US010910081B2

12 United States Patent (10) Patent No.: US 10,910,081 B2

Thiruvengadam et al. 45) Date of Patent: Feb. 2, 2021
(54) MANAGEMENT OF TEST RESOURCES TO USPC 714/719, 718, 721, 723, 6.1, 25, 42, 34;
PERFORM RELIABILITY TESTING OF 365/200, 201
MEMORY COMPONENTS See application file for complete search history.
(71) Applicant: Micron Technology, Inc., Boise, 1D (56) References Cited
(US)

U.S. PATENT DOCUMENTS

(72) Inventors: Aswin Thiruvengadam, Folsom, CA

(US), Sivagnanam Parthasarathy, 6,160,744 A * 12/2000 Kajigaya HO1L 24/48
Carlsbad, CA (US); Daniel Scob 365/200
Iofes é A (US)(*UFI?ejdeiiI::ll? Jefl(;eEEj-:l 6,212,089 B1* 4/2001 Kajigaya G110 5/025
" \ ; > 257/E23.02
Dorado Hills, CA (US) 6,449,741 B1* 9/2002 Organ GOIR 1/025
- 714/46
(73) Assignee: MICRON TECHNOLOGY, INC., 6,643,180 B2* 11/2003 Ikehashi G110 29/006
Boise, ID (US) 165/185.00
(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 FORFIGN PATENT DOCUMENTS
U.S.C. 154(b) by 115 days.

KR 1020140141648 A 12/2014
(21) Appl. No.: 16/222,204

OTHER PUBLICATIONS
(22) Filed: Dec. 17, 2018

PCT Notification of Transmittal of the International Search Report

(65) Prior Publication Data and the Written Opinion of the International Searching Authority for
PCT Application No. PCT/US2019/066653, dated Apr. 14, 2020, 13
US 2020/0194091 Al Jun. 18, 2020 pages.
(51) gllt'}CCl2-9/38 5006.0° Primary Examiner — John I Tabone, Ir.
G11C 29/36 EZOO 6‘ O:h; (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
GO6F 12/16 (2006.0}) (57) ABSTRACT
GO6F 3/06 (2006.01) _ _ _ _ _
GO6F 11/10 (2006.01) Filter information associated with a test to be performed
GOGF 11/16 (200 6. OIH) with one or more memory components 1s determined. A set
2 US. Cl o of memory components matching the filter information may
(52) CPC . GIIC 29/38 (2013.01). GOGF 3/0679 be reserved for use 1n the testing. Test execution information

defining a set of test processes of the test 1s determined. A
(2013.01); GO6F 3/0688 (2013.01); GOOF connection with a first test process may be established and

11/1016 (2013.01); GO6F 117167 (2013.01); used to recerve feedback information associated with execu-
Goor 12/16 (2013.01); G1IC 29/36 (2013.01) tion of the test process. Based on the feedback information,

(58) Field of Classification Search a failure of the first test process may be identified.
CPC ... G11C 29/38; G11C 29/36; GO6F 3/0679;
GO6F 3/0688; GO6F 11/167; GO6F 12/16 20 Claims, 9 Drawing Sheets
o

Reseve Ghe of mors est Sontaonents o vieve of ftar informnation
2as00fated with arast
510

Genergie test exenilion information defining one o8 more 09 processes ::fi
The test
520

. I,'....r'.......................'..!
"

. . - . . . W
Roceive feedhack information from zach of the mueltdple test procasses SIS
the unigue connection inforrmation :

5320

LA Sl s bl s Ll el ittt d st il it il ad it et il il l ittt il bt » i

P

Determing a Tailurz of a firsi test procass and vhe coresponding fivsi test |
. . "
inforration

240

S

Repticata the firzt test process on 2 ragplication test comuonant
250

US 10,910,081 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

6,967,881 B2* 11/2005 Sasaki G110 29/02
257/E27.103
7,092,837 B1* 8/2006 Lanier GO1R 31/31903
702/110
7,532,511 B2* 5/2009 Conley GO6F 12/0246
365/185.09
9,251,915 B2* 2/2016 Laicccooeeevvninnnn, G11C 29/08
10,599,767 B1* 3/2020 Mattera GOG6F 40/253
2006/0146622 Al* 7/2006 Mukherjee G110 29/1201
365/201
2007/0269911 Al* 11/2007 Co ..cooovvveennnne GOIR 31/31851
438/17
2008/0270057 Al* 10/2008 Balchiunas B0O70 5/344
702/82

2011/0271141 A1 11/2011 Kursun et al.
2014/0136915 Al1* 5/2014 Hyde GO6F 11/0703
714/747
2014/0229666 Al1* 8/2014 Schoenborn G110 29/06
711/105
2015/0135026 A1* 5/2015 Laioocoeeeeennnn, G11C 29/56008
714/718
2015/0287476 Al1* 10/2015 Park G110 29/028
714/723
2017/0024139 Al1* 1/2017 Shim GOO6F 3/0656
2019/0266076 Al* 8/2019 Malian GO6F 11/3692
2020/0174064 Al1* 6/2020 Thiruvengadam ... GO1R 31/003

* cited by examiner

U.S. Patent Feb. 2, 2021 Sheet 1 of 9 US 10,910,081 B2

ol e, ol e, e, e, ol e, e, e, o e e, e, e, ol e, ol . . L R T

121 122 123 \

Raespurce

Allocator
130

U.S. Patent Feb. 2, 2021 Sheet 2 of 9 US 10,910,081 B2

Receive g request 1o perform a test with one or more memory
COMPonents
210

| Determine filter information associated with the one or more memory
" components to be allocated for execution of the test ”
220

Perform the test with one or more memory components at the
identified test components of the test platform
240

US 10,910,081 B2

Sheet 3 of 9

Feb. 2, 2021

U.S. Patent

300

A |
m_Hx ..,,..... m e ;
B @ 5 it
DR . xg J b
5 S 29582 5 203
Z ,Muu nhhk kG £ ! o
14 o XS a
D,.r .1.,.1_ e _x__\ ..,.;,..r e ﬁ” ﬁ“ m
L2, A G} 2)
m {1 A ' o
< A N — A
(. N "
TR~ 5 M
D !Hu e ﬁm m:ﬁm 1111111111 t SN
5 = I e o
& s T m
2 A L A m
& B R m
N |.mb.. N - M w Dy w m m
e e e e e e et mee e S I ¢ S W
.. - 2
................. ; I ' e
. ! m m m i m v
PN iR T]
) | B T =
- ”" ! : M u i ™, m
8 o R R TR N &=
2 & = ild =
D BT N o R S el |
5 Eoi2 & =y
&5 - R - 2
",fQu] | .mp g R S
g 1 ”. ! “ -
m r []
. T & X -
o R o _ b o
4 m .m.w.., m UL & s #
| % - - »
2 53 = = = M
) Ee ol 0L ' i =
. L = L
,..,..r nﬁ. C
A...,_._.._.\ - ..,f.,,.. ..__..k\...h.l —- — —— h Y
Q:. _H.w:,.,.,_. ..nx- ..:,,,_ _q \H.,--..f... _‘_x\: ,. m | i .,_;._ - . _,H :... _m
SR ot ot o IS GiLaRE o
e | AR w
2 AU m
T m o B m m
i _ o e m m
o | o < “ "
I | L D | m
< . - | m
% e \ _ R _ hu__ e m w M .f-..ikn_h ,. _ w
| WY "
&5 - B« o YR QS m
. ., 8 2z Moz g e
v L& “ , ”...U_.._. . | m
m L= A o O W g X "
= Y : | . o= o "
X < L o v | RS B T S
W D 0 5 @ | < £ on
o2 P e w m < & 3|
. . { | o e "
o= B B U A | G w £ !
= m 2 2 w
_f, u__ __,.f,, L 0 n,_

L
o L a4 a g e aaa

US 10,910,081 B2

Sheet 4 of 9

Feb. 2, 2021

U.S. Patent

ST SIBOEELD)

NGy

ssenmeq | NpLY

 wesboud
| SR U

PRy

w NL LY
- SIUBUOGOD 198 |

L SS8008d L S88004E /N 888004 [

~ . Fa
- a Fl
4 .
L -

E]

| aseqgepa ofes)y |

[R S R I A R I A S I T S T T S I AT S D I T T T e S e e e aer e

Voiv “_ ! Vi
RSRGRIR{ “” W g

SORSLSRIBYL

OGY
tizleielia)
ssegeen
SoASUSIoRIBUD

0%y
(jego)

asrgeiep abesn

1.
1-
1.
1.
‘-
1.
‘.
1-
1.
1.
‘-
1.
‘.
1-
1.
1.
‘-
1.
‘.
1-
1.
1.
1-
1.
‘.
1-
1.
1.
‘-
1.
‘.
1-
!
o
!
4
!
4
!
o
!
4
!
4
!
o
!
4
!
4
!
o
!
4
!
4
!
o
!
4
!
4
!
o
o

BIOSHM

V-0l

] 1 ; '
1] 1 { '
1] 1 { '
1] T s mamaEAmAEAEEEAREREREEEEEREERE EEEREER
1] 1 1
... 1
1
L e e e e e s
1 b
1]
i]
1 Fl
i]
1 rl
i]
1]
1
1 Fl
]
1 rl
1

llllllllllll

B ™)

vy
(' WBHD

vay
BREQEIED

r T

yjsusheuss

K SHAIPPY

A SSSUREN 4
U8y

| T o I e e o e e e e i ol ai o ol T ST ST T O e ¥ e ¥ M

++++++++++++++++++++++++++++++++

7Oy S8
SSURIION

L]
[. .
L]
... = ¥ : . L L . o
e s e i o i e s sl s o sl e s sl s o e e s sl s o e s s sl s o i s s sl s o e ol s ol s o A TTE DL P U] o e e e e e e s e s o e o s o e o e e e o e o e s o o o -
[. . . .
[. . .
L]

138eunitl 1834

F
r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Penrnin it rin)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.
1 1
1 1
1 1
1 1
1 1
.
r
1 1 T - s-...,-.i
1 1 " " -
1 1 ,
1
1

zn. _,_5 ‘ N | ...__“ ._.m
d | Vo ESe00g .
. \\\ ...,__,..,.u, A x T

. - - .

- g oam T I.ln!hrll.l

]
-l:l..l:l:l..l:l:l..l:l:L L L L L e L Mo Wl M B M e B e M e B M Ee Ee B B e L e M W Mo W B WL R l:l..l:l:l..l:l:l..l:l:l..l:l:l..l:l:l..l:l:l..l:l..__...l:l. -

P R A g R R e M R R R A Y A S U
L Ll b bl o o

2 SS8IPY

b . s e s e e s o o o

~7 SSBLEN -

L 888004

1 +
1 +
it
..‘ +

r
. +

o
Fa

-
-
L.
L

=_ I._1.l._...

U.S. Patent Feb. 2, 2021 Sheet 5 of 9 US 10,910,081 B2

Reserve one or more test components in view of filter information
assaciated with a test
510

Generate test execution information defining one or more test processes of
| the test :
520

REC@WE’- feedback information from each of the multiple test processes using
,, the unigque connection information :
530

Determine a failure of a first test process and the corresponding first test
information
540

U.S. Patent Feb. 2, 2021 Sheet 6 of 9 US 10,910,081 B2

e OU0

—

Generate a target vector representing a usage parameter corresponding
| to a test of a memory component ;
1y

Assign a test sampie to the target vector
628

b3y

Execute a test using the test sample in accordance with the set of path |
variables to generate a test resuit :
640

£au

U.S. Patent Feb. 2, 2021 Sheet 7 of 9 US 10,910,081 B2

%_

Fd¥ r " yr " " "rY YT rFTYTYTYTYTYrTrTrTrTYTYrTrFrFTYTrFrFF YT FTTrT T YT FTYrrrYrYrrrYYrYrYrYrrYTYrrYrYLYTYTSYYT

e
R
.

T

»
r

4
LA

4

T
4 T
L -

F X4 4 = = == F -) "

T T e e

.. L T T T L e
.. e -,

.":-' .

h L]
-.-"..

' .
4 a
n.'ln,.'l,q.|

L T T A

-

a
LEEEEEE RN

1
L
r

E N [N N N RS
EEEEE R
T L L AL

«~ b b b b b &b b b &b b &b b &b b b &b b b b b b b b b & b & b & &b & & b & b &b &b b b b b b & b & b b &b & &b o B B b B b b B b b b b F =« b &b F &

-.-I-'.-I-r.-i-.-t--t dr S dr dr dr dr dr dr dr g dr dr dp o dr dr dp e dr dr dp dp dr dr dp dr dr dp dr dp dr e dp dr e dr dp e dp e dp e dr dr dp dr dr dr de dr dr e dp ar e e b e dr dr dr i

.
‘FEEEEFEFEFEEEFFEEFEFEFEFEEFESEFFEFEFEFFEEFFEEFFEEEFEFEFEFEEFEFEFEFFEFEFFEFEEFFEEEFE Y REFREEE YRS b'# -
n

.

:\-.-:_u‘
L
SRR i

]

-
L B]

-

;'Jr'

. -1
L N N

Tt A=
rr
g
L L]
r
L |

.
e

US 10,910,081 B2

Sheet 8 of 9

Feb. 2, 2021

U.S. Patent

. . L. T e [e S S e g T e e
. L. . . . % ok L L O el g . . L
. PR P T . e e e e T

.. . t' . .. NI i M, MR N M
. - d Jp dp dp Jp Jr & Jp O Jdp N)
e e S ..._........“.....4.._........__._..r.r.........._.....r.............___....___.___ e

e e e 1 oam dr M dp kA S de Jr dp dp o i O O O B

unt of writes

e a
"yat
..r......_..
rXa '
xdo r
sk ko r
r ¥ r .
CR N
T
.__...r....n.
e o koA '
1..r.........r||..
n i dr b oa
..1.1.....................1................1. et
P r o r rrrak i ki hoa raa
rmoaoaorra o1 kiradd ko ar o
rrrrororoa o1 omdr bk hor ndr h
! ..r.........._.r.t............._......._.._.. ST
' .1....1..-.......1._1._1.........__. r

P R A A
N ot
ST . i apde de b dp e dpdp e om .
N L O o I L L T
e m T e e e e e dr dr ip i W dr A .
et T T e T e e e T e
R e o P e
s e . ol FO I - -
e N
P R e S R W M M R
Lt .1n.r.....-......r.....r.r.r.r.r....r...............}.......l.....-.}..-..-.l.f.-..-_...__.1.
2. el e XK e e

T e a i a
R N
RO k)

o
SR N PR R N AL N R RN

LN N)

e a a a

Bh bk i d ke ke b odd
[

e 1 .._...._“.rH....H....H.4”._..”.-_H...H...H...H...H...”...H...H...”#H.qu... X
B e e e e W e
Ll k)
W e
CaCal)
ok kR
e)
Ll)
Ll)
.
ST
L)
[

R AR
IO N aE k)
LN o el kol)
P A ke d
LRk E al kN
LA e e d
EEE N Nl
PR Nl k)
N A ksl
P Nl
RNl
B e el
B N
. &
F e e e e e
L R)
L Rt o N N
A e e e e
PRl al ok

. k.__.._._.q...._._.q...._.__-_.___.._....q.q...&
Taal 11.1”...1........4.___...4........4_-_...._._.4....44.-._-_ e
- ol &

e el e e

L N N N
R e e d e e e KA

dr ot dp dp de dp O dp b dr 0 0r & O or
.-...-.l..-..-..-.......r.r.r.r.._.._.r.r.r.r.._
-t

L
L

WA e .

)

»
Pl St

L

Wk e W A A A v

P Sy S ... I ..r.r.-.._.......r.r.r.r.r.r.r.r.r.r......_...............l....?.__i1.-.....-_.-..__.__. e T

L cE a ke ke ke W e . . e e e s S e-......................_..._.r.._.r.._.r.r.t.r.r.r.._....................-..-..-.l.

a1|.r...l.l.-.l.l. L L L. . . e e e e e Tt-1|-.r..1.r._1.r.r.r.__.r.._.._.._.r..1........-.l l..-..l-..1._1l..1-1.._1..... L S e PR Vet
P e e w e A . e R R N ar e . A R L . . (LB, ' e
e T . . . L. oot oL T LT .. a n.h.r.........__nq.1....._..r........r.r.r.r.-.-.r.r.._..._.r.-.-.__.._.....il. .-l_.-..-_.-..._.._.... L LT LT l.-_.-..-..-..-......-......._..._.........-..........-...n.q.1. T e e e T T T s e e e e e 'k ke ok drmaa A .
e LT T . I e R a a aa L N A N N N N N N N A N N N N N N X N A
. . T T T T B S S A e o S A iy a Ml g bk d b b N M aom omomom T T T T T T o o o S S T v v S Ao
L . S B R L . A . I RN N e . LTt AL A L AL L LN e e e ke e e e e e e e A e
T . S . . . ST ma e e kK S1||.........r.....r.._.._.._.__.r............l S T R A Il R R I .
A P N T T e N o S P P) a ar iy e e b e dr i b b e b
. A A N N T e . . G e e e A LN A e e W e W e e
R . . . T LT . R . . A R N X, e .

T S " ol S S T S Sl Sy
et e T T T e e
..............r...._..r..........____-_

T T T e e o e T
. Dl M L
B T S e S g e e S on S I

ﬁi -)1|.“.....H.rH.rH.rH.r.... .
PR 4 W k& N
Y . P .-n.”_....H.qu.r.r.r.._.r.r............ ._..”.4H....H#H&H#H#H&H#H#H&Hi“...“iu.q .._n“
T e e e NN MM NN M NN M MR
B N M N
e I N o o) L e N N
N N e e sl el sl W CaE el s a a al ala a al 3
B X b e e i i e W e iy i e e W R e e e b e
w e e T T T L A e ey
] R X A T MM] e I N M e M M AE PR ol
S e At e e e aa L N N P
N ol el ol sl) R
e e e e el i e L »
N N N e k) e e R R i i i .)
Vo e e e T el sl sl ol sl ol 3 U 2 *
B N kNN) R A R)
. o ol
. L P e Mo ML L MM MMM MMM N NN MR N M NN

e a a ie e ie de O N e
A
MR MR NN

WA R e

._...4.................-_.—.._.......

»
LI]

il
QB A e U e e e e e ”...H...H.-_”...H.q”..r
- a
e A T e et N) N ML AN
dr br b m = 2 b & U dr kg b b b Jpodr b & l.-..........-..-..i.-..._........
o
& i i k&
._._._..H.._......___.-_.-..q
i X
L
i X

e
oA -

“.4”.___.4.__..4.._ ool ialt .

.__..4

- a
b dr h b b oa A a2 N
S i Y

L RN I e e
o . .

S &
mﬂa‘:““‘jﬂ\m -

Block erase type

U.S. Patent Feb. 2, 2021 Sheet 9 of 9 US 10,910,081 B2

802 ‘% .

- INSTRUCTIONS |
326

e e e .y -

| STATIC MEMORY|

Testing
DIOCesses

ERE w
% %%E 200, 500, 600 %;

ENSTRUCT;ONS R LR RRRRER PR RRRERBERPEE PR 0%
826

festing T EE L E o e——————

| || processes | . DATA STORAGE SYSTEM
11 200, 500, 600 | | B | 218 ;

NETWORK
INTERFALE
DEVILE

Testing
rOCessaes

oY T

(C NETWORK) cosscsssssssmmmasmmmssssssssma—S :

. q‘_‘__m__...ﬂ-" : .
xxxxxxxxxxxxxxxx

US 10,910,081 B2

1

MANAGEMENT OF TEST RESOURCES TO
PERFORM RELIABILITY TESTING OF
MEMORY COMPONENTS

TECHNICAL FIELD

The present disclosure generally relates to a memory
sub-system, and more specifically, relates to testing of

memory components for memory sub-systems.

BACKGROUND

A memory sub-system can be a storage system, such as a
solid-state drive (SSD), or a hard disk drive (HDD). A
memory sub-system can be a memory module, such as a
dual in-line memory module (DIMM), a small outline
DIMM (SO-DIMM), or a non-volatile dual in-line memory
module (NVDIMM). A memory sub-system can include one
or more memory components that store data. The memory
components can be, for example, non-volatile memory com-
ponents and volatile memory components. In general, a host
system can utilize a memory sub-system to store data at the
memory components and to retrieve data from the memory
components.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various implementations of the disclo-
sure.

FI1G. 1 1llustrates an example environment to allocate test
resources to perform a test of memory components in
accordance with some embodiments of the present disclo-
sure.

FIG. 2 1s a flow diagram of an example method to allocate
test resources to perform a test of memory components in
accordance with some embodiments of the present disclo-
sure.

FIG. 3 illustrates an example interface associated with
configuring a test of memory components 1 accordance
with some embodiments of the present disclosure.

FI1G. 4 1llustrates an example testing platform to perform
testing ol memory components 1n accordance with some
embodiments of the present disclosure.

FIG. 5 1s a flow diagram of an example method to
replicate failed testing of memory components in accor-
dance with some embodiments.

FIG. 6 15 a flow diagram of an example method to expand
test samples 1n a usage space associated with memory
component testing.

FIGS. 7TA-7C are example representations generated in
the execution of multi-dimensional usage space testing of
memory components in accordance with some embodi-
ments.

FIG. 8 1s a block diagram of an example computer system
in which implementations of the present disclosure can
operate.

DETAILED DESCRIPTION

Aspects of the present disclosure are directed to multi-
dimensional usage space testing of memory components. A
memory sub-system 1s also hereinafter referred to as a
“memory device.” An example ol a memory sub-system 1s
a storage device that 1s coupled to a central processing unit
(CPU) via a peripheral interconnect (e.g., an input/output

10

15

20

25

30

35

40

45

50

55

60

65

2

bus, a storage area network). Examples of storage devices
include a solid-state drive (SSD), a flash drive, a umiversal
serial bus (USB) flash drive, and a hard disk drive (HDD).
Another example of a memory sub-system 1s a memory
module that 1s coupled to the CPU wvia a memory bus.
Examples of memory modules include a dual 1n-line
memory module (DIMM), a small outline DIMM (SO-
DIMM), a non-volatile dual 1in-line memory module
(NVDIMM), etc. In some embodiments, the memory sub-
system can be a hybrid memory/storage sub-system. In
general, a host system can utilize a memory sub-system that
includes one or more memory components. The host system
can provide data to be stored at the memory sub-system and
can request data to be retrieved from the memory sub-
system.

The memory components that are used 1 a memory
sub-system can be tested before being utilized in the
memory sub-system. In a conventional test process, the
memory components can be placed into a chamber (1.e., an
oven) that tests the memory components under various
conditions (e.g., temperature conditions). For example, a
single chamber can be used to test multiple memory com-
ponents at a single time at a particular temperature. The test
process can instruct various operations to be performed at
the memory components at the particular temperature. Such
operations can include, but are not limited to, read opera-
tions, write operations, erase operations, rapid raw bit error
rate measurements, conditional threshold voltage (Vt) dis-
tribution collection, thermal loop control, asynchronous
power loss control, Open NAND Flash Interface (ONFI)
testing, etc. The performance and behavior of the memory
components can be observed while the test process 1is
performed. For example, performance characteristics (e.g.,
read or write latencies) and reliability of data stored at the
memory components can be measured and recorded during
the test process. However, since the chamber can only apply
a limited set of test conditions (e.g., a single temperature) to
the memory components at any particular time, the testing of
the memory components at many different test conditions
(e.g., different temperatures) requires a large amount of time
as the test process will need to be performed for each of the
one or more desired test conditions. Additionally, the cham-
ber can only perform a single test process at a time. As such,
performing multiple different tests of the memory compo-
nents at different operating conditions (e.g., different tem-
peratures) can utilize a large amount of time i1 many
different conditions of the test process for the memory
components are desired.

Aspects of the present disclosure address the above and
other deficiencies by allocating test components to perform
a test process. A distributed test platform can include mul-
tiple test resources. Each test component (e.g., a test
resource) can be a test socket that includes a memory
component. A test socket can further include a temperature
control component that 1s used to apply a particular tem-
perature condition to the memory component that 1s
included 1n the test socket. The test platform can further
include multiple test boards that each includes one or more
ol the test sockets to enable the execution of a test under a
variety of conditions using multiple geographically dis-
persed test resource locations. The test boards can be orga-
nized into groups or racks and multiple racks can be at a
particular location or site. As such, multiple sites can include
racks of test boards that include multiple test components
(e.g., test sockets and memory components). The racks of
the test platform can be coupled over a network to a
centralized resource allocator (e.g., one or more servers or

US 10,910,081 B2

3

other such computing devices) that 1s used to control,
manage, and facilitate the performance of tests at the various
test components of the test platform across the different test
boards, test racks, and sites or locations.

The test components or test resources of the test platform
can be used to perform multiple different test processes at
the same time on the test platform. For example, a first
subset of the test sockets can be used to perform a first test
while a second subset of the test sockets of the test platform
can be used to concurrently perform a second test. As such,
the resource allocator can allocate or assign the test sockets
to be used 1n a new test of memory components 1n view of
filter information. In some embodiments, the filter informa-
tion can include one or more elements of characteristics
information and usage information. Example characteristics
information can include one or more of a product type, probe
revision, class revision, version information (i.e., designs or
manufacturing revisions) of the memory components, etc.
Example usage information associated with the desired test
components can iclude a minimum block cycle count, a
maximum block cycle count, a number or range of desired
blocks, etc.

The new test can specily particular characteristics or types
of memory components that are to be used 1n the test as well
as a particular temperature that the temperature control
components are to apply to memory components at the test
sockets. Such characteristics can include, but are not limited
to, types (e.g., design version) of memory components and
usage characteristics of memory components. The resource
allocator can then assign available test sockets of the test
platform to the new test based on the characteristics speci-
fied by the new test as well as additional information of the
test platform. For example, the available test sockets can
turther be assigned based on locations of the test sockets
across various test racks or sites of the test platform and the
temperature control components can be used to apply the
temperatures specified by the test. Thus, the test platform
can be a distributed set of test sockets across different
locations or sites. Diflerent groups of test sockets of the test
platform can be assigned to different tests based on particu-
lar characteristics of test sockets specified by the different
tests. In some embodiments, the test components or test
resources of the test platform can be used to perform the
same test processes at the same time under diflerent testing
conditions.

In an embodiment, the one or more test processes can
identify one or more failures including a failure in the
operation ol a memory component (e.g., an 1ssue with the
operation of the memory component), a failure in the
operation of a memory component that causes a correspond-
ing software layer to respond to the occurrence of the failure
(e.g., throw an exception), a failure (e.g., an exception)
generated by the test program due to the operation of a
memory component, or a software, hardware, or firmware
bug or error in the test process itsell.

Advantages of the present disclosure include, but are not
limited to, a decrease in the amount of time that the test
platiorm 1s utilized to perform tests of the memory compo-
nents. Furthermore, many different tests can be performed at
multiple distributed testing resources to test many diflerent
conditions (e.g., different temperatures). In addition, many
different sequences of operations can be performed using the
distributed system to enable more robust testing and
improved reliability and performance of the memory com-
ponents. As such, since many different tests of the memory
components can be performed more quickly, the reliability
of the memory components can also be increased as any

10

15

20

25

30

35

40

45

50

55

60

65

4

potential defects or flaws can be identified and later
addressed 1n the design or manufacturing of the memory
components that are to be included 1n a memory sub-system.

FIG. 1 illustrates an example environment to allocate test
resources to perform a test of memory components in
accordance with some embodiments of the present disclo-
sure. A test resource 100 can include one or more racks
110A, 110B, and 110N. Each of the racks 110A, 110B, and
110N can include multiple test boards 120 where each test
board 120 includes one or more test sockets (i.e., test
resources). The test resource 100 can include any number of
racks or test sockets.

As shown, a test board 120 can include one or more test
sockets. For example, a test board 120 can include a first test
socket 121, a second test socket 122, and a third test socket
123. Although three test sockets are shown, a test board 120
can mclude any number of test sockets. Each test socket can
include a memory component that has been embedded
within the respective test socket. Additionally, each test
socket can 1nclude a temperature control component that 1s
used to apply a temperature condition to the embedded
memory component. In some embodiments, the temperature
control component can be a dual Peltier device (e.g., two
Peltier devices) that utilize a Peltier effect to apply a heating
or cooling eflfect at a surface of the dual Peltier device that
1s coupled to the embedded memory component. In the same
or alternative embodiments, the temperature control com-
ponent can be placed on top of the memory component in the
respective test socket.

As shown, each test rack 110A, 110B, and 110N can
include multiple test boards 120. Each of the test boards 120
of a particular test rack can be coupled with a local test
component. For example, each test rack 110A, 110B, and
110N can respectively include a local test component 111A,
111B, and 111N. Each of the local test components 111A,
111B, and 111N can receive instructions to perform a test or
a portion of a test that 1s to be performed at the test sockets
of the respective test rack. For example, a resource allocator
component 130 can receive (e.g., from a user) conditions of
the test that 1s to be performed and the resource allocator
component 130 can determine particular test sockets across
the diflerent test boards 120 at one or more of the test racks
110A, 110B, and 110N that can be used by the test. In some
embodiments, the resource allocator component 130 can be
provided by a server 131. In some embodiments, the server
131 1s a computing device or system that 1s coupled with the
local test components 111 A, 111B, and 111N over a network.

The temperate control component of each test socket 121,
122, and 123 of each test board 120 can be used to apply a
different temperature condition to the respective embedded
memory component. Furthermore, each test socket 121, 122,
and 123 can be used to perform different operations at the
embedded memory component.

The resource allocator component 130 can receive a test
input from a user. In some embodiments, the test input (or
test request) can be received from the user via an interface,
such as example interface 300 shown 1n FIG. 3. The test
input can specily conditions of the test (also referred to as
“test conditions”) that 1s to be performed with one or more
memory components. For example, the test can specily
particular temperature conditions that are to be applied to
memory components and a sequence ol operations that are
to be performed at memory components under particular
conditions. The resource allocator 130 can retrieve a data
structure that 1dentifies available test sockets across the test
plattorm 100 as well as characteristics of the available test
sockets. Subsequently, the resource allocator component

US 10,910,081 B2

S

130 can assign test sockets at the test platform 100 that
include embedded memory components that match or satisty
the conditions of the test. In some embodiments, the
resource allocator component 130 can identily the test
sockets matching the test conditions by analyzing charac-
teristics information and usage information associated with
the available test sockets. In an embodiment, characteristics
information about each test socket of arack (e.g., rack 110A,
110B, 110N of FIG. 1) can be stored i one or more
databases (referred to as a “characteristic database™). In an
embodiment, usage information about each test socket of a
rack can be stored in one or more databases (referred to as
a “usage database™). The resource allocator component 130
can then transmit instructions to local test components of
test racks that include test sockets that are identified for use
in the test based on the associated characteristic and usage
information. Further details with respect to the resource
allocator component 130 are described below.

FI1G. 2 1llustrates an example method 200 to allocate test
resources to perform a test of memory components in
accordance with some embodiments of the present disclo-
sure. The method 200 can be performed by processing logic
that can 1include hardware (e.g., processing device, circuitry,
dedicated logic, programmable logic, microcode, hardware
of a device, integrated circuit, etc.), software (e.g., mstruc-
tions run or executed on a processing device), or a combi-
nation thereof. In some embodiments, the method 200 1s
performed by the resource allocator component 130 of FIG.
1. Although shown 1n a particular sequence or order, unless
otherwise specified, the order of the processes can be
modified. Thus, the 1illustrated embodiments should be
understood only as examples, and the 1llustrated processes
can be performed 1n a diflerent order, and some processes
can be performed in parallel. Additionally, one or more
processes can be omitted 1n various embodiments. Thus, not
all processes are required 1 every embodiment. Other
process flows are possible.

As shown, at operation 210, the processing logic receives
a request to perform a test of one or more memory compo-
nents. For example, a user can provide a request to run a test
of memory components by a test platform. The test can
specily operations that are to be performed with the memory
components. Such operations can include, but are not lim-
ited to, read operations, write operations, and erase opera-
tions. In some embodiments, the test specifies a sequence of
multiple operations. As such, a user can provide information
that specifies conditions at which a test of memory compo-
nents 1s to be performed at a test platform.

The test can specily operating or test conditions at which
the operations are to be performed at particular memory
components. The test conditions can be a temperature con-
dition of the memory component when the operations are
performed at the memory component. In some embodi-
ments, the test request can specily test conditions or can be
used to i1dentify test conditions that correspond to desired
characteristics (e.g., component type) and usage (e.g., his-
torical usage data) of the memory components that are to be
allocated and used for the test, as described below.

At operation 220, the processing logic determines filter
information (e.g., one or more elements of characteristics
information and usage information) associated with memory
components to be allocated for the test. In some embodi-
ments, the test conditions can be used as the filter informa-
tion to a filter and identily memory components having
corresponding characteristics information and/or usage
information. In some embodiments, each testing platform
(e.g., rack of boards) can be associated with one or more

10

15

20

25

30

35

40

45

50

55

60

65

6

databases configured to store characteristics information
relating to the multiple associated test components (e.g.,
characteristics databases 416-1 and 416-N of FIG. 4).

In some embodiments, the usage information of the
memory components can include, but are not limited to, a
number of operations that have been performed by the
memory components. For example, the test conditions can
be used to identily desired usage information corresponding
to memory components that have had more or less of a
particular number of program-erase operations or cycles and
a particular number of read operations. In some embodi-
ments, the desired usage information can include the prior
temperature conditions that have been applied to the
memory component. For example, the usage information
can include prior temperatures at which operations have
been performed at the memory component for prior tests can
be specified (1.e., a temperature profile of the memory
component).

The test request can specily test conditions of the test or
can be used to identify test conditions that correspond to
desired filter information (e.g., test components that match
the criteria associated with the identified characteristics
information and usage imnformation) of the memory compo-
nents that are to be used 1n the test. In some embodiments,
the available test sockets can be test sockets that are not
being used by another test and that match the desired
characteristics and/or usage information for memory com-
ponents that are specified by the test. Thus, a first subset of
test sockets (1.e., test resources) of the test platform can be
available test sockets that match the conditions specified by
the test and a second subset of test sockets can be test sockets
that are not available and/or do not match the conditions
specified by the test. Further details with respect to matching
the desired characteristics are described 1n conjunction with
FIG. 3.

At operation 230, the processing logic reserves one or
more test sockets 1n view of the identified characteristics
information and usage information associated with the test.
In some embodiments, the processing logic determines
available test sockets of one or more test platforms (e.g.,
racks). For example, test sockets at test boards of a test
platform that are not currently being used to perform another
test or operation and are not scheduled to be used to perform
another test can be 1dentified as available. For example, the
test platform can include a number of test sockets and a
subset of the test sockets can be currently used by another
test of memory components while a second subset of the test
sockets are not currently being used by another test of
memory components. Thus, the second subset of the test
sockets can be considered to be available test sockets. In
some embodiments, the test can specily a period of time for
which the test 1s to be completed. An available test socket in
such a case can be a test socket that can be utilized for the
test within the period of time. As such, if a particular test
socket 1s currently being used by a test and will be scheduled
to be free or available afterwards and the test can perform
operations at the particular test socket within the specified
period of time, then the particular test socket can be con-
sidered an available test socket.

The processing logic can 1dentify a set of one or more test
sockets that are available and match the characteristics
information and usage information associated with the test.
In some embodiments, the processing logic filters the avail-
able test resources (e.g., the available boards or available test
sockets) 1n view of the characteristics information and usage
information. For example, each rack at each location can
maintain a local usage database (e.g., usage database 414-1

US 10,910,081 B2

7

and 414-N of FIG. 4) and local characteristics database (e.g.,
characteristics database 416-1 and 416-N of FIG. 4) to store
the usage and characteristics information about the respec-
tive test resources lfor use in filtering the available test
resources 1n light of the test conditions associated with the
test.

At operation 240, the processing logic configures and
performs the test with one or more memory components at
the available test sockets reserved based on the character-
istics information and usage mformation of the one or more
memory components. For example, the test can be per-
formed at test sockets that are not currently being used by
another test and that have characteristics that match the
desired characteristics specified by the test. The test can be
performed at different test sockets that are included in
different test racks across the test platform. The performance
of the test can apply diflerent temperature conditions at
different test sockets while different or the same sequences
ol operations are being performed at the test sockets. For
example, a first socket can run a sequence of operations at
a first temperature and a second test socket can run the same
sequence of operations at a different second temperature. In
some embodiments, the first test socket can run a first
sequence of operations at a temperature and the second test
socket can run a different second sequence of operations at
the same temperature. In the same or alternative embodi-
ments, the temperature condition applied to a particular test
socket can vary during the performance of the sequence of
operations.

In some embodiments, to configure the test for execution,
the processing logic creates a list of one or more source code
dependencies associated with the test. In some embodi-
ments, the processing logic identifies one or more f{ile
locations associated with the source code dependencies
(e.g., a corresponding folder or a uniform resource locator
(URL) associated with a code repository). In some embodi-
ments, the processing logic 1dentifies one or more command
lines (i.e., run properties) to be run 1n connection with the
code associated with the test. In some embodiments, the
processing logic can identily a relative folder location from
which to run the one or more command lines. In some
embodiments, the processing logic can i1dentify a relative
folder location where an output associated with the test
(herein the “test results output™) 1s generated.

According to some embodiments, the method 200 can be
requested, mitiated, and managed using a user interface
communicatively coupled to the resource allocator 130 of
FIG. 1. In some embodiments, a user can create the test
request (e.g., a request 1n accordance with operation 210 of
FIG. 2) by providing information to be used 1n accordance
with the operations of FIG. 2.

FIG. 3 1llustrates an example iterface 300 configured to
collect various mformation from a user in connection with a
test request. For example, after multiple memory component
boards are identified and reserved in connection with the
test, the interface 300 (e.g., a web-based interface such as
web interface 422 of FIG. 4) allows for the test to be started
by 1dentitying a location of the source code (e.g., locally in
a folder or 1n a code repository) and the command line to run
it. In some embodiments, one or more additional parameters
can be 1dentified 1n connection with execution of the test,
such as, for example, a relative location of the folder where
the main function resides, a command line to run the main
function, and a relative output folder location.

In some embodiments, the interface 300 can provide a
filter for identifying characteristic information associated
with desired test components, such as, for example, product

10

15

20

25

30

35

40

45

50

55

60

65

8

type, probe revision, and class revision. The interface 300
can also provide a filter for 1dentifying usage information
associated with the desired test components, such as, for
example, a minimum block cycle count, a maximum block
cycle count, a number or range of desired blocks, efc.

In some embodiments, the interface 300 can also be
employed to enable a user to configure and 1nitiate a test by
identifying a location of the source code and a command line
to run 1t. As shown 1n FIG. 3, additional parameters asso-
ciated with the test can be identified, such as, for example,
a location of a folder where the main function resides (e.g.,
a run folder), a command line to run the main function, and
a relative output folder location.

In some embodiments, the interface 300 of a client device
(e.g., client 420 of FIG. 4) communicates with a resource
allocator (e.g., resource allocator 130 of FIG. 4) to copy the
code to a workstation of one or more racks (e.g., Rack A
110A, Rack B 110B, Rack C 110C, and Rack N 110N of
FIG. 4) for running the code (1.e., executing the test). In
some embodiments, execution of the 1dentified code for the
test results 1n the performance of one or more test processes
(e.g., process 1, process 2, process N, process X, process Y,
and process Z of FIG. 4). As the test completes (e.g., either
from a successiul completion or a failure), the results are
copied to a network drive from where the test results can be
collected. In some embodiments, the test resources reserved
and used in connection with the completed test can be
released following completion of the test. In some embodi-
ments, as the test result data 1s collected, the processing logic
can store the data to a folder (e.g., the *“/client_output_name”
tolder identified 1n the “Find data at:” field of mterface 300
of FIG. 3) or other storage location accessible by the user.

In some embodiments, during the test process, the client
device can be unaware of the locations of the physical test
components (e.g., the physical boards, sockets, or memory
components). In some embodiments, the code associated
with the test runs on one or more geographically dispersed
workstations (e.g., Linux workstations) associated with the
boards including the reserved test components. In some
embodiments, the resource allocator can optimize the selec-
tion of locations of the test components to manage (e.g.,
reduce) data transfer time performance.

FIG. 4 illustrates an example environment including a
management module 480 communicatively connected to
client 420 requesting performance of a test, according to
embodiments of present disclosure. In some embodiments,
the management module 480 coordinates with a resource
allocator 130 to perform a test using test components (e.g.,
test components 411-A and 411-N) physically located in one
or more geographically dispersed component racks (e.g.,
Rack A 110A, Rack B 110B, Rack C, 110C). As described
above with respect to method 200, a client 420 can submiut
a test request to the resource allocator 130 via a web
interface 422 of client 420. The resource allocator 130
identifies and reserves test components for execution of the
test processes. In some embodiments, the reserved test
components 411 can be located 1n geographically dispersed
racks 110. For example, the requested test can include the
performance of a set of test processes including Process 1,
Process 2 . . . Process N and Process X, Process Y . .. and
Process Z. In the example shown in FIG. 4, the resource
allocator 130 can identily test components 411-A of Rack A
110A for execution of Process 1, Process 2 . . . Process N.
Furthermore, the resource allocator 130 can identily test
components 411-N of Rack N 110N for execution of Process
X, Process Y . . . Process 7. In this example, Rack A 110A

and Rack N 110N are in different geographic locations. In

US 10,910,081 B2

9

some embodiments, the resource allocator 130 can analyze
usage information stored in a usage database 440 and
characteristics 1nformation stored in a communicatively
connected characteristics database 450 to 1dentify the one or
more test components satisfying test conditions associated
with the requested test. In some embodiments,

In some embodiments, the resource allocator 130 com-
municates with a resource program (€.g., resource program
412-A, 412-N), such as a daemon program, to communicate
information (e.g., identitying source code, command lines,
etc.) associated with the requested test. As shown 1n FIG. 4,
cach resource program of each rack workstation can be
associated with a usage database (e.g., usage database 414-
A, 414-N) and a characteristics database (e.g., characteris-
tics database 416-A, 416-N) for storing usage and charac-
teristic information associated with the test components
411-A, 411-N of the local rack. For example, usage database
414-A stores the usage information associated with test
components 411-A of Rack A 110A and characteristics
database 416-A stores the characteristics information asso-
ciated with test components 411-A of Rack A 110A.

The test information (e.g., the test instructions) recerved
by the resource program 412-A, 412-N are provided to a
local test manager 410-A, 410-N to facilitate the execution
of the one or more test processes (e.g., Process 1, Process
2 . .. Process N for Rack A 110A) by the identified and
reserved test components 411A, 411N. In an embodiment,
the test components 411 can include one or more sockets
including one or more memory components, as shown 1n
FIG. 1. For example, the resource allocator 130 can execute
operations 1n accordance with method 200 of FIG. 2 to
coordinate the performance of a test using the various
multiple test components 411 A, 411N of the multiple geo-
graphically dispersed racks 110A, 1108, 110C . . . 110N.

In some embodiments, the management module 480 1s
communicatively connected to the client 420 and configured
to execute a container process 482 to manage performance
of one or more test processes by multiple racks (also referred
to as a rack cluster). The management module 480 can be
employed to enable feedback communications from each of
the individual test processes (e.g. Process 1, Process 2 . . .
Process N, Process X, Process Y . . . Process 7). In some
embodiments, execution ol the container process 482
enables communication between the management module
480 and the client 420 via a client API (e.g., a Python API)
to coordinate the reservation of test components by the
resource allocator 130 based on filters (e.g., usage and
characteristics filters), as described i1n detail below with
reference to FI1G. 5. In some embodiments, the management
module 480 establishes the feedback communication link
with the individual test processes by providing each of the
test processes with unique connection information (e.g., 1P
Address 1, IP Address 2, IP Address 3, IP Address X, IP
Address Y, and IP Address 7). In some embodiments, the
unique connection mformation (e.g. a unique IP address or
other such network identification mnformation) 1s provided to
cach of the individual processes to allow each individual
process to communicate directly with the management mod-
ule 480. For example, a first test process (e.g., Process 1
executing on Rack A 110A) can receive the connection
information assigned by the master module 480 and estab-
lish a connection to provide feedback information to the
master module 480. For example, the feedback information
can 1nclude results of the corresponding test process, con-
ditions associated with the test (e.g., temperature conditions,
characteristics information, usage information, etc.), and a
listing of the one or more events or operations performed by

10

15

20

25

30

35

40

45

50

55

60

65

10

the test process (e.g., events or operations that were per-
formed prior to and/or including a failure associated with the
operation of the memory component (e.g., an actual opera-
tional error or an anomaly caused by noise or some other
factor), or failure associated with the test process (e.g., a part
or portion of the test process failed indicating a performance
issue). In some embodiments, the management module 480
can collect feedback information from multiple different
processes via respective unique connections and store the
teedback information 1n a test management database 484.

FIG. 5 15 a tlow diagram of an example method 500 (also
referred to as a “container process™) to collect feedback
information from multiple test processes executing a test
associated with multiple distributed test components (e.g.,
test sockets including one or more memory components) and
replicate a failed test process to 1dentily a failure as either an
error (e.g., an operational error associated with one or more
memory components) or an anomaly (e.g., a failure that 1s
due to noise). In some embodiments, having identified a
tailure with respect to a test process associated with one or
more memory components (1.¢., first memory components),
the processing logic may replicate the failed test process on
one or more different memory components (also referred to
as “replication components™). In some embodiments, the
processing logic re-creates the conditions of the test process
that failed using the feedback information recerved from the
failed test process. In some embodiments, 1n the event the
replication of the test process produces a failure with respect
to the one or more replication components (1.e., memory
components having the same characteristic and usage infor-
mation of the first memory component(s)), the processing
logic 1dentifies the failure associated with the first memory
components as an actual error (e.g., a verified or confirmed
error relating to the operation of a memory component). In
the event the replication of the failed test process produces
successiul results (1.e., no failure 1s detected), the processing
logic 1dentifies the failure associated with the first memory
components as an anomaly (e.g., due to noise). The method
500 can be performed by processing logic that can include
hardware (e.g., processing device, circuitry, dedicated logic,
programmable logic, microcode, hardware of a device, inte-
grated circuit, etc.), software (e.g., instructions run or
executed on a processing device), or a combination thereof.
In some embodiments, the method 500 1s performed at least
in part by the management module 480 of FIG. 4. Although
shown 1n a particular sequence or order, unless otherwise
specified, the order of the processes can be modified. Thus,
the 1llustrated embodiments should be understood only as
examples, and the 1llustrated processes can be performed 1n
a different order, and some processes can be performed 1n
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process tlows are possible.

As shown, at operation 510, the processing logic of the
management module 480 (e.g., the processing logic of the
container process 482) reserves one or more test components
in view of filter information associated with a test. In some
embodiments, the management module 480 communicates
with a resource allocator 130 of FIG. 4 via an API (e.g.,
client API 424 of client 420) to identify the test and
corresponding filter information (e.g., characteristics infor-
mation and usage information). (e.g., resource allocator
receives an indication to perform a test with memory com-
ponents.

At operation 520, the processing logic generates test
execution mformation defining one or more test processes of
the test. In some embodiments, the test execution informa-

US 10,910,081 B2

11

tion 1ncludes, but 1s not limited to, a list of code dependen-
cies associated with the test, the run properties for each
board corresponding to each of the reserved test compo-
nents, and unmique connection iformation (e.g., a unique IP
address) for each of the individual test processes associated
with the test. In an example, the connection information can
be provided by the management module as a run type input
in a corresponding command line. In some embodiments,
the management module communicates the text execution
information including a list of each reserved hostname (e.g.,
rack workstation) and the command line for each host to the
client (e.g., client 420 of FIG. 4). The client can then use the
test execution information to trigger or initiate the one or
more test processes on the reserved boards and correspond-
ing test components.

At operation 530, the processing logic receives feedback
information from each of the multiple test processes via the
corresponding connection established using the connection
information provided for each of the test processes. For
example, the feedback information may mclude a number of
program and erase cycles a failing memory component has
received, a temperature at a time when a failure of the
memory component occurred, one or more temperatures
when data was written on the memory component, a state of
a memory component (e.g., suspended), a time from a last
memory operation, a state of a memory block (e.g., partially
or fully programmed), efc.

In some embodiments, the feedback information and can
include information associated with the corresponding test
process, such as, information identifying a failure (e.g., an
anomaly or error) associated with the test process executed
On one or more memory components, a listing of the one or
more events occurring in connection with a test process
failure, associated characteristic information and usage
information of the one or more memory components, and a
set of conditions associated with the execution of the test
process. Example conditions associated with testing can
include temperature conditions of the one or more memory
components being tested, the temperature as a function of
time (e.g., the temperature at every second of the testing),
Vcce values, i1dentification of instances of suspension and
resumption, etc. The management module can collect and
aggregate the feedback information received from the mul-
tiple test processes and store the collected feedback infor-
mation 1n one or more databases (e.g., test management
database 484 of FIG. 4). In some embodiments, the test
process can 1dentified the occurrence of an error and gen-
crate a list of events that caused or led up to the error. The
test process can set a flag to indicate the error and store the
flag and the list of events 1n a file that 1s provided 1n the form
of the feedback information via the unique IP address to the
management module.

At operation 540, the processing logic determines a
tailure of a first test process and the corresponding first test
information. In some embodiments, 1n view of the feedback
information, the processing logic determines a failure of a
test process and information associated with the test process
(c.g., the test information). For example, the management
module can review first feedback information received from
Process 1 executed on test components 411-A of Rack A
110-A of FIG. 4. The management module can determine
that Process 1 failed during execution. The management
module can further identity the feedback information includ-
ing first test information associated with Process 1 received
via IP Address 1. In some embodiments, the first test
information can include one or more of an i1dentification of
the command line information associated with Process 1, the

10

15

20

25

30

35

40

45

50

55

60

65

12

associated characteristic information, the associated usage
information, a listing of the one or more events or operations
executed 1n connection with Process 1, a set of one or more
conditions associated with the execution of Process 1, and
any other information associated the execution of Process 1.

At operation 550, the management module can replicate
execution of the first process on one or more replication test
components. The replication test component can be a
selected test component that matches a test component used
during the failed test process. For example, the replication
test component can have characteristic and usage informa-
tion that matches the test component of the failed test
process. The management module can replicate the first test
process using the same or substantially similar test condi-
tions as used during the identified failed execution of the test
process. In this regard, the management module can repli-
cate all of the vaniables (e.g., test conditions, test parameters,
component parameters, etc.) to execute the failed test pro-
cess 1n a controlled and momtored environment to 1dentity
a cause or source of the failure. In some embodiments, the
replication test component can be located on a different
board of the same rack or a different rack that 1s in a different
location. In some embodiments, the management module
can employ one or more boards that are dedicated to serve
as the replication test components. The set of events 1den-
tified 1n the feedback information can be used for replication
of the error using the dedicated replication testing boards.

Advantageously, failures associated with one or more of
the distributed test processes can be identified using the
feedback information returned by the respective test pro-
cesses via the direct connection established with the man-
agement module. The management module can replicate or
recreate the particular test conditions associated with the
failed test process to determine 11 the failed test process was
an anomaly (e.g., due to noise) or an error requiring a
remedy. In some embodiments, in the event the replication
of the failed test process produces a failure with respect to
the one or more replication component, the processing logic
can identify the failure associated with the first memory
component (e.g., the one or more memory components
involved 1n the first failed test process) as an actual error
associated with the memory component. In the event the
replication of the failed test process produces successiul
results (1.e., no failure 1s detected), the processing logic
identifies the failure associated with the first memory com-
ponents as an anomaly (e.g., the imtial failure 1s due to
noise), and not an error or malfunction of the first memory
component. In some embodiments, the management module
can 1dentily the failed process 1s due to an error and can
identily a source or reason for the error. In some embodi-
ments, the management module can coordinate the release of
the testing components upon completion of the testing.

As noted above, conventional quality and reliability test-
ing of memory components 1s limited to testing a limited
number of usage parameters (e.g., intrinsic charge loss
(ICL), read disturb loss, program disturb loss, etc.) at a
single chamber under a single set of conditions (e.g., tem-
perature conditions). As detailled above, aspects of the
present disclosure address these deficiencies by employing a
distributed test platform configured to allocate multiple test
components to perform tests and collect feedback informa-
tion covering a wider set of conditions 1n usage space
assoclated with a memory component, thereby reducing
gaps 1n conventional qualifications testing.

In some embodiments, the testing platform of the present
disclosure can execute tests of the usage space associated
with memory components including test operations (e.g.,

e

US 10,910,081 B2

13

erase, program, and read operations) to generate multiple
different test samples using multiple different testing dimen-
sions ol the usage parameters.

The testing methodology provides for multi-dimensional
usage space testing to cause forcing normally low probabil-
ity events to occur at a higher frequency. The testing
methodology applies analysis techniques to handle a vast
amount of testing data. Advantageously, the test platiorm
generates a diverse set of usage conditions for testing a
memory component.

In some embodiments, the test platform identifies and

extracts failures that can occur 1n the memory components
that are observable during a write or a read operation. For
example, a write failure can be identified as a failed status
or abnormal deviation in program time. In another example,
a read failure can be identified as a margin loss, an unex-
pectedly high error rate, or as unrecoverable data. The test
platform can further identily a boundary or limit of the usage
space where the memory component remains operational.
For example, the test platiorm can determine whether the
memory component 1s operational at a multi-dimensional
usage space, such as, at the following combination of usage
conditions: at half the total cycles, at full cross temperature
and at half the maximum allowed reads. It 1s noted that any
suitable combination of conditions of the usage space can be
combined to generate a multi-dimensional space (e.g., a set
ol usage conditions) for testing the memory component. In
some embodiments, the test platform can develop a model to
predict an optimal media management recovery flow for a
given set of usage conditions.
In some embodiments, the testing system utilizes multiple
different sockets to be used 1n the multiple different tests of
the usage space of the associated memory components. As
described 1n detail with respect to FIGS. 1-5, the testing
system employs connections to the multiple test processes of
the multiple tests to collect test results, 1dentity failures, and
determine the occurrence of errors. In an embodiment,
dimensions of a usage space associated with a memory
component can be 1dentified and classified as vectors, path
variables, or a media management property. In an embodi-
ment, a vector can represent a property that describes an end
state or a constant usage for a sample, such as, for example,
a total writes during a life of a memory component, a
retention bake at an end of life of a memory component, etc.
In some embodiments, usage parameters that can be defined
as path varniables include properties or conditions that con-
tinuously change during the operation of the memory com-
ponent. In an embodiment, a path variable can be a property
that changes during a life of a memory component. In an
embodiment, a media management property can be a prop-
erty that represents or describes how data 1s read or recov-
ered from a test sample (e.g., default read, read entry, auto
read cal, soft read, cRLC, efc.)

In some embodiments, the multiple different tests are
associated with a common goal or target vector associated
with a usage parameter (e.g., a number of writes) of a
memory component. For example, 100 memory components
can be tested to generate test samples 1n view of the defined
goal (or target vector) of performing 10,000 write operations
(1.e., the usage parameter). The steps and conditions (1.e.,
path varniables) associated with each of the test samples used
to reach the 10,000 write operations can be different. In
some embodiments, the different testing conditions (1.€., set
ol path variables) are applied for each of the respective tests
to generate a distributed sampling of the test samples
corresponding to the target vector.

[l

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 6 1s a flow diagram of an example method 600 (also
referred to as a “container process”) to expand test samples
1n a usage space associated with memory component testing
and reduce testing gaps. The method 600 can be performed
by processing logic that can include hardware (e.g., pro-
cessing device, circuitry, dedicated logic, programmable
logic, microcode, hardware of a device, itegrated circuat,
etc.), software (e.g., instructions run or executed on a
processing device), or a combination thereof. In some
embodiments, the method 600 1s performed at least 1n part
by the management module 480 of FIG. 4. Although shown
in a particular sequence or order, unless otherwise specified,
the order of the processes can be modified. Thus, the
illustrated embodiments should be understood only as
examples, and the 1llustrated processes can be performed 1n
a different order, and some processes can be performed 1n
parallel. Additionally, one or more processes can be omitted
in various embodiments. Thus, not all processes are required
in every embodiment. Other process tlows are possible.

In operation 610, the processing logic generates a target
vector (e.g., a vector representation) for a usage parameter
corresponding to a test of a memory component. In some
embodiments, one or more first usage parameters of the
usage space of the memory component can be established as
the target vector. In some embodiments, the target vector
represents an end goal or result that the test 1s configured to
test for or reach. For example, the test may be configured to
have 100 memory components pertorm 10,000 write opera-
tions. In this example, the target vector represents the end
point for each memory component used in the test.

Example usage parameters that can be represented as the
target vector mclude a count of writes, a count of reads, a
block type, a partial program rate, an interrupt type, a time
between writes, a time between reads, a block erase type, a
read page fraction, an interrupt rate, a time between writes
and reads, a block type rate, and an interrupt time. In some
embodiments, the target vector 1s defined as a property that
describes the end state or a constant usage for a test sample.

In operation 620, the processing logic assigns a test
sample to the target vector. In some embodiments, a test
sample refers to one or more memory blocks of a memory
component that experience a same set of test conditions
during their lifetime. In some embodiments, the processing
logic assigned each test sample of a set of multiple test
samples to the target vector. In some embodiments, the
resource allocator 130 of FIG. 1 and FIG. 4 can coordinate
the assignment or allocation of the test samples to the
various memory components with the corresponding target
vector information.

In operation 630, the processing logic generates a set of
path variables to associate with the test sample. In some
embodiments, the set of path variables 1s randomly selected
by the processing logic, such that each test sample follows
a randomized path to the target vector. In some embodi-
ments, one or usage parameters of the usage space are
selected as the path vaniables. In an embodiment, the path
variables can be a property that continuously changes during
a life of a memory component. In an embodiment, test
samples assigned to the target vector follow a random path
of path variables to the target vector with reads using media
management techniques. Example usage parameters that can
be selected as path variables include a temperature of writes,
the Vcc of a write, the Vcc noise, a temperature of reads, a
temperature ol writes, the Vce of a read, and a concurrency
of write and read operations.

In some embodiments, each test sample (e.g., group of
memory component blocks) 1s assigned an individual target

US 10,910,081 B2

15

vector and follows a random path (e.g., a set of randomly
selected path variables) to the target vector. In some embodi-
ments, the processing logic establishes multiple test samples
corresponding to the usage space of the memory component
to 1dentily performance results at a multi-dimensional level
of the usage space associated with memory components.
FIG. 7A illustrates an example of two three-dimensional
target vectors (e.g., representing usage parameters of reten-
tion, program-erase (P/E) cycles, and reads) and three asso-
ciated random paths leading to the respective target vectors.
For example, a target vector can specily a usage parameter
of 10,000 write operations to be performed at each memory
component that 1s assigned to a test. Each memory compo-
nent can perform the 10,000 write operations corresponding,
to the usage parameter, but the path or performance of
additional operations based on the path variables can be
different for each of the memory components used 1n the
test. For example, a first memory component can perform
10,000 write operations with mtermediate read operations
being performed after every 100 write operations. A second
memory component can perform 10,000 write operations,
but with intermediate erase operations being performed after
every 120 write operations. Thus, each memory component
that 1s used 1n the test can perform the same 10,000 write
operations, but the intermediate operations or other such
parameters during the performance of the 10,000 write
operations can be different. For example, each memory
component can perform 10,000 write operations, but under
different temperature conditions that are varied at different
rates and times.

In some embodiments, the processing logic generates
multiple test sample points corresponding to the usage space
by generating multiple sets of path vanables to associate
with multiple different test samples. FIG. 7B illustrates an
example generation of 10,000 test sample points of a two-
dimensional sequence. In some embodiments, the test
sample points are generated using a sequencing method
methodology (e.g., a low discrepancy method such as a
Sobol sequencing method, etc.). In some embodiments, a set
of target vector samples are generated based on the test
sample points. FIG. 7C 1llustrates a set of 1,000 samples of
target vectors including vector type labels generated by the
processing logic of the present disclosure. In some embodi-
ments, the target vector samples are generated using a low
discrepancy sequence, such as a Sobol sequencing method.

In block 640, the processing logic executes a test using the
test sample 1n accordance with the set of path variables to
generate a test result. In some embodiments, the set of path
variables includes one or more randomized path variables. In
some embodiments, having established the target vector and
set of path variables corresponding to the test sample, the
processing logic can identily and reserve a memory com-
ponent to be tested. In some embodiments, the processing,
logic (e.g., processing logic of resource allocator 130 of
FIGS. 1 and 4) identifies and reserves a test resource
corresponding to the set of path variables (e.g., a test socket
including memory components matching the usage param-
cters of the set of path variables) for use as the test sample.

In operation 6350, the processing logic analyzes the test
result (e.g., a first test result associated with a first test
sample and other test results corresponding to respective test
samples) to 1dentily a failure. In some embodiments, one or
more failures associated with the one or more test samples
can be i1dentified. In some embodiments, the dimensional
data from the randomized testing is stored in a file and
parsed mto smaller representations (e.g., tables). In an
embodiment, failure detection and associated determina-

10

15

20

25

30

35

40

45

50

55

60

65

16

tions whether the failure 1s a true error or an anomaly (e.g.,
due to noise) can be performed by the processing logic as
described above in connection with FIGS. 4 and 5. In some
embodiments, the test results associated with each test
sample are provided to a management module (e.g., man-
agement module 480 of FIG. 4) as feedback mnformation via
a connection between the corresponding test processes and
the management module.

In an example, one or more functional failures associated
with erase, program and read operations are made visible
and constitute a ‘strike’ against a test block mvolved 1n the
testing process. In an example, a read raw bit error rate
(RBER) threshold can be applied to trigger an error handling
process flow configured to recover the read operation (e.g.,
by selecting various trims (e.g., a command that enables an

operating system to mform a memory component (e.g., a
NAND flash solid-state drive (SSD)) which data blocks 1t

can erase because they are no longer in use)), adaptive
replacement cache (ARC), a Vt sweep for segmentation of
a failure due to an error relating to the memory component
(e.g., a ‘strike’). In some embodiments, after reaching a
threshold number of strikes (e.g., after three strikes), a block
can be retired or removed from testing. In some embodi-
ments, anomalies can also be classified 1n the analysis (e.g.,
analysis of RBER, typical page programming time (tProg),
tErase responses, etc.) as statistical outhiers, erratic mani-
festation or other pathological behavior. In some embodi-
ments, anomaly detection analysis can be performed in
connection with the above-described parsing and/or during
post-processing of the output tables.

FIG. 8 illustrates an example machine of a computer
system 800 within which a set of instructions, for causing
the machine to perform any one or more of the methodolo-
gies discussed herein, can be executed. In some embodi-
ments, the computer system 800 can correspond to a host or
server system that includes, 1s coupled to, or utilizes a test
platform including one or more of the resource allocator 130
of FIG. 4 and a management module 480 of FI1G. 4 (e.g., to
execute operations corresponding to the testing processes
200, 500, 600 of FIGS. 2, 5 and 6). In alternative embodi-
ments, the machine can be connected (e.g., networked) to
other machines 1n a LAN, an intranet, an extranet, and/or the
Internet. The machine can operate in the capacity of a server
or a client machine 1n client-server network environment, as
a peer machine 1 a peer-to-peer (or distributed) network
environment, or as a server or a client machine 1n a cloud
computing infrastructure or environment.

The machine can be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, a switch or bridge, or any machine capable of
executing a set of 1nstructions (sequential or otherwise) that
specily actions to be taken by that machine. Further, while
a single machine 1s illustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of 1nstruc-
tions to perform any one or more of the methodologies
discussed herein.

The example computer system 800 includes a processing
device 802, a main memory 804 (e.g., read-only memory

(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Ram-

bus DRAM (RDRAM), etc.), a static memory 806 (e.g.,

flash memory, static random access memory (SRAM), etc.),
and a data storage system 818, which communicate with
each other via a bus 830.

US 10,910,081 B2

17

Processing device 802 represents one or more general-
purpose processing devices such as a microprocessor, a
central processing umt, or the like. More particularly, the
processing device can be a complex instruction set comput-
ing (CISC) microprocessor, reduced instruction set comput-
ing (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or a processor implementing other
instruction sets, or processors implementing a combination
of 1nstruction sets. Processing device 802 can also be one or
more special-purpose processing devices such as an appli-
cation specific mtegrated circuit (ASIC), a field program-
mable gate array (FPGA), a digital signal processor (DSP),
network processor, or the like. The processing device 802 1s
configured to execute mstructions 826 for performing the
operations and steps discussed herein. The computer system
800 can further include a network interface device 808 to
communicate over the network 820.

The data storage system 818 can include a machine-
readable storage medium 824 (also known as a computer-
readable medium) on which 1s stored one or more sets of
istructions 826 or soitware embodying any one or more of
the methodologies or functions described herein. The
instructions 826 can also reside, completely or at least
partially, within the main memory 804 and/or within the
processing device 802 during execution thereof by the
computer system 800, the main memory 804 and the pro-
cessing device 802 also constituting machine-readable stor-
age media. The machine-readable storage medium 824, data
storage system 818, and/or main memory 804 can corre-
spond to a memory sub-system.

In one embodiment, the instructions 826 include 1nstruc-
tions to implement functionality corresponding to testing
processes described heremn (e.g., processes 200, 500, and
600 of FIGS. 2, 5, and 6), the resource allocator 130 of FIG.
4, and the management module 480 of FIG. 4. While the
machine-readable storage medium 824 1s shown 1 an
example embodiment to be a single medium, the term
“machine-readable storage medium” should be taken to
include a single medium or multiple media that store the one
or more sets of instructions. The term “machine-readable
storage medium”™ shall also be taken to include any medium
that 1s capable of storing or encoding a set of mstructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure. The term “machine-readable storage medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical media, and magnetic media.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled 1n the art. An algorithm 1s here, and generally,
conceived to be a seli-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
clectrical or magnetic signals capable of being stored, com-
bined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. The present disclosure can refer to the

10

15

20

25

30

35

40

45

50

55

60

65

18

action and processes of a computer system, or similar
clectronic computing device, that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems.

The present disclosure also relates to an apparatus for
performing the operations herein. This apparatus can be
specially constructed for the intended purposes, or 1t can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program can be stored 1n a computer
readable storage medium, such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMs, magnetic or optical cards, or any type of media
suitable for storing electronic mstructions, each coupled to
a computer system bus.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general purpose systems can be used with
programs in accordance with the teachings herein, or 1t can
prove convenient to construct a more specialized apparatus
to perform the method. The structure for a variety of these
systems will appear as set forth 1n the description below. In
addition, the present disclosure 1s not described with refer-
ence to any particular programming language. It will be
appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein.

The present disclosure can be provided as a computer
program product, or software, that can include a machine-
readable medium having stored thereon instructions, which
can be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
disclosure. A machine-readable medium includes any
mechanism for storing information 1n a form readable by a
machine (e.g., a computer). In some embodiments, a
machine-readable (e.g., computer-readable) medium
includes a machine (e.g., a computer) readable storage
medium such as a read only memory (“ROM”), random
access memory (“RAM™), magnetic disk storage media,
optical storage media, flash memory components, etc.

In the foregoing specification, embodiments of the dis-
closure have been described with reference to specific
example embodiments thereof. It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of embodiments of the disclo-
sure as set forth in the following claims. The specification
and drawings are, accordingly, to be regarded 1n an 1llus-
trative sense rather than a restrictive sense.

What 1s claimed 1s:

1. A method comprising:

determiming, by a processing device, filter information
associated with a test to be performed on one or more
memory components, wherein the filter information
comprises at least one of characteristics information or
usage information associated with at least a portion of
the one or more memory components;

selecting a first test component comprising a first set of
memory components of the one or more memory
components and a second test component comprising a
second set of memory components of the one or more
memory components in view of the filter information;

US 10,910,081 B2

19

generating test execution information defining a set of test

processes of the test;

distributing a first portion of the test execution informa-

tion corresponding to a first test process to the first test
component comprising the first set of memory compo-
nents;

distributing a second portion of the test execution infor-

mation corresponding to a second test process to the
second test component comprising the second set of
memory components, wherein the second test 1s dif-
ferent from the first test;

receiving, via a first connection with the first test process

of the set of test processes, first feedback information;
and

determining, based on the first feedback information, a

failure of the first test process.

2. The method of claim 1, turther comprising;:

receiving, via a second connection with the second test

process ol the set of test processes, second feedback
information; and

determining, based on the second feedback information, a

successiul execution of the second test.

3. The method of claim 1, further comprising replicating,
using the first feedback information, the first test process on
a replication test component.

4. The method of claim 3, further comprising determining,
the failure represents an error associated with a memory
component of the first set of memory components in view of
the replicating of the first test process generating the failure.

5. The method of claim 3, further comprising determining
the failure represents an anomaly associated with a memory
component of the first set of memory components 1n view of
the replicating of the first test process generating a success-
tul result.

6. The method of claim 1, further comprising providing
unique connection mformation to the first test process to
establish the first connection to transmit the first feedback
information.

7. A system comprising:

a set of memory components; and

a processing device, operatively coupled with the set of

memory components, to:
receive a request to perform a test of the set of memory
components;
determine filter information corresponding to one or
more conditions of the test;
reserve a first test component comprising a first portion
of the set of memory components comprising at least
one of {irst characteristics information or first usage
information matching the filter information;
reserve a second test component comprising a second
portion of the set of memory components comprising
at least one of second characteristics information or
second usage information matching the filter infor-
mation;
perform a first sequence of operations of the test using
the first portion of the set of memory components;
perform a second sequence of operations of the test
using the second portion of the set of memory
components, wherein the first sequence 1s different
than the second sequence;
receive, via a connection with a first test process of the
test, feedback information indicating a first failed
test result; and
replicate the first test process on a replication test
component using the feedback information.

10

15

20

25

30

35

40

45

50

55

60

65

20

8. The system of claim 7, wherein the first test component
1s located at a first location and a second test component 1s
located at a second location.

9. The system of claim 7, wherein the first test component
comprises an available test socket comprising the first
portion of the set of memory components to be tested.

10. The system of claim 7, the processing device 1s further
to:

generate test execution information defining the first

sequence ol operations and the second sequence of
operations of the test.

11. The system of claim 10, the processing device 1s
turther to:

recerve additional feedback information indicating suc-

cessiul execution of the second sequence of operations.
12. The system of claim 11, wherein the first portion of the
test execution information comprises connection informa-
tion assigned to the first test process.
13. The system of claim 12, the processing device 1s
turther to:
determine the first failed result represents an error asso-
ciated with a memory component of the first portion of
the set of memory components in view of the first test
process replicated on the replication component gen-
erating a second failed test result.
14. The system of claim 13, the processing device 1s
turther to:
determine the first failed result represents an anomaly
associated with a memory component of the first por-
tion of the set of memory in view of the first test process
replicated on the replication component generating a
successiul test result.
15. A non-transitory computer readable medium compris-
ing instructions, which when executed by a processing
device, cause the processing device to perform operations
comprising;
determining filter information associated with a test to be
performed on one or more memory components,
wherein the filter information comprises at least one of
characteristics information or usage information asso-
ciated with at least a portion of the one or more memory
components;
selecting a first test component comprising a {irst set of
memory components of the one or more memory
components and a second test component comprising a
second set of memory components of the one or more
memory components in view of the filter information;

distributing a first portion of test execution information
corresponding to a {first test process to the {first test
component comprising the first set of memory compo-
nents;

distributing a second portion of the test execution infor-

mation corresponding to a second test process to the
second test component comprising the second set of
memory components, wherein the second test 1s dii-
ferent from the first test:;

receiving, via a first connection with the first test process

of the set of test processes, first feedback information;

determining, based on the first feedback information, a

first failed test result of the first test process; and
replicating, using the first feedback information, the first
test process on a first replication test component.

16. The non-transitory computer readable medium of
claim 15, wherein replicating the first test process on the first
replication test component generates a second failed test
result.

US 10,910,081 B2

21

17. The non-transitory computer readable medium of
claim 16, the operations further comprising:

determining the first failed result represents an error

associated with a memory component of the first set of
memory components 1n view of the second failed test s
result.

18. The non-transitory computer readable medium of
claim 15, wherein replicating the first test process on the first
replication test component generates a successiul test result.

19. The non-transitory computer readable medium of 10
claim 18, the operations further comprising:

determining the first failed result represents an anomaly

associated with a memory component of the set of
memory components mm view ol the successiul test
result. 15

20. The non-transitory computer readable medium of
claam 15, wherein each test process of the set of test
processes 1s assigned a unique IP address to use 1n estab-
lishing a connection to provide feedback information asso-
ciated with a respective test process. 20

G e x Gx s

22

	Front Page
	Drawings
	Specification
	Claims

