US010909659B2

a2y United States Patent (10) Patent No.: US 10,909,659 B2
Croxford 45) Date of Patent: Feb. 2, 2021

(54) SUPER-RESOLUTION IMAGE PROCESSING (56) References Cited

USING A MACHINE LEARNING SYSTEM |
U.S. PATENT DOCUMENTS

(71) Applicant: Apical Limited, Cambrnidge (GB) 2005/0140684 Al* 6/2005 Buehler GO6T 15/005
345/531

) _ 2014/0333625 Al* 11/2014 Itkowitzcoouv.... GO6T 15/20

(72) Inventor: Daren Croxford, Swaitham Prior (GB) 345/476
2017/0200252 Al1* 7/2017 Nguyen GO6F 9/3871

| _ o | 2017/0347110 AL* 11/2017 Wangocoevvvvv... GO6T 5/001

(73) Assignee: Apical Limited, Cambridge (GB) 2018/0096527 Al* 4/2018 Fraker ... G06Q 30/0643

(*) Notice: Subject to any disclaimer, the term of this FORBIGN PAITENT DOCUMENTS
patent 1s extended or adjusted under 35 WO 00/19377 4/2000
U.S.C. 154(b) by 133 days.

OTHER PUBLICATIONS
(21) Appl. No.: 16/218,279

Jianchao Yang et al: Image Super-Resolution: Historical Overview
and Future Challenges (http://www.iip.illinois.edu/~jyang29/papers/

(22) Filed: Dec. 12, 2018 chapl.pdf).

Super-Resolution.
_ o Wei-Sheng Lai et al: Fast and Accurate Image Super Resolution
(65) Prior Publication Data with Deep Laplacian Pyramid Networks, Aug. 9, 2018,

US 2020/0193566 A1 Tun. 18, 2020 (Continued)

Primary Examiner — Idowu O Ositade

(51) Int.Cl (74) Attorney, Agent, or Firm — EIP US LLP
nt. CI.

GO6N 3/08 (2006.01) (57) ABSTRACT
G02B 30/00 (2020.01) A method of super-resolution image processing. The method
GO6T 3/40 (2006.01) includes inputting first 1mage data representative of a first
GO6T 5/00 (2006.01) version of at least part of an 1image with a first resolution to
GO6T 19/00 (2011.01) a machine learning system. The first image data includes
GO6T 7/55 (2017.01) pixel intensity data representative of an itensity value of at
least one color channel of a pixel of the first version of the
(52) US. Cl. at least part of the 1image, and feature data representative of
CPC e, GO6T 3/4069 (2013.01); GO2B 30/00 a value of at least one non-intensity feature associated with

(2020.01); GO6N 3/08 (2013.01); GO6T 5/008 the pixel. The first 1mage data 1s processed using the
(2013.01); GO6T 7/55 (2017.01); GO6T 19/006 machine learning system to generate second image data

(2013.01) representative of a second version of the at least part of the
(58) Field of Classification Search 1m§1ge with a second resolution greater than the first reso-
None ution.
See application file for complete search history. 20 Claims, 10 Drawing Sheets
132\
!
Vertex Shader Blender
124 152
v v
Hull Shader Tile Buffer
136 124
¥ ¥
Tesselator THe Write-oLit
128 128
Y E
Domain Shader :
140 5
¥ ¥
Geometry Shader Framebuffer
laa 158
v
Tiler
144
v
Rastarizer
146
v
Fragment Shader i Texture Mapper
148 150

US 10,909,659 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Jung-Woo Chang et al: An Energy-Efficient FPGA-based
Deconvolutional Neural Networks Accelerator for Single Image

Super-Resolution, IEEE.

Bee Lim et al.: Enhanced Deep Residual Networks for Single Image
Super-Resolution; Department of ECE, ASRI, Seoul National Uni-
versity, 08826, Seoul, Korea, Jul. 10, 2017.

Ying Tai et al: Image Super-Resolution via Deep Recursive Residual
Network; 1Department of Computer Science and Engineering,
Nanjing University of Science and Technology and Department of
Computer Science and Engineering, Michigan State University.

* cited by examiner

U.S. Patent Feb. 2, 2021 Sheet 1 of 10 US 10,909,659 B2

o
I,

108a
108b
108c
110

FIG. 1

114 —~ 118 o~ 120

Use feature data {o
generate pixel
imensiy data

116

| otore
feature gdata

FIG. 2

Ferform super-

Generale

resoiution image

feature gdaia |
Nrocessing

U.S. Patent Feb. 2, 2021 Sheet 2 of 10 US 10,909,659 B2

122\

HoOst processor
126

Application

124

Liriver
130

+
+ +

+ + + + + + ++++++++++++
+

GRPU
148

FIG. 3

U.S. Patent Feb. 2, 2021 Sheet 3 of 10 US 10,909,659 B2

154

 [

+

Vertex Shader Blender
134 154

Hull Shader Tile Buffer
136 104

fesselator Tie Write-out
138 106
Framebuifer
156

+
+ LN

+ + + + + + + *+ + + + + +
++ + +

Domain Shader
140

Geometry Shader
14

+
+* + +

+ + + + + + + + + + + + +
'I-+ + +

+

Tiler
144

HRasterizer
14

+
* L

+ + + + + + + + + + + + +
++ + +

+

Fragment Shader
148

* +
=+ + + + + +
+ +
+
+
+ +
+ +
+

Texture Mapper
190

FI1G. 4

U.S. Patent Feb. 2, 2021 Sheet 4 of 10 US 10,909,659 B2

160
234 242 248 G buffer
V1 +++++ E:” FS . 162
234 242 248 \ Depth
vz ‘::n i G s """"" F S """""
234 242 238 /

FIG. 5

US 10,909,659 B2

Sheet 5 of 10

Feb. 2, 2021

U.S. Patent

g $
) §
g :
- . M
H
“ o = 5 = M
” % , D Ul 4o % g M
; m 0 m.,.u o b e :
M 5. S £ = = M
O ”) Yy s © GO '), @ :
I~ <L e O & A =k :
T Ih: —d 1S e € :
//” Suee e M
H
w ;
wllllllllllllllllllllllllllllll W AR Wy AR v AR we AR v o an ww Al Ve AR YW AR W AR WY AR VW AR WY AR WL AR VW AR VW AR VW AR VW AR WY AR W AR WA AR W e R A WA W W e ey
“ m
" m
” AR - O O ;
BRI < c M
; _ - ;
” = 3 « Ja2
w _ T =
“ 3 = =2 G o M
3 s nnnn S N {3 &m :
n W
” & = SR u
: < u
4
w u
: i
5

172-\

FIG. 6

U.S. Patent Feb. 2, 2021 Sheet 6 of 10 US 10,909,659 B2

220

GPU P

Shader core
—~ 195 197

FIG. 7

372 — 193

\
gecoder
* 374 390
Processor +
386
NNA
- 199
198
DMC
376

FIG. 8

U.S. Patent Feb. 2, 2021 Sheet 7 of 10 US 10,909,659 B2

400

F1G. 9a FIG. 9b

406

Generate first frame using GPU

~ 408

Generate further frame using GRLU

410

enerate intermediate frame Uusing
asynchronous time warp (A1)

412

Lisplay, sequentially, first frame,

intermediate frame and turther frame

FIG. 10

U.S. Patent Feb. 2, 2021 Sheet 8 of 10 US 10,909,659 B2

—_—_— oHac

500

FI1G. 11

U.S. Patent Feb. 2, 2021 Sheet 9 of 10 US 10,909,659 B2

672m\\%‘
— B02
lIIIEHH%%Hi%HH%%%IIIII
504 600
508 |
for
SENsor

—~B90
Processor * Lispiay
586
NNA
599
~ 698
DMC
576

FIG. 12

U.S. Patent Feb. 2, 2021 Sheet 10 of 10 US 10,909,659 B2

— {00

US 10,909,659 B2

1

SUPER-RESOLUTION IMAGE PROCESSING
USING A MACHINE LEARNING SYSTEM

TECHNICAL FIELD

The present invention relates to methods and apparatus
for processing 1mage data representative of an 1mage, for
example to perform super-resolution 1image processing.

BACKGROUND

Super-resolution 1mage processing may be used to
increase a resolution of an 1mage. Super-resolution 1image
processing methods to produce a higher resolution 1mage
with a desired 1image quality may, however, be computa-
tionally intensive.

SUMMARY

According to a first aspect of the present disclosure, there
1s provided a method of super-resolution 1mage processing,
the method comprising: mputting first image data represen-
tative of a first version of at least part of an 1mage with a first
resolution to a machine learning system, the first image data
comprising: pixel intensity data representative of an inten-
sity value of at least one color channel of a pixel of the first
version of the at least part of the image; and feature data
representative of a value of at least one non-intensity feature
associated with the pixel; and processing the first image data
using the machine learning system to generate second image
data representative of a second version of the at least part of
the 1mage with a second resolution greater than the first
resolution.

According to another aspect of the present disclosure,
there 1s provided a processing system configured to perform
super-resolution 1mage processing, wherein the processing
system 1s configured to: retrieve, from storage accessible to
the processing system, first 1image data representative of a
first version of at least part of an i1mage with a {irst
resolution, the first image data comprising: pixel intensity
data representative of an intensity value of at least one color
channel of a pixel of the first version of the at least part of
the 1mage; and feature data representative of a value of at
least one non-1ntensity feature associated with the pixel; and
implement a machine learning system to perform the super-
resolution 1mage processing by, upon receipt of the first
image data as an 1put, processing the first image data to
generate second i1mage data representative of a second
version of the at least part of the image with a second
resolution greater than the first resolution.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features will become apparent from the following
description, given by way of example only, which 1s made
with reference to the accompanying drawings.

FIG. 1 1s a schematic diagram 1llustrating a neural net-
work according to examples;

FIG. 2 1s a flow diagram 1illustrating a method of super-
resolution 1mage processing according to examples;

FIG. 3 1s a schematic diagram illustrating a graphics
processing system according to examples;

FIG. 4 1s a schematic diagram illustrating a graphics
processing pipeline according to examples;

FIG. 5 1s a schematic diagram illustrating a deferred
shading process according to examples;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 1s a schematic diagram illustrating internal com-
ponents ol a computing device according to examples;

FIG. 7 1s a schematic diagram illustrating internal com-
ponents of a graphics processor according to examples;

FIG. 8 1s a schematic diagram illustrating internal com-
ponents of a computing device according to further
examples;

FIGS. 9a and 96 are schematic diagrams illustrating
display of an image using a virtual reality (VR) system
according to examples;

FIG. 10 15 a flow diagram 1llustrating a method mvolving
a VR 1mage processing pipeline;

FIG. 11 1s a schematic diagram illustrating display of an
image using an augmented reality (AR) system according to
examples;

FIG. 12 1s a schematic diagram illustrating internal com-
ponents ol a computing device according to yet further
examples; and

FIG. 13 1s a schematic diagram illustrating display of an
image using gaze tracking according to examples.

DETAILED DESCRIPTION

Details of systems and methods according to examples
will become apparent from the following description, with
reference to the Figures. In this description, for the purpose
of explanation, numerous specific details of certain
examples are set forth. Reference 1n the specification to “an
example” or similar language means that a particular feature,
structure, or characteristic described 1n connection with the
example 1s ncluded 1n at least that one example, but not
necessarily 1n other examples. It should turther be noted that
certain examples are described schematically with certain
features omitted and/or necessarily simplified for ease of
explanation and understanding of the concepts underlying
the examples.

Examples described herein provide a method of super-
resolution 1mage processing. The method includes inputting
first 1image data representative of a first version of at least
part of an 1mage with a first resolution to a machine learning,
system. The first image data includes pixel intensity data
representative of an intensity value of at least one color
channel of a pixel of the first version of the at least part of
the 1mage. In addition to the pixel intensity data, the first
image data also includes feature data representative of a
value of at least one non-intensity feature associated with the
pixel. The first image data 1s processed using the machine
learning system to generate second image data representa-
tive of a second version of the at least part of the image with
a second resolution greater than the first resolution. In this
way, the resolution of the at least part of the image 1s
increased from the first resolution to the second resolution.
For example, the second version of the at least part of the
image may include more pixels than the first version of the
at least part of the image. The second version of the at least
part of the image may therefore be larger than the first
version ol the at least part of the 1image (although need not
be). By performing super-resolution image processing, the
detail 1n the at least part of the image may be increased. This
may therefore reduce the appearance of blurring or lack of
clarity 1n the at least part of the image. It 1s to be appreciated
that an 1mage as referred to herein may be a part of a larger
image. Hence, 11 processing 1s described as being applied to
an 1mage, the 1mage 1tself may be a part of a larger image
such that the processing 1s applied to the part of the larger
image rather than to the entirety of the larger image.

US 10,909,659 B2

3

In the examples described herein, the feature data 1s
processed 1n addition to the pixel intensity data by the
machine learning system to perform the super-resolution
image processing. An intensity value represented by the
pixel intensity data may be representative of a brightness of
the pixel for a grayscale image, or a brightness of a given
color component of the pixel for a color image. The pixel
intensity data for a given pixel may represent an intensity
value associated with a particular color channel or may
include a plurality of intensity values associated with each of
a plurality of color channels. It 1s to be appreciated that a
grayscale image may be considered to include a single color
channel. An intensity value may take a value within a
predetermined range. Where the intensity value 1s for a
single color channel, the intensity value may take a value
from O (e.g. representing a black or darkest intensity) to 255
(e.g. representing white or a lightest intensity) for 8-bit pixel
intensity data for a given color channel.

In contrast, the feature data represents a value of at least
one non-intensity feature. A non-intensity feature i1s for
example any other feature that may be associated with a
given pixel or with a region of an 1image that includes the
given pixel and that represents a characteristic of the pixel
or 1mage region other than its intensity. For example, a
non-intensity feature may be a depth, a texture or a surface
normal of a pixel or an 1mage region. In this way, the feature
data provides additional information about the pixel or
image region. This therefore allows the machine learning
system to more accurately increase the resolution of the at
least part of the image to generate the second version of the
at least part of the image. Furthermore, the methods
described herein may be less computationally intensive to
generate an upscaled 1mage of a desired quality than other
super-resolution 1mage processing methods.

As an 1llustrative example, the first version of an 1image
may include two neighboring pixels which each represent a
different part of the same object 1n the 1image of a scene.
However, due to a difference in a relative position between
the two parts of the object 1n the scene, an intensity value
associated with the two neighboring pixels may differ. For
example, the two neighboring pixels may each represent
different parts of a brick, which 1s part of a brick wall 1n the
scene. However, one of the pixels may be darker 1n color (for
example with a lower 1ntensity value) than the other, due to
a difference 1n lighting at the pixels, e.g. 11 the brick 1s angled
into the scene, so 1t appears to recede towards a background
of the scene. Nevertheless, a texture associated with each of
the pixels may be the same, as each of the pixels 1s
associated with the same object (a brick).

The texture of the pixels may be mput to the machine
learning system as feature data, 1n addition to intensity data
representative of an itensity of the pixels. Using the feature
data, the machine learning system may be able to more
accurately generate an intensity for a new pixel with a
position 1n between a position of the two mnput pixels. For
example, the machine learning system may generate an
appropriate intensity value for the new pixel so that the new
pixel also appears to have the texture of a brick, but with an
intensity 1n between that of the two original neighboring
pixels. The appearance of the second version of the at least
part of the image may therefore more closely resemble that
of the first version of the at least part of the image than with
other super-resolution image processing methods. For
example, the second version of the at least part of the image
may 1nclude more detail and reduced blurring than an
upscaled 1mage generated using other super-resolution
image processing methods that use a similar amount of

5

10

15

20

25

30

35

40

45

50

55

60

65

4

processing resources. It 1s to be appreciated, though, that the
feature data may represent a different non-intensity feature
than texture 1n other examples.

Methods 1n accordance with examples herein may also or
instead be used to perform super-resolution 1mage process-
ing to generate an 1mage (or at least part of an 1mage) with
a predetermined resolution more efliciently than other meth-
ods. For example, the methods described herein may use
fewer computing resources or may be more computationally
cilicient than other methods. As an example, the machine
learning system of the methods herein may include a series
of layers (as described further with reference to FIG. 1).
However, the total number of layers may be smaller than a
total number of layers of machine learning systems used in
other super-resolution 1mage processing methods.

FIG. 1 1s a schematic diagram 1illustrating a neural net-
work (NN) according to examples. The NN of FIG. 1 may
be used as the machine learning system referred to in
examples herein. In other examples, though, other machine
learnings systems may be used. A machine learning system
1s, Tor example, a so-called artificial intelligence system that
involves the use of statistical techniques to facilitate the
learning of a given task by a computer system or device. For
example, a machine learning system may be trained, using
data, to perform a particular task, without being directly
programmed to perform that task.

The NN of FIG. 1 1s a convolutional neural network
(CNN) 100, although 1t 1s to be appreciated that other
machine learning systems, such as other NNs, may be used
in other examples. The CNN 100 1s arranged to receive an
input 102 and to generate an output 104. The CNN 100 of
FIG. 1 includes convolutional layers 106a4-106d4 and a
deconvolutional layer 107 between the input 102 and the
output 104, although this 1s merely an example and other
NNs may include more or fewer layers or layer(s) of
different types.

In FIG. 1, the input 102 1s first image data representative
of a first version of an 1image, which includes pixel intensity
data 108a, 1085, 108c¢. In this example, the pixel intensity
data 108a, 1085, 108¢ includes pixel intensity data for three
color channels (in this case, red, green and blue color
channels). The pixel intensity data for each color channel 1s
for example 1n the form of a two-dimensional (2D) matrix of
intensity values for the 2D array of pixels 1n the first version
of the image.

The first image data received as an mput 102 to the CNN
100 of FIG. 1 also includes feature data 110, which repre-
sents non-intensity feature values. In the example of FIG. 1,
the feature data 110 1s of the same dimensionality as the
pixel intensity data 108a, 1085, 108¢ for a given color
channel. In other words, there 1s a corresponding feature
value for each pixel of the first version of the image, such
that there 1s a one-to-one mapping between feature values
and pixels. However, 1n other examples, the dimensionality
of the feature data 110 may differ from that of the pixel
intensity data. For example, the feature data may represent
a non-intensity feature which 1s associated with a plurality of
pixels of the first version of the image. In such cases, there
may be a one-to-many mapping between feature values and
pixels.

In FIG. 1, the feature data 110 represents feature values
for a single non-intensity feature (such as a single type of
feature or characteristic). However, in other examples, the
teature data 110 may represent a plurality of different feature
values. In such cases, the feature data 110 may include a
plurality of sub-sets of feature data, each associated with a
different respective non-intensity feature. Each sub-set of

US 10,909,659 B2

S

feature data may include feature values for each pixel for a
given feature, or for a plurality of pixels for that given
feature.

In the example of FIG. 1, the CNN 100 has been trained
to perform super-resolution 1image processing, for example
to 1ncrease a resolution of a first version of an 1mage based
on first image data including the pixel intensity data 108a-
108¢ and the feature data 110. As a single image (the first
version of the 1image) 1s used to generate a higher resolution
image (a second version of the image), this method may be
referred to as single image super-resolution 1mage process-
ing. Training of the CNN 100 for example generates one or
more kernels associated with each of the convolutional
layers 106a-1064d and the deconvolutional layer 107. ANN
typically includes a number of interconnected nodes, which
may be referred to as artificial neurons, or neurons. The
internal state ol a neuron (sometimes referred to as the
activation) typically depends on an input received by the
neuron. The output of the neuron then depends on the input
and the activation. The output of some neurons 1s connected
to the mput of other neurons, forming a directed, weighted
graph 1n which edges (corresponding to neurons) or vertices
(corresponding to connections) of the graph are associated
with weights, respectively. The weights (which for example
correspond with respective elements of kernels associated
with layers of the NN) may be adjusted throughout training,

altering the output of individual neurons and hence of the
NN as a whole.

After the training phase, the CNN 100 (which may be
referred to as a trained CNN 100) may be used to perform
the task it has been trained to perform (in this case, super-
resolution 1mage processing). This process may be referred
to inference. Inference in the example of FIG. 1 mvolves
convolution of the kernels obtained during the training phase
with the first image data to generate a series of feature maps
using each of the convolutional layers 106a-1064. The
feature maps may then be deconvolved using the deconvo-
lutional layer 107 to generate the second version of the
image, with a higher resolution of the first version of the
image. An example of inference will now be described with
reference to the example CNN 100 of FIG. 1.

In the CNN 100 of FIG. 1, the first convolutional layer
1064 1s arranged to extract a set of feature maps from the
first 1image data. The feature maps for example represent
image features present in the first version of the 1image such
as corners or lines. The feature maps may be extracted using
kernels. The precise features that the kernels 1dentify wall
depend on the data used to train the CNN 100. For example,
if the CNN 100 i1s tramned on 1mages of human faces, the
kernels associated with the first convolution layer 106a may
be able to 1dentily features associated with human faces. The
kernels may be of any size. As an example, each of the
kernels associated with the first convolutional layer 1064
may be a 3 by 3 matrix (although 1n other examples some of
the kernels associated with a given layer of the CNN 100
may be of different sizes than others).

The kernels of the first convolutional layer 106a are
convolved with the intensity values and the non-intensity
teature values for pixels of the first version of the image,
with a stride of 1. This for example mvolves multiplying
cach intensity value and each feature value of a pixel of the
set of pixels (1n thus example a 3 by 3 set of pixels) by a
weight 1n the kernel before adding the result of this operation
to the result of the same operation applied to neighboring
pixels. A stride for example refers to the number of pixels a
kernel 1s moved by between each operation. A stride of 1
therefore indicates that, after calculating the convolution for

5

10

15

20

25

30

35

40

45

50

55

60

65

6

a given 3 by 3 set of pixels, the kernel 1s slid across the
image by 1 pixel and the convolution 1s calculated for a
subsequent set of pixels. This process may be repeated until
the kernel has been convolved with the entirety of the first
version of the image. A kernel may sometimes be referred to
as a filter kernel or a filter.

In this example, there are 64 kernels associated with the
first convolutional layer 1064, and there are 1920 by 1080
pixels 1n the first version of the image. Hence, the output of
the first convolutional layer 106a 15 64 sets of 4x1920x1080
feature maps (one per kernel, and where the factor of 4 arises
because there are 4 mput components: the pixel intensity
data 1084-108c¢ for the three color channels, and the feature
data 110).

Belore processing the feature maps generated by the first
convolutional layer 106a using the second convolutional
layer 1065, a suitable activation function may be applied to
the feature maps. An activation function (sometimes referred
to as a rectifier) 1s a non-linear function, that may be used to
map an input to a predefined output, such as a value which
1s 0 or greater. A suitable activation function 1s the rectified
linear unit (ReLLU) function, although other activation func-
tions are possible such as a parametric rectified linear unit
(PReLU) function.

The feature maps generated by the first convolutional
layer 106a (which may have been processed using an
activation function) are mput to the second convolutional
layer 1065, which 1n this example reduces a dimensionality
of the feature maps. For example, there are fewer kernels
associated with the second convolutional layer 1065 than the
first convolutional layer 106a.

The reduced dimensionality feature maps output by the
second convolutional layer 1065 are processed by the third
convolutional layer 106¢ to perform a non-linear mapping
between the reduced dimensionality feature maps and a
patch of the second version of the image to be generated.

A dimensionality of an output of the third convolutional
layer 106¢ 1s increased by the fourth convolutional layer
1064, to reverse the dimensionality reduction of the second
convolutional layer 1065.

Finally, the second version of the image 1s generated by
the deconvolutional layer 106e, which performs a deconvo-
lution process to generate pixel intensity values from the
feature maps output by the fourth convolutional layer 106d.
In this way, the second version of the image 1s generated.
The second version of the image has a second resolution
which 1s higher than a first resolution of the first version of
the 1mage.

It 1s to be appreciated that the kernels of the convolutional
layers 1065-106d and the deconvolutional layer 107 are
convolved with the elements of the mput to the respective
layer 1in a similar way to the convolution performed by the
first convolutional layer 106a. Furthermore, although not
illustrated 1n FIG. 1, it 1s to be appreciated that a suitable
activation function may be applied to an output of any given
layer of the CNN 100 before the output 1s processed by a
subsequent layer of the CNN 100.

As can be seen, processing the first image data using the
CNN 100 generates an output 104, which 1n this example 1s
second 1mage data representative of the second version of
the image. The second 1image data in this example includes
three sub-sets of second 1mage data 112a-112¢. The three
sub-sets of the second image data 112a-112¢ each represent
pixel intensity values for the second version of the image for
a different respective color channel (1n this case, red, green
and blue color channels). For example, a first sub-set of the

US 10,909,659 B2

7

second 1mage data 112a may represent pixel intensity values
for a red color channel of the second version of the image.

Hence, 1n this example, the first image data represents a
first number of characteristics of the first version of the
image and the second image data represents a second
number of characteristics of the second version of the image,
where the second number 1s less than the first number. In this
context, a characteristic of an 1image may be considered to
correspond to a channel or other separate element or com-
ponent of the image. For example, 1n FIG. 1, the first version
of the image includes four characteristics: three sub-sets of
pixel intensity data 108a-108¢ and feature data 110. In
contrast, the second version of the image includes three
characteristics: three sub-sets of pixel intensity data 112a-
112¢. In this example, the second number of characteristics
corresponds to a number of color channels of the second
version of the image. However, this need not be the case. For
example, the second image data may also include feature
data, which may for example include fewer characteristics

(for example by representing a smaller number of features)
than the feature data of the first image data.

The example of FIG. 1 illustrates an example of the use
of feature data to perform super-resolution image process-
ing. FIG. 2 1s a flow diagram illustrating a method of
super-resolution image processing according to further
examples.

In the example of FIG. 2, feature data 1s used to both
generate the pixel intensity data, and to perform super-
resolution 1image processing. Hence, the feature data in this
case provides a dual purpose. For example, the feature data
may be pre-existing data that would be generated for a
different purpose than super-resolution image processing
(c.g. to generate the pixel intensity data), which may nev-
ertheless be re-purposed or re-used for super-resolution
image processing. The super-resolution image processing
may therefore be improved 1n efliciency or accuracy without
having to generate additional data.

Atitem 114 of FIG. 2, feature data 1s generated. Examples
of the generation of feature data are discussed further with
reference to FIGS. 3 to 13.

The feature data 1s stored at item 116 of FIG. 2 (although
in other examples the feature data may instead be processed
turther without being stored).

The feature data 1s used to generate the pixel intensity data
at item 118 of FIG. 2, as discussed further with reference to
FIG. 5. In this example, the feature data 1s retrieved from the
storage for processing to generate the pixel intensity data,
although this need not be the case 1n other examples.

At item 120, the pixel intensity data and the feature data
are processed to perform super-resolution 1mage processing.
In FIG. 2, the feature data is retrieved from the storage for
processing using the machine learning system to generate
the second 1mage data using super-resolution image pro-
cessing. Hence, the feature data 1s retrieved from the storage
and used for generating both the pixel intensity data and the
second 1mage data 1n the example of FIG. 2.

For example, the feature data may be generated as part of
a graphics processing pipeline. In such cases, the storage
used for storing the feature data may be local storage of a
graphics processing system, allowing the feature data to be
retrieved rapidly and efliciently. An example of a graphics
processing system 122 1s shown schematically in FIG. 3.

In the graphics processing system 122 of FIG. 3, an
application 124, such as a game, executing on a host
processor 126, which 1s for example a central processing,
unit (CPU), requests graphics processing operations to be
performed by an associated graphics processor, which 1n this

10

15

20

25

30

35

40

45

50

55

60

65

8

example 1s a graphics processing unit (GPU) 128. To do this,
the application 124 generates application programming
interface (API) calls that are interpreted by a programming
interface, which in this example 1s a driver 130 for the GPU
128. The driver 130 runs on the host processor 126. The
driver 130 generates appropriate commands to the GPU 128
to generate the graphics output requested by the application
124. A set of commands 1s provided to the GPU 128 1n
response to the commands from the application 124. The
commands may be to generate a frame to be displayed on a
display device coupled to or in communication with the host
processor 126 and/or the GPU 128.

FIG. 4 shows schematically an example of a graphics
processing pipeline 132. The graphics processing pipeline
132 indicates a sequence of actions that may be performed
by a graphics processor such as the GPU 128 of FIG. 3.

In this example, the GPU 1s a tile-based renderer. The
GPU therefore produces tiles of a render output data array to
be generated. The render output data array may be an output
frame. Tile-based rendering differs from immediate mode
rendering in that, rather than the entire render output being
processed 1 one go, the render output i1s divided into a
plurality of smaller sub-regions (or areas). Those sub-re-
gions are referred to herein as tiles. Each tile 1s rendered
separately. For example, each tile may be rendered one after
another. The rendered tiles are then recombined to provide
the complete render output for display. In tile-based render-
ing, the render output may be divided into regularly sized
and shaped tiles. The tiles may be square or another shape.
However, 1n other examples, the methods herein may be
used with a different type of rendering, such as immediate
rendering, rather than tile-based rendering.

The render output data array may be an output frame
intended for display on a display device, such as a screen or
printer. The render output may also, for example, include
intermediate data intended for use 1n later rendering passes.
An example of this 1s a “render to texture” output.

When a computer graphics image 1s to be displayed, it
may lirst be defined as a set of geometries, for example as
a series of primitives. An example of a primitive 1s a
polygon. The geometries are then divided into graphics
fragments 1 a rasterization process. This 1s followed by
graphics rendering. During a graphics rendering operation,
the renderer may modily data associated with each fragment
so that the fragments can be displayed correctly. Examples
of such data include the color and transparency. Once the
fragments have fully traversed the renderer, then their asso-
ciated data values are stored in memory, ready for output.

FIG. 4 shows various elements and pipeline stages asso-
ciated with a graphics processing pipeline 132 according to
examples. There may however be other elements and stages
of the graphics processing pipeline that are not 1llustrated 1n
FIG. 4.

As shown 1n FIG. 4, the graphics processing pipeline 132
includes a number of stages, including a vertex shader 134,
a hull shader 136, a tesselator 138, a domain shader 140, a
geometry shader 142, a tiler 144, a rasterization stage 146,
a fragment shading stage 148, a texture mapping stage 150,
a blending stage 152, a tile bufler 154 and a downsampling
and writeout stage 156. Other arrangements for a graphics
processing pipeline are however possible.

The vertex shader 134 receives input data values associ-
ated with the vertices defined for the output to be generated.
The vertex shader 134 processes those data values to gen-
erate a set of corresponding, vertex-shaded, output data
values for use by subsequent stages of the graphics process-
ing pipeline 132.

US 10,909,659 B2

9

Each primitive to be processed may be defined and
represented by a set of vertices. Each vertex for a primitive
may have associated with 1t a set of attributes. A set of
attributes 1s a set of data values for the vertex. These
attributes may include location data and other, non-location
data (or “varyings”). The non-location data may represent,
for example, color, light, normal and/or texture coordinates
for the vertex in question.

A set of vertices 1s defined for a given output to be
generated by the graphics processing pipeline. The primi-
tives to be processed for the output include given vertices in
the set of vertices. The vertex shading operation transforms
the attributes for each vertex into a desired form for subse-
quent graphics processing operations. This may include, for
example, transforming vertex location attributes from the
world or user space for which they are initially defined to the
screen space 1 which the output of the graphics processing
system 1s to be displayed. In a graphics processing pipeline
arranged to use forward rendering, this may also include, for
example, moditying the mput data to take account of the
ellect of lighting 1n the 1mage to be rendered. However, for
graphics processing pipelines 1n which deferred shading is
used (such as that of FIG. 5), the effect of lighting may not
be accounted for at this stage of the graphics processing
pipeline.

The hull shader 136 performs operations on sets of patch
control points and generates additional data known as patch
constants.

The tessellation stage 138 subdivides geometry to create
higher-order representations of the hull.

The domain shader 140 performs operations on vertices
output by the tessellation stage, in a similar manner to the
vertex shader 134.

The geometry shader 142 processes entire primitives such
as a triangles, points or lines.

The vertex shader 134, hull shader 136, tesselator 138,
domain shader 140 and geometry shader 142 set up the
primitives to be rendered, in response to commands and
vertex data provided to the graphics processing pipeline 132.

Once all the primitives to be rendered have been appro-
priately set up, the tiler 144 then determines which primi-
tives are to be processed for each tile that the render output
has been divided into for processing purposes. To do this, the
tiler 144 compares the location of each primitive to be
processed with the tile locations, and adds the primitive to
a respective primitive list for each tile that it determines the
primitive could potentially fall within. Any suitable and
desired technique for sorting and binning primitives into tile
lists, such as exact binning, or bounding box binning or
anything in between, can be used for the tiling process.

Once lists of primitives to be rendered (or “primitive
lists”) have been prepared for each rendering tile 1n this way,
the primitive lists are stored for use. The primitive lists allow
the system to identily which primitives are to be considered
and rendered when the tile 1n question 1s rendered.

Once the tiler 144 has prepared all of the tile lists, then
cach tile can be rendered. To do this, each tile 1s processed
by the graphics processing pipeline stages that follow the
tiler 144.

When a given tile 1s being processed, each primitive that
1s to be processed for that tile 1s passed to the rasterizer 146.
The rasterizer 146 of the graphics processing pipeline 132
operates to rasterize the primitives ito individual graphics
fragments for processing. To do this, the rasterizer 146
rasterizes the primitives to sampling points and generates
graphics fragments having appropriate locations for render-
ing the primitives. The fragments generated by the rasterizer

10

15

20

25

30

35

40

45

50

55

60

65

10

146 are then sent onwards to the rest of the graphics
processing pipeline 132 for processing.

In examples, a Z (or “depth™) test may be performed on
fragments received from the rasterizer 146 to see 1f any
fragments can be discarded (or *“culled”) at this stage (not
shown 1n FI1G. 4). To do this, an early Z and stencil test stage
may compare the depth values of fragments 1ssued by the
rasterizer 146 with the depth values of fragments that have
already been rendered. The depth values of fragments that
have already been rendered may be stored 1n a depth bufler
that 1s part of a tile builer 154 (described further below). The
comparison performed by the early Z and stencil test stage
1s to determine whether or not the new fragments will be
occluded by fragments that have already been rendered. At
the same time, an early stencil test may be carried out, in
which a stencil value of a fragment 1s compared against a
value 1n a stencil bufler. It the test 1s failed, the fragment may
be culled. In other examples, though, the early Z and stencil
test stage may be omitted.

The fragment shading stage 148 performs the appropnate
fragment processing operations on Iragments it receives
from the rasterizer 146 to generate the approprate rendered
fragment data. This fragment processing may include any
suitable fragment shading processes, such as executing
fragment shader programs on the fragments to generate the
appropriate fragment data, applying textures to the frag-
ments, applying fogging or other operations to the frag-
ments, etc. The fragment shading stage 148 may be a
programmable fragment shader. For example, where the
graphics processing pipeline 132 1s a forward rendering
pipeline, the fragment shader 148 may perform a lighting
operation to account for direct and indirect lighting at each
pixel of the fragments. This may be performed for each
fragment, regardless of whether the fragment will visible 1n
the render image or whether the fragment will be occluded
by other fragments. This typically reduces an amount of data
to be stored compared to other approaches (such as deferred
shading, which 1s discussed further below), 1n which lighting,
1s deferred to a later stage in the graphics processing
pipeline.

In the example of FIG. 4, the fragment shader 148 passes
the fragments to a texture mapper 150, which applies a
texture to the fragments. The textured fragments are then
passed back to the fragment shader 148.

As can be seen from FIG. 4, the graphics processing
pipeline 132 includes a number of programmable processing
or “shader” stages, namely the vertex shader 134, the hull
shader 136, the domain shader 140, the geometry shader
142, and the fragment shader 148 (which 1n this example
includes the texture mapper 150 stage). These program-
mable shader stages execute respective shader programs that
have one or more 1nput variables and generate sets of output
variables. The shader program 1n question may be executed
for each work item to be processed, for example for each
vertex 1n the case of the vertex shader 134. An execution
thread may be 1ssued for each work item to be processed,
and the thread then executes the instructions in the shader
program to produce the desired, shaded, output data. As
mentioned with reference to the vertex shader 134 and the
fragment shader 148, execution of lighting operations using
any of these shader stages may be performed for each vertex
or primitive as it passes through the graphics processing
pipeline 132 (regardless of whether it will be visible 1n the
rendered 1mage), 1n cases 1 which the graphics processing
pipeline 132 uses forward rendering. However, 1in cases in

US 10,909,659 B2

11

which the graphics processing pipeline 132 uses deferred
shading (such as that of FIG. §), lighting operations may be
deferred to a later stage.

After the fragment shader 148, there may then be a late
fragment 7 and stencil test stage, which carries out, amongst
other things, an end of pipeline depth test on the shaded
fragments to determine whether a rendered fragment will
actually be seen 1n the final image. This depth test typically
uses a Z-buller value for the position of the fragment that 1s
stored 1n the tile bufler 154 to determine whether the
fragment data for the new fragments should replace the
fragment data of the fragments that have already been
rendered. This may involve comparing the depth values of
the fragments 1ssued by the fragment shader 148 with the
depth values of fragments that have already been rendered,
as stored 1n the Z-bufler. This late fragment depth and stencil
test stage may also carry out late alpha and/or stencil tests on
the fragments.

Data from the Z-buller may be used as the feature data for
input to a machine learning system arranged to perform
super-resolution 1mage processing, such as that of FIG. 1.
Hence, depth data, representative of a depth of a fragment
(or a pixel of the fragment) 1s an example of feature data.
Using depth data for super-resolution image processing may
improve the etliciency or eflectiveness of the super-resolu-
tion 1mage processing (for example by reducing the amount
of computation to obtain a higher resolution version of an
image with a given quality). Furthermore, as the depth data
may be generated already, using existing processes that may
be performed by a computing device (such as a graphics
processing pipeline), the super-resolution 1image processing,
may be improved without requiring the generation of addi-
tional data. This further reduces the computational resources
used by the super-resolution 1mage processing.

Referring back to FIG. 4, the textured fragments output
from the texture mapper 150 may then be subjected, 1n the
blender 152, to any blending operations with fragments that
are already stored 1n the tile buller 154. Any other remaining
operations to be applied to the fragments, such as dither, etc.
may also be carried out at this stage.

Finally, the output fragment data (or “values™) are written
to the tile bufler 154. The depth value for an output fragment
1s also written approprately to a builer within the tile builer
154. The tile bufller 154 stores color and depth buflers that
store an appropriate color, etc., or depth, respectively, for
cach sampling point that the buflers represent. These bullers
store an array of fragment data that represents part, in this
example a tile, of the overall render output with respective
sets of sample values 1n the buflers corresponding to respec-
tive pixels of the overall render output. For example, each
2x2 set of sample values may correspond to an output pixel,
where 4x multisampling 1s used.

The tile bufler 154 may be provided as part of random
access memory (RAM) that 1s local to the graphics process-
ing pipeline 132. In other words, the tile builer 154 may be
provided 1n on-chip memory.

The data from the tile butler 154 1s input to a downsam-
pling write out-unit 156, and then output (or “written back™)
to an external memory output builer, such as a framebufler
158 of a display device (not shown). The display device
could include, for example, a display including an array of
pixels, such as a computer monitor or a printer.

The downsampling and writeout unit 156 downsamples
the fragment data stored in the tile bufler 154 to the
appropriate resolution for the output butler and device, such
that an array of pixel data corresponding to the pixels of the

10

15

20

25

30

35

40

45

50

55

60

65

12

output device 1s generated. This results 1n output values 1n
the form of pixels for output to the output framebutler 158.

In examples, the downsampled fragment data may repre-
sent a lower resolution version of an 1image than an output
display device 1s capable of displaying. In such cases, the
lower resolution version of the image (which for example
corresponds to the first version of the image discussed with
reference to FIG. 1), may be processed using the super-
resolution 1mage processing methods described herein. In
this way, a second version of the image with a greater
resolution may be generated.

Once a tile of the render output has been processed and its
data exported to a main memory for storage, for example to
the frame bufler 158 1n a main memory, the next tile 1s then
processed, and so on, until suflicient tiles have been pro-
cessed to generate the entire render output. The process 1s
then repeated for the next render output and so on.

As explained above, a graphics processing pipeline simi-
lar to the graphics processing pipeline 132 of FIG. 4 may be
arranged to perform deferred shading. FIG. 5 illustrates
schematically an example of a deferred shading process.
Elements of FIG. 5 which are similar to corresponding
clements of FIG. 4 are labelled using the same reference
numerals but incremented by 100; corresponding descrip-
tions are to be taken to apply.

In a forward rendering process, each of a series of vertices
are independently processed using various shader stages of
a graphics processing pipeline. This includes the application
of lighting to each of the vertices (and fragments) separately,
which 1s computationally expensive, especially as some of
these vertices may not be present in the final rendered 1image
(e.g. if they are occluded by other vertices).

However, 1n a deferred shading process (which 1s some-
times referred to as “deferred rendering”), lighting 1s applied
at a later stage in the graphics processing pipeline. This 1s
shown 1n FIG. 5. In FIG. 5, three vertices V1, V2, V3 are
processed using various shader stages of a graphics process-
ing pipeline. Three shader stages (a vertex shader 234, a
geometry shader 242 and a fragment shader 248) are shown
in FIG. 5. However, 1t 1s to be appreciated that other shader
stages (such as those shown 1n FIG. 4) may also be present
1N SOme cases.

In FIG. §, the lighting 1s deferred to a later stage. Lighting
of fragments for example involves determiming a shading to
be applied to the fragments to give the effect of light falling
on a surface of the fragments. In order to defer the appli-
cation of lighting in this way, deferred shading involves
performing a first pass 1 which no light shading 1s per-
formed. The first pass of a deferred shading process 1is
sometimes referred to as a geometry pass, and typically
involves the generation of data that may be used subse-
quently for computation of lighting present at a graphics
clement. The data generated 1s for example geometry data
representative ol at least one geometry feature associated
with a graphics element, such as a fragment (which for
example includes a pixel to be rendered). A geometry feature
for example relates to a position, angle or surface feature
associated with a graphics element. In examples, the geom-
etry data represents at least one of a depth, texture or surface
normal of a graphics element such as a pixel.

A depth for example corresponds to a depth of the pixel
with respect to a reference plane or reference position, such
as a position associated with a camera (i1 the 1mage 1s to be
rendered as 1 captured by the point of view of the camera).
A depth 1s for example a distance between the pixel and the

US 10,909,659 B2

13

reference plane or reference position. Such a distance may
be taken 1n a direction perpendicular to the reference plane,
for example.

A texture, which 1s typically two dimensional, may be
applied or mapped onto the surface of a shape or polygon,
which 1s for example three dimensional, before being ren-
dered by the graphics processing pipeline. This generally
allows more realistic or detailed 1mages to be rendered. For
example, detail on an object may be generated by applying
a texture to a set of graphjcs primitives, such as polygons,
representing the object, to give the object the appearance of
the texture. A resolution of a texture may be diflerent from
the resolution of the pixels of a display device for displaying,
the rendered 1image. For example, a size of texture elements,
sometimes referred to as texels (which may represent fea-
tures or characteristics of the texture, such as a color or
luminance value) may differ from a pixel size. Thus, there
may not be a one-to-one mapping between a pixel and a
texel. For example, one pixel may correspond to multiple
texels or vice versa. However, a texture mapping process,
which may be controlled by the fragment shader 238, may
be used to determine a value, for example a texture value, for
a position that corresponds to a pixel. For example, an
interpolation process may be performed by a texture mapper
associated with the fragment shader 238 to calculate the
texture value associated with a given pixel. The texture
value may be stored as part of the geometry data.

A surface normal for example represents an axis that 1s
perpendicular to a surface associated with a given pixel. This
for example indicates an angular inclination of the pixel,
which may aflect the shading present at the pixel.

In FIG. 5, the geometry data 1s stored 1n storage 160, from
where 1t may be subsequently retrieved for further process-
ing. The storage 160 1s typically referred to as a geometry
butler (G-bufler), which may be a local storage of a graphics
processor. In this way, deferred shading may decouple
geometry of a scene to be rendered from lighting of a scene.

Although referred to as a G-bufler, the G-bufler typically
includes a plurality of different buflers or other storage
systems or components. For example, the G-builer may
include one builer or storage area for each geometry feature
to be stored. These bullers may be referred to as multiple
render targets. In the example of FIG. 5, the G-bufler
includes a depth bufler 162, a texture builer 164 and a
surface normal bufler 166, for storing depth data, color
intensity data and surface normal data, respectively. It 1s to
be appreciated that this 1s merely an example, though, and
other G-bullers may include other render targets or more or
tewer render targets.

After performing the geometry pass of the deferred shad-
Ing process, a subsequent, second, pass may be performed.
The second pass may be referred to as a lighting pass. The
lighting, pass may include the calculation of light at pixels
the light affects (such as pixels that are not occluded by other
pixels, or pixels that are suthliciently close to a light source
the scene 1s to be it by). Computation of lighting at pixels
by a given light source that are unatfected by the light source
may be omitted, reducing the number of computations to be
performed. This therefore allows complex lighting to be
performed 1n a less computationally intensive manner.

In FIG. 5, lighting 168 1s applied to the multiple render
targets stored in the G-bufler 160 to calculate an output
render target 170. The render target 170 for example repre-
sents an output image (or 1image {fragment). In other words,
the render target 170 may correspond with the pixel intensity
data for a first version of an 1image, and may therefore store
pixel intensity values for pixels of the first version of the

10

15

20

25

30

35

40

45

50

55

60

65

14

image. In this way, the geometry data stored in the G-builer
160 (which 1s an example of feature data) may be used to
generate the pixel intensity data.

As explained with reference to FIG. 2, super-resolution
image processing may then be performed to increase a
resolution of the first version of the image. For example, the
pixel intensity data and the geometry data of the G-butler (or
a portion of the geometry data) may be processed using a
machine learning system such as that of FIG. 1 to perform
the super-resolution 1mage processing.

FIG. 6 1s a schematic diagram of internal components of
a computing device 172 for use with the methods described
herein. Features of FIG. 6 that are the same as corresponding
features of the previous Figures are labelled with the same
reference numerals; corresponding descriptions are to be
taken to apply.

The computing device 172 1s for example any electronic
device with suitable processing capabilities to implement the
super-resolution 1mage processing methods described
herein. The computing device 172 may be or include,
amongst others, a cell phone, 1.e. a mobile phone, for
example a smartphone, a tablet, laptop or personal computer,
a personal digital assistant, as well as various other elec-
tronic devices such as a game console. In the example of
FIG. 6, the computing device 172 1s arranged to perform
super-resolution 1mage processing using feature data gener-
ated as part of a graphics processing pipeline such as those
described with reference to FIGS. 4 and 5.

The computing device 172 includes a processor system
174, which i1s arranged to implement various processing
methods. Components of the processor system 174 may be
communicatively coupled via at least one bus, which may
have a limited bandwidth. Operations performed by the
processor components may be carried out by hardware
and/or soitware. Each of the processor components may be
implemented using machine readable instructions and suit-
ably programmed or configured hardware, such as circuitry.
Each of the processor components can include a micropro-
cessor, microcontroller, processor module or subsystem,
programmable integrated circuit, programmable gate array
or other computing device. The processor components may
comprise multiple co-located processors or multiple dispa-
rately located processors. In some examples, the processor
system 174 comprises computer-useable volatile and/or
non-volatile memory configured to store information and/or
instructions for the processor components, which may be
considered to correspond to local storage of the processor
system 174. The computer-useable volatile and/or non-
volatile memory may be coupled with the bus. The com-
puter-useable memory may comprise random access
memory (RAM) and/or read-only memory (ROM). In the
example of FIG. 6, the processor system 174 includes a main
processor of the computing device 172 (sometimes referred
to as a central processing unit (CPU)), and the GPU 128.
However, this 1s merely an example.

The GPU 128 may comprise a greater number of cores or
processing units than the number of cores i the CPU. Each
of the cores of the GPU 128 may, individually, be relatively
slow and/or unsophisticated compared to any of the cores of
the CPU. A given core of the GPU 128 may therefore be less
suitable for performing complex computational tasks com-
pared with a given core of the CPU. However, the relatively
large number of cores in the GPU 128 enables certain
computational tasks, for example tasks with a relatively high
degree of parallelism, to be performed more efliciently by
the GPU 128 than by the CPU since a relatively large

number of processes may be carried out 1n parallel by the

US 10,909,659 B2

15

GPU 128. For example, the GPU 128 may perform certain
image-related computational tasks more efliciently than the
CPU, such as graphics rendering. The processor system 174
may form part of or include a system on a chip (SoC)
arrangement.

In FIG. 6, an application 124 (such as a game or other
application for which graphics are to be generated) is
executed using the processor system 174. As explained with
reference to FIG. 3, the application 124 generates API calls
that are interpreted by the driver 130 for the GPU 128. The
driver 130 1s also executed using the processor system 174.
The driver 130 generates appropriate commands to the GPU
128 to generate the graphics output requested by the appli-
cation 124.

To generate the appropnate commands for the GPU 128,
the dniver 130 may request the use of data stored 1n a storage
system 176 of the computing device 172. The storage system
176 may be a random access memory (RAM) such as
DDR-SDRAM (double data rate synchronous dynamic ran-
dom access memory). In other examples, the storage system
176 may be or include a non-volatile memory such as Read
Only Memory (ROM) or a solid state drive (SSD) such as
Flash memory. The storage system 176 1n examples may
include turther storage devices, for example magnetic, opti-
cal or tape media, compact disc (CD), digital versatile disc
(DVD) or other data storage media. The storage system 176
may be removable or non-removable from the computing
device 172. In the example of FIG. 6, the storage system 176
1s a main memory of the computing device 172, which may
be referred to as a primary memory. The storage system 176
may be an external memory, in that the storage system 176
1s external to the processing system 174. For example, the
storage system 176 may include ‘off-chip” memory. The
storage system 176 may have a greater storage capacity than
storage of the processor system 174, which may be “on-
chup” storage. Control of the flow of data between the
processor system 174 and the storage system 176 may be
controlled by a memory controller, which may include a
dynamic memory controller (DMC).

In FIG. 6, the storage system 176 includes first storage
178 for storing assets for use 1n the generation of graphics,
such as texture maps. The storage system 176 also includes
second storage 180 for storing a data structure for use in
storing commands generated by the driver 130, which may
subsequently be retrieved by the GPU 128.

The GPU 128 generates an 1image based on the mnstruc-
tions received from the driver 130. In the example of FIG.
6, the GPU 128 1s arranged to use deferred rendering. The
geometry data generated using a geometry pass of a deferred
rendering process 1s stored 1n local storage 182 of the GPU
128, which 1s for example “on-chip” memory. The geometry
data 1s subsequently retrieved from the local storage 182 of
the GPU 128 during the lighting pass of the deferred
rendering process to generate the pixel intensity data.

The pixel intensity data in the arrangement of FIG. 6 1s
representative of intensity values of at least one color
channel of an 1image to be rendered (which may be referred
to as a first version of an 1image). In FIG. 6, the image to be
rendered 1s a color image, with three color channels: red,
green and blue. Hence, 1n this case, the pixel intensity data
represents intensity values of red, green and blue color
channels.

The pixel intensity data i1s stored in a low resolution
framebuller 184 of the storage system 176. Although
referred to as a bufler, it 1s to be appreciated that, in other
examples, the low resolution framebufler 184 may be
another type of storage such as a cache.

10

15

20

25

30

35

40

45

50

55

60

65

16

The pixel intensity data 1s subsequently retrieved from the
low resolution framebufler 184 by a neural network accel-
crator (NNA) 186 and 1s processed 1n conjunction with the
feature data (in this case, geometry data) obtained from the
storage 182 of the GPU 128 to perform super-resolution
image processing to mcrease a resolution of the first version
of the image from a first resolution to a second resolution
that 1s greater than the first resolution. An NNA 1s a
processor dedicated to implementing the inference phase of
a neural network. In this example, the NNA 182 1s config-
ured to implement a neural network which 1s trained to
perform super-resolution 1mage processing methods, such as
those described herein. In other examples, though, a neural
network may be implemented using a more general proces-
sor, such as the CPU or GPU 128. Alternatively, super-
resolution 1mage processing may be performed using a
different machine learning system than a neural network,
which may be performed using a dedicated processor or a
more general processor.

Second 1image data representative of the higher resolution
version of the image (which may be referred to as a second
version ol the image) 1s stored 1n a high resolution frame-
buffer 188. As for the low resolution framebufler 184, 1n
other examples, the high resolution framebuiler 188 may be
different type of storage, such as a cache. It 1s to be
appreciated that, in some cases, a framebuiler may store
image data representative of a static 1mage rather than data
representative of a frame of a moving image, such as a
video.

The second version of the image may be displayed on a
display device 190 of the computing device 172. In FIG. 6,
the display device 190 1s internally coupled to the computing
device 172, with the display device 190 forming part of the
computing device 172 1tsell. For example, the display device
190 may be a display screen of a computing device 172 such
as a smartphone; tablet, laptop or desktop computer; or
personal digital assistant. Alternatively, the display device
190 may be an external device coupled to the computing
device 250, for example a television screen or a computer
monitor coupled to a laptop, desktop computer or game
console via a High-Definition Multimedia Intertace (HDMI)
cable. The display device 190 may be any suitable display
device such as a transmissive or transilective display device
such as liquid crystal display (LCD) device, an electrowet-
ting display device or an electrophoretic display device.
Alternatively, the display device may be a display device in
which pixels or picture elements of the display device
generate light, such as an organic light emitting diode
(OLED) display device or a plasma display device.

In FIG. 6, the display device 190 1s instructed to display
the second version of the image from the high resolution
framebufler 188 by a display controller 192 of the processor
system 174. It 1s to be appreciated, though, that in other
examples, the display controller 192 may receive the second
image data directly after generation (1n this case by the NNA
186) without the second 1image data having first been stored
in, and retrieved from, the storage system 176. The second
version of the image may be stored in local storage of the
display device 190 (1n this example, a display device frame-
bufler 194) prior to being displayed by the display device
190 (although this need not be the case 1n some examples).
For example, 1n FIG. 6, the application 124 1s a game, and
the second version of the image 1s a frame of the game.
Frames of the game may be stored temporarily in the display
device framebufler 194 and displayed at an approprate
frame rate (which may differ from a rate at which the frames
are rendered by the graphics processor 128 or a rate at which

US 10,909,659 B2

17

super-resolution 1mage processing 1s performed by the neu-
ral network accelerator 186). It 1s to be appreciated that an
image as referred to herein may correspond to a still image
or to a frame of a video. A video typically includes a series
of frames (each of which corresponds to a still 1mage), 5
which may be shown sequentially to give the visual impres-
sion of a moving 1mage. In other examples, the NNA 186
tetches the first version of the image from the low resolution
framebufler 184 and performs the super-resolution image
processing as the first version of the 1image 1s acquired by a 10
display processor of or coupled to the display device 190.
So, the second version of the image (which 1s for example
a higher resolution image) 1s generated and consumed by the
display processor on-the-fly 1n this example. In such cases,
the NNA 186 may form part of the display processor. 15
Alternatively, the NNA 186 may form part of the display
device 190 but may nevertheless be coupled to the display
processor, or the super-resolution 1mage processing may be
performed by a different component than a NNA. Genera-
tion of the second version of the image 1n this way 1s 20
tacilitated by the fact that a computation rate of the NNA
186 (or other processor to perform the super-resolution
image processing) and a display processor image display
rate are typically deterministic and may be determined prior
to display of images by the display device 190. 25

The components of the computing device 172 i the
example of FIG. 6 may be interconnected using a systems
bus. This allows data to be transierred between the various
components, for example between the processor system 174
and the storage system 176, between the processor system 30
174 and the display device 190 or between the storage
system 176 and the display device 174. The computing
device 172 may include appropriate interfaces to enable the
transier of data between the various diflerent components, as
the skilled person will appreciate. The computing device 172 35
of FIG. 6 may also include a network interface for receiving
data, such as 1image data, from a server device. The network
interface of the computing device 172 may include software
and/or hardware components, such as a virtual network
interface, an Ethernet port, a software driver and/or com- 40
munications stack interacting with network hardware.

FIG. 7 shows a graphics processor 228 that may be used
in a computing device such as the computing device 172 of
FIG. 6. In the example of FIG. 7, the graphics processor 228
itsell 1s configured to implement a machine learning system 45
to perform super-resolution 1mage processing. In this case,
the graphics processor 228 includes a neural network accel-
erator 195, which 1s arranged to implement a neural network
such as those described above to increase a resolution of an
image. The neural network accelerator 195 1 FIG. 7 forms 50
part of a shader core 196 of the graphics processor 228. The
shader core 196, which may be considered to correspond to
a shader processing unit, 1s arranged to implement 1nstruc-
tions corresponding to a fragment shader stage of a graphics
processing pipeline. For example, the shader core 196 may 55
be arranged to perform lighting 168 1n a deferred shading
process such as that of FIG. 5, 1n addition to other aspects
performed by the fragment shader 238. Hence, the shader
core 196 may implement both generation of feature data (for
example during a geometry pass of a deferred shading 60
process) and subsequent super-resolution 1mage processing,
using the feature data and pixel intensity data generated by
the shader core 196. The pixel intensity data generated by
the shader core 196 may be stored temporarily in local
storage 197 of the shader core 196. This may facilitate the 65
retrieval of the pixel itensity data for subsequent use by the
neural network accelerator 1935 to perform super-resolution

18

image processing. For example, 1t may be more computa-
tionally eflicient to retrieve data from local storage rather
than from external storage.

A processing system including a graphics processor 228
such as that of FIG. 7 may omit a separate other processor
for performing super-resolution 1mage processing (such as
the neural network accelerator 186 of FIG. 6).

FIG. 8 shows a further example of a computing device
372 that may be used to perform super-resolution image
processing. Features of FIG. 8 that are similar to correspond-
ing features of FIG. 6 are labelled with the same reference
numeral but incremented by 200. Corresponding descrip-
tions are to be taken to apply.

In FIG. 8, super-resolution image processing 1s applied to
an 1mage obtained from a video decoder 193. For example,
the computing device 372 of FIG. 8 may be used to increase
a resolution of a standard definition (SD) video for display
on a 4K display device, which for example has a horizontal
display resolution of approximately 4,000 pixels. In this
case, the first version of the at least part of the image (for
which a first resolution 1s to be increased) corresponds to at
least a portion of a frame of a video. The video in this
example has previously been encoded using a suitable video
encoding process. Encoding of the video for example com-

presses the video, to allow to 1t be more eflicient stored or
transterred. Suitable video codecs are the H.264 (MPEG-4

AVC or Advanced Video Coding) or H.265 (MPEG-H Part
2 or High Efliciency Video Coding) video compression
standards, although these are merely examples. The video
decoder 198 1s arranged to decode the video, using the
appropriate video codec.

In the example of FIG. 8, the video data decoded by the
video decoder 193 includes feature data, which may be used
subsequently to perform super-resolution 1image processing.
In this way, both the pixel intensity data and the feature data
may be obtained from the video decoder 193. For example,
the feature data may be depth data representative of a depth
of a given pixel with respect to a particular reference frame
or point, such as a camera position of a camera used to
capture the video. This may be the case where the video 1s
intended to be viewed as a three-dimensional stereoscopic
video (sometimes referred to as a 3D film). A typical 3D film
1s based on stereoscopic techniques, in which two oilset
two-dimensional (2D) videos are displayed separately to the
left and right eye of a viewer. Once combined by the brain,
these 2D videos give the appearance of 3D depth.

The computing device 372 of FIG. 8 also includes a
processor system 374 and a storage system 376. The pro-
cessor system 374 may be similar to the processor system
174 of FIG. 6 and for example includes a graphics processor
and a central processor. The computing device 372 of FIG.
8 also includes a dynamic memory controller (DMC) 198
which may be used to control access to the storage system
376.

The computing device 372 of FIG. 8 includes a neural
network accelerator (NNA) 386 which 1s arranged to per-
form super-resolution 1mage processing. The NNA 386
receives the first image data representative of a first version
of an 1mage for which a resolution 1s to be increased from
the video decoder 193 and generates second 1mage data
representative of a second version of the image with a higher
resolution than the first version of the image. The first image
data may be received directly from the video decoder 193 or
may be stored first in the storage system 376 and subse-
quently retrieved from the storage system 376. As explained
above, the first image data includes pixel intensity data and
feature data.

US 10,909,659 B2

19

In the example of FIG. 8, the NNA 386 1s a separate
component, which may for example be implemented 1n
hardware. However, in other examples, a processor or
processors arranged to i1mplement the super-resolution
image processing (such as an NNA) may mstead or addi-
tionally form part of one of the other components of the
computing device 372, such as the processor system 374 or
the display device 390.

The components of the computing device 372 in the
example of FIG. 8 are interconnected using a systems bus
199. This allows data to be transferred between the various
components. The bus 199 may be or include any suitable

interface or bus. For example, an ARM® Advanced Micro-
controller Bus Architecture (AMBA®) interface, such as the

Advanced eXtensible Interface (AXI), may be used.

In examples such as that of FIG. 8, 1n which an image for
which a resolution to be increased 1s to be displayed as part
of a stereoscopic 1mage (which may be perceived as 3D by
a viewer), the super-resolution i1mage processing may
include increasing the resolution of two different views of
the same 1image. In such examples, the first version of the at
least part of the 1mage represents a first view of the at least
part of the image, the pixel intensity data 1s first pixel
intensity data representative of the intensity value of the at
least one color channel of the pixel n the first view of the
at least part of the 1mage the feature data 1s first feature data
representative of a depth of the pixel 1n the first view of the
at least part of the image. The first view for example
corresponds to a left-eye view of the image, from a position
corresponding to a left eye of a viewer. In these cases,
super-resolution 1image processing may be applied to third
image data representative of a second view of the at least
part of the image with a third resolution, to increase a
resolution of the second view of the at least part of the image
from the third resolution to a fourth resolution. The second
view for example corresponds to a different view than the
first view, such as a right-eye view of the image. The third
image data may be similar to the first image data but from
the perspective of the second view rather than the first view.
For example, the third image data may include second pixel
intensity data representative of an intensity value of at least
one color channel of a pixel 1n the second view of the at least
part of the 1mage and second feature data representative of
a depth of the pixel 1n the second view of the at least part of
the 1mage. In such cases, the third image data 1s processed
using the machine learming system to generate fourth image
data representative of a second version of the second view
of the at least part of the image with a fourth resolution
greater than the third resolution.

After generating higher resolution versions of two differ-
ent views of the same 1mage, these versions may be sent to
the display device 390. For example, the second image data
and the fourth image data may be sent to the display device
390 to display a stereoscopic version of the at least part of
the 1mage.

FIGS. 9q and 96 provide a further example of generation
of feature data. In FIGS. 94 and 954, the feature data 1s
generated as part of a virtual reality (VR) 1image processing
pipeline. FIGS. 9a and 954 illustrate schematically a display
screen 400, for displaying a VR 1mage. The display screen
400 may for example form part of a head-mounted display
(HMD). A VR system 1s for example a system 1n which a
computer-generated visualization 1s visible to a user rather
than the real world. For example, the HMD may be designed
to wrap around the head of a user so the user sees the interior
of the HMD rather than the surrounding space.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 9a illustrates an object 402 to be displayed by the

display screen 400 with the user’s head 1n a first position
with respect to the display screen 400. FIG. 9a illustrates the
same object 402 to be displayed by the display screen 400
but with the user’s head 1n a second position with respect to
the display screen 400. In FIG. 9a, a pixel 404 of the display
screen 400 displays a background of a scene. However, 1n
FIG. 95, the pixel 404 of the display screen 400 displays the
object 402, which corresponds to a foreground of the scene.
Hence, as the user’s head position changes, the image to be
displayed on the display screen 400 typically also changes,
to compensate for movement of the user, so as to give the
illusion that the user 1s 1immersed in the environment dis-
played on the display screen 400. It can, however, be
diflicult to compensate for movement of the user, which may
be rapid compared to a rate at which new frames are
generated by a graphics processor. Typically, a refresh rate
of 90 to 100 frames per second 1s desirable to avoid the user
percerving a lag in the image displayed, which can cause the
user to sufler from motion sickness. However, a typical
graphics processing pipeline renders images at a rate of 30
frames per second.
To update the images sufliciently rapidly to avoid the user
suflering from motion sickness, a process referred to as
inbetweening (or tweening) may be used to generate inter-
mediate frames between the frames generated by the graph-
ics processing pipeline, to increase the refresh rate (at which
frames are refreshed on the display screen 400) to a suili-
ciently high rate. Tweening relies on predicting where a user
will be looking 1n the near future 1n order to generate an
appropriate intermediate frame to compensate for motion of
the user relative to the display screen 400.

FIG. 10 1s a flow diagram 1illustrating features of a VR
image processing method, that may be performed as part of
a VR 1mage processing pipeline. FIG. 10 shows an example
of tweening.

At item 406 of FIG. 10, a first frame 1s generated.
Generation of the first frame 1n this case includes generating
first 1mage data using a graphics processing system, for
example as described with reference to any of FIGS. 5 to 7.
The first image data therefore includes pixel intensity data
representative of an intensity value of at least one color
channel of a pixel of a first version of an 1mage, and feature
data representative of a value of at least one non-intensity
feature associated with the pixel. In this case, the feature
data includes depth data representative of a depth of the
pixel with respect to a reference plane.

A Turther frame 1s generated at item 408 of FI1G. 10. In this
case, further image data 1s associated with the further frame.
Such further image data 1s generated using the graphics
processing system, 1n a similar way to generation of the first
image data in this example. The further frame i1s to be
displayed subsequently to the first frame. For example, the
further frame may be the frame generated by the graphics
processing system immediately after generation of the first
frame. However, 1n other examples, the graphics processing
system may generate one or more other frames between
generation of the first frame and generation of the further
frame.

In this example, a rate at which the first and further frames
are generated corresponds to a maximum rendering rate of
the graphics processing system. To generate frames at a
higher rate than this, the method of FIG. 10 instead involves
interpolating the first and further frames to generate at least
one intermediate frame (in this example, an intermediate
frame). This 1s shown at item 410 of FIG. 10. In the example
of FIG. 10, generation of intermediate image data associated

US 10,909,659 B2

21

with the mtermediate frame, which 1n this example involves
interpolation, includes use of at least the depth data gener-
ated during generation of the first image data and head
motion data received from a head-mounted display (HMD)
for displaying the intermediate frame.

Headtracking may be used to determine a position of the
user’s head at a relatively high rate. For example, a head
position of a user may be calculated at around 120 frames
per second to determine which part of a display screen of the
HMD the user 1s looking at. Headtracking may therefore be
used to generate the head motion data used to generate the
intermediate 1image data 1n this example.

In FIG. 10, asynchronous time warp (ATW) 1s used to
generate the intermediate 1image based on head tracking
information (for example as represented by the head motion
data), which may be displayed as an intermediate frame
between the two frames generated by the graphics process-
ing pipeline (in this case, the first and further frames). In this
case, the mtermediate 1mage 1s mterpolated from the first
and further frames, but taking into account motion of the
user. However, 1n other examples, other methods than ATW
may be used to generate an intermediate frame that also
accounts for user motion. For example, asynchronous space
warp (ASW) may instead or additionally be used. Typically,
ASW uses depth data associated with pixels of an 1image to
be displayed, to perform ASW i1mage interpolation appro-
priately.

The depth data generated during generation of the first
frame may be used as feature data for super-resolution image
processing, as discussed with reference to other examples, in
addition to being used for tweening. Hence, the super-
resolution 1mage processing in such cases may use pre-
existing depth data that would nevertheless be generated for
other purposes (in this case, tweening). The super-resolution
image processing may therefore be more etlicient and use
fewer processing and/or memory resources than in other
cases 1n which the feature data i1s generated specifically for
super-resolution 1image processing and 1s not used for other
pUrposes.

In FIG. 10, the first frame 1s displayed, using the HMD,
at item 412. Item 412 also includes displaying, using the
HMD, the intermediate frame, subsequently to the first
frame, and the further frame, subsequently to the interme-
diate frame. It 1s to be appreciated that some or all of the
first, intermediate and/or further frames may be higher
resolution frames. For example, the first frame and the
turther frame may undergo super-resolution 1image process-
ing as described with reference to other examples. The
generation of the imtermediate frame typically involves
interpolation of 1mage data associated with the first and
further frames. In such cases, the first and further frames
may have undergone super-resolution 1mage processing
before interpolation of the first and further frames to gen-
crate the intermediate frame. In this way, the intermediate
frame may also have a higher resolution than 11 interpolated
from the first and further frames prior to super-resolution
Image processing.

In examples such as FIG. 10, at least the first and further
frames are typically stored temporarily before being dis-
played. This provides suflicient time to generate intermedi-
ate Irames belfore displaying the first, intermediate and
turther frames are displayed, at a higher frame rate than
generation of the first and further frames. It 1s to be appre-
ciated that the intermediate frame may also be temporarily
stored. In this way, a series of frames may be pre-emptively
generated and stored, to reduce the risk of a delay 1n display

10

15

20

25

30

35

40

45

50

55

60

65

22

of the series of frames, which may otherwise occur i the
series of frames are generated at a slower rate than a desired
display refresh rate.

In other examples, feature data for super-resolution 1mage
processing may be generated as part of an augmented reality
(AR) 1mmage processing pipeline. With AR, a real-world
space 1s typically visible to a user, but with additional
information (such as an 1mage) also visible, for example as
an overlay. FIG. 11 shows such an example. In FIG. 11, an
image 500 1s to be displayed within a real-world scene 502,
which includes three objects 504a, 504¢, 504¢. In order to
display the image 500 with an appropriate position with
respect to the other objects 504a-504¢ of the scene 502,
object depth information may be used. For example, based
on the depth of the image 500, 1t may be determined whether
the 1mage (or parts of the image) should be occluded by
real-world objects 504a-504¢ 1n the scene 502. This can be
seen 1n FIG. 11, 1n which the two rightmost points of the
image 500 (which 1n this case 1s an 1mage of a star) are
behind the third object 504¢ and are therefore occluded by
the third object 504¢. Hence, pixels corresponding to the two
rightmost points of the image 500 may not be rendered by
a display arranged to display the image 500. However, the
remainder of the image 500 1s in front of the first and second
objects 504a, 5045 of the scene 502 and are therefore
displayed by the display.

Super-resolution 1mage processing may use depth data
generated by an AR 1mage processing pipeline as feature
data. For example, such depth data may represent a depth of
a pixel with respect to a reference plane. In such cases, an
occlusion of the pixel may be determined using the depth
data to generate an appropriate AR image for display. This
depth data may also be used by the machine learning system
(1n conjunction with the pixel intensity data) to generate the
second 1mage data.

Determining an occlusion of a pixel may include gener-
ating a depth map of a scene 502 onto which the at least part
of the image 500 1s to be projected (which 1s for example the
same at least part of the image processed using super-
resolution 1mage processing). It may then be determined,
based on the depth data and the depth map, whether the pixel
1s occluded by at least a portion of a scene 502.

The depth map may be generated 1n various different
ways. For example, an 1image of the scene 502 may be
captured using a suitable 1image capture device, such as a
camera. Image data representative of the image of the scene
502 may be processed using a further machine learning
system to generate the depth map. For example, a
monodepth neural network may be used to process the
image data to generate the depth map. In other cases, though,
the depth map may be generated using a different method,
such as using a depth sensor, such as a time-oi-tlight sensor.
A time-of-flight sensor typically includes a light source,
such as an infrared light source. The time-of-flight sensor
measures a time for light emitted from the light source to
return to a light sensor. As the speed of light 1s constant, the
distance between the time-of-flight sensor can be determined
from the measured time. It 1s to be appreciated that, 1n other
examples, other depth sensors may be used instead of (or as
well as) a time-of-tlight sensor. For example, a depth sensor
using the principles of stereo triangulation may be used, in
which 1mages of a scene are captured from at least one
camera in a plurality of different positions. Other depth
sensors include those based on sheet of light triangulation,
in which a scene 1s illuminated with a sheet of light and a
depth of points 1n the scene 1s determined based on the sheet
of light as retlected by the scene, or structured light, 1n which

US 10,909,659 B2

23

a scene 1s 1lluminated using a predetermined light pattern
and a depth of points 1n the scene 1s determined based on an
image of light reflected by the scene.

FIG. 12 1llustrates schematically a computing device 672
for use 1 an AR 1mage processing pipeline. The computing
device 672 of FIG. 12 may be used to obtain depth data for

use 1 AR i1mage processing and super-resolution image
processing, for example as described with reference to FIG.
11. Features of FIG. 12 which are similar to corresponding
teatures of FIG. 8 are labelled with the same reference
numeral but prefaced by a “6” rather than a “1” or a “3”.
Corresponding descriptions are to be taken to apply.

In FIG. 12, rather than obtaining feature data from a video
decoder, the feature data 1s 1nstead obtained from an image
signal processor 600. The image signal processor (ISP) 600
1s coupled to an i1mage sensor 602 via a camera-serial
interface 604. The ISP 600 may perform 1nitial processing of
image data to prepare the image for display. For example,
the ISP 600 may perform saturation correction, renormal-
ization, white balance adjustment and/or demosaicing,
although this 1s not to be taken as limiting.

In FIG. 12, a depth map may be obtained 1n two diflerent
ways: either via the neural network accelerator (NNA) 606
of the ISP 600 or via a time-oi-tlight (ToF) sensor 608. The
NNA 606 1s arranged to obtain a depth map from a captured
image of a scene, for example by processing the image using
a further machine learning system such as a monodepth
neural network. Typically, though, a computing device may
include solely a ToF sensor or a neural network accelerator
for obtaining a depth map, rather than both.

Depth data representative of a depth of a pixel to be
rendered, for example with respect to a scene captured by
the 1image sensor 602 may for example be generated by the
ISP 600 or by a further processor, such as a processor of the
processing system 674. After obtaining the depth data, the
computing device 672 1s arranged to process the depth data,
along with pixel intensity data (which may be pixel intensity
data of pixels of an AR 1mage to be displayed by the display
device 690), to perform super-resolution 1mage processing
of the AR 1mage to be displayed, 1in a similar way to the
computing device 372 of FIG. 8.

FIG. 13 shows schematically a further example 1n which
super-resolution 1mage processing may be performed. FIG.
13 shows a display device 700 for display an image. The
display device 700 1s viewed by a viewer 702, who 1is
focusing on a target region 704 of the display device 700. As
the attention of the viewer 702 1s focused on the target region
704, reduced 1mage quality will be less noticeable to the
viewer 702 in other regions of the display device 700.
Hence, to reduce processing demands, super-resolution
image processing may be performed solely for at least part
of an 1image which 1s identified as being associated with a
gaze direction of a viewer 702, so that the at least part of the
image 1s a target region 704 of a larger image. In such cases,
the larger 1mage may be divided up into portions and solely
portions associated with the gaze direction of the viewer
may undergo super-resolution 1mage processing.

The gaze direction of the viewer 702 may be determined
using an eye-tracking device. An eye-tracking device may
include one or more eye-tracking sensors configured to track
eye movement and/or determine a gaze location and/or gaze
direction of a viewer of an 1image. The eye-tracking device
may be included in the display device 700 in some
examples. For example, where the display device 700 com-
prises an HMD, the eye-tracking device may form part of

10

15

20

25

30

35

40

45

50

55

60

65

24

and/or be mounted upon the HMD. In other examples,
though, the eye-tracking device 1s separate from the display
device 700.

The above examples are to be understood as 1llustrative
examples. Further examples are envisaged.

In the example of FIG. 1, the CNN 100 1s used to increase
a size of the image between the first version of the image
(1input to the CNN 100) and the second version of the image
(output by the CNN 100), by performing super-resolution
image processing. However, in other examples, the first
version of the image may be increased in size prior to being
input to the CNN 100. For example, the pixel sizes of each
of the pixels of the first version of the image may be
increased so that the overall size of the first version of the
image 1s the same as a desired size of the second version of
the 1mage. Alternatively, the pixel sizes of each of the pixels
of the first version of the 1mage may remain the same, but
new pixels may be generated so that the size of the first
version of the image corresponds to a desired size of the
second version ol the image.

These new pixels may be
generated using any suitable method, such as copying exist-
ing pixel intensity values for neighboring pixels to a new
pixel location, using default or predetermined pixel intensity
values, or using an interpolation process to estimate a pixel
intensity value for a new pixel with a location between two
neighboring existing pixels.

It 1s to be understood that any feature described 1n relation
to any one example may be used alone, or in combination
with other features described, and may also be used in
combination with one or more features of any other of the
examples, or any combination of any other of the examples.
Furthermore, equivalents and modifications not described
above may also be employed without departing from the
scope of the accompanying claims.

What 1s claimed 1s:

1. A method of super-resolution 1mage processing, the
method comprising:

inputting first image data representative of a first version

of at least part of an 1mage with a first resolution to a
machine learning system, the first image data compris-
ng:
pixel intensity data representative of an intensity value
ol at least one color channel of a pixel of the first
version of the at least part of the 1image; and
feature data representative of a value of at least one
non-intensity feature associated with the pixel; and
processing the first image data using the machine learning
system to generate second 1image data representative of
a second version of the at least part of the image with
a second resolution greater than the first resolution.
2. The method according to claim 1, comprising using the
feature data to generate the pixel intensity data.
3. The method according to claim 2, comprising:
retrieving the feature data from storage for processing to
generate the pixel intensity data; and, subsequently,

retrieving the feature data from the storage for processing
using the machine learning system to generate the
second 1mage data.

4. The method according to claim 3, wherein the storage
1s local storage of a graphics processing system.

5. The method according to claim 2, wherein the feature
data comprises geometry data representative of at least one
geometry feature associated with the pixel and the method
COmprises:

generating the geometry data using a geometry pass of a

deferred shading process; and, subsequently,

US 10,909,659 B2

25

generating the pixel intensity data by processing the
geometry data using a lighting pass of the deferred
shading process.
6. The method according to claim 1, wherein the at least
one non-intensity feature 1s at least one of:
a depth of the pixel with respect to a reference plane;

a texture associated with the pixel; or

a surface normal of a surface associated with the pixel.

7. The method according to claim 1, wherein the machine
learning system 1s a convolutional neural network (CNN).

8. The method according to claim 1, wheremn the first
image data represents a first number of characteristics of the
first version of the at least part of the image and the second
image data represents a second number of characteristics of
the second version of the at least part of the image, the first
number of characteristics being larger than the second
number of characteristics.

9. The method according to claim 8, wherein the second
number of characteristics corresponds to a number of color
channels of the second version of the at least part of the
image.

10. The method according to claim 1, wherein the at least
part of the 1mage 1s a target region of a larger image, which
target region 1s 1dentified as being associated with a gaze
direction of a viewer.

11. The method according to claim 1, wherein the feature
data 1s generated as part of a virtual reality (VR) 1mage
processing pipeline or an augmented reality (AR) image
processing pipeline.

12. The method according to claim 1, wherein the feature
data 1s generated as part of a virtual reality (VR) image
processing pipeline, the feature data comprises depth data
representative of a depth of the pixel with respect to a
reference plane, and the VR image processing pipeline
COmprises:

generating the first image data using a graphics processing,

system, wherein the first image data 1s associated with
a first frame and generating the first image data com-
prises generating the depth data;

generating further image data using the graphics process-

ing system, wherein the further image data 1s associated
with a further frame, to be displayed subsequently to
the first frame; and

generating intermediate 1mage data associated with an

intermediate frame, to be displayed between display of
the first frame and display of the further frame, wherein
generating the intermediate 1image data comprises use
of the depth data and head motion data received from
a head-mounted display for displaying the intermediate
frame.

13. The method according to claim 1, wherein the feature
data comprises depth data generated as part of an augmented
reality (AR) 1image processing pipeline, which depth data
represents a depth of the pixel with respect to a reference
plane, and the method comprises determining an occlusion
of the pixel using the depth data.

14. The method according to claim 13, wherein determin-
ing the occlusion of the pixel comprises:

generating a depth map of a scene onto which the at least

part of the 1mage 1s to be projected; and

determining, based on the depth data and the depth map,

whether the pixel 1s occluded by at least a portion of the
scene.

15. The method according to claim 14, comprising at least
one of:

a) capturing an image of the scene; and

5

10

15

20

25

30

35

40

45

50

55

60

65

26

processing 1image data representative of the image of the
scene using a further machine learning system to gen-
crate the depth map; or
b) generating the depth map using a depth sensor.
16. The method according to claam 1, wherein the first
version of the at least part of the image corresponds to at
least a portion of a frame of a video and the method
comprises obtaining the pixel intensity data and the feature
data from a video decoder.
17. The method according to claim 1, wherein:
the first version of the at least part of the image represents
a first view of the at least part of the image;

the pixel intensity data 1s first pixel intensity data repre-
sentative of the intensity value of the at least one color
channel of the pixel in the first view of the at least part
of the image;

the feature data 1s first feature data representative of a

depth of the pixel 1n the first view of the at least part of
the 1mage; and

the method comprises:

inputting third image data representative of a second
view of the at least part of the image with a third
resolution to the machine learning system, the third
image data comprising:

second pixel intensity data representative of an inten-
sity value of at least one color channel of a pixel in
the second view of the at least part of the 1mage; and

second feature data representative of a depth of the
pixel i the second view of the at least part of the
image; and

processing the third image data using the machine leamn-

ing system to generate fourth image data representative
of a second version of the second view of the at least
part of the image with a fourth resolution greater than
the third resolution.

18. The method according to claim 17, comprising send-
ing the second image data and the fourth image data to a
display, for displaying a sterecoscopic version of the at least
part of the image.

19. A processing system configured to perform super-
resolution 1mage processing, wherein the processing system
1s configured to:

retrieve, from storage accessible to the processing system,

first 1image data representative of a first version of at

least part of an 1mage with a first resolution, the first

image data comprising:

pixel intensity data representative of an intensity value
ol at least one color channel of a pixel of the first
version of the at least part of the 1image; and

feature data representative of a value of at least one
non-intensity feature associated with the pixel; and

implement a machine learning system to perform the
super-resolution 1mage processing by, upon receipt
of the first image data as an imput, processing the first
image data to generate second 1mage data represen-
tative ol a second version of the at least part of the
image with a second resolution greater than the first
resolution.

20. The processing system according to claim 19, com-
prising a graphics processor configured to:

implement a deferred shading process to generate the

feature data; and
store the feature data 1n local storage of the graphics

Processor,

US 10,909,659 B2
27

wherein the processing system 1s configured to retrieve
the feature data from the local storage for processing
using the machine learning system to generate the
second 1mage data.

% x *H % o

28

	Front Page
	Drawings
	Specification
	Claims

