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1

INTER-HOST COMMUNICATION WITHOUT
DATA COPY IN DISAGGREGATED
SYSTEMS

BACKGROUND OF THE INVENTION

Technical Field

The present invention relates generally to data processing,
systems 1n a data center operating environment.

Background of the Related Art

In distributed computing, data exchange typically 1s
achieved through communication via protocols such as
TCP/IP, HT'TP, and others. Such communication involves
data copy from a source process and operating system
memory, to a source networking stack, transier over a
network, and then data copy from a destination network
stack, finally to a destination operating system and a target
process memory. Some of this copying can be avoided
depending on implementation. Thus, within a particular
host, copying between process and operating system may be
climinated by memory mapping, or by zero-copy mecha-
nisms that obviate the CPU from having to perform the task
of copying data from one memory area to another. When
computations are performed within a cluster of hosts, and
provided that all the processes and hosts are trusted, shared
memory may be adopted to facilitate communication
between different processes. In shared memory systems, in
cllect all of the processes and hosts become a single com-
puting environment.

The problem of data copy 1s exacerbated with the emer-
gence ol cloud computing services and soltware-as-a-ser-
vice via application programming interfaces (APIs), which
tacilitate hybrid-computing environments wherein a data set
may need to be processed across distinct computing envi-
ronments (e.g., an enterprise and a public cloud, a private
cloud and a public cloud, etc.). In such hybrid environments,
cach environment may work on a subset of the data or
otherwise compute part of an entire processing pipeline.
During such computation, typically some quantity of inter-
mediate data 1s generated in the individual environment(s).
To complete the final computation, often it 1s required that
the mtermediate data generated needs to be copied (typically
over the network) to some single environment. An example
of such a use case 1s MapReduce, which 1s a programming
model and associated implementation for processing and
generating large data sets with a parallel, distributed algo-
rithm on a cluster. A MapReduce program 1s composed of a
map procedure that performs filtering and sorting, and
reduce method that performs a summary operation. When a
MapReduce job 1s run, for example, across a hybrid envi-
ronment comprising a trusted private cloud and a non-
trusted public cloud, 1t may be desired to push as much data
and computation as possible to the public cloud, e.g., due to
its relatively lower cost.

Copying data across different hosts (e.g., 1n a cloud) 1s not
only time-consuming, but it 1s also expensive, due to the cost
of network communication. This 1s true even when data
copy 1s required within the data center itself. Thus, for
example, 1n a disaggregated approach, similar types of
resource nodes 1n the data center are aggregated in respec-
tive pools, such as a processor pool, and a memory pool, and
independent circuits are established as needed between the
processor nodes and the memory nodes through an optical
switch. In this architecture, processor nodes within a sym-
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2

metric multi-processor (SMP) fabric (e.g., the nodes 1 a
processor pool) are assumed to be able to communicate with
one another. That said, and although processor nodes can
access any of the remote memories through the independent
circuits (through the optical switch), processor nodes do not
have the capability to access the same memory device (e.g.,
a particular DIMM 1n a memory pool) at the same time.
Thus, 11 the contents of a particular memory location need to
be passed from one processor to another processor in the
processor pool (a “processor-to-processor’” or “inter-proces-
sor” communication), 1t 1s required to switch ownership of
the memory (from one processor to the other). Such switch-
ing ol physical memory modules through the optical switch
takes tens of milliseconds, which 1s acceptable 11 the data set
being passed 1s large. The overhead required to change the
physical optical circuit between processors and memory
pool modules (for passing the information), however, 1s
undesirable for smaller messages.

BRIEF SUMMARY

According to this disclosure, direct inter-processor coms-
munication 1s enabled with respect to data in a memory
location without having to switch specific circuits through a
switching element (e.g., an optical switch). Rather, 1n this
approach a memory pool 1s augmented to mclude a dedi-
cated portion that serves as a disaggregated memory com-
mon space for communicating processors. The disaggre-
gated memory common space may comprise part of an
existing memory module in the memory pool, or 1t may be
a memory module dedicated for this purpose. This approach
obviates switching of physical memory modules through the
optical switch to enable the processor-to-processor commu-
nication. Rather, processors (communicating with one
another) have an overlapping ability to access the same
memory module 1n the pool; thus, there 1s no longer a need
to change physical optical switch circuits to facilitate the
inter-processor communication. The overhead of optical
switching 1s thus avoided. The disaggregated memory com-
mon space 1s shared among the processors, which can access
the common space for reads and writes, although particular
locations 1in the memory common space for reads and writes
are different. In particular, each processor (that can access
the memory common space) writes to one particular location
while, with respect to that one particular location, all the
other processors can only read therefrom.

The 1inter-processor communication approach may be
implemented 1n association with various types of switches
including, without limitation, symmetric multi-processing
(SMP) and load/store.

The foregoing has outlined some of the more pertinent
features of the disclosed subject matter. These features
should be construed to be merely illustrative. Many other
beneficial results can be attained by applying the disclosed
subject matter 1n a different manner or by modifying the
subject matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the subject matter
and the advantages thereol, reference 1s now made to the
tollowing descriptions taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1 depicts an exemplary block diagram 1llustrating a
computing system environment 1n which exemplary aspects
of the disclosure may be implemented;
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FIG. 2 1s an exemplary block diagram of a hardware
structure of an optically-connected memory system in which
aspects ol the illustrative embodiments may be imple-
mented;

FIG. 3 depicts a block diagram illustrating a hardware
structure of a processor design 1n the optically-connected
memory system in FIG. 2;

FIG. 4 1s a block diagram 1llustrating a hardware structure
for switching memory through an optical interconnection
fabric 1n a computer system;

FIG. 5 depicts a modified version of the hardware struc-
ture of FIG. 4 that has been augmented to include a
disaggregate memory common space to facilitate processor-
to-processor communication without data copy or use of the
optical switch according to this disclosure;

FIG. 6 depicts a control system for management inter-host
communication without data copy 1n a disaggregate compute
system according to this disclosure;

FIG. 7 depicts a process tlow for processing a job request
using the control system in FIG. 6;

FIG. 8 depicts a load/store switching fabric in which the
inter-processor communication technique of this disclosure
may be implemented; and

FIG. 9 depicts a disaggregate compute system in which
the techniques of this disclosure may be implemented.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The techmiques of this disclosure preferably are imple-
mented within the context of a “disaggregated” compute
system wherein a “disaggregated server’—sometimes
referred to herein as a “server entity”’—is composed or
constitutes server resources selected from (or assigned from)
shared server resource pools, namely, one or more of: a
compute pool, a memory pool, an accelerator pool (e.g., a
GPU accelerator, a network accelerator, etc.), a storage pool,
and, as will be described below, a security-augmented (or
“secure”) processor pool. As the nomenclature suggests, a
“compute” pool typically constitutes physical processors
(such as CPUs), a “memory” pool typically constitutes
physical memory devices (such as dual-inline-memory mod-
ules (DIMM)), etc. A given shared pool preferably includes
just the particular resource types, but a particular resource
pool may be composed of one or more resource sub-types.
The notion of a “pool” 1s not mtended to be limiting, as the
common resources may be collected, aggregated or other-
wise combined in any suitable manner. Further, a “pool”
may be a dedicated set of resources that have the common
type or sub-type, or some ad hoc collection of such
resources. Preferably, a particular server entity comprises
server resources from one or more of the server resource
pools.

In a preferred embodiment, and as now described below,
a disaggregated compute system i1n which the teachings of
this disclosure are practiced utilizes optical (as opposed to
clectrical) interconnects for memory, although this 1s not a
limitation.

Typically, the shared resource pools are available within
the physical confines of a particular data center, although
this likewise 1s not a limitation. Thus, the shared resource
pools themselves may be shared across physical data cen-
ters. Further, a particular server entity 1s not required to be
composed of resources from each of the server pools.

10

15

20

25

30

35

40

45

50

55

60

65

4

By way of background, but not by way of limitation, the
following describes a representative computer environment
in which the techmiques of this disclosure (described below)
may be practiced.

Turning now to FIG. 1, exemplary architecture 10 of a
general computing environment in which the disaggregated
compute system of this disclosure may be implemented
and/or comprised of, 1s depicted. The computer system 10
includes central processing unit (CPU) 12, which 1s con-
nected to communication port 18 and memory device 16.
The communication port 18 1s in communication with a
communication network 20. The communication network 20
and storage network may be configured to be 1n communi-
cation with server (hosts) 24 and 22 and storage systems,
which may include storage devices 14. The storage systems
may include hard disk drive (HDD) devices, solid-state
devices (SSD) etc., which may be configured in a redundant
array of independent disks (RAID). The operations as
described below may be executed on storage device(s) 14,
located 1n system 10 or elsewhere and may have multiple
memory devices 16 working independently and/or 1n con-
junction with other CPU devices 12. Memory device 16 may
include such memory as electrically erasable programmable
read only memory (EEPROM) or a host of related devices.
Memory device 16 and storage devices 14 are connected to
CPU 12 wvia a signal-bearing medium. In addition, CPU 12
1s connected through communication port 18 to a commu-
nication network 20, having an attached plurality of addi-
tional computer host systems 24 and 22. In addition,
memory device 16 and the CPU 12 may be embedded and
included i each component of the computing system 10.
Each storage system may also include separate and/or dis-
tinct memory devices 16 and CPU 12 that work in conjunc-
tion or as a separate memory device 16 and/or CPU 12.

FIG. 2 1s an exemplary block diagram 200 showing a
hardware structure of an optically connected memory sys-
tem 1n a computer system. The segregation of memory 214
from the CPU 218 through an optical interconnection fabric
204 1s feasible due to the high bandwidth distance product
of the optical link 204. In such an Optically-Connected
Memory (OCM) system 200, the CPU 218 and memory 214
are organized into separate racks 202 and 208 connected
through optical links and at least one switching fabric 204.
In the memory rack 206, memory blades 208 are arranged
and communicatively coupled to other memory blades and
a processor (CPU) rack 202. Fach memory blade 208 houses
multiple memory devices 214, an agent 212, and a memory
controller 210. The CPU rack 202 includes processor blades
216 with each of the processor blades 216 communicatively
coupled to other processor blades 216 and the memory rack
206. The processor blades 216 include processors 218, with
cach processor 218 containing local memory (not shown).
The processors 218 (and respective physical computation
nodes) mside a processor rack 216 are connected locally by
a known fast interconnection means (not shown), which
could be a direct connected network with some topology
between the processors’ 218 physical computation nodes
within the processor blades 216, or a switch, through
memory via a cache coherent symmetric multiprocessor
(SMP) fabric, or a combination of the above. Each of the
processors 218, processor blades 216, memory 214, and
memory blades 208, share a number of optical external
links. These external links are made for optimizing a point-
to-point connection within the optical-switching fabric at
very high bandwidth. This optimization may be 1n the
physical implementation used, or 1n the protocol chosen to
facilitate such high bandwidth, and preferably it has the
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ability to support memory switching within one physical
link or multiple physical links to look like one high band-
width physical link made of a few physical links. Because
these external links typically are circuit-switched via at least
one optical switch 204 that will not be aware of the data or
content thereof, these should use a very lightweight com-
munication protocol.

The physical properties of these external links may
require the use of multiple optical wavelengths 1n a WDM
(wavelength division multiplexer), which are all coupled
into one fiber or one external link, but are separable at both
ends. The mirror-based micro electro mechanical system
“MEMS” optical circuit switch “OCS” will deflect in the
optics domain, the light beams within these external links,
regardless of their number of wavelength, protocol, and
signaling speed. Preferably, and in the embodiment
depicted, these external links are common to all memory
blades and processor blades.

In the preferred architecture, at least one optical circuit
switch 1s shared between the optical external links. Also,
several independent circuits may be established between the
processors and the memory blades sharing the optical circuit
switch. These external links are made for optimizing a
point-to-point connection at very high bandwidth. This
optimization may be in the physical implementation used 1n
the protocol chosen to facilitate such high bandwidth and
has the ability to support aggregation of multiple streams
within one physical link or multiple physical links to look
like one high bandwidth physical link made of a few
physical links. Because these external links are circuit
switched via an all optical switch that will not be aware of
the protocol, data or content thereof, a very light weight
communication protocol 1s used. Furthermore, the physical
properties of these external links may require the use of
multiple optical wavelengths in a WDM (wavelength divi-
sion multiplexer), which are all coupled into one fiber or one
external link, but are separable at both ends. The mirror-
based micro electro mechanical system “MEMS” optical
circuit switch “OCS” will deflect, in the optics domain, the
light beams within these external links regardless of their
number of wavelength, protocol, and signaling speed. These
external links are common to all processors, blades,
memory, and independent circuits, such that any memory
blade/processor blade may pass information on one or all of
these external links, either directly or by passing through the
interconnected processor blades. In one exemplary embodi-
ment, circuit-switching switches are used. Circuit switching,
switches do not need to switch frequently, and thus may be
much simpler to build, and can use diflerent technologies
(e.g., all optical, MEMS mirror based) to dynamically
connect between the circuits, memory, and processor blades.

These types of external links (not shown) and the dynamic
switching enable very high throughput (e.g., high band-
width) connectivity that dynamically changes as needed. As
multi-core processing chips require very high bandwidth
networks to interconnect the multi-core processing chips to
other such physical processing nodes or memory subsystem,
the exemplary optically-connected memory architecture
plays a vital role 1n providing a solution that 1s functionally
enabled by the memory switching operations.

The optically-connected memory architecture 200 engen-
ders numerous benefits: (a) transparent memory capacity
changes across the system nodes, (b) eliminate notion of
worst-case provisioning ol memories and allow the appli-
cations to vary memory footprints depending on the work-
loads, and (¢) decouple the CPU downtime from the memory
module failure, thus increasing the CPU availability. As waill
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be described below, an architecture for memory manage-
ment techniques 1s provided. As shown i FIG. 2, the
processor blades 202 host a number of processors 218,
whereas the memory modules 241 are packed (e.g.,
arranged) i the memory blades 208. The processor blades
216 and memory blades 208 are organized in separate racks
202 and 206, which are interconnected through an optical
switching fabric 204. Each of the processors 218 in the CPU
blade 202 may have a local memory pool 310a-», which 1s
used for faster memory accesses. A memory blade 208 can
integrate, 1 addition to dynamic random-access memory
(DRAM) memory devices, alternate memory devices, such

as Flash or phase-change-memory, without any changes to
the CPU blades 216.

Turning now to FIG. 3, FIG. 3 1s a block diagram 300
showing a hardware structure of a processor design in the
optically-connected memory system in a computer system.
As 1llustrated in FIG. 3, the processor side design 300
illustrates: software stack in system (without virtualization)
302 and 304 (with virtualization), and the processor blade
communicates with remote memory blades through optical
transceiver 308 and 312. There 1s a memory controller 306
associated with local memory pool 310g-n. If a System
Memory Address (SMA) space (as shown 1n 302 and 304 of
FIG. 3) 1s above a certain, predefined limit, the SMA 1s
mapped to a Remote Memory Address (RMMA) space, and
the access request 1s routed to the remote memory blade
through the proper channels. It should be noted that the
memory blade 208 (see FIG. 2) maintains a separate address
space called Remote Memory Address (RMMA) space.

In an optically-connected memory system (see FIG. 2
200), each processor node 218 maintains, for both remote
and local memory, the SMA space. The processor node 218
maps the local physical memory to the lower portion of this
address space. The remote memory 1s mapped to the avail-
able (i.e., higher) SMA address space (shown in 302 and
304). At the remote memory side, the memory blade 208
maintains the RMMA. Therefore, each memory access at the
processor side should first be mapped to the SMA space (as
shown 1 302 and 304 of FIG. 3). If the SMA (as shown 1n
302 and 304) corresponds to the remote Memory, the SMA
(as shown 1 302 and 304 of FIG. 3) 1s mapped to the
RMMA, and this RMMA 1s sent to the remote memory blade
208. The optical plane translates the SMA (as shown 1n 302
and 304 of FIG. 3) to the respective RMMA and interacts
with the remote memory, as illustrated 1n FIG. 3.

The processor blade (as shown with components 306,
308, and 310a-» 1 FIG. 3) connects to the remote memory
through FElectrical-to-Optical (EQO)/Optical-to-Electrical
(OE) transcervers 312 which are connected to, for example,

a Northbridge™ chipset. Note that 1n a virtualized system
the SMA (as shown 1 304 of FIG. 3) corresponds to the

Machine Address (MA) (as shown 1n 302 and 304), and 1n
a system without virtualization the SMA (as shown 1n 302 1n
FIG. 3) corresponds to the physical address (PA). As shown
in the FIG. 3, each processor blade (shown with components
306, 308, and 310q-7) may have simultaneous connections
to multiple memory blades through separate channels. Here,
in case of a single-mode optical fiber, a channel corresponds
to a separate optical transceiver, whereas with wavelength-
division multiplexing (WDM) a single transceiver may
provide multiple channels.

In an optically-connected system, processor nodes access
remote memories through independent circuits established
between the processor nodes and the remote memory blades.
Turming now to FIG. 4, an exemplary block diagram 400
showing a hardware structure for switching memory through
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an optical interconnection fabric 1n a computer system 1s
depicted. Processor B 4028 establishes a circuit with the
remote blade C 4068 and gains access to the data previously
held by processor A 402A. As outlined above 1n FIG. 2-4, a
processor node has multiple channels to the remote memory
blades; also, each of the memory blades 1s equipped with
multiple channels, enabling the memory blades to be shared
across multiple processor nodes. The optical channels (in a
memory blade or a processor node) are provided by one or
more optical transceivers. A processor node 402 (shown as
4027A and 402B) can allocate memory from a remote
memory blade by imitiating a circuit with the memory blade
406 (shown as 406 A-C) and sending the memory request to
the remote memory controller. In such a memory system, a
processor node 402 holding super pages within a remote
memory blade can signal another processor to establish a
circuit with the remote memory blade 406 (shown as 406 A -
C) mitiating a transier of memory space to the latter pro-
cessor node. The former processor node (e.g., processor A
402A) can send the RMMA address space to the receiving
processor node (e.g., processor B 402B), which can access
the same data resident on the supplied address space. The
sending processor may tear down (e.g., disconnect) the
circuit with the remote memory blade 406 (shown as 406 A -
C) 1f 1t no longer requires any super pages at that memory
blade (e.g., memory blade 406B). Such a process of trans-
ferring address space across processor nodes 1s referred to as
memory switching. The memory switching process 1s shown
in FIG. 4, where a processor node A 402A sends data stored
in a remote memory blade C 406 to a processor node B
402B. The processor B 402B mmitiates a circuit with the
remote memory blade C 406. Note that as a memory blade
406 may have multiple channels, the memory space of the
memory blade 406 may be shared across multiple processor
nodes, each memory space occupying a non-overlapping
portion of the total space within the memory blade 406.
Also, the source and destination side of memory switching
may be referred to as switch-out and switch-in operations,
respectively.

Processor nodes within the SMP fabric (e.g., the nodes in
processor pool 402A) are assumed to be able to communi-
cate with one another. That said, and although processor
nodes 1n each SMP domain shown i FIG. 4 (e.g., domain
402A or domain 402B) can access any ol the remote
memories through the independent circuits established
between the processor nodes and the remote memory nodes
through the optical switch 440, 1t should be appreciated that
processor nodes do not access the same memory device
(e.g., a particular DIMM 1n memory blade 406C) at the same
time. Thus, 1f the contents of a particular memory location
need to be passed from one processor to another processor
in the processor pool (a “processor-to-processor” or “inter-
processor’ communication), 1t 1s required to switch owner-
ship of the memory (from one processor to the other). This
1s the case despite the fact that, as noted above, processor
nodes can otherwise communicate directly with one another.
Such switching of physical memory modules through the
optical switch takes tens of milliseconds, which 1s accept-
able 1f the data set being passed 1s large. The overhead
required to change the physical optical circuit between
processors and memory pool modules (for passing the
information), however, 1s undesirable for smaller messages.

The technique of this disclosure addresses this require-

ment, as will now be described.

Inter-Host Communication without Data Copy in
Disaggregated Systems

In particular, and according to this disclosure, direct
inter-processor commumnication 1s enabled with respect to
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data in a memory location without having to switch specific
circuits through the optical switch. Rather, i this approach
a memory pool 1s augmented to include a dedicated portion
that serves as a disaggregated memory common space for
communicating processors. The disaggregated memory
common space may comprise part of an existing memory
module 1n the memory pool, or it may be a memory module
dedicated for this purpose. This approach obviates the
requirement of switching of physical memory modules
through the optical switch to enable the processor-to-pro-
cessor communication. Rather, processors (communicating
with another) have an overlapping ability to access the same
memory module 1n the pool; thus, there 1s no longer a need
to change physical optical switch circuits to facilitate the
inter-processor communication. The overhead of optical
switching 1s thus avoided. The disaggregated memory com-
mon space 1s shared among the processors, which can access
the common space for reads and writes, although particular
locations in the memory common space for reads and writes
are different. In particular, each processor (that can access
the memory common space) writes to one particular location
while, with respect to that one particular location, all the
other processors can only read therefrom.

Thus, according to this disclosure, the optically-con-
nected memory system 1s enhanced as depicted 1n FIG. S.
FIG. 5 1s similar to FIG. 4 except for the inclusion of the
additional memory chip 508, which for convenience 1is
shown 1n the memory pool 506C. Each memory pool S06A,
506B, etc. may likewise include the memory chip 508. Each
such memory chip 508 provides a disaggregated memory
common space for reads/writes between communicating
processors as described above. In particular, this memory 1s
shared among the processors that can access 1t to read and
write, with the locations 1n that shared memory space for
reads and writes being different, as noted.

By including the disaggregated memory common space,
the approach herein enables a way to efliciently exchange
data chunks in memory between different processors (or
“hosts”) 1n a disaggregate compute system, preferably via
dynamically-changing memory bus links 510 to the memory
chip 508, and by translating the appropriate memory
addresses (from a running program on one processor to
another program on another processor). This enables a
current owner of a data chunk to operate directly on the data
without copying or other communication protocols. In
ellect, the processor-to-processor communication approach
provides the ability to detect and maintain a “state” of the
operations on the data chunk and to transit (transier) that
state to another program as the processor owning the data
chunk changes. The data itself, however, 1s maintained
non-volatile 1n the memory module. More generally, the
technique provides for a way to control and assign the
ownership (by different processors) of a specific data chunk
among different programs running on those different pro-
CESSOrs.

As depicted 1n FIG. 5, typically there are multiple pos-
sible connections to each memory pool through high speed
point-to-point memory links 510. The controllers of such a
disaggregated pool (e.g., memory controller 210 1n FIG. 2,
or memory controller 306 in FIG. 3) are able to facilitate
load/store threads at different priorities, thus the main use of
processors to read/write memory for normal access typically
does not sufler, as the communication between processors 1s
done between main access queues of the memory chip 508.
In a modern processor design, many 1in-tlight load/store
operations are pending, thus preferably the memory pool
controller sorts and keeps high priority memory transactions
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first, with the inter-process communication (according to
this disclosure) done second (but without starvation). The
memory controller 1s responsible for translating the memory
addresses to facilitate the inter-processor communication. In
particular, the memory controller has knowledge of the
disaggregated memory common space that 1s being shared,
and 1t knows the particular physical location to which a
particular processor can write, as well as the address that a
particular processor believes 1t 1s writing to. As noted above,
cach processor 1s assigned a particular location for writes,
and the other processors can only read from that particular
location. As noted above, the particular locations in the
memory common space for reads and writes are different,
and the memory controller keeps track of this information
and, as necessary, provides the address translation to facili-
tate the inter-processor communication when data i an
actual physical location must be accessed by multiple pro-
cessors at the same time—all without setting up the circuits
through the optical switching. The inter-processor commu-
nication thus occurs without data copy and through the
disaggregated memory common space instead of the switch.

Preferably, the use of the disaggregated memory common
space for inter-process communication i1s configured for
relatively smaller messages (small data chunks) as opposed
to larger data. The size threshold (1.e., which data 1s handled
through the disaggregated memory common space) 1s con-
figurable. Typically, provisioning occurs statically in an
oll-line manner via a job scheduler that has privileged access
to the switching architecture. The following describes a
representative scheduler for this purpose

As depicted 1n FIG. 6, preferably an inter-host commu-
nication control system 600 comprises a number of compo-
nents. In particular, and 1 one embodiment, the control
system 600 comprises a status detection unit 602, a control-
ler unit 604, an owner-status mapping unit 606, and one or
more memory control umts 608. One of these units (or
“components”) may be integrated with one another or be
implemented as functions of other systems, devices, con-
trollers, programs or processes. The particular nomenclature
1s not intended to be limiting. Further, these components are
described here functionally, but this also 1s not intended as
a limitation, as the particular operations may be 1mple-
mented 1n any convenient manner. Generally, the status
detection unit 602 detects and thus has knowledge of the
running state of a program. One or more data chunks (data)
are assumed to be associated with a particular running state
of the program. The controller unit 604 generally provides a
switching operation to provide memory bus link changes.
The owner-status mapping umt 606 i1s used schedule and
assign an appropriate memory overlapping region (the dis-
aggregated memory common space) to a rightful owner
(processor). The memory control unit 608 1s provided with
cach pool to keep data non-volatile and (as necessary) to
translate any legacy data address. Thus, the controller unit
604 and memory control unit 608 provide the memory
controller functions for the iter-processor communication.

FIG. 7 depicts a process flow illustrating how tasks of a
request job are processed concurrently 1n a set of memory/
CPU pools without data copy according to this disclosure.
The process begins at step 700 upon receipt of a job request.
At step 702, the job 1dentified by the job request 1s split into
multiple tasks. At step 704, each task in the set of multiple
tasks 1s allocated to a memory pool and its associated CPU
pool. A particular memory pool may be connected to one or
more CPU pools over the memory links. The routine then
continues at step 706 to update a status-owner mapping.

Steps 708-710 and 712-714 depict how each task then
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executes 1n 1ts own context and (eventually) completes.
These operations are depicted 1n parallel. After all of the
tasks are complete, the routine then continues at step 716 to
dynamically connect together the multiple memory pools
(via their memory links) into what 1s, 1n eflect, a single
computation unit. By separately processing the tasks of the
j0ob 1n the manner, the approach enables the local memory
control unit for each memory pool to keep 1ts associated data
in the associated memory pool as non-volatile, thereby
avoiding data copy.

Thus, and as depicted 1n FIG. 7, a new job request 1s
received and, for each subset of the job, one or more
memory pools and corresponding CPU pools are allocated
and connected to compute the subset. The owner-status
mapping unit 706 maintains a current mapping (in an
appropriate data structure) that associates a task number of
the task, the memory pool, and the CPU pool. Once the task
1s completed, the status detection unit 702 raises a “com-
plete” signal to update the owner-status mapping unit 706
that the task assigned 1s now complete. The memory control
umt 708 associated with the memory pool (for the task)
maintains the current data 1n the memory pool, even 1f the
associated CPU pool 1s disconnected from the memory pool.
Because the separate processing paths (shown as steps
708-710 and 712-714 1n FIG. 7) do not necessarily complete
at the same, the owner-status mapping unit 706 must then
determine a next step for the job, e.g., wait for the other tasks
to complete, start a data combination procedure, or the like.
The determination to start the data combination procedure
typically depends on the nature of the job, the number of
tasks that have been completed (relative to the total), or
some other factor(s), which may be configurable or set by
default. Once the owner-status mapping unit 706 determines
(according to its configuration or otherwise) that enough
tasks have completed, preferably a data combination
(merge) procedure 1s mnitiated. During this merge procedure,
preferably all of the memory pools are connected to a single
set of CPU pools, and individual memory control units 708
work together to translate data addresses as necessary.

The technique of this disclosure have significant has
significant advantages. First, by separating communication
to overlapping memory regions where communication hap-
pens at the memory pool side (and using point-to-point
disaggregated links), such communication does not congest
cither the general purpose network or the SMP fabric (e.g.,
502A 1 FIG. 5) that 1s left to handle coherent shared
memory traflic. In past methods, a shared memory has been
implemented over a general purpose network, with RDMAs
type of communication mechanisms (e.g., Ethernet) or a
shared memory coherent fabric (e.g. PERCS) that passes
through multiple hops, thereby resulting 1in higher latency
and complexity. Second, as most applications exhibit good
cache locality, both their bandwidth to the memory links as
well as the bandwidth of the memory modules (e.g.,
DIMMs) are under-utilized. Thus, instead of going through
the usual I/O stack, NIC, switch and network, those links
and modules save the need and reduce the overhead signifi-
cantly. Further, even in the situation that memory bandwidth
1s all used, cycle-stealing of such memory bandwidth can
facilitate communication 1 a more eilicient way, thereby
enabling re-archutecting of computer systems i1n a more

disaggregated manner. The approach herein thus eliminates
much of the bandwidth needed through 1I/O, and 1t keeps

communication to cases of true coherent multi reads/writes.

Implementation of the inter-host communication tech-
nique 1n association with an SMP fabric as described above
1s not mntended to be limiting. SMP fabric 1s expensive to
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operate, as 1ts functions are more complex than other
approaches, such as load/store. The inter-host communica-
tion technique of this disclosure may also be implemented in

assoclation with a load/store {fabric, as will now be
described.

By way of brief background of this alternative embodi-
ment, FIG. 8 depicts a portion of the data center 800 1s
shown and includes a processor pool, 1dentified as a “‘com-
pute drawer” 802, and a memory pool, i1dentified as a
“memory drawer” 804. The compute drawer 802 includes
blocks 806 of processors (typically CPUs), each of which
typically includes one or more CPUs 808. The memory
drawer 804 includes blocks 810 of memories, each of which
typically includes one or more DIMM modules 812. Typical
load-store operations 814 are also depicted.

In the load/store embodiment, a processor connecting to
a memory module (even its local directly-attached memory
chip/module) uses a load/store memory transaction (read

from memory or write to memory).

Thus, as shown 1 FIG. 8, memory blades are grouped
into a “drawer.” Drawers in principle can be connected with
optical links through the switch (drawer-to-drawer with
circuits) when required to facilitate communication passing
(in the form of simple load/store) between different blades 1n
different drawers, assuming no reassignment of the already
existing optical circuits between the processors to the
memory blades. The load/store 1s very simple and does not
require complex communication (like multicast or broad-
cast); rather, exactly one processor can own a “write” to
some memory module, and all writes are routed (from the
load/store fabric) from the already-connected link that pro-
cessor has to that memory module. The same 1s true for the
“reads” with respect to processors that are allowed to access
and read from the memory module.

When the approach of this disclosure 1s used in the
load/store fabric context of FIG. 8, the connections between
memory blades (within a drawer) and even between memory
pool drawers are load/store transactions that are simply
passed (routed) to the right memory modules, e.g., based on
theirr addresses and other ownership identifiers that the
memory system has assigned for such to facilitate commu-
nication between the mmvolved processors. Of course, 1t 1s
possible that multiple processors share the same memory
pool drawers with different memory blade connections, or
even the same memory blade connections, in either case the
memory blade controller facilitates such communication
locally from the optical circuits connecting the processors to
it directly.

Thus, according to this disclosure, different processors
map to different memory blades for their usual work and
have a common memory module, e.g., 1n one of the existing
memory blades to which they connect (if both connect to the
same blade, or 1f they connect to two different blades 1n the
same memory pool drawer, or if they connect to two
different memory pool drawers) to facilitate the inter-pro-
cessor communication 1n the manner described. Of course,
from a resource allocation perspective, it 1s preferably
(casiest and cheapest) when they are located (load/store
connection-wise) in the same memory blade and get a
separate memory module for the mter-processor communi-
cation. A next best approach 1s for them to be located in the
same memory pool drawer.

Although not depicted 1n FIG. 8, 1t should be appreciated
that the load/store embodiment may comprise drawers (for
memory) that are located 1n different locations (in a rack or
nearby some rack) and are connected via direct optical links
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(circuits) to facilitate communications passing between
drawers when the common memory 1s accessed from

already-connected locations.

As noted above, preferably the approach 1s implement 1n
a disaggregated server system environment. For complete-
ness, the following section provides additional details of this
type of environment.

Disaggregated Server Systems

Preferably, server resources 1n or across one or more data
centers are disaggregated into shared server resource pools,
namely, one or more of: a compute pool, a memory pool, an
accelerator pool, a storage pool, and the like. As noted
above, servers preferably are constructed dynamically, for
example, on-demand and based on workload requirements,
by allocating from these resource pools. Preferably, a dis-
agoregated compute system of this type keeps track of
resources that are available in the shared server resource
pools, and manages those resources based on that informa-
tion.

In such a system, typically a tracking mechanism associ-
ated with the disaggregated compute system includes a
database. The database stores data that tracks resource state
or status (e.g., 1dle or used CPUs, memory, accelerator, and
other components) of the various resources that define a
server available from the resource pools. Additionally, the
database stores a data record (or, more generally, a data set)
that, for each defined server (sometimes referred to as a
“server entity”’), 1dentifies the resources (e.g., the CPU(s),
memory, accelerator, or other components) that comprise the
server. Preferably, the data record 1s associated with an
identifier, such as a unique server ID, and each resource that
comprises the server i1s associated in the database with that
unique server 1dentifier. The individual components of the
resource pools also include 1dentifiers that are tracked 1n the
database. The resource-specific 1identifiers provide informa-
tion regarding the resource status, attributes, relationship to
other resources, and the like. Thus, the database, which may
be centralized or distributed, acts a repository of information
regarding server entities, the server pools, and the various
resources that comprise a particular server entity.

In response to a request for data center resources, €.g.,
when allocating a new server, a server entity 1s defined by
selecting resources from the one or more resource pools. The
resources may be selected based on a projected need or
specified demand associated with the request, or some other
criteria. The server entity 1s associated with the unique
server 1D, which 1s stored 1n the database together with the
identifiers for the resources that comprise the server entity.
The server entity may then be scaled up or down as
necessary based on the workload requirements of the request
or one or more related or associated requests.

Thus, for example, as the request 1s processed, or as
additional related requests are received for processing, the
tracking system monitors usage to determine 1f an adjust-
ment to the resources comprising the server entity 1s needed.
When, based on the monitoring, the tracking system deter-
mines that an adjustment 1n the server entity components 1s
necessary, the adjustment 1s carried out, e¢.g., by changing
the allocation of resources that are associated with the server
entity. Thus, for example, when additional compute and
memory are needed (scale-up), the tracking system (by
itsell, or by cooperation with other resource provisioning
systems 1n the data center) adjusts the server entity, e.g., by
selecting additional processors and memory, which are then
added to the server entity. These additional processors and
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memory may be selected based on one or more criteria, such
as load, proximity to the existing resources that comprise the
server entity, availability, and the like, as indicated by the
information being maintained and tracked in the database.
When, on the other hand, the monitoring indicates that fewer
resources are required (scale-down), the tracking system
adjusts the server entity, e.g., by de-selecting certain pro-
cessors and memory, which are then de-allocated from the
server entity and returned to their respective resource pools.

With reference now to FIG. 9, a disaggregated compute
system 600 1s depicted. The disaggregated compute system
900 1s configured within a data center 905 1n which a
switching optically-connected memory architecture 1s used.
In the disaggregated compute system 900, there are shared
server pools, e.g., a compute pool 902, a memory pool 904,
an accelerator pool 906, a storage pool 908, and perhaps
others. There may be a single 1nstance of a resource pool, or
multiple such instances (sometimes referred to as “multiple
pools”). In the approach herein, particular servers that
service customer workloads are constructed dynamically, for
example, on-demand and based on workload requirements,
by allocating from these resource pools. Thus, for example,
a first server entity 910 may comprise CPU 902a (selected
or otherwise obtained from compute pool 902), memory
904H (selected or otherwise obtained from memory pool
904), accelerator 906¢ (selected or otherwise obtained from
accelerator pool 906), and storage 908d (selected or other-
wise obtained from storage pool 908). A second server entity
912 may comprise CPU 9025, memory 904a, accelerator
9060 and storage 908a. These examples are merely repre-
sentative. Moreover, and as will be described, the particular
server pool resources that comprise a given server entity
may change.

Preferably, once a particular resource of a resource pool 1s
associated with a given server entity, that particular resource
1s not available to be used to constitute another server entity.
Stated another way, preferably an allocated resource of a
resource pool remains associated with the server entity until
it 1s de-allocated, at which point the resource 1s returned
back to the resource pool and can be used again by another
server entity. Although not intended to be limiting, prefer-
ably a server entity (once created) 1s associated with one and
only one data center customer (tenant). In other words,
server entities preferably are not shared across tenants.

To manage such allocations and de-allocations, the dis-
aggregated compute system 800 has the capability to keep
track of resources that are available 1n the shared server
resource pools and that are allocated or de-allocated to the
various server entities. To this end, the disaggregated com-
pute system 900 comprises (or has associated therewith) a
tracking system comprising a resource allocation mecha-
nism 914, and an associated database system 916. Generally,
the tracking system 1s implemented as a data processing
system, and 1t may operate 1n a standalone manner or as a
component of some other system or functionality in the data
center.

Typically, the resource allocation mechanism 914 1s
implemented in software, namely, as set of computer pro-
gram 1nstructions, executing in one or more hardware pro-
cessors. The resource allocation mechanism 914 may com-
prise one or more sub-systems or modules, processes,
programs or execution threads, and such components may
be co-located or distributed. The resource allocation mecha-
nism 914 generally 1s responsible for executing one or more
allocation algorithms that create and manage server entities
according to this disclosure. Representative algorithms
include, for example, a new server allocation algorithm that
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1s used to perform an initial build of the server entity, a
server scale-up algorithm that in the case of an existing
server 15 used to add more resources to the existing server
entity when more capacity 1s needed to handle the workload,
and a server scale-down algorithm that i the case of an
existing server 1s used to de-allocate (shed) resources from
the existing server entity when less capacity 1s needed to
handle the workload. One or more of such functions may be
combined, and other types of algorithms may be imple-
mented by the resource allocation mechanism 914.

The one or more algorithms that comprise the resource
allocation mechanism 914 used information stored in the
database system 916 to carry out the management functions.
As noted above, the database system 916 stores information
that tracks the state, status or other properties and attributes
of the various resources 1n the shared server pools. In
addition, the database stores information about each server
entity built by the resource allocation mechanism. General-
1izing, and as well-known, the database system 916 com-
prises a database 918, namely, a collection of data organized
in one or more ways (e.g., via schemas, tables, queries,
report, views and other objects), together with a database
management system (DBMS) 920, which 1s a computer
software application that interacts with the user, other appli-
cations, and the database to capture and analyze data. A
general purpose DBMS enables the definition, creation,
querying, update and administration of databases. A repre-
sentative DBMS 1s IBM® DB2®.

In one embodiment, the database 918 1s relational. The
database stores a data record (or, more generally, a data set)
that, for each defined server entity, identifies the resources
that comprise the server. Preferably, the data record 1s
associated with an identifier, a umique server 1D, and each
resource that comprises the server 1s associated in the
database with that unique server identifier. Thus, continuing
with the example described above, the first server entity 10
may be associated with unique server ID,, while the second
server 912 may be associated with user server 1D,, and so
forth.

Preferably, the individual components of the resource
pools also include 1dentifiers that are tracked 1n the database;
when a resource 1s allocated to a server entity, the resource’s
identifier then gets associated with (cross-referenced to) the
server entity. Thus, continuing with the first example above,
the various resource-specific identifiers for the CPU 902aq,
memory 9045, network accelerator 906¢ and storage 9084
are associated (by relational tables or otherwise) with unique
server ID1, which 1s the unique server 1dentifier for the first
server entity 910.

When the server entity 1s first bult, it includes a set of one
or more server pool resources selected from the server pools
by the resource allocation mechanism. Thus, the unique
server 1dentifier for the server entity will have an iitial set
of resource-specific 1dentifiers associated therewith. As
resources are later allocated or de-allocated from the server
entity, the set of constituent resource identifiers associated
with a particular server entity identifier thus changes as well.

As noted above, there may be multiple instances of a
resource pool. When multiple instances exist, particular
resources to support the server entity are then selected from
one or more of those instances. Preferably, if resources
assigned to a first mstance of a resource pool are used to
build the server entity, when 1t becomes necessary to add
capacity to that server enftity, preferably the additional
resources are also drawn from the same instance where
possible.
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Preferably, the resource-specific identifiers provide infor-
mation regarding the resource status, attributes, relationship
to other resources, and the like. Thus, the database, which
may be centralized or distributed, acts as a repository of
information regarding server entities, the server pools, and
the various resources that comprise a particular server entity.

Although a relational database 1s useful for implementa-
tion, the server entity identifiers and resource-specific 1den-
tifiers may be related to one another 1n other ways, e.g., as
linked lists, data arrays, hash tables, or otherwise.

In general, the resource allocation mechamism 914 and the
database system 916 work together to manage the disaggre-
gated compute system. The resource allocation mechanism
functions as a tracking system that keeps track of idle and
used CPUs, memory, accelerator and other components that
define a server. Additionally, the tracking system keeps a
record ol each defined server of what CPUs, memory,
accelerator or other components are part of the server. As
noted, and for each defined server, a unique 1D 1s specified,
and the requested number of CPUs, memory and storage are
selected from the pool of 1dle resources, e.g., based on their
locality, best fit and future expansion needs as will be further
described. The unique server ID, and also IDs of each of
these resources, are recorded in the tracking system. Pref-
erably, and as noted above, the used components are marked
as used and are removed from the pool of i1dle components.

Preferably, each component of the server entity 1s tagged
with the unique server ID with which 1t 1s a part. Thus, the
component 1s made aware that it 1s a component of the server
entity 1dentified by the unique server ID.

Preferably, each request 1ssued to the disaggregate com-
pute system, as well as the data received 1n response to the
request, also are tagged with the server entity ID. When, for
example, the request 1s recerved at a resource, the resource
then compares the server entity 1D tagged to the request to
the server entity ID for the resource. In other words, the
component 1s provided with the capability to check 1f the
request matches the server entity 1D to which the component
has been allocated. If so, the component recognizes the
request as something that can be consumed and acted upon.
When the server enfity ID tagged to the request does not
match the server enfity ID tagged to the component, the
component knows that the request can be 1gnored.

The algorithms used for resource selection (new server
allocation, server scale-up and server scale-down) can use
common criteria to facilitate the selection, or these algo-
rithms can difler from one another, e.g., based on the
resource topology and the purpose of resource allocation.
When resources are interconnected, more tlexibility 1n allo-
cated resources 1s available to the system. For resources that
are not directly interconnected, preferably the algorithm(s)
consider the hierarchy of resources, as well as other factors,
such as number of hops, latency, cost and so forth. In the
latter case, preferably the algorithm tries to minimize the
number of hops.

The disaggregated server architecture of FIG. 9 preferably
includes a memory management service to enable the mul-
tiple memory pools (the memory blades 1n FIG. §) to operate
more efliciently and with increased performance and greater
memory utilization. As noted, typically each memory pool
has one-to-multiple possible connections to one-to-multiple
processors (typically CPU pools) through high speed
memory link(s). Memory components from the memory
pool can be used, re-used or shared among different tenants
and processing components. The memory management ser-
vice may have responsibility for creating the memory pool.
Typically, the basic memory component that managed 1n the
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pool 1s a memory module allocation block (e.g., a DIMM
module). This 1s not a limitation, however, as a memory
component (or “resource’) in the pool may be any other type
of physical memory structure. The memory management
service may be mmplemented by a “memory manager”
component or mechanism.

As noted above, and according to this disclosure, different
processors typically map to diflerent memory blades for
their usual work, and they then use the common memory
module in one of the existing memory blades to which they
connect (whether 1n the same blade, whether they connect to
two different blades in the same memory pool, or whether
they connect to two different memory pool drawers, etc.) for
the inter-processor communications. Of course, it 1s prefer-
able to have the resources located in association with the
same memory pool drawer, and this resource allocation may
be established by the resource allocation mechanism previ-
ously described.

As has been described, the functionality described above
may be implemented as a standalone approach, e.g., a
soltware-based function executed by a processor, or 1t may
be available as a service. The particular hardware and
software implementation details described herein are merely
tfor illustrative purposes are not meant to limit the scope of
the described subject matter.

More generally, computing devices within the context of
the disclosed subject matter are each a data processing
system comprising hardware and software, and these entities
communicate with one another over a network, such as the
Internet, an intranet, an extranet, a private network, or any
other communications medium or link. The applications on
the data processing system provide native support for Web
and other known services and protocols including, without

limitation, support for HITP, FTP, SMTP, SOAP, XML,
WSDL, UDDI, and WSFL, among others. Information
regarding SOAP, WSDL, UDDI and WSFL 1s available from
the World Wide Web Consorttum (W3C), which 1s respon-
sible for developing and maintaining these standards; further
information regarding HTTP, FIP, SMTP and XML 1s
available from Internet Engineering Task Force (IETF).
Familiarity with these known standards and protocols 1is
presumed.

The techmiques described herein may be implemented 1n
or 1 conjunction with various server-side architectures
including simple n-tier architectures, web portals, federated
systems, and the like. As already noted, the techniques
heremn also may be practiced 1 a loosely-coupled server
(1including a *“‘cloud”-based) environment.

Still more generally, the subject matter described herein
can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing
both hardware and software elements. In a preferred
embodiment, the trusted platform module function 1s 1mple-
mented 1n software, which includes but 1s not limited to
firmware, resident software, microcode, and the like. Fur-
thermore, the download and delete interfaces and function-
ality can take the form of a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or 1n connection
with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer
readable medium can be any apparatus that can contain or
store the program for use by or in connection with the
istruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromag-
netic, mfrared, or a semiconductor system (or apparatus or
device). Examples of a computer-readable medium include
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a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk. Current examples of optical disks
include compact disk-read only memory (CD-ROM), com-
pact disk-read/write (CD-R/W) and DVD. The computer-
readable medium 1s a tangible, non-transitory item.

The computer program product may be a product having
program instructions (or program code) to implement one or
more of the described functions. Those nstructions or code
may be stored 1n a non-transitory computer readable storage
medium in a data processing system after being downloaded
over a network from a remote data processing system. Or,
those 1nstructions or code may be stored in a computer
readable storage medium 1n a server data processing system
and adapted to be downloaded over a network to a remote
data processing system for use mm a computer readable
storage medium within the remote system.

In a representative embodiment, certain aspects of the
technique herein (e.g., memory address translation) are
implemented 1n a special purpose computing platiorm, pret-
erably 1n software executed by one or more processors. The
software 1s maintained 1n one or more data stores or memo-
ries associated with the one or more processors, and the
software may be immplemented as one or more computer
programs. Collectively, this special-purpose hardware and
soltware comprises the functionality described above.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order i1s exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References 1n the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

Finally, while given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

While the above-described compute environment 1s pre-
ferred, 1t 1s not intended to be limiting. Aspects of the
disaggregated compute system of this disclosure may be
implemented 1n a data center that provides a conventional
cloud computing model of service delivery.

The techniques herein generally provide for the above-
described improvements to a technology or technical field,
such as data center architectures, disaggregate compute
environments, and the like, as well as the specific techno-
logical i1mprovements to memory pool management
schemes, such as described above.

In the context of this disclosure, the notion of a “common
memory space” should also be deemed to cover a “trans-
terable” memory space in the memory pool, wherein the
transierrable memory space refers to a memory region for
reads and writes that occur at diflerent times. In other words,
a particular memory region may serve both purposes (reads
and writes) at different times.

One skilled in the art will appreciate that techniques of
this disclosure typically are implemented 1 a hybrid of
circuit and packet switching fabrics. In particular, typically
the group connections between processor pools and memory
pools are circuits. As 1s well-known, a circuit switch does
not mvolve any additional handling of the fabric packet
communications once a circuit (i.e. a link through the optical

10

15

20

25

30

35

40

45

50

55

60

65

18

(or electrical) switch) 1s made from a processor to the
memory. The latency of a circuit switch will only be
proportional to the speed of light over the relevant distance.
In contrast, the local memory pool connections typically are
packet-switched, but they go only to the local pool (drawer)
of memory. Thus, the memory pool switching fabric typi-
cally 1s of a packet switching type, and 1t goes to local
memory controllers within a drawer, although two drawers
can connect with a circuit. Theses circuits 1solate the com-
plexity of the scaling of the network due to the many number
of parties that need to communicate (in this case, memory
pool controllers and processors).

The mvention claimed 1s:

1. A method of managing memory 1 a disaggregated
compute environment, the disaggregated compute environ-
ment comprising a processor pool including a set of pro-
cessors, and a memory pool including a set of memory
devices, wherein a processor in the set of processors 1s
coupled to a memory device in the memory pool via a
switch, comprising:

defining a common memory space 1 the memory pool,

the common memory space being an overlapping
memory region for reads and writes between commu-
nicating processors in the set of processors;

assigning locations i1n the common memory space for

processor reads and writes, wherein a particular pro-
cessor 1s assigned a particular location 1n the common
memory space for a write, and one or more other
processors can only read from the particular location;
and

responsive to a request, communicating data stored 1n the

memory pool between a first processor and a second
processor, the data being communicated via the com-
mon memory space in lieu of using the switch.

2. The method of claim 1, wherein communicating data
includes dynamically-changing memory bus links to the
common memory space.

3. The method of claim 1, wherein communicating data
includes translating memory addresses associated with the
common memory space from the first processor to the
second processor.

4. The method of claim 3, wherein the first processor
executes a first process and the second processor executes a
second process, the first and second processes respectively
executed parallelly or sequentially 1n any order.

5. The method of claim 4, wherein commumnicating the
data transiers a state of operations on the data between the

first process and the second process.

6. The method of claim 5, wherein the data 1s maintained
non-volatile 1n the memory pool.

7. The method of claim 4, wherein:

the first and second processes comprise tasks associated

with a single job; and

upon determining that at least one of the first and second

processes have completed executing, merging the data
associated with the single job from the first and second
processes via the memory address translation of the
cOmmon memory space.

8. The method of claim 1, wherein the switch 1s one of:
an optical interconnect, and a load/store fabric.

9. A system to manage memory 1n a disaggregated com-
pute environment, the disaggregated compute environment
comprising a processor pool including a set of processors,
and a memory pool including a set of memory devices,
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wherein a processor 1n the set of processors 1s coupled to a
memory device 1in the memory pool via a switch, compris-
ng:

one or more hardware processors;

computer memory holding computer program nstructions

executed by the hardware processors and operative to:

define a common memory space in the memory pool,
the common memory space being an overlapping
memory region for reads and writes between com-
municating processors in the set of processors;

assign locations i the common memory space for
processor reads and writes, wherein a particular
processor 1s assigned a particular location in the
common memory space for a write, and one or more
other processors can only read from the particular
location; and

responsive to a request, facilitate communicating of
data stored in the memory pool between a first
processor and a second processor, the data being
communicated via the common memory space 1in
lieu of using the switch.

10. The system of claim 9, wherein the computer program
istructions are operative to dynamically-change memory
bus links to the common memory space.

11. The system of claim 9, wherein the computer program
instructions are operative to translate memory addresses
associated with the common memory space from the first
processor to the second processor.

12. The system of claim 11, wherein the first processor
executes a first process and the second processor executes a
second process, the first and second processes respectively
executed parallelly or sequentially 1n any order.

13. The system of claim 12, wherein communicating the
data transiers a state of operations on the data between the
first process and the second process.

14. The system of claim 13, wherein the data 1s main-
tained non-volatile 1n the memory pool.

15. The system of claim 12, wherein:

the first and second processes comprise tasks associated

with a single job; and

upon determining that at least one of the first and second

processes have completed executing, merging the data
associated with the single job from the first and second
processes via the memory address translation of the
common memory space.

16. The system of claim 9, wherein the switch 1s one of:
an optical interconnect, and a load/store fabric.

17. A computer program product in a non-transitory
computer readable medium for use 1 a data processing
system to manage memory in a disaggregated compute
environment, the disaggregated compute environment coms-
prising a processor pool including a set of processors, and a
memory pool including a set of memory devices, wherein a
processor 1n the set of processors 1s coupled to a memory
device 1n the memory pool via a switch, the computer
program product holding computer program instructions
executed 1n the data processing system and operative to:

define a common memory space in the memory pool, the

common memory space being an overlapping memory
region for reads and writes between communicating
processors 1n the set of processors;
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assign locations in the common memory space for pro-
cessor reads and writes, wherein a particular processor
1s assigned a particular location in the common
memory space for a write, and one or more other
processors can only read from the particular location;
and

responsive to a request, facilitate communicating of data

stored 1n the memory pool between a first processor and
a second processor, the data being communicated via
the common memory space 1n lieu of using the switch.

18. The computer program product of claim 17, wherein
the computer program instructions are operative to dynami-
cally-change memory bus links to the common memory
space.

19. The computer program product of claim 17, wherein
the computer program instructions are operative to translate
memory addresses associated with the common memory
space from the first processor to the second processor.

20. The computer program product of claim 19, wherein
the first processor executes a first process and the second
processor executes a second process, the first and second
processes respectively executed parallelly or sequentially in
any order.

21. The computer program product of claim 20, wherein
communicating the data transiers a state of operations on the
data between the first process and the second process.

22. The computer program product of claim 21, wherein
the data 1s maintained non-volatile 1n the memory pool.

23. The computer program product of claim 20, wherein:

the first and second processes comprise tasks associated

with a single job; and

upon determining that at least one of the first and second

processes have completed executing, merging the data
associated with the single job from the first and second
processes via the memory address translation of the
cOmmon memory space.

24. The computer program product of claim 17, wherein
the switch 1s one of: an optical interconnect, and a load/store
fabric.

25. A disaggregated computing machine, comprising;:

a processor pool including first and second processors;

a memory pool having memory modules;

an optical interconnect or load/store switch fabric; and

a memory controller executing 1n a hardware element and

operative (1) to define a common memory space in the
memory pool, the common memory space being an
overlapping memory region for reads and writes
between the first and second processors; (11) to assign
locations 1n the common memory space for processor
reads and writes, wherein a particular processor 1s
assigned a particular location 1n the common memory
space for a write, and one or more other processors can
only read from the particular location; and (111) respon-
sive to a request, to facilitate communicating of data
stored 1n a memory module between the first processor
and the second processor, the data being communicated
via the common memory space in lieu of using the
optical interconnect, the load/store switch fabric, or a
network.
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