US010936427B2

a2y United States Patent (10) Patent No.: US 10,936,427 B2

Candee et al. 45) Date of Patent: Mar. 2, 2021
(54) DISASTER RECOVERY DATA FETCHING (56) References Cited
CONTROL

U.S. PATENT DOCUMENTS

(71) Applicant: International Business Machines 6.163.856 A 17/2000 Dion ef al.

Corporation, Armonk, NY (US) 6,381,605 Bl 4/2002 Kothuri et al.

8,121,966 B2 2/2012 Routray et al.
(72) Inventors: Juliet Candee, Brewster, NY (US); Jes 8,341,363 B2* 12/2012 Chou GO6F 11/1448
Kiran Chittigala, Hyderabad (IN); 707/640

Ravi A. Shankar, Austin, TX (US); 20029/6318348%8; B2 7/2016 Provenzano et al.

) Al 9/2002 Beardsley et al.
Bradley J. Smith, Tucson, AZ (US); 2005/0044097 Al 2/2005 Singson et al.
Taru \/Yarshneyj Hyderabad (IN) 2006/0123019 Al 6/2006 Nguyen et al.
2008/0126431 Al* 5/2008 Walliser GOGF 11/1451
(73) Assignee: INTERNATIONAL BUSINESS (Continued)
MACHINES CORPORATION,
Armonk, NY (US) OTHER PUBLICATTONS

(*) Notice: Subject to any disclaimer, the term of this Anonymous., .HTTFP ETag. ,.Wlklpedla, retrieved from the Internet:
patent is extended or adjusted under 35 https://en.wikipedia.org/wiki/HTTP_ETag2 of, Apr. 16, 2018, 3

pages.
U.S.C. 154(b) by 16 days.
(b) by 7> (Continued)

(21) Appl. No.: 16/154,975 Primary Examiner — Gary J Portka

(22) Filed: Oct. 9. 2018 (74) Attorney, Agent, or Firm — Cantor Colburn LLP;
’ Teddi Maranzano

(65) Prior Publication Data
US 2020/0110669 Al Apr. 9, 2020

(57) ABSTRACT

Aspects include prefetchung a plurality of high-level infor-
mation, high-level metadata, low-level metadata, and low-

(51) Int. CI. level information including a plurality of components asso-

Goor 11/14 (2006'0:‘) cliated with a monitored entity for disaster recovery. A
GO6L" 12/0562 (201 6-0:) subsequent instance of the high-level information, the high-
Gool 12716 (2006.01) level metadata, and the low-level metadata 1s requested. The
(52) U.S. Cl. subsequent instance of the high-level information 1s fetched
CPC ... GO6F 11/1451 (2013.01); GOGF 11/1415 based on detecting a change in the high-level metadata. A
(2013.01); GO6F 12/0862 (2013.01); GO6F subsequent 1nstance of one or more of the components of the
12716 (2013.01) low-level information corresponding to one or more changes
(58) Field of Classification Search in the low-level metadata 1s fetched for updating a plurality
CPC ..o GOoL 11/1415; GO6F 11/1435; GO6F of disaster recovery data of the monitored entity in a
11/1451; GO6F 11/1466; GO6F 12/0862 persistent database.
USPC 707/637, 646; 711/162; 714/4.11, 6.1
See application file for complete search history. 14 Claims, 6 Drawing Sheets
400
402 \

Prefefch a plurality of high-level information, high-level metadata, low-level metadata, and low-level information

comprising a plurality of components associated with a monitored entity for disaster recovery

404

Request a subsequent instance of the high-level information, the high-level metadata, and the low-level
metadata

406 N\

Fetch the subsequent instance of the high-levet information based on detecting a change in the high-level
metadata

408

Fetch a subsequent instance of one or more of the components of the low-level mformation corresponding o

one or more changes in the low-level metadata for updating a plurality of disaster recovery data of the
monifored entity in a persistent database

US 10,936,427 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0115332 Al 5/2010 Zheng et al.
2011/0161723 Al 6/2011 Taleck et al.
2013/0145010 Al 6/2013 Luna et al.
2015/0112939 Al* 4/2015 Cantwell GO6F 11/1451
707/646
2015/0317209 Al1* 11/2015 Hsuooooeevvnnnenn, GO6F 11/1438
707/646

OTHER PUBLICATIONS

Mohan et al., “Algorithms for the management of remote backup
data bases for disaster recovery,” Proceedings of IEEE 9th Inter-
national Conference on Data Engineering, Apr. 1993, 8 pages.

* cited by examiner

US 10,936,427 B2

Sheet 1 of 6

Mar. 2, 2021

U.S. Patent

1 Old

¢ Ol
09

9/eM]JOS pue ajemp.eH

FIETVRTY,

US 10,936,427 B2

& uonezijeniA
- WN V. €L ¢l vN
05 B & &3/,
Juswabeuey
>
SpPeoqIoM

U.S. Patent

US 10,936,427 B2

Sheet 3 of 6

Mar. 2, 2021

U.S. Patent

F A Sl T B

7
SR 1y

. uﬁiuiﬁ%tfiugf.u#u
%I PURH

e i g .
r .___.....__..Ju_.n““... . i = e
- "t - j 1 E lll ‘Lu
.. " o o
r E.%Hu.{;hﬁ:ﬁt .!___._____,.._r...-.!n

T e b et B B S T

B DR

&

BOBLPY SBRD)

ol

535

%

Py

5
ey

DAY

001

v "Old

lusuodwon jusuodwon

US 10,936,427 B2

UOITeWw IO uonewIo)u|
obeI0I1S uoneInbyuo)| w—_ 9¢C
[OADT]-MOT] |ONDT]-MOT UOIBWIO}U|
. J . > JOAST-MO]
N8ILZ
d8¢cc V822
> 9E¢ vee AN 0EeC 022
ot d8lL¢c
-
-
@ V812
- HWN%“Q%M% wwmwwﬁa%%w UONBLLIOIU "1 | UOHBULIOJUL | UOIIBUIOLY
7. " % i
105 wnsypayus | 105 wnssosyn 0] winsyosyn |11 101 bej3 | 1eAa-ubiH
i —
X Ve SUIYOBIN [ENLHA GGG
gl
~ 1/
S
0L<S 91¢
- 802
S— 2]0SU0)
Judwiageuep
m €180 dd IBjOJIU0YD alemplieH
w C— = _ 007 202
~ AN vLle
al ST
. LW931SAS AJon0D9Y IEVVETS
2 19315esI(] Y02 =55 Ble(]
-

US 10,936,427 B2

Sheet 5 of 6

Mar. 2, 2021

U.S. Patent

G Ol

LR SRS B SIS m Hif .,m m...msmw W 4

s
B

8¢t

i
Mﬂ"

».5.,

9¢¢t -
RIS R il b DA LAM s, Aoy
LIS LT U K mmmm s R e 9 1442

.___._.___.__.____ o _.___._.\

: . “ 91€
Sy YR PRIRMEEESY TUTYy P P %?iﬁm

22E mﬁihmumm ORI LS00
0ct -
SLE

ity w el ol A A LA LA L LSS E S

15>
90¢€

fgosn wﬁ%@%ﬁ foa TR T et o
Ol “Buw ™ Asnonsm B0 40 Wi 1590

R H 130

I O S

i

401>

00¢

US 10,936,427 B2

Sheet 6 of 6

Mar. 2, 2021

U.S. Patent

aseqeep Jusjsisiad e ul Anua paojuow
auy) Jo eyep A1anogal Jajsesip jo Aifeand e Bunepdn Joj elepelaw [aAa}-Mo| 3y} Ul Sabueyd 310w JO auo
0} BuIipuodsalio UoONeWIOUI [9AS[-MO| 3} JO Sjuauodwiod au) JO 810w JO 3UO JO a9ue)sul Juanbasgns e yoje

807

elepelaw
19A3[-YbIY 3y} ul abueyo e bunosiap uo paseq uonewlojul [9Asl-ybiy ay) Jo asurisul Juanbasgns ayl Yoo

907

elepelaw
I9A3]-MO| 3} pue ‘Blepelawl [9A38]-ybiy ay) ‘uonewlojul [aasl-ybiy ay) Jo sguelsul Jusanbasqgns e 1sanbay

1481%

AJOA0931 JB)SeSIP 10} AJjus palojuow B UjIm pajeroosse syusuodwod Jo Alelnid e buisudwod
UONBLWLIOJUI [9AS]-MO| PUB ‘BlepelaW [9A3]-MO| ‘Blepelawl [aA3-ybiy ‘uonewlojul [aas|-ubiy jo Ayeln|d e yasjeid

0] 7%
/
00V

US 10,936,427 B2

1

DISASTER RECOVERY DATA FETCHING
CONTROL

BACKGROUND

The present invention generally relates to computer sys-
tems and, more specifically, to disaster recovery data fetch-
ing control.

Discovery of data for disaster recovery support can be
time-consuming where large volumes of data distributed in
vartous locations may need to be collected and stored
persistently to cover many different aspects of a computer
system. As data values change over time and resources, such
as disks, are added or removed from a computer system, data
collection 1s repeated at intervals to ensure that suthicient
data 1s captured to restore computer system operation in the
event ol a catastrophic failure. Recovery support data is
typically stored at a remote location, which consumes both
network bandwidth and storage capacity to maintain data
needed to restore system operation should a failure occur.

SUMMARY

According to one or more embodiments of the present
invention, a computer-implemented method 1ncludes
prefetching a plurality of high-level information, high-level
metadata, low-level metadata, and low-level information
including a plurality of components associated with a moni-
tored entity for disaster recovery. A subsequent instance of
the high-level information, the high-level metadata, and the
low-level metadata are requested. The subsequent instance
of the high-level information 1s fetched based on detecting
a change 1n the high-level metadata. A subsequent instance
of one or more of the components of the low-level infor-
mation corresponding to one or more changes 1n the low-
level metadata 1s fetched for updating a plurality of disaster
recovery data of the monitored entity in a persistent data-
base.

Other embodiments of the invention implement the fea-
tures of the above-described method 1 a computer system
and 1 a computer program product.

Additional technical features and benefits are realized
through the techniques of the present mvention. Embodi-
ments and aspects of the invention are described 1n detail
herein and are considered a part of the claimed subject
matter. For a better understanding, refer to the detailed
description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The specifics of the exclusive rights described herein are
particularly pointed out and distinctly claimed 1n the claims
at the conclusion of the specification. The foregoing and
other features and advantages of the embodiments of the
invention are apparent from the following detailed descrip-
tion taken 1n conjunction with the accompanying drawings
in which:

FIG. 1 depicts a cloud computing environment according,
to one or more embodiments of the present invention;

FIG. 2 depicts abstraction model layers according to one
or more embodiments of the present invention;

FIG. 3 depicts a block diagram of a processing system for
implementing embodiments of the present invention;

FIG. 4 depicts a block diagram of a system according to
one or more embodiments of the present invention;

FIG. 5 depicts a sequence diagram according to one or
more embodiments of the present invention; and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 depicts a flow diagram of a method according to
one or more embodiments of the present invention.

The diagrams depicted herein are illustrative. There can
be many variations to the diagram or the operations
described therein without departing from the spirit of the
invention. For mnstance, the actions can be performed 1n a
differing order or actions can be added, deleted or modified.
Also, the term “coupled” and vanations thereol describes
having a communications path between two elements and
does not imply a direct connection between the elements
with no intervening elements/connections between them. All
of these variations are considered a part of the specification.

In the accompanying figures and following detailed
description of the disclosed embodiments of the invention,
the various elements 1llustrated in the figures are provided
with two or three digit reference numbers.

DETAILED DESCRIPTION

Various embodiments of the invention are described
herein with reference to the related drawings. Alternative
embodiments of the invention can be devised without
departing from the scope of this invention. Various connec-
tions and positional relationships (e.g., over, below, adja-
cent, etc.) are set forth between elements in the following
description and 1n the drawings. These connections and/or
positional relationships, unless specified otherwise, can be
direct or indirect, and the present invention 1s not intended
to be limiting in this respect. Accordingly, a coupling of
entities can refer to either a direct or an indirect coupling,
and a positional relationship between entities can be a direct
or indirect positional relationship. Moreover, the various
tasks and process steps described herein can be incorporated
into a more comprehensive procedure or process having
additional steps or functionality not described in detail
herein.

The following definitions and abbreviations are to be used
for the interpretation of the claims and the specification. As
used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having,” “contains” or
“containing,” or any other varnation thereof, are intended to
cover a non-exclusive inclusion. For example, a composi-
tion, a mixture, process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

Additionally, the term “exemplary” i1s used herein to mean
“serving as an example, instance or illustration.” Any
embodiment or design described herein as “exemplary™ 1s
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms “at least one™
and “one or more” can include any integer number greater
than or equal to one, 1.¢. one, two, three, four, etc. The terms
“a plurality” can include any integer number greater than or
equal to two, 1.e. two, three, four, five, etc. The term
“connection” can include both an indirect “connection™ and
a direct “connection.”

The terms “about,” “substantially,” “approximately,” and
variations thereolf, are intended to include the degree of error
associated with measurement of the particular quantity
based upon the equipment available at the time of filing the
application. For example, “about” can include a range of
+8% or 5%, or 2% of a given value.

For the sake of brevity, conventional techniques related to
making and using aspects of the invention may or may not
be described 1n detail herein. In particular, various aspects of

eI Y 4

US 10,936,427 B2

3

computing systems and specific computer programs to
implement the various technical features described herein
are well known. Accordingly, 1n the interest of brevity, many
conventional implementation details are only mentioned
briefly herein or are omitted entirely without providing the 5
well-known system and/or process details.

One or more embodiments of the present invention can be
implemented on cloud computing. Cloud computing 1s a
model of service delivery for enabling convenient, on-
demand network access to a shared pool of configurable 10
computing resources (e.g. networks, network bandwidth,
servers, processing, memory, storage, applications, virtual
machines, and services) that can be rapidly provisioned and
released with minimal management etfort or interaction with
a provider of the service. This cloud model can include at 15
least five characteristics, at least three service models, and at
least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time 20
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms 25
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s 30
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but can be able to specily
location at a higher level of abstraction (e.g., country, state,
or datacenter). 35

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time. 40

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and 45
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Soltware as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on 50
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or 55
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure 60
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed 65
applications and possibly application hosting environment
configurations.

4

Infrastructure as a Service (laaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It can be managed by the organization
or a third party and can exist on-premises or oil-premises.

Community cloud: the cloud infrastructure 1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It can be managed
by the organizations or a third party and can exist on-
premises or oil-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an inirastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, illustrative cloud computing
environment 50 1s 1llustrated. As shown, cloud computing
environment 30 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N can communicate. Nodes 10 can communicate with one
another. They can be grouped (not shown) physically or
virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54 A-N
shown 1n FIG. 1 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type ol network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 2, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
1) 1s shown. It should be understood in advance that the
components, layers, and functions shown i FIG. 2 are
intended to be 1illustrative only and embodiments of the
invention are not limited thereto. As illustrated, the follow-
ing layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking

US 10,936,427 B2

S

components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities can be
provided: wvirtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 can provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or mvoicing for
consumption ol these resources. In one example, these
resources can comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system admimistrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provides pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment can be utilized.
Examples of workloads and functions which can be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94 transaction processing 95; and disaster recovery support
96. The disaster recovery support 96 can include functions
associated with monitoring for updates in the contents of
system data as further described herein.

It 1s understood that one or more embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed. For example, FIG. 3 depicts
a block diagram of a processing system 100 for implement-
ing the techniques described herein. The processing system
100 1s an example of a computing node 10 of FIG. 1. In
examples, processing system 100 has one or more central
processing units (processors) 21a, 215, 21c¢, etc. (collec-
tively or generically referred to as processor(s) 21 and/or as
processing device(s)). According to one or more embodi-
ments ol the present invention, each processor 21 can
include a reduced instruction set computer (RISC) micro-
processor. Processors 21 are coupled to system memory
(e.g., random access memory (RAM) 24) and various other
components via a system bus 33. Read only memory (ROM)
22 1s coupled to system bus 33 and can include a basic
input/output system (BIOS), which controls certain basic
functions of processing system 100.

Further 1llustrated are an input/output (I/0) adapter 27 and
a communications adapter 26 coupled to system bus 33. I/O
adapter 27 can be a small computer system interface (SCSI)
adapter that communicates with a hard disk 23 and/or a tape
storage drive 25 or any other stmilar component. I/O adapter
27, hard disk 23, and tape storage drive 25 are collectively
referred to herein as mass storage 34. Operating system 40
for execution on processing system 100 can be stored in
mass storage 34. The ROM 22, RAM 24, and mass storage

34 are examples of memory 19 of the processing system

10

15

20

25

30

35

40

45

50

55

60

65

6

100. A network adapter 26 interconnects system bus 33 with
an outside network 36 enabling the processing system 100 to
communicate with other such systems.

A display (e.g., a display monitor) 35 1s connected to
system bus 33 by display adapter 32, which can include a
graphics adapter to improve the performance ol graphics
intensive applications and a video controller. According to
one or more embodiments of the present invention, adapters
26, 27, and/or 32 can be connected to one or more 1/0 busses
that are connected to system bus 33 via an intermediate bus
bridge (not shown). Suitable I/O buses for connecting
peripheral devices such as hard disk controllers, network
adapters, and graphics adapters typically include common
protocols, such as the Peripheral Component Interconnect
(PCI). Additional input/output devices are shown as con-
nected to system bus 33 via user interface adapter 28 and
display adapter 32. A keyboard 29, mouse 30, and speaker
31 can be 1interconnected to system bus 33 via user interface
adapter 28, which can include, for example, a Super 1/0 chip
integrating multiple device adapters into a single integrated
circuit.

According to one or more embodiments of the present
invention, processing system 100 includes a graphics pro-
cessing unit 37. Graphics processing unit 37 1s a specialized
clectronic circuit designed to manipulate and alter memory
to accelerate the creation of images 1 a frame bufler
intended for output to a display. In general, graphics pro-
cessing unit 37 1s very eflicient at manipulating computer
graphics and 1mage processing, and has a highly parallel
structure that makes it more eflective than general-purpose
CPUs for algorithms where processing of large blocks of
data 1s done 1n parallel.

Thus, as configured herein, processing system 100
includes processing capability 1n the form of processors 21,
storage capability including system memory (e.g., RAM 24),
and mass storage 34, input means such as keyboard 29 and
mouse 30, and output capability including speaker 31 and
display 35. According to one or more embodiments of the
present mvention, a portion of system memory (e.g., RAM
24) and mass storage 34 collectively store an operating
system such as the AIX® operating system from IBM
Corporation to coordinate the functions of the various com-
ponents shown 1n processing system 100.

Turning now to an overview of technologies relevant to
aspects ol the disclosed system, disaster recovery for a
distributed computer system can include gathering a current
state of one or more monitored entities, such as virtual
machines, hosts, sites, and the like. Capturing a full image
of the state of one or more monitored entities can involve
substantial quantities of data, such as gigabytes, terabytes, or
petabytes, depending on the scale of recovery supported.
Since the underlying data may be updated at any time, and
storage capacity may be modified by the addition or removal
of disks or other memory resources, i1t can be challenging to
keep disaster recovery data current. Periodically capturing
complete copies of monitored entities can be eflective but
consumes a substantial quantity of network bandwidth and
storage capacity for disaster recovery data.

Turning now to an overview of the aspects of the mven-
tion, one or more embodiments of the invention address the
above-described shortcomings of the prior art by performing
multilevel data change detection and information request in
support of collecting disaster recovery data for one or more
monitored entities. For example, high-level metadata can
correspond to high-level information associated with a
monitored entity. The high-level information can track iden-
tifiers and resource utilization for aspects shared across

US 10,936,427 B2

7

multiple components of a monitored entity, and the high-
level metadata can be used to determine whether the high-
level information has changed between iterations. Low-level
information can include the components, which may be
separately modified at different times. Low-level metadata
can be used to determine whether specific components of the
low-level information have changed between iterations.
Thus, after establishing a baseline of the high and low-level
information and metadata, changes to the monitored entity
can be 1dentified based on changes to the high-level meta-
data and low-level metadata. If no changes are detected upon
a request for data, then the data need not be sent back to a
disaster recovery system. If only one of a plurality of
components has been modified, then only the low-level
information associated with the changed component may be
sent to the disaster recovery system for persistent storage.
The high and low-level metadata can also be used by the
disaster recovery system to validate the contents of the high
and low-level information before updating the persistent
storage.

The above-described aspects of the invention address the
shortcomings of the prior art by using metadata, such as an
entity tag and checksums, for detecting changes to high and
low-level iformation. An enftity tag can be returned, for
example, 1n response to a GET request as part of a response
header or payload and may enable a client to make condi-
tional requests. The enfity tag can indicate a date and time
of a last update to the high-level information. Checksums
can be used to identily changes 1n data values. Checksums
may also be useful for identifying changes, such as an
addition or removal of a disk that may not impact the entity
tag, while the entity tag can be used to request checksum
data and identify some types of change conditions. Technical
ellects and benefits can 1nclude reduced discovery time and
bandwidth usage 1n fetching disaster recovery data.

Turning now to a more detailed description of aspects of
the present mvention, FIG. 4 depicts a block diagram of a
system 200 according to one or more embodiments of the
present invention. The various computer components of the
system 200 shown 1n FIG. 4 can be implemented using one
or more of the cloud computing environment 50 (shown 1n
FIG. 1), the cloud computing nodes 10 (shown 1 FIG. 1),
and the processing system 100 shown in FIG. 3. More
specifically, the system 200 can include a plurality of data
server sites 202A, 202B and a disaster recovery system 204
operable to communicate over a network 206, such as
network 36 of FIG. 3. In the example of FIG. 4, the disaster
recovery system 204 monitors for data changes at data
server site 202A to determine whether a plurality of disaster
recovery data 208 stored 1n a persistent database 210 should
be used to restore one or more entities of data server site
202A onto data server site 202B, e.g., based on a cata-
strophic failure at data server site 202A. The disaster recov-
ery system 204 can include a disaster recovery controller
212 that may be an embodiment of the processing system
100 operable to perform discovery of data changes at the
data server site 202A.

The data server site 202A can include a hardware man-
agement console 214, which can be an embodiment of the
processing system 100 operable to iterface with a plurality
of monitored entities 216 at the data server site 202A. In
some embodiments, the hardware management console 214
can be accessible to the disaster recovery system 204
through a cloud service (e.g., disaster recovery support 96 of
FIG. 2) of a cloud computing environment 30 of FIG. 1. The
monitored entities 216 can be any type of transierable
clement that can be monitored by the disaster recovery

10

15

20

25

30

35

40

45

50

55

60

65

8

system 204 and restored elsewhere, such as at the data server
site 202B. For instance, the monitored entities 216 can
include one or more virtual machines (VMs), host systems,

site-wide systems, and the like. In the example of FIG. 4, the
monitored entities 216 include VM 218A, VM 218B, . . .,

VM 218N, where N 1s an arbitrary number. VM 218A can
include a plurality of high-level information 220, high-level
metadata 222, low-level metadata 224, and low-level infor-
mation 226. The high-level information 220 can include one
or more of a virtual machine name, a virtual machine
identifier, a processing resource utilization indicator, and a
memory resource utilization indicator. The low-level infor-
mation 226 can include a plurality of components 228A,
228B associated with a monitored entity 216 for disaster
recovery. In the example of FIG. 4, the low-level informa-
tion 226 includes a virtual machine configuration informa-
tion component 228 A and a virtual machine storage infor-
mation component 2288, while additional components are
contemplated.

The high-level metadata 222 can include an entity tag 230
and a checksum 232 of the high-level information 220. The
low-level metadata 224 can include a checksum 234 of the
virtual machine configuration information component 228 A
and a checksum 236 of the virtual machine storage infor-
mation component 228B. The entity tag 230 can be sent to
the disaster recovery system 204 responsive to a request,
such as a GET request, to track when the high-level infor-
mation 220 was last updated. The checksum 232 of the
high-level information 220 can also be used to check for
changes 1n the high-level information 220 and may be used
for validating a subsequent 1nstance of the high-level infor-
mation 220 prior to updating the plurality of disaster recov-
ery data 208 of the monitored entity (e.g., VM 218A) in the
persistent database 210. Changes to the checksum 234
between iterations can indicate a change to the wvirtual
machine configuration mformation component 228 A, while
changes to the checksum 236 between iterations can indicate
a change to the virtual machine storage information com-
ponent 228B. The examples of FIGS. 5 and 6 further
indicate how the high-level information 220, high-level
metadata 222, low-level metadata 224, and low-level infor-
mation 226 can be used according to embodiments.

FIG. § depicts a sequence diagram 300 according to one
or more embodiments of the invention. The sequence dia-
gram 300 1s described with respect to FIGS. 1-4 and may
include additional steps and/or be further subdivided or
combined. The sequence diagram 300 can be performed by
a receiver 302, such as the disaster recovery system 204, and
a data server 304, such as the hardware management console
214.

The receiver 302 and data server 304 perform a first
iteration of discovery 306 that can include sending a GET
command 308 requesting high-level (HL) data, such as the
high-level information 220, from the receiver 302 to the data
server 304. The data server 304 can respond with a POST
DATA message 310, which may include high-level infor-
mation 220 (HL data), enfity tag 230 (discoveryl_etag),
checksum 234 (discoveryl_VCI_CS), and checksum 236
(discoveryl_VSI_CS). The POST DATA message 310 may
also 1nclude checksum 232 (discoveryl_HL_CS). The
receiver 302 may mitially store the received values as a
portion of the disaster recovery data 208 in the persistent
database 210. The recerver 302 can send a GET command
312 requesting low-level (LL) data, such as the low-level
information 226. The data server 304 can respond with a
POST DATA message 314, which may include the virtual

machine configuration information component 228A and the

US 10,936,427 B2

9

virtual machine storage information component 228B. The
receiver 302 may store the received values as a portion of the
disaster recovery data 208 in the persistent database 210.

During a second 1teration of discovery 316, the receiver
302 can send a GET command 318 requesting a subsequent
instance of the high-level information 220 (HL data) after a
period of time has passed. As part of a first phase 320, the
data server 304 can respond with a POST DATA message
322, which may include a subsequent instance of the high-
level information 220 (HL data), entity tag 230
(discovery2_etag), checksum 234 (discovery2_ VCI_CS),
and checksum 236 (discovery2_VSI_CS). The POST DATA
message 322 may also include a subsequent instance of
checksum 232 (discovery2_ HL_CS). The checksums 234
and 236 returned in the POST DATA message 322 can serve
as a metadata prefetch for a second phase 326. The receiver
302 can analyze the enftity tag 230 and/or the checksum 232
to determine whether a difference exists between the high-
level information 220 and the subsequent instance of the
high-level information 220, where the disaster recovery data
208 need not be updated if no diflerence exists. Alterna-
tively, the data server 304 can determine whether a differ-
ence exists between the high-level information 220 and the
subsequent 1nstance of the high-level information 220 prior
to sending the POST DATA message 322, such that the
high-level information 220 can be excluded from the POST
DATA message 322 1f no differences are detected, thus
saving communication bandwidth.

In the second phase 326, the receiver 302 can determine
whether a difference exists between the checksum 234
received in POST DATA message 310 and the subsequent
instance of the checksum 234 received in POST DATA
message 322. The receiver 302 can also determine whether
a difference exists between the checksum 236 received 1n
POST DATA message 310 and the subsequent instance of
the checksum 236 received 1n POST DATA message 322. IT
no differences are detected, then no further requests for
low-level data are needed. However, 1f at least one difler-
ence 1s detected, the receiver 302 can send a GET command
324 for LL data requesting a changed portion the low-level
information 226, such as either or both of the wvirtual
machine configuration information component 228 A and the
virtual machine storage information component 228B. Upon
receiving any LL data or determining that no updated LL
data 1s needed, the receiver 302 may send a FINISH com-
mand 328 to the data server 304 indicating that no further
information 1s needed. The checksums 232, 234, and 236
can be used, for istance, by the disaster recovery system
204 to validate that the high-level information 220 and
low-level information 226 received are not corrupted prior
to storage in the disaster recovery data 208 of the persistent
database 210.

FIG. 6 depicts a flow diagram of a method 400 according
to one or more embodiments of the imnvention. The method
400 1s described with respect to FIGS. 1-5 and may include
additional steps and/or be further subdivided or combined.
The method 400 can be performed by the hardware man-
agement console 214 1n conjunction with the disaster recov-
ery system 204, which may include a cloud-based imple-
mentation.

At block 402, a plurality of high-level information 220,
high-level metadata 222, low-level metadata 224, and low-
level information 226 1s prefetched, for instance, from VM
218A through the hardware management console 214. The
low-level information 226 can include a plurality of com-
ponents associated with a monitored entity 216 for disaster
recovery, such as virtual machine configuration information

10

15

20

25

30

35

40

45

50

55

60

65

10

component 228A and/or virtual machine storage information
component 228B. The high-level metadata 222 can include
an entity tag 230 and a checksum 232 of the high-level
information 220.

At block 404, a subsequent instance of the high-level
information 220, the high-level metadata 222, and the low-
level metadata 224 are requested. The request may be
received from the disaster recovery system 204. At block
406, the subsequent 1nstance of the high-level information
220 1s fetched based on detecting a change 1n the high-level
metadata 222. The fetching may be performed by the
hardware management console 214. In some embodiments,
the disaster recovery system 204 may receive an enfity tag
230 as part of the prefetching of block 402 and can incor-
porate the enfity tag 230 in the subsequent instance of the
high-level information 220 to the hardware management
console 214. The hardware management console 214 can
compare a received instance ol the entity tag 230 to a
calculated 1nstance of the entity tag 230 associated with any
updates to the high-level information 220. The checksum
232 of the high-level mformation 220 can be compared to
the checksum 232 of the subsequent instance of the high-
level information 220. The change in the high-level meta-
data 222 can be detected in block 406 based on one or more
of: a mismatch between the recerved instance of the entity
tag 230 and the calculated instance of the entity tag 230, and
a mismatch between the checksum 232 of the high-level
information 220 and the checksum 232 of the subsequent
instance of the high-level information 220. The entity tag
230, the checksum 232 of the high-level information 220,
and the low-level metadata 224 can be returned based on
detecting no change in the high-level metadata 222. The
subsequent instance of the high-level information 220 can be
validated based on the checksum 232 of the subsequent
instance of the high-level information 220 prior to updating
the plurality of disaster recovery data 208 of the monitored
entity 216 1n the persistent database 210.

At block 408, a subsequent 1nstance of one or more of the
components of the low-level information 226 corresponding
to one or more changes 1n the low-level metadata 224 can be
tetched for updating a plurality of disaster recovery data 208
ol the monitored entity 216 1n a persistent database 210. For
instance, changes 1n the virtual machine configuration infor-
mation component 228A may only be written to the disaster
recovery data 208 based on changes detected to the check-
sum 234. Similarly, changes to the virtual machine storage
information component 2288 may only be written to the
disaster recovery data 208 based on changes detected to the
checksum 236.

Additional processes also can be included, and it should
be understood that the processes depicted herein represent
illustrations and that other processes can be added or exist-
ing processes can be removed, modified, or rearranged
without departing from the scope and spirit of one or more
embodiments of the present invention.

The present techniques can be implemented as a system,
a method, and/or a computer program product. The com-
puter program product can include a computer readable
storage medium (or media) having computer readable pro-
gram 1nstructions thereon for causing a processor to carry
out aspects of one or more embodiments of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium can be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an

US 10,936,427 B2

11

optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network can com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of one or more embodiments of the present
invention can be assembler instructions, instruction-set-
architecture (ISA) 1instructions, machine instructions,
machine dependent instructions, microcode, firmware
instructions, state-setting data, or either source code or
object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++ or the like, and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. The computer readable program instructions can
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soiftware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer can be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection can
be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
examples, electronic circuitry including, for example, pro-
grammable logic circuitry, field-programmable gate arrays
(FPGA), or programmable logic arrays (PLA) can execute
the computer readable program instructions by utilizing state
information of the computer readable program instructions
to personalize the electronic circuitry, 1n order to perform
aspects ol one or more embodiments of the present inven-
tion.

Aspects of one or more embodiments of the present
invention are described herein with reference to tlowchart
illustrations and/or block diagrams of methods, apparatus
(systems), and computer program products according to one

10

15

20

25

30

35

40

45

50

55

60

65

12

or more embodiments of the present invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions can be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions can also be stored 1n
a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions can also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various aspects ol one or more
embodiments of the present invention. In this regard, each
block 1n the flowchart or block diagrams can represent a
module, segment, or portion of structions, which com-
prises one or more executable 1nstructions for implementing,
the specified logical function(s). In some alternative imple-
mentations, the functions noted 1n the block can occur out of
the order noted i1n the figures. For example, two blocks
shown 1n succession can, in fact, be executed substantially
concurrently, or the blocks can sometimes be executed 1n the
reverse order, depending upon the functionality mnvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described techniques. The terminology used herein was
chosen to best explain the principles of the present tech-

niques, the practical application or technical improvement
over technologies found 1n the marketplace, or to enable
others of ordinary skill 1in the art to understand the tech-
niques disclosed herein.

US 10,936,427 B2

13

What 1s claimed 1s:

1. A computer-implemented method comprising;:

prefetching a plurality of high-level information, high-
level metadata, low-level metadata, and low-level
information comprising a plurality of components asso-
ciated with a monitored entity for disaster recovery;

requesting a subsequent instance of the high-level infor-
mation, the high-level metadata, and the low-level
metadata;

fetching the subsequent instance of the high-level infor-
mation based on detecting a change in the high-level
metadata; and

fetching a subsequent instance of one or more of the
components of the low-level information correspond-
ing to one or more changes 1n the low-level metadata
for updating a plurality of disaster recovery data of the
monitored entity 1n a persistent database,

wherein the high-level information comprises one or more
of a virtual machine name, a virtual machine i1dentifier,
a processing resource utilization indicator, and a
memory resource utilization indicator;

wherein the high-level metadata comprises an entity tag
and a checksum of the high-level information;

wherein the low-level information comprises a virtual
machine configuration information component and a
virtual machine storage information component; and

wherein the low-level metadata comprises a checksum of
the virtual machine configuration information compo-
nent and a checksum of the virtual machine storage
information component.

2. The computer-implemented method of claim 1, further

comprising;

comparing a received instance of the enfity tag to a
calculated instance of the entity tag;

comparing the checksum of the high-level information to
the checksum of the subsequent instance of the high-
level information; and

detecting the change in the high-level metadata based on
one or more of: a mismatch between the received
instance of the entity tag and the calculated 1nstance of
the entity tag, and a mismatch between the checksum of
the high-level information and the checksum of the
subsequent instance of the high-level information.

3. The computer-implemented method of claim 2 further

comprising;

returning the entity tag, the checksum of the high-level
information, and the low-level metadata based on
detecting no change in the high-level metadata.

4. The computer-implemented method of claim 2 further

comprising;

validating the subsequent instance of the high-level infor-
mation based on the checksum of the subsequent
instance of the high-level information prior to updating
the plurality of disaster recovery data of the monitored
entity 1n the persistent database.

5. The computer-implemented method of claim 1 wherein
the method 1s implemented as a cloud service of a cloud
computing environment.

6. A system comprising:

a virtual machine comprising a plurality of high-level
information and low-level information, the low-level
information comprising a plurality of components; and

a hardware management console configured to perform a
method comprising:
prefetching the high-level information, the low-level

information, a plurality of high-level metadata asso-
ciated with the high-level information, and a plural-

10

15

20

25

30

35

40

45

50

55

60

65

14

ity of low-level metadata associated with the low-
level information responsive to a disaster recovery
system:

requesting a subsequent instance of the high-level
information, the high-level metadata, and the low-
level metadata responsive to the disaster recovery
system:

fetching the subsequent instance of the high-level infor-
mation based on detecting a change 1n the high-level
metadata; and

fetching a subsequent instance of one or more of the
components of the low-level information corre-
sponding to one or more changes in the low-level
metadata for updating a plurality of disaster recovery
data of the virtual machine 1n a persistent database of
the disaster recovery system,

wherein the high-level information comprises one or
more of a virtual machine name, a virtual machine
identifier, a processing resource utilization indicator,
and a memory resource utilization indicator;

wherein the high-level metadata comprises an entity tag
and a checksum of the high-level information;

wherein the low-level information comprises a virtual
machine configuration information component and a
virtual machine storage information component; and

wherein the low-level metadata comprises a checksum
of the wvirtual machine configuration information
component and a checksum of the virtual machine
storage information component.

7. The system of claim 6, wherein the hardware manage-
ment console 1s further configured to perform:

comparing a recerved instance of the enfity tag to a
calculated instance of the entity tag;

comparing the checksum of the high-level information to
the checksum of the subsequent instance of the high-
level information; and

detecting the change 1n the high-level metadata based on
one or more of: a mismatch between the received
instance of the entity tag and the calculated instance of
the entity tag, and a mismatch between the checksum of
the high-level information and the checksum of the
subsequent instance of the high-level information.

8. The system of claim 7, wherein the hardware manage-

ment console 1s further configured to perform:

returning the entity tag, the checksum of the high-level
information, and the low-level metadata to the disaster
recovery system based on detecting no change in the
high-level metadata.

9. The system of claim 7, wherein the subsequent instance
of the high-level information 1s validated based on the
checksum of the subsequent instance of the high-level
information prior to updating the plurality of disaster recov-
ery data of the virtual machine in the persistent database.

10. The system of claam 6, wherein the hardware man-
agement console 1s accessible to the disaster recovery sys-
tem through a cloud service of a cloud computing environ-
ment.

11. A computer program product comprising:

a computer readable storage medium having program
instructions embodied therewith, the program instruc-
tions executable by a processing device to cause the
processing device to perform a method comprising:
prefetching a plurality of high-level information, high-

level metadata, low-level metadata, and low-level
information comprising a plurality of components
associated with a monitored entity for disaster recov-

ery:;

US 10,936,427 B2

15

requesting a subsequent instance of the high-level
information, the high-level metadata, and the low-
level metadata;

fetching the subsequent instance of the high-level infor-
mation based on detecting a change 1n the high-level
metadata; and

fetching a subsequent 1nstance of one or more of the
components of the low-level information corre-

sponding to one or more changes 1n the low-level
metadata for updating a plurality of disaster recovery
data of the monitored entity in a persistent database,
wherein the high-level information comprises one or
more of a virtual machine name, a virtual machine
identifier, a processing resource utilization indicator,
and a memory resource utilization indicator;
wherein the high-level metadata comprises an entity tag
and a checksum of the high-level information;
wherein the low-level information comprises a virtual
machine configuration information component and a
virtual machine storage information component; and
wherein the low-level metadata comprises a checksum
of the wvirtual machine configuration information
component and a checksum of the virtual machine
storage information component.

5

10

15

20

16

12. The computer program product of claim 11, wherein
the program instructions executable by the processing
device further cause the processing device to perform:

comparing a received instance of the entity tag to a

calculated instance of the entity tag;

comparing the checksum of the high-level information to

the checksum of the subsequent instance of the high-
level information; and

detecting the change 1n the high-level metadata based on

one or more of: a mismatch between the received
instance of the entity tag and the calculated instance of
the entity tag, and a mismatch between the checksum of
the high-level information and the checksum of the
subsequent instance of the high-level information.

13. The computer program product of claim 12, wherein
the program instructions executable by the processing
device further cause the processing device to perform:

returning the entity tag, the checksum of the high-level

information, and the low-level metadata based on
detecting no change in the high-level metadata.

14. The computer program product of claim 11, wherein
the program 1nstructions comprise a cloud service of a cloud
computing environment.

% o *H % ex

	Front Page
	Drawings
	Specification
	Claims

