US010936469B2

a2y United States Patent (10) Patent No.: US 10,936,469 B2

Kwon et al. 45) Date of Patent: Mar. 2, 2021
(54) SOFTWARE COMPONENT VERIFICATION (38) Field of Classification Search
USING RANDOM SELECTION ON POOLED CPC . GO6F 11/368; GO6F 11/3688; GO6F 11/3668
DEVICES See application file for complete search history.

(71) Applicant: Microsoft Technology Licensing, LLC, (56) References Cited

Redmond, WA (US) U.S. PATENT DOCUMENTS

(72) Inventors: Hyuk Joon Kwon, Redmond, WA 7,111,307 B1* 9/2006 Wang GO6F 11/366%
(US); Vladimir A. Levin, Redmond, 711/152
WA (US); Jakob Frederik 7,181,382 B2 2/2007 Shier
Lichtenberg, Redmond, WA (US): 7,334,219 B2 2/2008 Cebula
Andrew M. Kluemke, Seattle, WA 9,389,990 B2 7/2016 Sofia
(US); Vikas Pabreja, Sammamish, WA (Continued)
(US); Sebastian Lerner, Scattle, WA
(US) OTHER PUBLICATIONS

(73) Assignee: Microsoft Technology Licensing, LLC, T?,irunyan, etal., '.“The Spruce Systelp: Quality Yeriﬁcation of Linux
Redmond, WA (US) File Systems Drivers,” In Proceedings of Spring/Summer Young

Researchers’ Colloquium on Software Engineering, Jan. 1, 2012.

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 129 days.

Primary Examiner — Charles Ehne
(74) Attorney, Agent, or Firm — Holzer Patel Drennan

(21) Appl. No.: 16/263,993 (57) ABSTRACT
A system for providing ongoing verification of released
(22) Filed: Jan. 31, 2019 soltware components utilizes feedback from a pool of
devices that each locally execute a verification component.
(65) Prior Publication Data The verification component randomly selects one or more
locally-executing software components, captures imforma-
US 2020/0250072 Al Aug. 6, 2020 tion associated with the randomly-selected software com-
ponents responsive to detection of events satisfying one or
(1) Int. Cl. more capture conditions, and communicates the captured
Gool 11/00 (2006.01) information to a software component verification and analy-
Gool 11/36 (2006-05-) s1s service. The total number of the randomly-selected
GoOot 8/77 (2018.01) soltware components within the verification pool 1s set to
(52) U.S. Cl. statistically guarantee that each one of the software compo-
CPC . GO6F 11/3616 (2013.01); GO6F 8/77 nents available for random selection is randomly selected on

(2013.01); GOGF 11/008 (2013.01); GO6F at least one of the plurality of processing devices within the
1173664 (2013.01);, GO6F 11/3676 (2013.01); verification pool.

GO6F 11/3688 (2013.01); GO6F 11/3692
(2013.01) 20 Claims, 5 Drawing Sheets

1DD\

(Centralized Software Veiification)

Service
120 Werlfication Pool 102

/ 124 Per Machine Coverage: 1% [

Software Components Verified:
AflBllciD|lE

FHGiH| I
AR ERL
F

QJ{H .

J
()
i

Total Covera Qe S5 Qg

e

Processor 114

"E'!emmy 126 A

4 Yerification Component N
116

Randomized Selector
118

h /

122 _“‘\ 4 Software System N

{ANBHCH N

US 10,936,469 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2007/0214391 Al1* 9/2007 Castro GO6F 11/3688
714/38.14
2012/0159448 Al* 6/2012 Arceseooovvvennnnnn, GO6F 8/70
717/124

2013/0091495 Al 4/2013 Garg
2018/0165145 Al 6/2018 Meilke

* cited by examiner

U.S. Patent Mar. 2, 2021 Sheet 1 of 5 US 10,936,469 B2

Centrahzed Software Venflcatlcn -

Service
120 Verification Pool 102

Per Machine Coverage:

Total Coverage: 99.999%

Processor 114

(Memory 126

Vertfication Component
116

Randomized Selector
118

122 . Software System

FIG. 1

U.S. Patent Mar. 2, 2021 Sheet 2 of 5 US 10,936,469 B2

200

% System Coverage
0 5 10 20 30 40 50 60 70 80 90 100

i F] ’ s = &# = = = = = ‘s = = + = wm w w % ¥ i a a1 ¢ ¥ & w4 ¢ #& s 4 ‘a = = w a = = = ‘a]] L LT T T A PURR R T . :
a | I | I L " " &K KR K% ® § & ¥ 4 4 4 9w & & F » T Y R 3 ‘a T om = ' = L IR T . D T | AL r % 1 oo] 4 " 4 - v Y . . -
...... FA A
A R e R e T T i L T " om a s m o m m o w o mm A& 44w Wy : b A) i L L gl - R AR
LR G ® a4 F 4 4 = @ @ = ® @ @ = = B W % .] L} L i a N B o F o \ o - oy Iy e e . o i r. £ £
----------------- [M SR M A, g ‘?q',‘f o &
............................ S S S S B D D S D DR TR RERATRER S g e e
. hy |] .
.]
'i';l'ur W >
Sl I o S
j n n
. ’ , "u'ﬂ oy Ry
. r - -

o
A T T o o
‘., A [-) - w o o .] » - a4 i - W L] LY L% L] L] L} - [l [- * s tehelviiivicieivieiiviaiivialaf 2" 2" A" a8 .- [- 4 4 i ! »
----- . & R 1." a"’ ..

" . ' '
o
- g g
L |
"- . ' L]
. . .
L] ’ = - W
u . . .
. ' ' 1 .
. - . 3
L] 5 1. h]
u . . « B NN . .« = s x = = = == = = = m = = = = = __a = % = __a__m = = __m = = = = = = = = = _m_ & = = __m = = s = = = = = = = = = = = = = = & = = = % _m s = = = s __m = = = = = = = = = = = = _m = = _a = = = _a = = = = = = = = = = % = = = = = s = = = s __m = = = = = = = = = _w = = & = = s % = = s = = = = = = = = = = & = = & = = s & = = s = = = = = = = = = = = = = __x = = s & = = s = = = = = = = = = = & = __m & % = __a__& =
r. e - = -
. 2 . . .
o Lo
. . - .
n
I-

800

SO Coverage <& 9;9'% ___________

Coverage between 99.00% & 99.98%

Coverage > 99.99% (Exhaustive) @ —

1000 |

1200§§m;

1400 ; ...

1600 |

1800 ; ___

2000 L
Population

FIG. 2

U.S. Patent Mar. 2, 2021 Sheet 3 of 5 US 10,936,469 B2

Driver Verification Service N
m304 -H‘xq‘% L] |

“
%
i -J‘H“q
-,

Capture Parameter + | Data

Capture | Capture
Conditions {

'Processing Device 302

User Applications
308

f :Oe'l'fating: SYStem

" T Vermeaton Gomponet
Subsystem(s) ||
324

Verification Component
310

Capture
Conditions

'Ra:ndom Driver Sel'ECtQF |
' 312 |

Operating)
System Kernel [«

Device Drivers 326

4 Camera, .
Audio Drivers
332

Network
Drivers
330

5 External
| Device Drivers Drivers

334

Hardware
336

U.S. Patent Mar. 2, 2021 Sheet 4 of 5 US 10,936,469 B2

"Receive, at a device in a pool of devices providing feedback to a centralized \
software verification service, a capture parameter defining a number of
software components to randomly select for verification on the device

- Randomly select a subset of software components exectting on the device, \
the randomly selected subset being of a size equal to the number specified
by the capture parameter

- Execute a verification component on the device to capture certain information '
' assoclated with the randomly-selected software components f

Initiate a communication fo transmit the captured information to a software
component verification and analysis service

FIG. 4

005
- @oine(Q buissadold

SaTINS(]
abeiolg

US 10,936,469 B2

0SS ZE%
| euusuy

Aiddng semod)

Sheet 5 of 5

219
suoledijddy

Mar. 2, 2021

01G waelsAg
buneisdp

20g

(s)ooine(q Alowisip (Shiun

BuUIsSS900id

U.S. Patent

US 10,936,469 B2

1

SOFTWARE COMPONENT VERIFICATION
USING RANDOM SELECTION ON POOLED
DEVICES

BACKGROUND

Computing devices today have an increasing number of
attached and installed peripheral devices. In order to inter-
tace to such peripherals, the computing device typically runs
a device driver to operate or control each type of device. As
the variety and number of peripheral devices increase and
the number of computing devices grows, veritying the
proper operation of the device drivers becomes increasingly
difficult prior to production and release.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

FIG. 1 1illustrates an example system that leverages a
verification pool to provide ongoing verification of software
components that have been released to market.

FIG. 2 1llustrates an exemplary chart illustrating coverage
of system components that may be obtained 1n a system that
randomly selects software components for verification on
different machines 1n a verification pool.

FIG. 3 illustrates an example verification pool that pro-
vides ongoing verification of various drivers in an operating,
system.

FI1G. 4 illustrates example operations for using a pool of
devices to verily a collection of solftware components
executing as part of a system 1installed on each device 1n the
pool.

FIG. 5 illustrates an example schematic of a processing
device that may be included 1n a verification pool and
suitable for implementing aspects of the disclosed technol-

OgYV.

SUMMARY

A method of veritying operations of released software
components utilizes feedback from devices participating
within a verification pool. The method includes randomly
selecting one or more software components executing on
cach of the processing devices within the verification pool,
executing a verification process on each of the plurality of
devices to capture information associated with the associ-
ated randomly-selected software components responsive to
detection of events satisfying one or more capture condi-
tions; and communicating the captured information to a
soltware component verification and analysis service. A total
number of the randomly-selected software components in
the verification pool 1s set to statistically guarantee that each
one of the software components available for random selec-
tion 1s randomly selected on at least one of the plurality of
processing devices within the verification pool.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter. These and various
other features and advantages will be apparent from a
reading of the following Detailed Description.

DETAILED DESCRIPTION

A software product, such as an operating system or
application, may be 1nstalled on thousands of devices

10

15

20

25

30

35

40

45

50

55

60

65

2

including desktop computers, mobile devices, and servers.
On these different devices, numerous computing settings
may be individually adjusted. Due to the sheer variety and
number of possible device configurations, it 1s onerous and
costly to devise tests that encompass all situations that a
particular software product may experience. Consequently,
certain software products, such as system drivers, may
experience problems 1n the field despite being subjected to
rigorous testing and certification processes prior to release.
These 1n-field problems may cause system deadlock and/or
memory corruption, leading to system crashes that frustrate
and inconvenience the user.

While 1t 1s possible to locally-execute programs designed
to continually monitor and verity released software compo-
nents on user devices, most user devices lack the processing
capacity to self-verily a significant quantity of locally-
executing components. For example, a typical computer
may locally execute hundreds of drivers. In these devices,
monitoring every single driver would entail a non-trivial and
potentially unsupportable allocation of memory and pro-
cessing resources. Without stringent limits on resource allo-
cation for verification processes, such processes are likely to
degrade device performance and frustrate the user experi-
ence. At the same time, the breadth of verification that can
be achieved through such processes 1s directly tied to the
quantity and use of available processing resources.

The herein disclosed technology provides methods for
continued 1n-field assessment of software components, such
as dnivers, without noticeable impact on device perior-
mance. In the examples described herein, providing driver
assessment and support services 1s one example scenario 1n
which the described embodiments can be implemented.
However, the described concepts can generally apply to
other software components and services.

According to one implementation, the disclosed methods
provide exhaustive coverage 1n verilying of each of number
ol software components 1n a released system by leveraging
statistical selection techniques in a pool of user devices each
locally-executing a soiftware verification component. As
used herein, the term “‘exhaustive coverage” refers to a
statistical guarantee that each of multiple software compo-
nents 1n a system has been verified on at least one machine
in a verification pool. A “verification pool” refers to a
collection of user devices locally executing the verification
component and reporting captured data back to a centralized
software verification service.

FIG. 1 illustrates one example system 100 that leverages
a verification pool 102 to provide ongoing verification of
soltware components that have been released to market. The
verification pool 102 includes a number of user computing
devices (e.g., user computing devices 104, 106) that are each
executing a version of a solftware system 108 (e.g., an
operating system or other application) that comprises a
number ol software components. The user computing
devices 1n the verification pool 102 may be various types of
computing devices with disparate software and/or hardware
characteristics. In one implementation, the verification pool
102 consists of a computing devices owned by users that
have opted to participate 1n the verification pool 102, such
as by providing explicit consent to provide certain captured
device data to a centralized software verification service
120. In some implementations, users with devices of the
verification pool 102 may receive access to certain content
and/or services in exchange for their participation in the
verification pool 102.

As shown 1n greater detail with respect to the expanded
view of the user computing device 104, each device 1n the

US 10,936,469 B2

3

verification pool 102 executes a processor 114 and memory
126 storing a soitware system 108 that consists ol a number
ol software components 110 (e.g., software components A,
B, C C ... N). In one implementation, the software system
108 1s an operating system and the various software com-
ponents 110 are drivers on the operating system that provide
control signals to different hardware components, such as
drivers for a local audio system, microphone, touchpad,
keyboard, network communication, peripheral accessories,
etc. Each of the user computing devices in the verification
pool 102 executes a same version of the software system
108, such as the same version of an operating system (e€.g.,
Windows 10).

The exact combination of the software components 110
installed within the software system 108 may vary between
the various devices 1n the verification pool 102 depending on
factors such as user configurations, attached accessories, and
device settings. For example, the user computing device 104
may include a driver (A) for commanding a wireless mouse
that 1s rated as compatible with the software system 108.
Although the user computing device 104 1s configured to
support the wireless mouse, other devices in the verification
pool 102 may not be. Likewise, some devices in the veri-
fication pool may support different versions of a same
software component, such as a network driver. Collectively,
the devices 1n the verification pool 102 may support a
diverse collection of software components 110 that are
installed on the software system 108 of each device.

Each of the user computing devices 1n the verification
pool 102 includes a verification component 116 that
executes locally to monitor and capture certain information
associated with a subset 122 of the software components 110
installed on the user computing device 104. The subset 122
of the software components 110 that 1s monitored by the
verification component 116 1s selected at random by a
randomized selector 118 that 1s locally installed on each
device 1n the verification pool 102. The verification com-
ponent 116 monaitors the selected subset 122 of components
for a period of time during on-going in-field operations of
the user computing device 104 and captures certain associ-
ated information responsive to satisfaction of predefined
capture conditions. This software component monitoring
and selective capture of associated information 1s referred to
herein as “verfication.”

For example, a verification component 116 may capture
certain device telemetry when the mputs to, outputs from, or
actions of one of the software components 110 of the subset
122 satisiy one or more capture conditions predefined by the
centralized software verification service 120. In one imple-
mentation, the capture conditions are satisfied when the
soltware system 108 experiences certain anomalous events
and/or system errors due to actions of one or more of the
randomly-selected software components violate predefined
verification rules, such as when one or more of the moni-
tored components performs an action inconsistent with the
directives of one or more other system components or an
action preidentified as likely to corrupt memory, freeze the
system, and/or cause other system error. Violations of one or
more such rules triggers a capture of associated telemetry.

The venfication component 116 on each device in the
verification pool 102 reports the captured information back
to a centralized software verification service 120, and the
centralized soltware verification service 120 aggregates the
captured information received from the various devices 1n
the verification pool to identily particular software compo-
nents that are repeatedly experiencing errors and the ire-
quency of those errors. This error tracking information can

10

15

20

25

30

35

40

45

50

55

60

65

4

then be provided to various third-party developers that may
utilize such information to update and improve the associ-
ated software components. For example, the verification
component 116 may observe that a software component ‘B’
performs several actions that violate rules that have pre-
defined by the centralized software verification service 120.
The frequency of these rule violations and other associated
information is captured and provided back to the centralized
software verification service 120, and the centralized soft-
ware verification service 120 may then alert the developer of
soltware component ‘B’ to the nature and extent of such
errors experienced on the various devices in the verification
pool 102,

Since the verification component 116 randomly selects the
soltware components within the selected subset 122 on each
device 1n the verification pool, there 1s no need for the
centralized software verification service 120 to determine
which particular software components are executing on each
device 1n the verification pool 102. Moreover, performing
this selection at the device level (rather than by the central-
1zed soltware verification service 120), eliminates the need
to 1implement centralized logic divvying up the pooled
software components among the different devices in the
verification pool 102 to ensure each different component in
the pool 1s adequately monitored by one or more devices in
the verification pool.

According to one implementation, the centralized soft-
ware verification service 120 provides the verification com-
ponent 116 of each of the devices 1n the verification pool 102
with a capture parameter defimng a number of the software
components 110 that the verification component 116 1s to
monitor. This capture parameter 1s set to ensure that the
operations of the verification component 116 do not degrade
device performance (e.g., by slowing down system opera-
tions) by a degree that 1s noticeable by an end user. For
example, the capture parameter may specily that the verifi-
cation component 116 1s to monitor a small number (e.g., 5)
of the locally-installed software components 110 1n the
software system 108.

In addition to limiting the number of software compo-
nents monitored by the verification component 116 to miti-
gate associated observable performance degradation of the
device, the capture parameter 1s also set 1n relation to the size
of the verification pool 102 so as to ensure that the verifi-
cation performed across the wvarious devices provides
exhaustive coverage of all software components that are
executing within the software system 108 and available for
random selection by the verification component 116 of at
least one device 1n the verification pool 102. As used herein,
the term, “exhaustive coverage” 1s used to refer to a statis-
tical guarantee that each software component available for
random selection on at least one device in the verification
pool 1s randomly selected for verification on at least one
device 1n the verification pool 102. *“Statistical guarantee” 1s
defined herein to mean a guarantee greater than or equal to
a pre-determined high bar value, such as 99.90%, 99.90%,
or even higher, depending on product goals. In general, this
statistical guarantee 1s based on the size of the verification
pool 102 and the number of software components randomly
selected for monitoring on each device 1n the pool.

In the 1llustrated example, the verification pool 102 may
be understood as including hundreds or thousands of
machines. Each machine in the verification pool 102 ran-
domly selects and captures data associated with a subset of
its locally-executing soitware components on the software
system 108. According to one implementation, each device
in the verification pool 102 actively verifies 1% or fewer of

US 10,936,469 B2

S

the total number of software components available for
random selection and verification within the software system
108 at any given point 1n time. Due to assumptions that can
be made about the average number of numbers of software
components that are—in different implementations—made
available for random selection on each machine in the
verification pool 102, some scenarios may permit for moni-
toring significantly less than 1% of the pooled software
components on each individual machine 1n the verification
pool 102 while still providing exhaustive coverage of all
such components. Further statistical scenarios and sample
s1zes are discussed in greater detail with respect to FIG. 2.

As shown 1n FIG. 1, each device 1n the verification pool
102 randomly selects and captures mmformation pertaining to
different software components. For example, the user com-
puting device 104 randomly selects and monitors the subset
122 of the software components 110 consisting of drivers A,
B, C, while the user computing device 106 randomly selects
and monitors a subset of software of the software compo-
nents 110 consisting of drivers I, I, O. At any given time, two
or more devices 1n the verification pool 102 may actively
verily one or more 1dentical software components (e.g., A,
B, C. v. A, L, N). This potential for overlap diversifies the
collected data (e.g., by monitoring the software component
A on two or more differently-configured machines) and
provides the centralized software verification service 120
with a diversified dataset retlecting circumstances associated
with observed system errors and rule violations in devices
with different hardware configurations and configuration
settings.

In one 1implementation, the randomized selector 118 1s
configured to randomly re-select a new subset of the sofit-
ware components 110 periodically so as to provide moni-
toring of the various pooled software components on a
variety of differently-configured devices within the verifi-
cation pool. For example, the randomized selector 118 of
cach device 1n the verification pool 102 may select a new
subset of the software components 110 every two weeks and
provide continuous verification of the newly-selected com-
ponents throughout the following two-week interval. This
periodic, random re-selection on each device turther diver-
sifies the total number of test scenarios captured by the
verification pool 102.

FIG. 2 illustrates an exemplary chart 200 illustrating
coverage ol system components that may be obtained 1n a
system that randomly selects software components for veri-
fication on different machines 1n a verification pool. By
example and without limitation, the randomly-selected soft-
ware components are—in the following example—dis-
cussed as being drivers in an operating system. For example,
cach of the machines in the population may be understood
as executing a same operating system that includes verifi-
cation component that randomly selects a subset of the
locally-executing drivers for an ongoing verification pro-
cess. It may be appreciated that the same concepts discussed
with respect to this example may be extended to implemen-
tations that provide verification on software components that
are not drivers but are, instead, other executable subcom-
ponents ol a system installed on multiple devices.

In FIG. 2, the y-axis indicates “population” or the number
of machines participating in a verification pool, while the
X-ax1s represents a “percent of system coverage” that 1s
provided by each individual machine in the verification
pool. If, for example, each machine 1n the population
executes an 1dentical operating system with 80 locally-
executing drivers while randomly selecting and veritying 4
drivers, each machine can be understood as providing 5%

10

15

20

25

30

35

40

45

50

55

60

65

6

coverage ol the entire system. Chart values (represented by
shaded areas 202, 204, and 206) within the chart 200
represent a likelthood of exhaustive coverage being pro-
vided by the population given the corresponding population
size and percentage of coverage that i1s provided each
individual machine in the population.

In FIG. 2, the shaded areas 202, 204, and 206 of the chart
200 represent a likelihood that every driver executing some-
where within the population 1s selected for verification on at
least one machine in the population. The chart 200 illustrates
three exemplary tiers of coverage. In a first areca 202
corresponding to a first coverage tier, coverage achieved by
the population 1s less than 99% percent. In a second area 204
corresponding to a second coverage tier, the coverage
attained by the population 1s between 99.00% and 99.98%
percent. In a third area 206 representing a third tier of
coverage, the coverage attained 1s 99.99 percent or greater.
Thus, the third area 206 represents a scenario where the
random selection performed by machines within the verifi-
cation pool provides exhaustive coverage of all system
drivers—e.g., a statistical guarantee that every driver in the
random selection pool 1s verified by at least one device of the
verification pool. The values represented by the shaded areas

202, 204, and 206 can be arrived at by computing equation
(1), below:

E=1-(1-C)—P (1)

where P 1s the population, C 1s the percent of system
coverage provided by each device 1n the population (e.g., the
percentage of total system drivers that are verified on each
individual machine), and E 1s the likelihood of attaining
exhaustive coverage by way of random selection on each
device.

Further, the chart 200 1s based on the assumption that each
machine 1n the population executes an 1dentical system (e.g.,
an 1dentical operating system) with an 1dentical collection of
drivers (1dentical driver version number). Additionally, 1t
may be assumed that all drivers can be enabled indepen-
dently (e.g., without execution of any other driver) and that
all drivers have the same impact on performance. If, for
example, the verification pool (population) includes 50
machines that each randomly select 10% of the system
drivers for verification, there exists a 99.5% chance of
exhaustive system coverage. When the verification pool size
1s expanded to 1200 machines each randomly selecting 1%
of the system drivers, there exists a statistical guarantee
(99.999%) of exhaustive coverage.

In some systems, the x-axis value (percent coverage by
cach mdividual machine 1n the population), can be deter-
mined without knowing the total number of drivers execut-
ing in the system due to the fact that these numbers are
strongly limited by upper bounds and further due to the fact
that distribution of drivers in the population may be accu-
rately estimated. For example, the number of drivers for a
given system release being tested by the verification pool
may be assumed limited by an upper bound of several
thousand (e.g., S000). This upper bound may define the size
of the population that 1s needed to reach exhaustive coverage
(99.999%) with a random selection of 3-10 drivers per
machine. Moreover, population statistics can be generated to
further approximate the numerical distribution of drivers
supported by various machines 1 the population. For
example, datasets may be gathered to determine that 1n 99%
of cases, individual machines in a population do not host
more than 3500 drivers; in 99.99% of cases, individual
machines i the population do not host more than 300
drivers; and that, on average the individual machines in the

US 10,936,469 B2

7

population do not host more than 200 drivers. Given these
available statistics, mathematical simplifications may be
turther employed to significantly (~10 times) reduce the size
of the population that 1s needed to statistically guarantee
exhaustive coverage of all system drivers.

Notably, actual implementations of a system implement-
ing the disclosed technology may be much more complex
than the basic, homogeneous probabilistic model of FIG. 2.
For example, there may exist scenarios where the machines
in the verification pool implement non-identical systems
(e.g., by implementing diflerent operating system versions,
driver versions, and/or combinations of individual drivers on
cach machine). Even 1n these verification pools that imple-
ment non-homogenous instances of a system, exhaustive
coverage can be statistically guaranteed by adding enough
machines to the verification pool to ensure exhaustive cov-
crage ol each different version of the system executing
within the pool. For example, 1 the verfication pool 1s
designed to ensure that each machine provides 5% coverage
of all system drivers and that there exist approximately 200
drivers executing on each individual machine within the
pool, exhaustive coverage can be guaranteed provided that
the verification pool includes at least 135 machines execut-
ing each possible diflerent instance of the system. Statisti-
cally, the total size of the verification pool can then be
determined to make such guarantee.

FIG. 3 illustrates an example verification pool 300 that
provides ongoing verification of various drivers (e.g., device
drivers 326) in an operating system 306. For simplicity, the
verification pool 300 1s shown to include five processing
devices (e.g., processing device 302, 340, 342, 344, and
346). In an actual implementation, the verification pool 300
may include hundreds or thousands of devices.

Although the processing devices 1n the verification pool
300 may be configured differently and/or include different
hardware components, each device 1n the pool 1s executing,
a same operating system 306 and 1includes one or more user
applications 308 that places application programming inter-
tace (API) function calls to various user mode subsystems
324 of the operating system 306. These API function calls
are, 1n turn, communicated to an operating system kernel
324 that commands device drivers 326 through various
device driver interfaces 322. The device drivers 326, 1n turn,
transmit control signals to associated components (e.g.,
hardware 336) to eflect specific control actions such as
rendering graphics, playing audio, connecting to a network,
etc.

The device drivers of the processing device 302 include
drivers such as external device drivers 328 (e.g., wireless
mouse, drawing pad, external storage drive), network driv-
ers 320, camera and audio drivers 332, as well as other types
of drivers 334. Due to diflerences in hardware configurations
on the different processing devices in the verification pool
300, the specific combination of the device drivers 326
installed on any given one of the processing devices may
vary.

The operating system 306 executing on each of the
devices 1n the verification pool 300 includes a verification
component 310 that momitors and captures certain informa-
tion associated with a randomly selected subset of the device
drivers 326 installed on the associated device (e.g., the
processing device 302). The subset of the device drivers 326
that 1s monitored by the verification component 1s selected
at random by a random driver selector 312 according to a
capture parameter received from a driver verification service
304. In one implementation, the capture parameter specifies
a number of drivers that the verification component 310 1s to

10

15

20

25

30

35

40

45

50

55

60

65

8

randomly select for verification on the processing device
302. This capture parameter 1s set to ensure that the opera-
tions of the verification component 310 do not degrade
device performance (e.g., by slowing down system opera-
tions) by a degree that i1s noticeable to a user of the
processing device 302. For example, the capture parameter
may specily that the verification component 310 1s to verily
a small number (e.g., 2-5) of the device drivers 326 on the
processing device 302.

In one implementation, the driver verification service 304
provides an i1dentical capture parameter to each of the
processing devices within the verification pool 300. For
example, the driver verification service 304 may instruct the
verification component 310 of each one of the processing
devices (e.g., 302, 340, 342, 344, 346) to randomly select
three drivers for verification (e.g., monitoring and data
capture during ongoing nominal use operations of the asso-
ciated device).

In addition to mitigating performance degradation on the
processing device 302, the capture parameter 1s also selected
so as to guarantee that the random selection of drivers on the
various processing devices of the verification pool 300
provides exhaustive coverage of all drivers executing on one
or more devices within the verification pool 300. That 1s, the
capture parameter 1s set to ensure that there exists a 99.99%
likelihood that each driver executing on one or more devices
in the verification pool 300 1s randomly selected for verifi-
cation by the verification component 310 on at least one
device 1n the verification pool. To ensure exhaustive cover-
age, the driver verification service 304 may set the capture
parameter based on the population of the verification pool
300. When there exist more processing devices in the
verification pool 300, exhaustive coverage may be guaran-
teed while veritying a fewer number of drivers on each
individual device. Likewise, the driver verification service
304 may specily a capture parameter that provides for
verification of a greater number of drivers on each individual
device when the verification pool 300 1s smaller.

In addition to speciiying the capture parameter (e.g.,
number of drivers to verily locally), the driver verification
service 304 additionally provides the verification component
310 with capture conditions 314 that define trigger condi-
tions (e.g., verification rules) for capturing certain types of
data associated with the monitored subset of device drivers
326. In one implementation, the capture conditions 314
define driver verification rules that, 11 violated by one of the
drivers being verified, trigger the logging and/or collection
of telemetry tlowing between the operating system and the
associated one of the device drivers 326. If, for example, the
verification component 310 1s actively verilying a camera
driver and the camera driver takes an action that violates a
driver verification rule (e.g., an action preidentified as likely
to corrupt memory), the verification component 310 may
capture (e.g., intercept and record) some or all telemetry
flowing to and from the camera driver within the kernel
mode of the operating system 306.

The verification component 310 on each device in the
verification pool 300 reports the captured information back
to the driver verification service 304 where the captured
information 1s aggregated and analyzed to identily particular
device drivers that are repeatedly experiencing errors within
the verification pool 300. This error tracking information can
then be provided to various third-party developers that may
utilize such information to update and improve the associ-
ated drivers.

In one implementation, the random driver selector 312 of
the verification component 310 1s configured to periodically

US 10,936,469 B2

9

re-perform the random drniver selection and select a new
subset of the device drivers 326 for venfication. In this
manner, the specific drivers being verified on the processing
device 302 change over time, eflectively permitting verifi-
cation of many diflerent drivers in conjunction with the
hardware and configuration settings of the processing device
302. Notably, the above-described driver verification 1is
performed without a centralized determination regarding
which drivers are executing on each device 1n the verifica-
tion pool 300. This significantly reduces processing over-
head while still exhaustive coverage 1n verifying all system
drivers.

FIG. 4 1llustrates example operations 400 for using a pool
of devices to verily a collection of software components
executing as part of a system 1installed on each device 1n the
pool. In one implementation, the operations 400 are per-
formed by the respective individual devices of the pool.

A receiving operation 402 receives a capture parameter
defining a set number of software components that are to be
verified (e.g., monitored for compliance with various pre-
defined verification rules) on a device that 1s among a pool
of devices providing feedback to a centralized software
verification service. The specific collection of software
components that 1s available for random selection on each
device 1n the pool may vary from one device to another (e.g.,
different device may have diflerent drives installed); how-
ever, the capture parameter 1s, in one implementation, set by
the centralized data verification service to ensure that each
one of the software components available for random selec-
tion within the pool of devices i1s statically guaranteed to be
randomly selected for verification on at least one device in
the pool. The capture parameter may also be set to mitigate
or minimize the number of individual software components
verified on each of the devices while still providing the
exhaustive coverage of all the software components that are
available for random selection and venfication.

A random selection operation 404 randomly selects the
number of software components defined by the capture
parameter from a collection of software components execut-
ing on the device, and a verification operation 406 executes
a verification component on the device to capture certain
information associated with the randomly-selected software
components. In one implementation, the verification opera-
tion 406 captures telemetry flowing to and from the ran-
domly-selected software component(s) when the actions of
such components violate certain predefined rules (e.g., sat-
1sfying capture conditions).

A transmission operation 408 transmits the captured
telemetry to the solftware verification service. When the
actions 402-408 are performed by each device in the pool,
the random selection of soitware components on each device
provides exhaustive coverage of all software components in
the system.

FIG. 5 illustrates an example schematic of a processing
device 500 that may be included 1n a verification pool and
suitable for implementing aspects of the disclosed technol-
ogy. The processing device 500 includes one or more
processor unit(s) 502, memory 504, a display 506, and other
interfaces 508 (e.g., buttons). The memory 504 generally
includes both volatile memory (e.g., RAM) and non-volatile
memory (e.g., tlash memory). An operating system 510,
such as the Microsoft Windows® operating system, the
Microsoit Windows® Phone operating system or a speciiic
operating system designed for a gaming device, resides 1n
the memory 3504 and i1s executed by the processor unit(s)
502, although 1t should be understood that other operating
systems may be employed.

10

15

20

25

30

35

40

45

50

55

60

65

10

One or more applications 512, are loaded 1in the memory
504 and executed on the operating system 510 by the
processor unit(s) 502. In one implementation, a verification
component (e.g., 116 in FIG. 1) 1s included within the
operating system 3510. In another implementation, a verifi-
cation component (e.g., 116 1n FIG. 1) 1s an application that
1s executed by the operating system 510.

Applications 512 may receive mput from various input
local devices (not shown) such as a microphone, keypad,
mouse, stylus, touchpad, joystick, etc. Additionally, the
applications 512 may recerve mput from one or more remote
devices, such as remotely-located smart devices, by com-
municating with such devices over a wired or wireless
network using more communication transceivers 530 and an
antenna 532 to provide network connectivity (e.g., a mobile
phone network, Wi-Fi®, Bluetooth®).

The processing device 500 further includes storage device
528 and a power supply 516, which 1s powered by one or
more batteries (e.g., a battery 520) and/or other power
sources and which provides power to other components of
the processing device 500. The power supply 516 may also
be connected to an external power source (not shown) that
overrides or recharges the built-in batteries or other power
sources.

In an example implementation, a verification component
includes hardware and/or software embodied by instructions
stored 1n the memory 504 and/or storage devices 528 and
processed by the processor unit(s) 502. The memory 504
may be the memory of a host device or of an accessory that
couples to the host.

The processing device 500 may include a variety of
tangible computer-readable storage media and intangible
computer-readable communication signals. Tangible com-
puter-readable storage can be embodied by any available
media that can be accessed by the processing device 5300 and
includes both volatile and nonvolatile storage media, remov-
able and non-removable storage media. Tangible computer-
readable storage media excludes intangible and transitory
communications signals and includes volatile and nonvola-
tile, removable and non-removable storage media 1mple-
mented 1n any method or technology for storage of infor-
mation such as computer readable instructions, data
structures, program modules or other data. Tangible com-

puter-readable storage media includes, but 1s not limited to,
RAM, ROM, EEPROM, flash memory or other memory

technology, CDROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other tangible medium which can be used to store the
desired information, and which can be accessed by the
processing device 500. In contrast to tangible computer-
readable storage media, intangible computer-readable com-
munication signals may embody computer readable mnstruc-
tions, data structures, program modules or other data
resident 1n a modulated data signal, such as a carrier wave
or other signal transport mechanism. The term “modulated
data signal” means a signal that has one or more of its
characteristics set or changed 1n such a manner as to encode
information in the signal. By way of example, and not
limitation, mtangible communication signals imnclude wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other
wireless media.

Some 1mplementations may comprise an article of manu-
facture. An article of manufacture may comprise a tangible
storage medium (a memory device) to store logic. Examples
of a storage medium may include one or more types of

US 10,936,469 B2

11

processor-readable storage media capable of storing elec-
tronic data, including volatile memory or non-volatile
memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory,
and so forth. Examples of the logic may include various
soltware elements, such as software components, programs,
applications, computer programs, application programs, sys-
tem programs, machine programs, operating system soit-
ware, middleware, firmware, software modules, routines,
subroutines, operation segments, methods, procedures, soft-
ware 1nterfaces, application program interfaces (API),
istruction sets, computing code, computer code, code seg-
ments, computer code segments, words, values, symbols, or
any combination thereolf. In one implementation, {for
example, an article of manufacture may store executable
computer program 1instructions that, when executed by a
computer, cause the computer to perform methods and/or
operations 1n accordance with the described implementa-
tions. The executable computer program instructions may
include any suitable type of code, such as source code,
compiled code, mterpreted code, executable code, static
code, dynamic code, and the like. The executable computer
program 1nstructions may be implemented according to a
predefined computer language, manner or syntax, for
istructing a computer to perform a certain operation seg-
ment. The instructions may be implemented using any
suitable high-level, low-level, object-oriented, visual, com-
piled and/or interpreted programming language.

An example method disclosed herein includes randomly
selecting one or more software components executing on
cach of a plurality of processing devices within a verification
pool. A total number of the randomly-selected software
components in the verification pool 1s set to statistically
guarantee that each one of the software components avail-
able for random selection 1s randomly selected on at least
one of the plurality of processing devices within the verifi-
cation pool. The method further includes executing a veri-
fication process on each one of the plurality of processing
devices, and communicating the captured information to a
soltware component verification and analysis service. The
verification process of each processing device provides for
capture ol information associated with the randomly-se-
lected software components on the processing device
responsive to detection of events satisifying one or more
capture conditions.

In one example method according to any preceding
method, the software components are kernel mode drivers of
an operating system. In another example method of any
preceding method, the one or more capture conditions
provide for capture of data when one of the randomly-
selected software components performs an action that that
violates a verification rule.

In st1ll another example method of any preceding method,
a number of software components randomly-selected on
cach of the processing devices in the verification pool
depends upon a total number of processing devices 1n the
verification pool and 1s set by the software component
verification and analysis service.

In yet still another example method of any preceding
method, a number of software components randomly-se-
lected on each of the processing devices 1n the verification
pool 1s capped to a predefined maximum to mitigate per-
formance degradation experienced by each of the processing
devices due to execution of the verification process.

In st1ll another example method of any preceding method,
the method further includes periodically repeating the ran-
dom selection of the software components on each of the

10

15

20

25

30

35

40

45

50

55

60

65

12

processing devices 1n the verification pool, each re-selection
providing for a total number of randomly-selected software
components selected across the plurality of processing
devices that statistically guarantees selection of each one of
the software components available for random selection on
at least one machine.

In another example method of any preceding method,
randomly selecting the software components executing on
cach of the plurality of processing devices in the verification
pool further comprises randomly selecting the software
components on each one of the plurality of processing
devices without first providing the software component
verification and analysis service with information 1dentify-
ing or enumerating a collection of software components
available for random selection.

An example system disclosed herein includes a verifica-
tion component stored 1 memory and executable on each of
a plurality of processing devices 1n a verification pool. The
verification component 1s configured to: randomly select one
or more software components executing on each of a plu-
rality of processing devices within a venfication pool;
capture mformation associated with the randomly-selected
software components on each of the plurality of processing
devices responsive to detection of events satistying one or
more capture conditions; and communicate the captured
information to a software component verification and analy-
s1s service. A total number of the randomly-selected soft-
ware components 1n the verification pool being set to
statistically guarantee that each one of the software compo-
nents available for random selection 1s randomly selected on
at least one of the plurality of processing devices within the
verification pool.

In one example system of any preceding system, the
soltware components are kernel mode drivers of an operat-
ing system.

In another example system of any preceding system, the
one or more capture conditions provide for capture of data
when one of the randomly-selected software components
performs an action that that violates a venfication rule
enforced by the verification component.

In yet still another example system of any preceding
system, a number of software components randomly-se-
lected on each of the processing devices in the verification
pool depends upon a total number of processing devices in
the verification pool and is set by the software component
verification and analysis service.

In still another system of any preceding system, a number
of software components randomly-selected on each of the
processing devices 1n the verification pool 1s capped to a
predefined maximum to mitigate performance degradation
experienced by each of the processing devices due to
execution of the associated verification component.

In another example system of any preceding system, the
verification component 1s turther configured to periodically
repeat the random selection of the software components on
cach of the processing devices in the verification pool, each
re-selection providing for a total number of randomly-
selected software components selected across the plurality
of processing devices that statistically guarantees selection
of each one of the software components available for
random selection on at least one machine.

In still another example system of any preceding system,
the verification component randomly selects the software
components on each one of the plurality of processing
devices without first providing the software component
verification and analysis service with information 1dentify-

US 10,936,469 B2

13

ing or enumerating a collection of soitware components
available for random selection.

One or more memory devices storing processor-readable
instructions for executing an example computer process
comprising: randomly selecting one or more software com-
ponents executing on each of a plurality of processing
devices within a verification pool; executing a verification
process on each one of the plurality of processing devices,
the verification process of each processing device capturing,
information associated with the randomly-selected software
components on the processing device responsive to detec-
tion of events satisiying one or more capture conditions; and
communicating the captured information to a software com-
ponent verification and analysis service. A total number of
the randomly-selected software components in the verifica-
tion pool 1s set to statistically guarantee that each one of the
soltware components available for random selection 1s ran-
domly selected on at least one of the plurality of processing
devices within the verification pool.

In one example computer process according to any pre-
ceding computer process, the soltware components are ker-
nel mode drivers of an operating system.

In another example computer process of any preceding
computer process, the one or more capture conditions pro-
vide for capture of data when one of the randomly-selected
soltware components performs an action that that violates a
verification rule enforced by the verification process.

In still another example computer process of any preced-
ing computer process, a number of soltware components
randomly-selected on each of the processing devices 1n the
verification pool depends upon a total number of processing
devices in the verification pool and 1s set by the software
component verification and analysis service.

In still another example computer process of any preced-
ing computer process, a number of soltware components
randomly-selected on each of the processing devices in the
verification pool 1s capped to a predefined maximum to
mitigate performance degradation experienced by each of
the processing devices due to execution of the associated
verification process.

In yet still another example computer process ol any
preceding computer process, selecting the software compo-
nents on each one of the plurality of processing devices
turther includes randomly selecting the software compo-
nents on each one of the plurality of processing devices
without first providing the software component verification
and analysis service with information identifying or enu-
merating a collection of software components available for
random selection.

An example system disclosed herein includes a means for
randomly selecting one or more software components
executing on each of a plurality of processing devices within
a verification pool. A total number of the randomly-selected
soltware components in the verification pool 1s set to sta-
tistically guarantee that each one of the software compo-
nents available for random selection 1s randomly selected on
at least one of the plurality of processing devices within the
verification pool. The system further includes a means for
executing a verification process on each one of the plurality
of processing devices; and a means for communicating the
captured information to a software component verification
and analysis service. The verification process of each pro-
cessing device provides for capture ol mformation associ-
ated with the randomly-selected software components on the
processing device responsive to detection of events satisty-
ing one or more capture conditions.

10

15

20

25

30

35

40

45

50

55

60

65

14

The implementations described herein are implemented
as logical steps 1n one or more computer systems. The
logical operations may be implemented (1) as a sequence of
processor-implemented steps executing 1n one or more com-
puter systems and (2) as iterconnected machine or circuit
modules within one or more computer systems. The imple-
mentation 1s a matter of choice, dependent on the perfor-
mance requirements of the computer system being utilized.
Accordingly, the logical operations making up the imple-
mentations described herein are referred to variously as
operations, steps, objects, or modules. Furthermore, it
should be understood that logical operations may be per-
formed 1n any order, unless explicitly claimed otherwise or
a specilic order 1s inherently necessitated by the claim
language. The above specification, examples, and data,
together with the attached appendices, provide a complete
description of the structure and use of exemplary implemen-
tations.

What 1s claimed 1s:

1. A method comprising:

for each of a plurality of devices within a verification

pool, randomly selecting a subset of software compo-
nents executing on the device for a verification process,
a total number of the randomly-selected soitware com-
ponents 1n the verification pool being set to statistically
guarantee that each one of the software components
available for random selection 1s randomly selected on
at least one of the plurality of processing devices within
the verification pool;

executing the verification process on each one of the

plurality of processing devices, the verification process
of each processing device capturing information asso-
ciated with the randomly-selected software compo-
nents on the processing device responsive to detection
of events satisiying one or more capture conditions;
and

communicating the captured information to a software

component verification and analysis service.

2. The method of claim 1, wherein the software compo-
nents are kernel mode drivers of an operating system.

3. The method of claim 1, wherein the one or more capture
conditions provide for capture of data when one of the
randomly-selected software components performs an action
that that violates a verification rule.

4. The method of claim 1 wherein a number of software
components randomly-selected on each of the processing
devices 1n the verification pool depends upon a total number
ol processing devices 1n the verification pool and 1s set by
the software component verification and analysis service.

5. The method of claim 1, wherein a number of software
components randomly-selected on each of the processing
devices 1n the verification pool 1s capped to a predefined
maximum to mitigate performance degradation experienced
by each of the processing devices due to execution of the
verification process.

6. The method of claim 1, further comprising;:

periodically repeating the random selection of the sofit-

ware components on each of the processing devices 1n
the verification pool, each re-selection providing for a
total number of randomly-selected software compo-
nents selected across the plurality of processing devices
that statistically guarantees selection of each one of the
soltware components available for random selection on
at least one machine.

US 10,936,469 B2

15

7. The method of claim 1, wherein randomly selecting the
software components executing on each of the plurality of
processing devices in the verfication pool further com-
Prises:

randomly selecting the software components on each one

of the plurality of processing devices without first
providing the software component verification and
analysis service with information identifying or enu-
merating a collection of software components available
for random selection.

8. A system comprising:

a verification component stored in memory and execut-

able on each of a plurality of processing devices 1n a
verification pool, the verification component config-

ured to:

for each of the plurality of devices in the verification
pool, randomly select a subset of software compo-
nents executing on the device for a verification
process, a total number of the randomly-selected
software components in the verification pool being
set to statistically guarantee that each one of the
software components available for random selection
1s randomly selected on at least one of the plurality
ol processing devices within the verification pool;

capture information associated with the randomly-se-
lected software components on each of the plurality
of processing devices responsive to detection of
events satislying one or more capture conditions; and

communicate the captured imnformation to a software
component verification and analysis service.

9. The system of claim 8, wherein the software compo-
nents are kernel mode drivers of an operating system.

10. The system of claim 8, wheremn the one or more
capture conditions provide for capture of data when one of
the randomly-selected software components performs an
action that that violates a verification rule enforced by the
verification component.

11. The system of claim 8, wherein a number of software
components randomly-selected on each of the processing
devices 1n the verification pool depends upon a total number
of processing devices 1n the verification pool and 1s set by
the software component verification and analysis service.

12. The system of claim 8, wherein a number of software
components randomly-selected on each of the processing
devices 1n the verification pool 1s capped to a predefined
maximum to mitigate performance degradation experienced
by each of the processing devices due to execution of the
associated verification component.

13. The system of claam 8, wherein the verification
component 1s further configured to periodically repeat the
random selection of the software components on each of the
processing devices 1n the verification pool, each re-selection
providing for a total number of randomly-selected software
components selected across the plurality of processing
devices that statistically guarantees selection of each one of
the software components available for random selection on
at least one machine.

10

15

20

25

30

35

40

45

50

55

16

14. The system of claam 8, wherein the verification
component randomly selects the software components on
cach one of the plurality of processing devices without first
providing the soitware component verification and analysis
service with information identifying or enumerating a col-
lection of software components available for random selec-
tion.

15. One or more memory devices storing processor-
readable 1nstructions for executing a computer process, the
computer process comprising:

for each of a plurality of devices within a verification

pool, randomly selecting a subset of soltware compo-
nents executing on the device for a verification process,
a total number of the randomly-selected soitware com-
ponents 1n the verification pool being set to statistically
guarantee that each one of the software components
available for random selection 1s randomly selected on
at least one of the plurality of processing devices within
the verification pool;

executing the verification process on each one of the

plurality of processing devices, the verification process
of each processing device capturing information asso-
ciated with the randomly-selected solftware compo-
nents on the processing device responsive to detection
of events satistying one or more capture conditions;
and

commumnicating the captured information to a software

component verification and analysis service.

16. The one or more memory devices of claim 135, wherein
the software components are kernel mode drivers of an
operating system.

17. The one or more memory devices of claim 135, wherein
the one or more capture conditions provide for capture of
data when one of the randomly-selected software compo-
nents performs an action that that violates a verification rule
enforced by the vernification process.

18. The one or more memory devices of claim 15, wherein
a number of software components randomly-selected on
cach of the processing devices in the verification pool
depends upon a total number of processing devices 1n the
verification pool and 1s set by the software component
verification and analysis service.

19. The one or more memory devices of claim 135, wherein
a number of software components randomly-selected on
cach of the processing devices 1 the verfication pool 1s
capped to a predefined maximum to mitigate performance
degradation experienced by each of the processing devices
due to execution of the associated verification process.

20. The one or more memory devices of claim 15, wherein
randomly selecting the software components on each one of
the plurality of processing devices further comprises:

randomly selecting the software components on each one

of the plurality of processing devices without {irst
providing the software component verification and
analysis service with information identifying or enu-
merating a collection of software components available
for random selection.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

