory 30 (FIG. 5) may
be subdivided for the cache directory scan operation into
portions or “chunks” as a function of the total number of
processing units of the storage controller 4. For example, 1t
the CPU complex 12 has N processing units, the allocation
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logic 408 may subdivide the cache directory 30 for the cache
directory scan of the safe data commit process, mnto N
chunks or portions, the same number N as the number of

processing units of the CPU complex 12. In the example of
FIG. 5, the cache directory 30 has been subdivided into N

chunks or portions represented by chunks ChunkA, ChunkB
.. . ChunkN. The portion ChunkA has a plurality of slots or
entries SlotAl, SlotA2 . .. SlotAn, the portion ChunkB has
a plurality of slots or entries SlotB1, SlotB2 . . . SlotBn, etc.
with the portion ChunkN having a plurality of slots or entries
SlotN1, SlotN2 . . . SlotNn as shown in FIG. 5. In one
embodiment, the number of slots or entries in each chunk of
the cache directory 30 may be substantially equal or may
vary from chunk to chunk, depending upon the particular
application.

Having allocated (block 704, FIG. 7) the scan TCBs for
the cache directory scan and having subdivided the cache
directory 30 (FIG. 5) mto chunks, the allocation logic 408
(FIG. 4) may assign (block 708, FIG. 7) an allocated scan
task control block to a processing unit of the storage system
to scan an assigned portion or chunk of the cache directory
30. In this manner, the entire cache directory 30 may be
scanned by the N processing units 1n parallel, each process-
ing unit scanning an assigned chunk or portion of the cache
directory in parallel with the other processing units.

As explained 1n greater detail in connection with FIG. 8,
the scan logic 404 (FIG. 4) 1s configured to cause each
processing unit to scan an assigned portion or chunk of the
cache directory for tracks or other subunits of storage for
which there 1s data stored in cache, using the assigned
allocated scan task control block. The allocation logic 408
(FIG. 4) 1s configured to determine (block 712, FIG. 7)
whether such a scan operation of a cache directory portion
1s complete. If not, the allocation logic 408 (FIG. 4) 1s
turther configured to determine (block 716, FIG. 7) whether
all the scan TCBs which were allocated (block 704) are 1n
use. IT not, another allocated scan TCB may be assigned
(block 708, F1G. 7) to a processing unit of the storage system
to scan an assigned portion or chunk of the cache directory
30. If all allocated scan TCBs are determined (block 716) to
be 1n use, the entire cache directory 30 may be scanned by
the N processing units in parallel, each processing unit
scanning an assigned chunk or portion of the cache directory
in parallel with the other processing units.

If 1t 1s determined (block 712) that the scanming of a chunk
or portion of the cache directory 30 has been completed, that
scan TCB may be released (block 720) by the allocation
logic 408. The allocation logic 408 (FIG. 4) 1s further
configured to determine (block 724, FIG. 7) whether all scan
operations of the cache directory have been completed such
that all cache directory chunks or portions have been
scanned. If not, the allocation logic 408 (FIG. 4) 1s further
configured to determine (block 716, FIG. 7) whether all the
scan TCBs which were allocated (block 704) are 1n use and
assigning (block 708) unused allocated scan TCBs. Once 1t
1s determined (block 724 ) that the scan of the cache directory
1s complete. the scan TCBs may be deallocated by the
allocation logic 408.

FIG. 8 depicts 1n greater detail one example of operations
by the scan logic 404 (F1G. 4), the allocation logic 408 and
the destage logic 412 of the distributed safe data commit
logic 40 1n the scanning of an assigned portion or chunk of
the cache directory 30 (FIG. 5), allocating TCBs and destag-
ing modified data of tracks or other subunits to storage, in a
safe data commit process in accordance with the present
description. In one operation, the scan logic 404 1s config-
ured to examine (block 804, FIG. 8) a slot or other entry of
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the cache directory portion being scanned. Thus, a central
processing unit using an assigned scan TCB, may examine
the entry SlotAl (FIG. 5), for example, of the cache direc-
tory portion ChunkA, for example, which has been assigned
to that central processing unit. One or more other central
processing units may concurrently examine slots of other
assigned chunks of the cache directory 30 in parallel with the
scanning, allocation and destaging operations depicted 1n the
example of FIG. 8 for the cache dlrectory chunk ChunkA.

The scan logic 404 1n examining a slot of the assigned
chunk of the cache directory, 1s further configured to 1dentity
(block 808, FIG. 8) a track or other subunit of storage for
which there 1s modified data stored in cache 28 which has
not yet been destaged for storage. Thus, a central processing
unit using an assigned scan TCB, may determine (block 808)
if the entry SlotAl being examined within the cache direc-
tory portion ChunkA indicates whether the data of the
associated track as identified by the Track ID field 602 (FIG.
6) has been modified as indicated by the dirty data flag field
606 of the entry SlotAl being examined. If 1t 1s determined
(block 808, FIG. 8) that the entry being examined does not
indicate that the associated track stored in cache 28 contains
dirty data, the scan logic 404 examines (block 804, FIG. 8)
the next entry of the cache directory 30 1n sequence. In one
embodiment, the entries of the particular chunk of the cache
directory 30 may be examined 1n a sequential order defined
by the Track ID fields 602 (FIG. 6) or by the cache location
fields 604 or other suitable fields of the entries of the cache
directory 30. It 1s appreciated that the particular sequential
order of examining entries of the cache directory may vary,
depending upon the particular application.

Examining (block 804, FIG. 8) of the entries of the cache
directory chunks continue until (block 810) all entries of the
cache directory chunk have been examined or until a cache
directory entry mndicating modified data 1s 1dentified (block
808, FIG. 8). Upon 1dentitying (block 808, FIG. 8) a track
or other subunit of storage for which there 1s modified data
stored 1n cache 28 which has not yet been destaged to
storage, the allocation logic 408 (FIG. 4) 1s configured to
identify (block 812, FIG. 8) the particular RAID storage
rank or other storage unit storing the track having modified
data 1n the cache 28. As previously mentioned, the particular
RAID storage rank or storage unit for the track having
modified data may be 1dentified by the Track ID field 602 of
the entry such as the entry SlotAl of FIG. 6, for example. In
this example, the track 1dentified as having modified data as
indicated by the dirty data flag field 606, may be found 1n the
RAID storage rank 8a (FIG. 1), for example of the RAID
storage ranks 8a . . . 8n, 10a . . . 10% of the storage 6 of FIG.
1. Thus, the Track ID field 602 identifies the RAID storage
rank 8a as the particular storage unit containing the track
identified as having modified data stored in the cache 28. In
the embodiment of FIG. 8, the term “unit of storage™ as used
herein refers to a RAID storage rank or RAID storage array
of storage devices and the term “‘subunit of storage™ refers
to a track of the RAID rank of storage devices. It 1s
appreciated that safe data commit operations 1n accordance
with the present description may be performed 1n connection
with other types of storage units and other types of storage
subunits.

Having identified (block 812, FIG. 8) the particular RAID
storage rank or other storage unit for the track i1dentified as
having modified data, the allocation logic 408 (FIG. 4) 1s
turther configured to allocate a task control data structure of
a first type such as a background TCB, for example, to
destage the data of the identified track to the identified RAID

storage rank or other identified storage umt, if the total
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number of the control data structures of the first type (e.g.
background TCBs) allocated to the 1dentified unit of storage
(e.g. 1dentified RAID storage rank) of the 1dentified subunit
of storage (e.g. idenftified track) remains within a limait
imposed for the total number of control data structures of the
first type (e.g. background TCBs) allocated to the 1dentified
unit of storage (e.g. identified RAID storage rank). As
previously mentioned, a “background” TCB 1s a TCB that
controls an operation which 1s not directly related to a host
input/output operation. Thus. one example of a background
TCB 1n accordance with the present disclosure, 1s a TCB
which controls a destage operation as a background opera-
tion or as a safe data commit destage operation not required
as part of a particular host I/O operations.

In the embodiment of FIG. 8 1n which a unit of storage 1s
a RAID storage rank and a subunit of storage 1s a track of
a RAID storage rank, the allocation logic 408 1s configured
to determine (block 816, FIG. 8) whether the safe data
commit limit for background TCBs which has been allo-
cated for the identified RAID storage rank, would be
exceeded by the allocation of an additional background TCB
directed to that particular RAID storage rank of the track
identified as having modified data stored 1n the cache. If not,
an additional background TCB 1s allocated (block 820) by
the allocation logic 408 for the destage task of the safe data
commit process. The destage logic 412 (FIG. 4) 1s config-
ured to destage (block 824, FIG. 8) using the allocated
background or other allocated TCB, the modified data of the
identified track from the cache location of the cache 28 as
identified by the cache location field 604 (FIG. 6) of the
cache directory entry being examined, to the appropriate
track of the identified RAID storage rank as 1dentified by the
Track ID field 602 (FIG. 6) of the cache directory entry
being examined. Upon completion of the destaging opera-
tion, the allocation logic 408 1s further configured to deal-
locate (block 828, FI1G. 8) the background TCB allocated for
the destage operation, for use by another background or safe
data commit operation. Also, once a background TCB 1s
deallocated by the safe data commit process, 1t no longer
counts against the safe data commit limit of background
TCBs imposed upon a particular RAID storage rank during
the safe data commit process.

Alternatively, 11 1t 1s determined (block 816, FIG. 8) that
the sate data commit limit for background TCBs which has
been allocated for tasks directed to the identified RAID
storage rank, would be exceeded by the allocation of an
additional background TCB directed to that particular RAID
storage rank of the track identified as having modified data
stored 1n the cache, the allocation logic 408 is further
configured to allocate a task control data structure of a
second type (e.g. a foreground TCB) to destage the data of
the 1identified subunit (e.g. track) of storage to the 1dentified
unit of storage (e.g. identified RAID storage rank). As
previously mentioned, a “foreground” TCB 1s typically a
TCB that controls an operation which 1s directly related to
a host input/output operation. For example, a foreground
TCB may be allocated to perform a destage or stage opera-
tion on behalf of host I/O operation. In one aspect of the
present description, a foreground TCB may also be allocated
for a destage operation of the sate data commit process if the
limit on background TCBs for a particular RAID storage
rank has been reached. Thus, 1n the embodiment of FIG. 8,
if 1t 1s determined (block 816, FIG. 8) that the safe data
commit limit for background TCBs which have been allo-
cated for the identified RAID storage rank, would be
exceeded by the allocation of an additional background TCB
directed to that particular RAID storage rank, the allocation
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logic 408 1s configured to mitiate (block 832. FIG. 8)
allocation of a foreground TCB by requesting allocation of
a foreground TCB for the particular RAID storage rank.

In one aspect of the present description, the allocation
logic 408 1s further configured to 1mpose a limit on the
allocation of foreground TCBs for each RAID storage rank
or other storage unit, in connection with the safe data
commit process. Thus, the allocation logic 408 determines
(block 836, FIG. 8) whether a predetermined limit on the
allocation of foreground TCBs has been reached for the
RAID storage rank identified by the track entry of the cache
directory being examined. If the allocation logic 408 does
determine (block 836, FIG. 8) that the limit on the allocation
of foreground TCBs has been reached for the particular
RAID storage rank of the cache directory entry being
examined, the allocation logic 408 1s further configured to
place the request (block 832) for allocation of the fore-
ground task control block in a foreground allocation request
queue maintained for that particular RAID storage rank 1n
the queue memory 420 (FIG. 4) wherein the request waits
(block 844) until the foreground allocation request reaches
the head of the foreground allocation request queue main-
tamned by the allocation logic 408 for the particular RAID
storage rank.

Upon completion of a destaging operation (block 824)
using a foreground TCB, the allocation logic 408 1s further
configured to deallocate (block 828, FIG. 8) the foreground
TCB allocated for the destage operation, for use by another
I/O operation or safe data commit operation. Also, once a
foreground TCB 1s deallocated by the safe data commiut
process, 1t no longer counts against the safe data commit
limit of foreground TCBs imposed upon a particular RAID
storage rank during the safe data commit process.

The allocation logic 408 1s further configured to advance
cach foreground allocation request a position within the
foreground allocation request queue for a particular RAID
storage rank each time the allocation logic 408 deallocates
(block 828, FIG. 8) a foreground TCB allocated for a
completed destage operation directed to the identified RAID
storage rank, and completes (block 852 FIG. 8) the alloca-
tion of a requested foreground TCB allocation which has
reached the head of the queue for the identified RAID
storage rank. Accordingly, once 1t 1s determined (block 848,
FIG. 8) that a foreground allocation request has reached the
head of the foreground allocation request queue maintained
for the particular RAID storage rank, the allocation logic
408 completes (block 852, FIG. 8) the allocation of the
requested foreground TCB at the head of the queue for the
destage task of the safe data commit process directed to the
particular RAID storage rank. In this manner, the requested
foreground TCB awaits allocation and execution until the
request reaches the head of the queue.

The destage logic 412 (FIG. 4) 1s configured to destage
(block 824, FIG. 8) using the allocated foreground TCB, the
modified data of the 1dentified track from the cache location
of the cache 28 as i1dentified by the cache location field 604
(FIG. 6) of the cache directory entry being examined to the
appropriate track of the identified RAID storage rank as
identified by the Track ID field 602 (FIG. 6) of the cache
directory entry being examined. Upon completlon of the
destaging operation, the allocation logic 408 is further
configured to deallocate (block 828, FIG. 8) the foreground
TCB allocated for the destage operation,, for use by another
I/O operation or a safe data commit operation as described
above. Upon deallocation (block 828, FIG. 8) a foreground
TCB allocated for a destage operation directed to a particu-
lar RAID storage rank, the allocation logic 408 advances
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cach foreground allocation request a position within the
foreground allocation request queue for that particular RAID

storage rank.

However, in the event that the allocation logic 408 deter-
mines (block 836, FIG. 8) that the limit on the allocation of
toreground TCBs has not been reached for the particular
RAID storage rank of the cache directory entry being
examined, the allocation logic 408 proceeds directly to
complete (block 852, FIG. 8) the allocation of the requested
foreground TCB allocation, and the destage logic 412
destages (block 824, FIG. 8) the modified data of the
identified track as described above. In addition, the alloca-
tion logic 408 deallocates (block 828, FIG. 8) the foreground
TCB allocated for the safe data commuit process directed to
the particular RAID storage rank upon completion of the
destaging operation.

Once 1t 1s determined (block 712, FIG. 7, block 810, FIG.

8) that all entries of the cache directory portion have been

examined as described above, the distributed safe data
commit logic 40 returns (block 860, FI1G. 8) to release (block
720, FIG. 7) the scan TCB allocated for scanning the cache
directory portion. As described above, allocation logic 408
(FIG. 4) further determines (block 724, FIG. 7) whether all
scan operations of the cache directory have been completed
such that all cache directory chunks or portions have been
scanned. If not, the allocation logic 408 (FIG. 4) further
determines (block 716, FIG. 7) whether all the scan TCBs
which were allocated (block 704) are 1n use and assigns
(block 708) any unused allocated scan TCBs. Once 1t 1s
determined (block 724) that the scan of the cache directory
1s complete. the scan TCBs may be deallocated (block 730,
FIG. 7) by the allocation logic 408.

It 1s seen from the above that 1n one aspect of distributed
safe data commit operations 1n accordance with the present
description, a maximum number of background TCBs are
initially allocated instead of foreground TCBs. It i1s recog-
nized that the allocation of background TCBs by the safe
data commit process may slow background operations but 1t
1s recognized herein that slowing of background operations
instead of host I/O operations may be advantageous 1n many
applications. Accordingly, as background TCBs are allo-
cated instead of foreground TCBs for a particular RAID
storage rank up to a predetermined limit, the impact of the
safe data commit operations upon host-imitiated 1/0O opera-
tions such as read operations may be reduced or eliminated.

In this manner, allocation of foreground TCBs which may
slow host I/O operations, may be deferred until the prede-
termined limit for background TCBs 1s reached. However,
because the allocation of foreground TCBs to a particular
RAID storage array 1s also limited to a predetermined limiut,
the 1mpact of allocation of foreground TCBs upon host 1/O
may be reduced as well. It 1s appreciated that other features
may be realized, depending upon the particular application.

The computational components of the figures may each be
implemented in one or more computer systems, such as the
computer system 1002 shown 1 FIG. 9. Computer system/
server 1002 may be described in the general context of
computer system executable instructions, such as program
modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform
particular tasks or implement particular abstract data types.
Computer system/server 1002 may be practiced in distrib-
uted cloud computing environments where tasks are per-
tormed by remote processing devices that are linked through
a communications network. In a distributed cloud comput-
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ing environment, program modules may be located 1n both
local and remote computer system storage media including
memory storage devices.

As shown 1n FIG. 9, the computer system/server 1002 1s
shown 1n the form of a general-purpose computing device.
The components of computer system/server 1002 may
include, but are not limited to, one or more processors or
processing units 1004, a system memory 1006, and a bus
1008 that couples various system components including
system memory 1006 to processor 1004. Bus 1008 repre-
sents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures. By way of

example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel

Architecture (IMCA) bus, Enhanced ISA (FISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 1002 typically includes a variety
of computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
1002, and 1t includes both volatile and non-volatile media,
removable and non-removable media.

System memory 1006 can include computer system read-
able media 1n the form of volatile memory, such as random
access memory (RAM) 1010 and/or cache memory 1012.
Computer system/server 1002 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 1013 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not
shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 1008 by one
or more data media intertaces. As will be further depicted
and described below, memory 1006 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the imnvention.

Program/utility 1014, having a set (at least one) of pro-
gram modules 1016, may be stored 1n memory 1006 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. The com-
ponents of the computer system 1002 may be implemented
as program modules 1016 which generally carry out the
functions and/or methodologies of embodiments of the
invention as described herein. The system of FIG. 1 may be
implemented 1n one or more computer systems 1002, where
if they are implemented in multiple computer systems 1002,
then the computer systems may communicate over a net-
work.

Computer system/server 1002 may also communicate
with one or more external devices 1018 such as a keyboard,
a pointing device, a display 1020, etc.; one or more devices
that enable a user to interact with computer system/server
1002; and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 1002 to communicate
with one or more other computing devices. Such commu-
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nication can occur via Input/Output (I/O) mtertaces 1022.
Still yet, computer system/server 1002 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 1024. As
depicted, network adapter 1024 communicates with the
other components ol computer system/server 1002 via bus
1008. It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with computer system/server 1002. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, efc.

The reference characters used herein, such as 1, 1, and n,
are used to denote a variable number of instances of an
clement, which may represent the same or different values,
and may represent the same or diflerent value when used
with different or the same elements in different described
instances.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out processor
operations 1n accordance with aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
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instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
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executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments™”, “one or
more embodiments”, “some embodiments”, and ‘“one
embodiment” mean “one or more (but not all) embodiments
of the present mvention(s)” unless expressly specified oth-
Crwise.

The terms “including”, “comprising”, “having” and varia-
tions thereol mean “including but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any
or all of the 1tems are mutually exclusive, unless expressly
specified otherwise.

The terms ““a”, “an’ and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be 1n continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are 1n
communication with each other may commumnicate directly
or indirectly through one or more intermediaries.

A description of an embodiment with several components
in communication with each other does not imply that all
such components are required. On the contrary a variety of
optional components are described to illustrate the wide
variety of possible embodiments of the present invention.

When a single device or article 1s described herein, 1t waill
be readily apparent that more than one device/article
(whether or not they cooperate) may be used in place of a
single device/article. Sumilarly, where more than one device
or article 1s described herein (whether or not they cooperate),
it will be readily apparent that a single device/article may be
used in place of the more than one device or article or a
different number of devices/articles may be used instead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embod-
ied by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device 1tsell.

The foregoing description of various embodiments of the
invention has been presented for the purposes of 1llustration
and description. It 1s not intended to be exhaustive or to limat
the mvention to the precise form disclosed. Many modifi-
cations and variations are possible 1 light of the above
teaching. It 1s intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples
and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
embodiments of the invention can be made without depart-
ing from the spirit and scope of the invention, the mvention
resides 1n the claims herein after appended.

What 1s claimed 1s:

1. A computer program product for use with a host and a

data storage device having a plurality of processing units,
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task control data structures, a cache, a cache directory and a
plurality of units of storage 1n which each unit of storage has
a plurality of subumts of storage, wherein the computer
program product comprises a computer readable storage
medium having program instructions embodied therewaith,
the program 1instructions executable by a processor of the
data storage device to cause processor operations, the pro-
Cessor operations comprising:
safe data commit processing a cache to ensure destaging
to storage of data written to the cache prior to a safe
data commit scan start time, the safe data commait
processing ncluding:
identifying a subunit of storage for which there 1s data
stored in cache which has not yet been destaged for
storage to the subunit of storage of a unit of storage;
identifying the unit of storage of the identified subunit
of storage; and
allocating a task control data structure of a first type to
destage the data of the i1dentified subunit of storage
to the unit of storage 1n a destage operation unasso-
ciated with host input/output operations, 1n response
to a total of the task control data structures of the first
type allocated to the identified unit of storage of the
identified subunit of storage remaining within a first
task control block (TCB) type allocation limait
imposed for a total of task control data structures of
the first type allocated to the identified unit of
storage;
wherein the task control data structure of the first type
1s a background task control block (TCB) unassoci-
ated with host input/output operations and excludes
a foreground task control block (TCB) otherwise
associated with host mput/output operations so that
allocation of background TCBs i1s priornitized over
allocation of foreground TCBs for destage opera-
tions of the safe data commit process for the 1den-
tified unit of storage; and
the safe data commuit processing further including allo-
cating a task control data structure of a second type
to destage the data of the 1dentified subunit of storage
to the unit of storage 1n a destage operation unasso-
ciated with host input/output operations, 1n response
to a total of the task control data structures of the first
type allocated to the 1dentified unit of storage of the
identified subunit of storage reaching the first TCB
type allocation limit imposed for a total of task
control data structures of the first type allocated to
the 1dentified unit of storage wherein the task control
data structure of the second type 1s a foreground task
control block (TCB) associated with host iput/
output operations unless the identified subunit of
storage has reached the first TCB type allocation
limit imposed for the total of task control data
structures of the first type allocated to the identified
unit of storage so that a foreground task control
block (TCB) 1s allocated to destage the data of the
1dentified subunit of storage to the unit of storage in
a destage operation unassociated with host nput/
output operations, nstead of being allocated for an
operation associated with an mput/output operation
from a host.

2. The computer program product of claim 1 wherein the
unit of storage 1s a RAID array of storage devices and the
subunit of storage 1s a track of the RAID array of storage
devices.

3. The computer program product of claim 1 wherein the
operations further comprise destaging data stored in the
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cache to the identified subunit of storage of the identified
unit of storage using the allocated task control data structure,
and deallocating the allocated task control data structure 1n
association with completion of destaging data stored 1in the
cache to the i1dentified subunit of storage of the identified
unit of storage using the allocated task control data structure.

4. The computer program product of claim 1 wherein the
allocating a task control data structure of a second type to
destage the data of the i1dentified subunit of storage to the
unit of storage, includes placing a request for allocation of
a task control data structure of the second type 1n a queue to
await execution in response to a total of the task control data
structures of the second type allocated to the 1dentified unit
of storage of the identified subunit of storage reaching a
second TCB type allocation limit imposed for a total of task
control data structures of the second type allocated to the
identified umt of storage.

5. The computer program product of claim 1 wherein the
operations further comprise:

allocating a plurality of scan task control blocks for a

plurality of processing units of a storage system
wherein a total of the allocated plurality of scan task
control blocks 1s a function of a total number of
processing units of the storage system; and

assigning an allocated scan task control block to a pro-

cessing unit of the storage system to scan an assigned
portion ol a directory data structure for subunits of
storage for which there 1s data stored i cache which
has not yet been destaged for storage to the subunit of
storage of a umit of storage wherein i1dentifying a
subunit of storage for which there 1s data stored in
cache which has not yet been destaged for storage
includes scanning the assigned portion of the directory
data structure for subunits of storage for which there 1s
data stored in cache using the assigned allocated scan
task control block.

6. A storage controller for use with a plurality of units of
storage 1 which each unit of storage has a plurality of
subunits of storage, comprising:

a cache; and

distributed safe data commit logic having at least one of

software, firmware and hardware wherein said at least
one of said distributed safe data commit logic 1s con-
figured to destage data stored in the cache which has
not yet been destaged for storage to an associated
subunit of storage of a unit of storage to ensure destag-
ing to storage of data written to the cache prior to a safe
data commit scan start time, the distributed sate data
commit logic mcluding:
scan logic configured to identily a subunit of storage
tor which there 1s data stored 1n cache which has not
yet been destaged for storage to the associated sub-
unit of storage of a unit of storage; and
allocation logic having at least one of software, firmware
and hardware wherein said at least one of said alloca-
tion logic 1s configured to 1dentity the unit of storage of
the 1dentified subunit of storage and to allocate a task
control data structure of a first type to destage the data
of the identified subunit of storage to the unit of storage
in a destage operation unassociated with host mput/
output operations, 1n response to a total of the task
control data structures of the first type allocated to the
identified umt of storage of the i1dentified subunit of
storage remaining within a first task control block
(TCB) type allocation limit imposed for a total of task
control data structures of the first type allocated to the
identified unit of storage wherein the task control data
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structure of the first type 1s a background task control
block (TCB) unassociated with host 1nput/output
operations and excludes a foreground task control
block (TCB) otherwise associated with host mput/
output operations so that allocation of background
TCBs 1s prioritized over allocation of foreground TCBs
for destage operations for the identified unit of storage,
and to allocate a task control data structure of a second
type to destage the data of the identified subumt of

storage to the unit of storage in a destage operation
unassociated with host input/output operations, in
response to a total of the task control data structures of
the first type allocated to the identified unit of storage
of the i1dentified subunit of storage reaching the first
TCB type allocation limit imposed for a total of task
control data structures of the first type allocated to the
identified unit of storage wherein the task control data
structure of the second type 1s a foreground task control
block (TCB) associated with host input/output opera-
tions unless the identified subunit of storage has
reached the first TCB type allocation limit imposed for
the total of task control data structures of the first type
allocated to the identified umit of storage so that a
foreground task control block (TCB) 1s allocated to
destage the data of the identified subunit of storage to
the unit of storage 1n a destage operation unassociated
with host mput/output operations, instead of being
allocated for an operation associated with an put/
output operation from a host.

7. The storage controller of claim 6 wherein the unit of
storage 1s a RAID array of storage devices and the subunit
of storage 1s a track of the RAID array of storage devices.

8. The storage controller of claim 6 wherein the distrib-
uted safe data commit logic further includes destage logic
configured to destage data stored in the cache to the 1den-
tified subunit of storage of the 1dentified unit of storage using
the allocated task control data structure, and wherein the
allocation logic 1s further configured to deallocate the allo-
cated task control data structure 1n association with comple-
tion of destaging data stored in the cache to the identified
subunit of storage of the 1dentified unit of storage using the
allocated task control data structure.

9. The storage controller of claim 6 wherein the allocation
logic further includes a queue memory configured to store a
queue of requests for allocation of task control data struc-
tures of the second type and wherein the allocation logic 1s
turther configured to place requests for allocation of task
control data structure in the queue memory to await execu-
tion 1n response to a total of the task control data structures
of the second type allocated to the identified unit of storage
of the i1dentified subunit of storage reaching a second TCB
type allocation limit imposed for a total of task control data
structures of the second type allocated to the 1dentified unit
ol storage.

10. The storage controller of claim 6 further comprising a
plurality of processing units and wherein the allocation logic
1s further configured to allocate a plurality of scan task
control blocks for the plurality of processing umts of the
storage controller wherein a total of the allocated plurality of
scan task control blocks 1s a function of a total number of
processing units ol the storage controller, and to assign an
allocated scan task control block to a processing unit of the
storage controller to scan an assigned portion of a directory
data structure for subunits of storage for which there 1s data
stored 1n cache wherein the scan logic 1s further configured
to scan the assigned portion of the directory data structure



US 10,949,354 B2

25

for subunits of storage for which there 1s data stored 1n cache
using the assigned allocated scan task control block.

11. A method for use with a plurality of units of storage
in which each unit of storage has a plurality of subunits of
storage, comprising;

sale data commait processing a cache to ensure destaging

to storage of data written to the cache prior to a safe

data commit scan start time, the sate data commait

processing mncluding:

identifying a subunit of storage for which there 1s data
stored 1n cache which has not yet been destaged for
storage to the subunit of storage of a unit of storage;

identifying the unit of storage of the identified subunit
ol storage;

allocating a task control data structure of a first type to
destage the data of the identified subunit of storage
to the unit of storage 1n a destage operation unasso-
ciated with host input/output operations, 1n response
to a total of the task control data structures of the first
type allocated to the identified unit of storage of the
identified subunit of storage remaining within a first
task control block (TCB) type allocation limait
imposed for a total of task control data structures of
the first type allocated to the identified unit of storage
wherein the task control data structure of the first
type 1s a background task control block (TCB)
unassociated with host input/output operations and
excludes a foreground task control block (TCB)
otherwise associated with host iput/output opera-
tions so that allocation of background TCBs 1is
prioritized over allocation of foreground TCBs for
destage operations of the safe data commit process
for the i1dentified unit of storage; and

allocating a task control data structure of a second type
to destage the data of the 1dentified subunit of storage
to the unit of storage 1n a destage operation unasso-
ciated with host input/output operations, 1n response
to a total of the task control data structures of the first
type allocated to the identified unit of storage of the
identified subunit of storage reaching the first TCB
type allocation limit imposed for a total of task
control data structures of the first type allocated to
the 1dentified unit of storage wherein the task control
data structure of the second type 1s a foreground task
control block (TCB) associated with host iput/
output operations unless the identified subunit of
storage has reached the first TCB type allocation
limit 1mposed for the total of task control data
structures of the first type allocated to the 1dentified
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unit of storage so that a foreground task control
block (TCB) 1s allocated to destage the data of the

1dentified subunit of storage to the unit of storage in
a destage operation unassociated with host nput/
output operations, instead of being allocated for an
operation associated with an mput/output operation
from a host.

12. The method of claim 11 wherein the unit of storage 1s
a RAID array of storage devices and the subunit of storage
1s a track of the RAID array of storage devices.

13. The method of claim 11 further comprising destaging
data stored 1n the cache to the identified subunit of storage
of the identified unit of storage using the allocated task
control data structure, and deallocating the allocated task
control data structure in association with completion of
destaging data stored in the cache to the identified subunit of
storage of the identified unit of storage using the allocated
task control data structure.

14. The method of claim 11 wherein the allocating a task
control data structure of a second type to destage the data of
the identified subumt of storage to the unit of storage,
includes placing a request for allocation of a task control
data structure of the second type in a queue to await
execution in response to a total of the task control data
structures of the second type allocated to the identified unit
of storage of the identified subunit of storage reaching a
second TCB type allocation limit imposed for a total of task
control data structures of the second type allocated to the
identified unit of storage.

15. The method of claim 11 further comprising:

allocating a plurality of scan task control blocks for a

plurality of processing units of a storage system
wherein a total of the allocated plurality of scan task
control blocks 1s a function of a total number of
processing units of the storage system; and

assigning an allocated scan task control block to a pro-

cessing unit of the storage system to scan an assigned
portion of a directory data structure for subumts of
storage for which there 1s data stored in cache which
has not yet been destaged for storage to the subunit of
storage of a unit of storage wherein i1dentifying a
subunit of storage for which there 1s data stored in
cache which has not yet been destaged for storage
includes scanning the assigned portion of the directory
data structure for subunits of storage for which there 1s

data stored 1n cache using the assigned allocated scan
task control block.
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