12 United States Patent

Fit-Florea et al.

US010908873B2

US 10,908,878 B2
Feb. 2, 2021

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC DIRECTIONAL ROUNDING

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

(72) Inventors: Alex Fit-Florea, Los Altos Hills, CA
(US); Boris Ginsburg, Mountain View,
CA (US); Pooya Davoodi, Santa Clara,
CA (US); Amir Gholaminejad, San
Jose, CA (US)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 61 days.

(21) Appl. No.: 16/200,325

(22) Filed: Nov. 26, 2018
(65) Prior Publication Data
US 2020/0167125 Al May 28, 2020
(51) Imnt. CL
GO6I’ 7/499 (2006.01)
GO6l’ 7/483 (2006.01)
(52) U.S. CL
CPC GO6F 7/49957 (2013.01); GO6F 7/483

(2013.01)

(58) Field of Classification Search
CPC .. GO6F 7/49957, GO6F 7/483; GO6F 7/49947;

GO6F 9/30076; GO6F 9/30014; GO6N
3/084; GO6N 3/063

USPC e 708/495
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,373,461 A * 12/1994 Bearden GOO6F 7/485
708/205

6,684,232 B1* 1/2004 Handlogten GOO6F 7/483
708/204

2010/0250635 Al* 9/2010 Osada GO6F 7/5443
708/205

FOREIGN PATENT DOCUMENTS

WO 2018189728 Al 10/2018

OTHER PUBLICATIONS

Gupta et al., “Deep Learning with Limited Numerical Precision,”
Proceedings of the 32nd International Conference on Machine

Learning, vol. 37, 2015, 10 pages.
Courbariaux et al., “Training Deep Neural Networks With Low
Precision Multiplications,” Accepted as a workshop contribution at

International Conference on Learning Representations 2015, 10
pages. Retrieved from arXiv:1412.7024v5 [cs.LG] Sep. 23, 2015.

IEEE Computer Society, “IEEE Standard 754-2008 (Revision of
IEEE Standard 754-1985): IEEE Standard for Floating-Point Arith-

metic,” The Institute of Electrical and Electronics Engineers, Inc.,
Aug. 29, 2008, 70 pages.

(Continued)

Primary Examiner — Tan V Mat

(74) Attorney, Agent, or Firm — Davis Wright Tremaine
LLP

(57) ABSTRACT

A method, computer readable medium, and system are
disclosed for rounding tloating point values. Dynamic direc-
tional rounding 1s a rounding techmque for floating point
operations. A floating point operation (addition, subtraction,
multiplication, etc.) 1s performed on an operand to compute
a floating point result. A sign (positive or negative) of the
operand 1s i1dentified. In one embodiment, the sign deter-
mines a direction in which the floating point result 1s
rounded (towards negative or positive infinity). When used
for updating parameters of a neural network during back-

(Continued)

100

-

110

Recelve two or more floating point
operands

l

120

Generate a floating point result based, at
least in part, on at least one mathematical
operation operating on the two or more
floating point operands

l

130

Round the floating point result based, at
least in part, on at least one of the floating

point operands

US 10,908,878 B2
Page 2

propagation, dynamic directional rounding ensures that
rounding 1s performed in the direction of the gradient.

24 Claims, 11 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

Cloutier et al., “Hardware Implementation of the Backpropagation
without Multiplication,” Proceedings of the Fourth International

Conference on Microelectronics for Neural Networks and Fuzzy
Systems, Sep. 26, 1994, 10 pages.

Extended Furopean Search Report dated Apr. 23, 2020, Patent
Application No. 19211505.3-1203, 11 pages.

Guo, “A survey on methods and theories of quantized neural
networks,” arXiv preprint arXiv:1808.04752, Aug. 13, 2018, 18

pages.
L1 et al., “Training Quantized Nets: A Deeper Understanding,”
Advances 1in Neural Information Processing Systems, Dec. 4, 2017,

18 pages.

* cited by examiner

U.S. Patent Feb. 2, 2021 Sheet 1 of 11 US 10,908,878 B2

100

Recelve two or more floating point

operands
110

Generate a floating point result based, at
least In part, on at least one mathematical

operation operating on the two or more

floating point operands
120

Round the floating point result based, at
least In part, on at least one of the floating

point operands
130

Fig. 14

U.S. Patent Feb. 2, 2021 Sheet 2 of 11 US 10,908,878 B2

140

Mathematical Floating Point f
Operation Operands

Floating Point Operation Unit
145

Floating Point
Result

Rounding Unit

150 .
Rounding Value

Generation Unit
195

Rounding
Value

Rounded Floating Point
Result

Fig. 1B

U.S. Patent

Feb. 2, 2021

Sheet 3 of 11

Zero

+ Sign

- Sign + Sign

Floating point
Result

Fig. 1D

- Sign + Sign

Floating point
Result

Fig. IE

US 10,908,878 B2

U.S. Patent Feb. 2, 2021 Sheet 4 of 11 US 10,908,878 B2

Floating point
Operand Result

Rounding Unit

170 Rounding Value

Generation Unit
199

Rounding
Value

160

Sum

Zero Condition Unit | Select g
175

Floating point
Result

Rounded Floating Point
Result

Fig. 2A

U.S. Patent Feb. 2, 2021 Sheet 5 of 11 US 10,908,878 B2

200

Recelve a floating point result
210

ldentify a sign of an operand provided as an
Input to compute the floating point result
215

Round the floating point result in a direction
of the sign to produce a rounded floating

point result
229

Set the rounded
floating point result to
the floating point result

239

Zero
condition?
230

Output at least one signal based on
the rounded floating point result
240

Fig. 2B

U.S. Patent Feb. 2, 2021 Sheet 6 of 11 US 10,908,878 B2

PPU 300

Front End Unit
315
Scheduler Unit
320

Work Distribution Unit
325

302

304(Y)

mmmmﬂm‘

U.S. Patent Feb. 2, 2021 Sheet 7 of 11 US 10,908,878 B2

To/From XBar 370

GPC 350

Pipeline Manager PROP
410 415

Primitive
Engine
439

Raster Engine

SM] 425
440 ;: |
!l
Iy
DPC 420(V) ____________i; :a
uuuuuuuuuuu ’ :
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm - r
WDX
430
MMU 490
To/From XBar 370 To/From XBar 370

Fig. 44

U.S. Patent Feb. 2, 2021 Sheet 8 of 11 US 10,908,878 B2

To/From
XBar 370
Memory Partition Unit
380
ROP 450

L2 Cache ﬂ) To/From
XBar 370
Memory Interface
4/0

To/From
Memory 304

Fig. 4B

U.S. Patent Feb. 2, 2021 Sheet 9 of 11 US 10,908,878 B2

SM
Instruction Cache 505 440

Scheduler Unit 510(K) r

|
|
|
Dispatch 515 | :
|
M

Register File 520

SFU | LSU
092(M-1) 094(N-1)

Core
250(L-1)

Interconnect Network 580

Shared Memory/L1 Cache 570

To/From
MMU 490

Fig. 5A4

U.S. Patent Feb. 2, 2021 Sheet 10 of 11 US 10,908,878 B2

200

CPU 530

304 | PPU 300 PPU 300 | 304

Parallel Processing Module
229

Fig. 5B

U.S. Patent Feb. 2, 2021 Sheet 11 of 11 US 10,908,878 B2

Main o695
Memory A{
540
nierrace
535 CPU 530
302
SWltch 510
304 | PPU300 | | PPU300 | 304
| NVLink
310

304 | PPU300 | | PPU300 | 304

929

US 10,908,878 B2

1
DYNAMIC DIRECTIONAL ROUNDING

FIELD OF THE INVENTION

The present disclosure relates to rounding numerical
values, and more particularly, to rounding floating point
values.

BACKGROUND

Conventional rounding techniques are defined by the
IEEE (Institute of Electrical and Electronics Engineers)
standard (round to nearest, round towards zero, and round
towards positive infinity, and round towards negative 1nfin-
ity). More recently, stochastic rounding techniques have
been developed that rely on a random value for rounding
floating point numbers. To this end, stochastic rounding
techniques require generating random values. There 1s a
need for addressing these 1ssues and/or other 1ssues associ-
ated with the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1llustrates a flowchart of a method for rounding,
a floating point result, 1n accordance with one embodiment.

FIG. 1B illustrates a block diagram of a system, in
accordance with one embodiment.

FIG. 1C 1illustrates a conceptual diagram of rounding a
floating point result according to a sign, 1n accordance with
one embodiment.

FIG. 1D illustrates a conceptual diagram of rounding a
floating point result according to a sign, 1n accordance with
one embodiment.

FIG. 1E illustrates a conceptual diagram of rounding a
tfloating point result according to a sign, 1n accordance with
one embodiment.

FIG. 2A 1llustrates a block diagram of a rounding unit, in
accordance with one embodiment.

FIG. 2B 1llustrates a flowchart of a method for rounding,
a floating point result, in accordance with one embodiment.

FI1G. 3 1llustrates a parallel processing unit, in accordance
with one embodiment.

FI1G. 4 A 1llustrates a general processing cluster within the
parallel processing unit of FIG. 3, 1n accordance with one
embodiment.

FI1G. 4B illustrates a memory partition unit of the parallel
processing unit of FIG. 3, in accordance with one embodi-
ment.

FIG. 5A 1llustrates the streaming multi-processor of FIG.
4A, 1n accordance with one embodiment.

FIG. 5B 1s a conceptual diagram of a processing system
implemented using the PPU of FIG. 3, 1n accordance with
one embodiment.

FIG. 5C illustrates an exemplary system in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented.

DETAILED DESCRIPTION

FIG. 1A illustrates a flowchart of a method 100 for
rounding a floating point result, 1n accordance with one
embodiment. Although method 100 1s described in the
context of a processing unit, the method 100 may also be
performed by a program, custom circuitry, or by a combi-
nation of custom circuitry and a program. In one embodi-
ment, the method 100 may be executed by a GPU (graphics
processing unit), CPU (central processing unit), or any

10

15

20

25

30

35

40

45

50

55

60

65

2

processor capable of performing arithmetic computations.
Furthermore, persons of ordinary skill 1n the art will under-
stand that any system that performs method 100 1s within the
scope and spirit of embodiments described herein.

At step 110, two or more floating point operands are
received. In one embodiment, the two or more floating point
operands are represented 1n a floating point format compris-
ing a sign, exponent, and a mantissa. In one embodiment, the
two or more floating point operands are specified by a
program instruction. In one embodiment, at least one of the
two or more tloating point operands 1s an expression. In one
embodiment, at least one of the two or more floating point
operands 1s an arithmetic expression. In one embodiment,
the program 1instruction 1s an arithmetic operation instruc-
tion.

At step 120, a tloating point result 1s generated based, at
least 1n part, on at least one mathematical operation oper-
ating on the two or more floating point operands. In one
embodiment, the at least one mathematical operation 1is
specified by a program instruction that includes the two or
more floating point operands. In one embodiment, the math-
ematical operation comprises addition. In one embodiment,
the mathematical operation comprises subtraction. In one
embodiment, the mathematical operation comprises multi-
plication.

At step 130, the tloating point result 1s rounded based, at
least 1 part, on at least one of the floating point operands.
In one embodiment, rounding 1s performed without requir-
ing generation of a random value. In one embodiment, a sign
of one of the floating point operands 1s 1dentified. In one
embodiment, the one of the floating point operands 1is
specified by a program instruction. In one embodiment, the
one of the tloating point operands 1s specified by a position
(e.g., first, second, last) or ordering within a program
instruction and the position 1s fixed or programmable. In one
embodiment, the one of the floating point operands 1is
specified by a setting, and the setting may be fixed or
programmed. In one embodiment, the setting specifies the
first operand 1s the one operand upon which the floating
point result rounding 1s based.

In one embodiment, the tloating point result 1s rounded 1n
a direction corresponding to the sign of one of the floating
point operands. In one embodiment, the floating point result,
generated based on the at least one mathematical operation,
1s rounded 1n a dynamically determined direction, namely
the direction of the sign. In one embodiment, when the sign
1s positive, the floating point result 1s rounded 1n the positive
direction. In one embodiment, when the sign 1s positive, the
floating point result 1s rounded 1n the direction of positive
infinity. In one embodiment, when the sign 1s negative, the
floating point result 1s rounded 1n the negative direction.

In one embodiment, when the sign 1s positive and a result
sign of the tloating point result 1s also positive, the tloating
point result 1s rounded in the positive direction. In one
embodiment, when the sign 1s positive and the result sign 1s
negative, the floating point result 1s rounded 1n the positive
direction. In one embodiment, when the sign and the result
sign are both negative, the floating point result 1s rounded 1n
the negative direction. In one embodiment, when the sign 1s
negative and the result sign 1s positive, the floating point
result 1s rounded 1n the negative direction. In other words, 1n
one embodiment, the rounding may exclusively follow the
sign of operand, and may be independent of the sign of the
result.

In one embodiment, the floating point result 1s rounded 1n
a direction corresponding to one or more bits of the one of
the floating point operands. One or more bits of the one of

US 10,908,878 B2

3

the floating point operands may be set TRUE or FALSE to
control the rounding direction. Furthermore, changing the
value of the operand may, i turn, change the value of the
floating point result.

In one embodiment, the rounding i1s performed based, at
least 1n part, on a value of at least one of the floating point
operands. In one embodiment, if the value 1s within a first
numerical range, the floating point result 1s rounded 1n the
positive direction. In one embodiment, if the value 1s within
a second numerical range, the floating point result 1s rounded
in the negative direction. In one embodiment, the first and
second numerical ranges may be fixed or programmed. In
one embodiment, the first and second numerical ranges
overlap. In one embodiment, the first and second numerical
ranges are exclusive.

More 1llustrative information will now be set forth regard-
ing various optional architectures and features with which
the foregoing framework may be implemented, per the
desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes
and should not be construed as limiting in any manner. Any
of the following features may be optionally incorporated
with or without the exclusion of other features described.

In one embodiment, reducing precision in representing
numerical values for mathematical computations may be
beneficial 1 certain circumstances. 32-bit floating point
values can be replaced with less precise 16-bit floating point
values to reduce circuitry, power, and bandwidth for training
of neural networks. The reduced precision values require
only half the bandwidth during data transmission and less
than half the die area and power consumption compared
with using full precision values. However, the range of
values that can be represented using a 16-bit floating point
format 1s much smaller than the range of values that can be
represented using a 32-bit tloating point format. Numbers
smaller than the smallest value represented by the 16-bit
floating point format are lost (e.g., turned to zero) and
accuracy may be reduced.

Stochastic rounding 1s a technique that 1s conventionally
used to extend numerical range. With traditional round-to-
nearest rounding, numbers are deterministically rounded up
or down, for example values between 0.5 and 1 are rounded
up to 1, values below 0.5 are always rounded down to O.
With stochastic rounding, the rounding is instead probabi-
listic. With stochastic rounding, an individual rounding
event can actually introduce more error, but on average over
a long sequence ol accumulations, the result will have less
error. For example, when accumulating 1000 numbers with
value 0.1 with traditional rounding after each number 1s
accumulated, the result will be zero, whereas with stochastic
rounding the result should be closer to the correct answer of
100.

Thus, while stochastic rounding 1s preferable when apply-
ing an accumulate and round operation over a long series of
numerical values, the challenge 1s implementing the random
rounding behavior of stochastic rounding efliciently 1n soft-
ware or hardware. One method could be to generate a
random number for each rounding operation, but that 1s
expensive 1n terms ol additional circuitry and/or power
consumption. In one embodiment, such expense may be
avoided using the method 100 of FIG. 1A, and/or any of the
other features disclosed below. Again, however, 1t should be
noted that such expense avoidance 1s merely optional, and at
least one embodiment 1s contemplated where such feature 1s
omitted.

During training of a neural network, in accordance with
one embodiment, parameters of the neural network are

10

15

20

25

30

35

40

45

50

55

60

65

4

continuously or periodically updated using backpropaga-
tion. The parameters are updated based on gradients to
reduce differences between an output of the neural network
compared with a desired (ground truth) output. In one
embodiment, a gradient descent technique 1s used to mini-
mize a cost function and the parameters are updated 1n the
direction of the gradients. As training progresses and the cost
function 1s minmimized, the gradients generally become
smaller and smaller. Magnitudes of the gradients may
become too small to change the value of the parameters due
to limited precision of the parameters. When the gradients
become too small, movement of the parameters in the
direction specified by the gradients 1s not achieved.

In one embodiment, dynamic directional rounding may be
used to update parameters of a neural network during
backpropagation, ensuring that the parameters are changed
in the direction of the gradient. In one embodiment, dynamic
directional rounding may be used to ensure that a floating
point result 1s rounded 1n the direction defined by the sign of
an operand. In one embodiment, dynamic directional round-
ing may be used to ensure that a floating point result is
rounded in the direction defined by a value of an operand. In
one embodiment, dynamic directional rounding may be used
to ensure that a floating point result 1s rounded in the
direction defined by an operand. In one embodiment, the
operand 1s based on the gradient and the floating point result
1S a parameter.

FIG. 1B illustrates a block diagram of a system 140, 1n
accordance with one embodiment. In one embodiment, the
system 140 includes a floating point operation unit 1435 and
a rounding unit 150. Although the system 140 1s described
in the context of processing units, one or more of the units,
such as the floating point operation unit 145 and the round-
ing unit 150, may be implemented as a program, custom
circuitry, or by a combination of custom circuitry and a
program. In one embodiment, the system 140 may be
implemented by a GPU (graphics processing unit), CPU
(central processing unit), or any processor capable of per-
forming floating point operations. Furthermore, persons of
ordinary skill 1in the art will understand that any system that
performs the operations of the system 140 1s within the
scope and spirit of embodiments described herein.

The floating point operation unit 145 receives the two or
more floating point operands and generates a floating point
result based, at least 1n part, on the at least one mathematical
operation operating on the two or more floating point
operands. In one embodiment, the two or more floating point

17 1

operands are each represented using an IEEE floating point
format.

In one embodiment, dynamic directional rounding 1s used
to perform an addition operation. For the addition operation
A=B+C, the result, A, differs from either of the mputs B or
C provided the operand sign 1s either positive or negative.
When C 1s specified as the operand used for rounding, the
sum B+C will be rounded in the direction of the sign of C.
When C equals zero, A=B. Otherwise, when C>0, A=B+C+
V, where V 1s a rounding value, and when C<0, A=B+C-V.
Therefore, when C equals a small non-zero number,
dynamic directional rounding produces A>B when the sign
of C 1s positive and A<B when the sign of C 1s negative. In
one embodiment, V equals one unit 1n the last place (ulp),
unit of least precision, or least significant bit (Isb). In other
words, a magnitude of the rounding value i1s the smallest
value that can be represented using the number of bits 1n the
mantissa of one of the floating point operands. When the
rounding value V 1s 1 ulp, A=A+ulp for C>0, A=A-ulp fo
C<0, and A=A for C=0.

US 10,908,878 B2

S

The rounding unit 150 includes a rounding value genera-
tion unit 155 and a unit 160. In one embodiment, the unit
160 1s an accumulator configured to perform signed floating

point addition and the rounding value 1s a signed floating
point number. In one embodiment, the unit 160 1s an
adder/subtractor configurable to perform addition or sub-
traction based on a control signal and the rounding value
comprises an unsigned floating point number and control
signal, where the unsigned floating point number 1s added to
or subtracted from the floating point result according to the
control signal.

In one embodiment, the rounding unit 150 receives the
floating point result including at least a mantissa and at least
one of the floating point operands. The rounding value
generation unit 155 generates a rounding value based on the
operand sign. In one embodiment, the rounding value 1s a
unit 1 the last place (ulp), unit of least precision, or least
significant bit (Isb) for one of the floating point operands. In
one embodiment, the rounding value i1s positive when a
value of one of the floating point operands 1s within a first
numerical range and the rounding value i1s negative when the
value of one of the floating point operands 1s within a second
numerical range. The magnitude of the rounding value may
be fixed, computed, or programmed.

In one embodiment, the rounding unit 150 receives the

floating point result including at least a mantissa and the
(operand) sign of at least one of the floating point operands.
The rounding value 1s positive when the operand sign 1s
positive and the rounding value 1s negative when the oper-
and sign 1s negative. The magnitude of the rounding value

may be fixed, computed, or programmed. In one embodi-
ment, the rounding unit 150 may be configured to perform

dynamic directional rounding and conventional IEEE 754-
2008 rounding.

In one embodiment, the unit 160 sums the rounding value
with the floating point result to compute a rounded floating
point result. In one embodiment, the umt 160 receives the
rounding value represented mm an unsigned format and
performs addition when the operand sign 1s positive and
performs subtraction when the operand sign 1s negative. In
one embodiment, the unit 160 normalizes the accumulated
result when the accumulated result overflows or underflows.
In one embodiment, the floating point result and the rounded
floating point result each include a 23-bit mantissa and a sign
of a floating point format number. In one embodiment, the
floating point result and the rounded floating point result
each include a 15-bit mantissa. In one embodiment, the

floating point result and the rounded tloating point result
cach include a 7-bit mantissa.

In one embodiment, dynamic directional rounding 1s
enabled/disabled for one operand for a floating point opera-
tion. In one embodiment, dynamic directional rounding 1s
enabled/disabled for a floating point operation program
instruction. In one embodiment, a dedicated program
instruction enables/disables dynamic directional rounding
for one or more tloating point operations. In one embodi-
ment, dynamic directional rounding may be selectively
enabled for program instructions that perform arithmetic
operations (e.g., multiply accumulate, sum, etc.).

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, arithmetic operations may be per-
formed 1ncluding, but not limited to those listed below 1n

Table 1.

TABLE 1

1. ADD: z = X + vy, then sign(y) defines rounding mode, but sign of other
arguments (xX) 1s wrrelevant
2. ACCUMULAT__ADD: z += y sign(y) defines rounding mode, but sign

of z 1s 1rrelevant

3. Fused Multiply Add, when rounding mode depends on the sign of
intermediate result, but not on the sign of operands: Z = z + x*y:
rounding mode depends on the sign(x*y).

FIG. 1C 1illustrates a conceptual diagram of rounding a
floating point result according to a sign, 1n accordance with
one embodiment. Precision of the floating point numbers 1s
limited and therefore, when the floating point result gener-
ated by the floating point operation umt 145 1s not exactly
equal to a quantized value, suchasF_,, F,, or F,, the floating
point result 1s rounded towards either F_,; or F,. The quan-
tized values can be represented exactly according to the
precision of the floating point format. The distance between
each quantized value 1s 1 ulp, so that F,=F,+1 ulp and
F_,=F,—1 ulp. As shown in FIG. 1C, when the floating point
result 1s a positive value that lies between F_;, and F, or
between F, and F, along the positive axis from zero to
positive infinity, the floating point result 1s rounded to
generate a rounded floating point result equal the quantized
value F_,, F,, or F,.

When dynamic directional rounding i1s used, in one
embodiment, the rounded floating point result 1s based, at
least 1n part, on the sign of the at least one of the floating
point operands 1put to the floating point operation unit 145,
When the operand 1s zero, the sign 1s neither positive nor
negative, the floating point result and the rounded floating
point result both equal F,. When the sign of the operand 1s
positive, the tloating point result 1s rounded 1n the positive
direction toward F, or positive infinity. For a positive sign,
floating point results greater than F, are rounded so the
rounded floating point result equals F, and floating point
results less than F are rounded so the rounded floating point
result equals F,. When the sign of the operand 1s negative,
the tloating point result 1s rounded 1n the negative direction
toward F_, or negative infinity. For a negative sign, floating
point results greater than F, are rounded so the rounded
floating point result equals F, and floating point results less
than F, are rounded so the rounded floating point result
equals F_;.

In one embodiment, the floating point result 1s computed
as a sum W,=W_+D,, where W, 1s a weight of a neural
network that 1s updated by a gradient D, during backpropa-
gation to generate W,. When the magnitude of D, 1s less
than 2 ulp of W, the floating point result computed for W,
may equal W, when conventional rounding 1s used. Even
when stochastic rounding 1s used, the probability of com-
puting a W, that 1s different from W, 1s low. In contrast,
dynamic directional rounding ensures that the value of W,
does not equal W, except when D, equals zero. Therelore,
the computed weight W, moves in the direction of the
gradient, increasing the likelihood that the cost function will
progress toward the global minimum and not remain 1n a
local minimum or plateau. In one embodiment, D, 1is
replaced with an expression (e.g., D,*A,) and the sign of the
evaluated expression controls the direction of rounding for
W, =W,+(D,*A,).

In one embodiment, W, =1.2531e12, D,=1.0001¢2, and
the tloating point result W,+D,=1.25310000010001¢12. F_,

US 10,908,878 B2

7

1s 1.2530e12, F, 1s 1.2531el12, F, 1s 1.2532¢12, so the
floating point result lies between F, and F,. When repre-
sented using the floating point precision of the operands,
W,+D,=W_, because the magmitude of D, 1s small compared
with W,. In one embodiment, the rounding value 1s 1 ulp. 5
When the floating point result 1s rounded in the positive
direction, based on the sign of D, the rounded floating point
result W, 1s computed to equal F,. When the sign of D, 1s
negative, the floating point result 1s rounded 1n the negative
direction and the rounded floating point result 1s computed 10
to equal F,. W, 1s set to equal F, when D, 1s zero.

FIG. 1D illustrates a conceptual diagram of rounding a
floating point result according to a sign, 1n accordance with
one embodiment. As shown in FIG. 1D, the floating point
result 1s a positive value that lies between F, and F, along the 15
positive axis from zero to positive infinity. When the (oper-
and) sign 1s positive, the floating point result 1s rounded 1n
the positive direction toward F, and the rounded floating
point result equals F,. When the (operand) sign 1s negative,
the floating point result 1s rounded 1n the negative direction 20
toward F_, and the rounded tloating point result equals F,.

FIG. 1E illustrates a conceptual diagram of rounding a
tfloating point result according to a sign, 1n accordance with
one embodiment. As shown 1n FIG. 1E, the floating point
result 1s a positive value that lies between F_, and F,. When 25
the (operand) sign i1s positive, the floating point result 1s
rounded 1n the positive direction toward F, and the rounded
floating point result equals F,. When the (operand) sign 1s
negative, the floating point result 1s rounded in the negative
direction toward F_, and the rounded floating point result 30
equals F_;.

FIG. 2A illustrates a block diagram of a rounding unit
170, 1n accordance with one embodiment. The rounding unit
170 includes the rounding value generation unit 155, the unit
160, a zero condition umit 175, and a multiplexer 180. 35
Although the rounding unit 170 1s described in the context
of processing units, one or more ol the units (e.g., the
rounding value generation unit 155, the unit 160, and the
zero condition unit 175) may be implemented as a program,
custom circuitry, or by a combination of custom circuitry 40
and a program. In one embodiment, the rounding unit 170
may be implemented by a GPU (graphics processing unit),
CPU (central processing unit), or any processor capable of
performing floating point operations. Furthermore, persons
of ordinary skill in the art will understand that any system 45
that performs the operations of the rounding unit 170 1s
within the scope and spirit of embodiments described herein.

In one embodiment, the rounding unit 170 receives at
least one of the tloating point operands and the floating point
result includes at least a mantissa. As previously described, 50
the rounding value generation unit 155 generates a rounding,
value based on the operand sign. In one embodiment, the
rounding value 1s also generated based on the ulp or Isb of
one of the tloating point operands that was used to generate
the floating point result. 55

In one embodiment, the unit 160 sums the rounding value
with the floating point result to compute a sum that 1s 1nput
to the multiplexer 180. The multiplexer 180 also receives the
floating point result as an imput. The zero condition unit 1735
outputs a select signal to the multiplexer 180 that 1s used to 60
select either the sum or the floating point result as the
rounded ftloating point result. In one embodiment, the zero
condition unit 173 receives the operand including the oper-
and sign and determines 1f the operand equals zero. When
the operand equals zero, the select signal 1s used by the 65
multiplexer 180 to select the floating point result as the
rounded floating point result. Otherwise, when the operand

8

does not equal zero, the select signal 1s used by the multi-
plexer 180 to select the sum as the rounded floating point
result.

In one embodiment, the zero condition unit 175 deter-
mines 1f the floating point result 1s represented exactly. The
floating point result 1s represented exactly when the floating
point result equals a quantized value. When the floating
point result 1s represented exactly, the select signal 1s used
by the multiplexer 180 to select the floating point result as
the rounded floating point result. Otherwise, when the
floating point result 1s not represented exactly, the zero sign
signal 1s used by the multiplexer 180 to select the sum as the
rounded floating point result.

FIG. 2B illustrates a flowchart of a method 200 for
rounding a floating point result, in accordance with one
embodiment. Although method 200 1s described in the
context of the rounding unit 170, the method 200 may also
be performed by a program, custom circuitry, or by a
combination of custom circuitry and a program. In one
embodiment, the method 200 may be executed by a GPU
(graphics processing unit), CPU (central processing unit), or
any processor capable of performing arithmetic computa-
tions. Furthermore, persons of ordinary skill in the art waill
understand that any system that performs method 200 1s
within the scope and spirit of embodiments described herein.

At step 210, the rounding unit 170 receives a floating
point result. In one embodiment, the floating point result 1s
represented 1n a floating point format comprising a sign,
exponent, and a mantissa. In one embodiment, the floating
point result 1s generated by executing a program instruction.
In one embodiment, the program instruction 1s an arithmetic
operation 1nstruction.

At step 215, a sign of an operand provided as an nput to
compute the floating point result 1s idenftified. In one
embodiment, the operand 1s provided as an mput to a
program instruction that 1s executed to generate the floating
point result. In one embodiment, the operand 1s an expres-
s1on that 1s evaluated and the sign 1s a sign of the evaluated
expression. In one embodiment, the expression 1s an arith-
metic expression.

At step 225, the floating point result 1s rounded in a
direction of the sign, by the rounding unit 170, to produce a
rounded floating point result. In one embodiment, the tloat-
ing point result 1s rounded 1n a direction corresponding to the
S1g1.

At step 230, the zero condition unit 175 determines 1f the
zero condition 1s met, and, if so, at step 235, the rounded
tfloating point result 1s set to the floating point result by the
multiplexer 180. I, at step 230, the zero condition unit 175
determines that the zero condition 1s not met, then the
rounded floating point result 1s unchanged. At step 240, at
least one sign 1s output based on the rounded floating point
result. In one embodiment, the rounded tloating point result
1s at least a portion of an updated weight value computed
during training of a neural network and the rounded tloating
point result 1s provided to the neural network.

In one embodiment, when dynamic directional rounding
1s used during training of a neural network, magnitudes of
the updated weight values are changed and the updated
weight values are changed 1n the direction of the sign of the
gradient. Rounding the weights 1 the direction of the
gradient may improve the accuracy of the neural network
and also may reduce training time. Compared with gener-
ating a random value for performing stochastic rounding,

using the sign of the operand requires less circuitry.

Parallel Processing Architecture

FIG. 3 illustrates a parallel processing unit (PPU) 300, 1n
accordance with an embodiment. In an embodiment, the

US 10,908,878 B2

9

PPU 300 1s a multi-threaded processor that 1s implemented

on one or more mtegrated circuit devices. The PPU 300 1s a

latency hiding architecture designed to process many threads

in parallel. A thread (e.g., a thread of execution) 1s an

instantiation of a set of instructions configured to be °
executed by the PPU 300. In an embodiment, the PPU 300
1s a graphics processing unit (GPU) configured to implement
a graphics rendering pipeline for processing three-dimen-
sional (3D) graphics data 1n order to generate two-dimen-
sional (2D) image data for display on a display device such
as a liquid crystal display (LCD) device. In other embodi-
ments, the PPU 300 may be utilized for performing general-
purpose computations. While one exemplary parallel pro-
cessor 1s provided herein for illustrative purposes, 1t should
be strongly noted that such processor 1s set forth for 1llus-
trative purposes only, and that any processor may be
employed to supplement and/or substitute for the same.

One or more PPUs 300 may be configured to accelerate
thousands of High Performance Computing (HPC), data »q
center, and machine learning applications. The PPU 300
may be configured to accelerate numerous deep learming
systems and applications including autonomous vehicle
platforms, deep learning, high-accuracy speech, image, and
text recognition systems, intelligent wvideo analytics, 25
molecular simulations, drug discovery, disease diagnosis,
weather forecasting, big data analytics, astronomy, molecu-
lar dynamics simulation, financial modeling, robotics, fac-
tory automation, real-time language {translation, online
search optimizations, and personalized user recommenda- 30
tions, and the like.

As shown i FIG. 3, the PPU 300 includes an Input/
Output (I/O) umt 305, a front end unit 3135, a scheduler unit
320, a work distribution umt 325, a hub 330, a crossbar
(Xbar) 370, one or more general processing clusters (GPCs) 35
350, and one or more partition units 380. The PPU 300 may
be connected to a host processor or other PPUs 300 via one
or more high-speed NVLink 310 interconnect. The PPU 300
may be connected to a host processor or other peripheral
devices via an mterconnect 302. The PPU 300 may also be 40
connected to a local memory comprising a number of
memory devices 304. In an embodiment, the local memory
may comprise a number of dynamic random access memory
(DRAM) devices. The DRAM devices may be configured as
a high-bandwidth memory (HBM) subsystem, with multiple 45
DRAM dies stacked within each device.

The NVLink 310 interconnect enables systems to scale
and include one or more PPUs 300 combined with one or
more CPUs, supports cache coherence between the PPUs
300 and CPUs, and CPU mastering. Data and/or commands 50
may be transmitted by the NVLink 310 through the hub 330
to/from other units of the PPU 300 such as one or more copy
engines, a video encoder, a video decoder, a power man-
agement unit, etc. (not explicitly shown). The NVLink 310
1s described 1n more detail i conjunction with FIG. SB. 55

The I/0 unit 305 1s configured to transmit and receive
communications (e.g., commands, data, etc.) from a host
processor (not shown) over the interconnect 302. The I/O
unit 305 may communicate with the host processor directly
via the mterconnect 302 or through one or more intermediate 60
devices such as a memory bridge. In an embodiment, the I/O
unit 305 may communicate with one or more other proces-
sors, such as one or more of the PPUs 300 via the intercon-
nect 302. In an embodiment, the I/O unit 305 implements a
Peripheral Component Interconnect Express (PCle) inter- 65
face for communications over a PCle bus and the intercon-
nect 302 1s a PCle bus. In alternative embodiments, the [/O

10

15

10

umt 305 may implement other types of well-known 1inter-
faces for communicating with external devices.

The I/O unit 305 decodes packets received via the inter-
connect 302. In an embodiment, the packets represent com-
mands configured to cause the PPU 300 to perform various
operations. The I/O unit 305 transmits the decoded com-
mands to various other units of the PPU 300 as the com-
mands may specily. For example, some commands may be
transmitted to the front end unit 315. Other commands may
be transmitted to the hub 330 or other units of the PPU 300
such as one or more copy engines, a video encoder, a video
decoder, a power management unit, etc. (not explicitly
shown). In other words, the I/O unit 3035 1s configured to
route communications between and among the various logi-
cal units of the PPU 300.

In an embodiment, a program executed by the host
processor encodes a command stream 1n a bufller that pro-
vides workloads to the PPU 300 for processing. A workload
may comprise several mstructions and data to be processed
by those instructions. The bufler 1s a region 1n a memory that
1s accessible (e.g., read/write) by both the host processor and
the PPU 300. For example, the I/'O umt 305 may be
configured to access the bufler 1n a system memory con-
nected to the interconnect 302 via memory requests trans-
mitted over the interconnect 302. In an embodiment, the host
processor writes the command stream to the bufler and then
transmits a pointer to the start of the command stream to the
PPU 300. The front end unit 315 receirves pointers to one or
more command streams. The front end unit 315 manages the
one or more streams, reading commands from the streams
and forwarding commands to the various units of the PPU
300.

The front end unit 315 15 coupled to a scheduler unit 320
that configures the various GPCs 350 to process tasks
defined by the one or more streams. The scheduler unit 320
1s configured to track state information related to the various
tasks managed by the scheduler unit 320. The state may
indicate which GPC 350 a task 1s assigned to, whether the
task 1s active or inactive, a priority level associated with the
task, and so forth. The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350.

The scheduler unit 320 1s coupled to a work distribution
umt 325 that 1s configured to dispatch tasks for execution on
the GPCs 350. The work distribution umt 325 may track a
number of scheduled tasks received from the scheduler unit
320. In an embodiment, the work distribution unit 325
manages a pending task pool and an active task pool for each
of the GPCs 350. The pending task pool may comprise a
number of slots (e.g., 32 slots) that contain tasks assigned to
be processed by a particular GPC 350. The active task pool
may comprise a number of slots (e.g., 4 slots) for tasks that
are actively being processed by the GPCs 350. As a GPC 350
finishes the execution of a task, that task 1s evicted from the
active task pool for the GPC 350 and one of the other tasks
from the pending task pool 1s selected and scheduled for
execution on the GPC 350. If an active task has been 1dle on
the GPC 330, such as while waiting for a data dependency
to be resolved, then the active task may be evicted from the
GPC 350 and returned to the pending task pool while
another task 1n the pending task pool 1s selected and sched-
uled for execution on the GPC 350.

The work distribution unit 325 communicates with the
one or more GPCs 330 via XBar 370. The XBar 370 1s an

interconnect network that couples many of the umits of the
PPU 300 to other units of the PPU 300. For example, the
XBar 370 may be configured to couple the work distribution

US 10,908,878 B2

11

unit 325 to a particular GPC 350. Although not shown
explicitly, one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330.

The tasks are managed by the scheduler unit 320 and
dispatched to a GPC 350 by the work distribution unit 325.

The GPC 350 1s configured to process the task and generate
results. The results may be consumed by other tasks within
the GPC 350, routed to a diflerent GPC 350 via the XBar
3770, or stored 1n the memory 304. The results can be written
to the memory 304 wvia the partition units 380, which
implement a memory interface for reading and writing data
to/from the memory 304. The results can be transmitted to
another PPU 304 or CPU wia the NVLink 310. In an
embodiment, the PPU 300 includes a number U of partition
units 380 that 1s equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300. A partition
unit 380 will be described 1n more detail below 1n conjunc-

tion with FIG. 4B.

In an embodiment, a host processor executes a driver
kernel that implements an application programming inter-
tace (API) that enables one or more applications executing
on the host processor to schedule operations for execution
on the PPU 300. In an embodiment, multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides 1solation, quality of service
(QoS), and independent address spaces for the multiple
compute applications. An application may generate instruc-
tions (e.g., API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300. The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300. Each task may comprise one or more
groups of related threads, referred to herein as a warp. In an
embodiment, a warp comprises 32 related threads that may
be executed 1n parallel. Cooperating threads may refer to a
plurality of threads including mstructions to perform the task
and that may exchange data through shared memory.
Threads and cooperating threads are described 1n more detail
in conjunction with FIG. 5A.

FIG. 4A 1llustrates a GPC 350 of the PPU 300 of FIG. 3,
in accordance with an embodiment. As shown 1n FIG. 4A,
cach GPC 350 includes a number of hardware units for
processing tasks. In an embodiment, each GPC 350 includes
a pipeline manager 410, a pre-raster operations unit (PROP)
415, a raster engine 425, a work distribution crossbar
(WDX) 480, a memory management unit (MMU) 490, and
one or more Data Processing Clusters (DPCs) 420. It will be

appreciated that the GPC 350 of FIG. 4A may include other
hardware units 1n lieu of or in addition to the units shown in
FIG. 4A.

In an embodiment, the operation of the GPC 350 1s
controlled by the pipeline manager 410. The pipeline man-
ager 410 manages the configuration of the one or more DPCs
420 for processing tasks allocated to the GPC 350. In an
embodiment, the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline. For example, a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440. The pipeline manager 410 may also be configured
to route packets recerved from the work distribution unit 325
to the appropriate logical units within the GPC 3350. For
example, some packets may be routed to fixed function
hardware units 1n the PROP 415 and/or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440. In an
embodiment, the pipeline manager 410 may configure at

10

15

20

25

30

35

40

45

50

55

60

65

12

least one of the one or more DPCs 420 to implement a neural
network model and/or a computing pipeline.

The PROP unit 415 1s configured to route data generated
by the raster engine 425 and the DPCs 420 to a Raster
Operations (ROP) umt, described 1n more detail 1n conjunc-

tion with FIG. 4B. The PROP unit 415 may also be config-

ured to perform optimizations for color blending, organize
pixel data, perform address translations, and the like.

The raster engine 425 includes a number of fixed function
hardware units configured to perform various raster opera-
tions. In an embodiment, the raster engine 425 includes a
setup engine, a coarse raster engine, a culling engine, a
clipping engine, a fine raster engine, and a tile coalescing
engine. The setup engine receives transformed vertices and
generates plane equations associated with the geometric
primitive defined by the vertices. The plane equations are
transmitted to the coarse raster engine to generate coverage
information (e.g., an X,y coverage mask for a tile) for the
primitive. The output of the coarse raster engine 1s trans-
mitted to the culling engine where fragments associated with
the primitive that fail a z-test are culled, and non-culled
fragments are transmitted to a clipping engine where frag-
ments lying outside a viewing frustum are clipped. Those
fragments that survive clipping and culling may be passed to
the fine raster engine to generate attributes for the pixel
fragments based on the plane equations generated by the
setup engine. The output of the raster engine 425 comprises

fragments to be processed, for example, by a fragment
shader implemented within a DPC 420.

Each DPC 420 included in the GPC 350 includes an
M-Pipe Controller (MPC) 430, a primitive engine 435, and
one or more SMs 440. The MPC 430 controls the operation
of the DPC 420, routing packets received from the pipeline
manager 410 to the appropriate units in the DPC 420. For
example, packets associated with a vertex may be routed to
the primitive engine 433, which 1s configured to fetch vertex
attributes associated with the vertex from the memory 304.
In contrast, packets associated with a shader program may
be transmitted to the SM 440.

The SM 440 comprises a programmable streaming pro-
cessor that 1s configured to process tasks represented by a
number of threads. Each SM 440 1s multi-threaded and
configured to execute a plurality of threads (e.g., 32 threads)
from a particular group of threads concurrently. In an
embodiment, the SM 440 mmplements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
in a group of threads (e.g., a warp) 1s configured to process
a different set of data based on the same set of instructions.
All threads 1n the group of threads execute the same nstruc-
tions. In one embodiment, the SM 440 implements a SIMT
(Single-Instruction, Multiple Thread) architecture where
cach thread 1n a group of threads 1s configured to process a
diflerent set of data based on the same set of instructions, but
where individual threads in the group of threads are allowed
to diverge during execution. In an embodiment, a program
counter, call stack, and execution state 1s maintained for
cach warp, enabling concurrency between warps and serial
execution within warps when threads within the warp
diverge. In one embodiment, a program counter, call stack,
and execution state 1s maintained for each individual thread,
enabling equal concurrency between all threads, within and
between warps. When execution state 1s maintained for each
individual thread, threads executing the same instructions
may be converged and executed in parallel for maximum
ciliciency. The SM 440 will be described in more detail
below 1n conjunction with FIG. 5A.

US 10,908,878 B2

13

The MMU 490 provides an interface between the GPC
350 and the partition unit 380. The MMU 490 may provide
translation of wvirtual addresses into physical addresses,
memory protection, and arbitration of memory requests. In
an embodiment, the MMU 490 provides one or more trans-
lation lookaside butlers (TLBs) for performing translation of

virtual addresses mto physical addresses 1n the memory 304.

FIG. 4B 1illustrates a memory partition unit 380 of the
PPU 300 of FIG. 3, 1n accordance with an embodiment. As
shown 1n FIG. 4B, the memory partition umt 380 includes a
Raster Operations (ROP) unit 450, a level two (L2) cache
460, and a memory interface 470. The memory interface 470

1s coupled to the memory 304. Memory interface 470 may
implement 32, 64, 128, 1024-bit data buses, or the like, for
high-speed data transfer. In an embodiment, the PPU 300
incorporates U memory interfaces 470, one memory inter-
tace 470 per pair of partition units 380, where each pair of
partition units 380 1s connected to a corresponding memory
device 304. For example, PPU 300 may be connected to up
to Y memory devices 304, such as high bandwidth memory
stacks or graphics double-data-rate, version 5, synchronous
dynamic random access memory, or other types of persistent
storage.

In an embodiment, the memory interface 470 implements
an HBM2 memory mnterface and Y equals half U. In an
embodiment, the HBM2 memory stacks are located on the
same physical package as the PPU 300, providing substan-
tial power and area savings compared with conventional
GDDRS5 SDRAM systems. In an embodiment, each HBM2
stack includes four memory dies and Y equals 4, with HBM2
stack 1including two 128-bit channels per die for a total of 8
channels and a data bus width of 1024 bits.

In an embodiment, the memory 304 supports Single-Error
Correcting Double-Error Detecting (SECDED) Error Cor-
rection Code (ECC) to protect data. ECC provides higher
reliability for compute applications that are sensitive to data
corruption. Reliability 1s especially important 1n large-scale
cluster computing environments where PPUs 300 process
very large datasets and/or run applications for extended
periods.

In an embodiment, the PPU 300 implements a multi-level
memory hierarchy. In an embodiment, the memory partition
unit 380 supports a unified memory to provide a single
unified virtual address space for CPU and PPU 300 memory,
enabling data sharing between virtual memory systems. In
an embodiment the frequency of accesses by a PPU 300 to
memory located on other processors 1s traced to ensure that
memory pages are moved to the physical memory of the
PPU 300 that 1s accessing the pages more frequently. In an
embodiment, the NVLink 310 supports address translation
services allowing the PPU 300 to directly access a CPU’s
page tables and providing full access to CPU memory by the
PPU 300.

In an embodiment, copy engines transier data between
multiple PPUs 300 or between PPUs 300 and CPUs. The
copy engines can generate page faults for addresses that are
not mapped into the page tables. The memory partition unit
380 can then service the page faults, mapping the addresses
into the page table, after which the copy engine can perform
the transfer. In a conventional system, memory 1s pinned
(e.g., non-pageable) for multiple copy engine operations
between multiple processors, substantially reducing the
available memory. With hardware page faulting, addresses
can be passed to the copy engines without worrying 1 the
memory pages are resident, and the copy process 1s trans-
parent.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

Data from the memory 304 or other system memory may
be fetched by the memory partition unit 380 and stored in the
[.2 cache 460, which 1s located on-chip and 1s shared
between the various GPCs 350. As shown, each memory
partition unit 380 includes a portion of the L2 cache 460
associated with a corresponding memory device 304. Lower
level caches may then be implemented in various units
within the GPCs 350. For example, each of the SMs 440
may i1mplement a level one (LL1) cache. The L1 cache 1s
private memory that 1s dedicated to a particular SM 440.
Data from the L2 cache 460 may be fetched and stored in
cach of the L1 caches for processing 1n the functional units
of the SMs 440. The L2 cache 460 1s coupled to the memory
interface 470 and the XBar 370.

The ROP unit 450 performs graphics raster operations
related to pixel color, such as color compression, pixel
blending, and the like. The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425. The depth 1s tested against a corresponding depth 1n a
depth bufler for a sample location associated with the
fragment. If the fragment passes the depth test for the sample
location, then the ROP unmit 450 updates the depth bufler and
transmits a result of the depth test to the raster engine 425.
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and, there-
fore, each ROP unit 450 may be coupled to each of the GPCs
350. The ROP umt 4350 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 1s routed to through the
Xbar 370. Although the ROP unit 450 1s included within the
memory partition unit 380 in FI1G. 4B, in other embodiment,
the ROP unit 450 may be outside of the memory partition
unit 380. For example, the ROP unit 450 may reside in the
GPC 350 or another unit.

FIG. SA illustrates the streaming multi-processor 440 of
FI1G. 4A, 1n accordance with an embodiment. As shown 1n
FI1G. SA, the SM 440 includes an instruction cache 505, one
or more scheduler units 510, a register file 520, one or more
processing cores 350, one or more special function units
(SFUs) 552, one or more load/store units (LSUs) 354, an
interconnect network 580, a shared memory/LL1 cache 570.

As described above, the work distribution unit 325 dis-
patches tasks for execution on the GPCs 350 of the PPU 300.
The tasks are allocated to a particular DPC 420 within a
GPC 350 and, if the task 1s associated with a shader
program, the task may be allocated to an SM 440. The
scheduler unit 510 receives the tasks from the work distri-
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440. The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads, where each thread block 1s allocated at least
one warp. In an embodiment, each warp executes 32 threads.
The scheduler unit 510 may manage a plurality of difierent
thread blocks, allocating the warps to the different thread
blocks and then dispatching instructions from the plurality
of different cooperative groups to the various functional
units (e.g., cores 350, SFUs 352, and LSUs 554) during each
clock cycle.

Cooperative Groups 1s a programming model for orga-
nizing groups ol communicating threads that allows devel-
opers to express the granularity at which threads are com-
municating, enabling the expression of richer, more eflicient
parallel decompositions. Cooperative launch APIs support
synchronization amongst thread blocks for the execution of
parallel algorithms. Conventional programming models pro-

US 10,908,878 B2

15

vide a single, simple construct for synchronizing cooperat-
ing threads: a barrier across all threads of a thread block
(e.g., the syncthreads() function). However, programmers
would often like to define groups of threads at smaller than
thread block granularities and synchronize within the
defined groups to enable greater performance, design flex-
ibility, and software reuse 1n the form of collective group-
wide function interfaces.

Cooperative Groups enables programmers to define
groups ol threads explicitly at sub-block (e.g., as small as a
single thread) and multi-block granularities, and to perform
collective operations such as synchronization on the threads
in a cooperative group. The programming model supports
clean composition across software boundaries, so that librar-
1ies and utility functions can synchronmize safely within their
local context without having to make assumptions about
convergence. Cooperative Groups primitives enable new
patterns of cooperative parallelism, including producer-con-
sumer parallelism, opportunistic parallelism, and global
synchronization across an entire grid of thread blocks.

A dispatch unit 515 1s configured to transmit instructions
to one or more of the functional units. In the embodiment,
the scheduler unit 510 includes two dispatch units 515 that
enable two different instructions from the same warp to be
dispatched during each clock cycle. In alternative embodi-
ments, each scheduler unit 510 may include a single dispatch
unit 515 or additional dispatch units 5185.

Each SM 440 includes a register file 520 that provides a
set of registers for the functional units of the SM 440. In an
embodiment, the register file 520 1s divided between each of
the functional units such that each functional unit 1s allo-
cated a dedicated portion of the register file 520. In one
embodiment, the register file 520 1s divided between the
different warps being executed by the SM 440. The register
file 520 provides temporary storage for operands connected
to the data paths of the functional units.

Each SM 440 comprises L processing cores 530. In an
embodiment, the SM 440 1ncludes a large number (e.g., 128,
etc.) of distinct processing cores 350. Each core 550 may
include a fully-pipelined, single-precision, double-precision,
and/or mixed precision processing unit that includes a
floating point arithmetic logic unit and an integer arithmetic
logic unit. In an embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for
floating point arithmetic. In an embodiment, the cores 550
include 64 single-precision (32-bit) tloating point cores, 64
integer cores, 32 double-precision (64-bit) floating point
cores, and & tensor cores. In an embodiment, the cores 550
are configured to perform rounding operations using the
method 100 or 200.

Tensor cores are configured to perform matrix operations,
and, 1n an embodiment, one or more tensor cores are
included 1n the cores 350. In particular, the tensor cores are
configured to perform deep learning matrix arithmetic, such
as convolution operations for neural network training and
inferencing. In an embodiment, each tensor core operates on
a 4x4 matrix and performs a matrix multiply and accumulate
operation D=AxB+C, where A, B, C, and D are 4x4 matri-
ces. In an embodiment, the tensor cores are configured to
perform rounding operations using the method 100 or 200.

In an embodiment, the matrix multiply mputs A and B are
16-bit floating point matrices, while the accumulation matri-
ces C and D may be 16-bit floating point or 32-bit tloating
point matrices. Tensor Cores operate on 16-bit floating point
input data with 32-bit floating point accumulation. The
16-bit floating point multiply requires 64 operations and
results 1 a full precision product that 1s then accumulated

10

15

20

25

30

35

40

45

50

55

60

65

16

using 32-bit floating point addition with the other interme-
diate products for a 4x4x4 matrix multiply. In practice,
Tensor Cores are used to perform much larger two-dimen-
sional or higher dimensional matrix operations, built up
from these smaller elements. An API, such as CUDA 9 C++
API, exposes specialized matrix load, matrix multiply and
accumulate, and matrix store operations to efliciently use
Tensor Cores from a CUDA-C++ program. At the CUDA
level, the warp-level interface assumes 16x16 size matrices
spanmng all 32 threads of the warp.

Each SM 440 also comprises M SFUs 532 that perform
special functions (e.g., attribute evaluation, reciprocal
square root, and the like). In an embodiment, the SFUs 552
are configured to perform rounding operations using the
method 100 or 200. In an embodiment, the SFUs 552 may
include a tree traversal unit configured to traverse a hierar-
chical tree data structure. In an embodiment, the SFUs 552
may include texture unit configured to perform texture map
filtering operations. In an embodiment, the texture units are
configured to load texture maps (e.g., a 2D array of texels)
from the memory 304 and sample the texture maps to
produce sampled texture values for use 1n shader programs
executed by the SM 440. In an embodiment, the texture
maps are stored in the shared memory/LL1 cache 470. The
texture units implement texture operations such as filtering
operations using mip-maps (e.g., texture maps ol varying
levels of detail). In an embodiment, each SM 340 includes
two texture units.

Each SM 440 also comprises N LSUs 554 that implement
load and store operations between the shared memory/L1
cache 570 and the register file 520. Each SM 440 includes
an 1interconnect network 580 that connects each of the
functional units to the register file 520 and the LSU 554 to
the register file 520, shared memory/LL1 cache 570. In an
embodiment, the interconnect network 580 1s a crossbar that
can be configured to connect any of the functional units to
any of the registers in the register file 520 and connect the
L.SUs 554 to the register file and memory locations 1n shared
memory/L1 cache 570.

The shared memory/LL1 cache 570 1s an array of on-chip
memory that allows for data storage and communication
between the SM 440 and the primitive engine 435 and
between threads in the SM 440. In an embodiment, the
shared memory/L1 cache 570 comprises 128 KB of storage
capacity and 1s in the path from the SM 440 to the partition
unit 380. The shared memory/IL1 cache 570 can be used to
cache reads and writes. One or more of the shared memory/

.1 cache 570, L2 cache 460, and memory 304 are backing
stores.

Combining data cache and shared memory functionality
into a single memory block provides the best overall per-
formance for both types of memory accesses. The capacity
1s usable as a cache by programs that do not use shared
memory. For example, 1f shared memory 1s configured to use
half of the capacity, texture and load/store operations can use
the remaiming capacity. Integration within the shared
memory/LL1 cache 570 enables the shared memory/L1 cache
570 to function as a high-throughput conduit for streaming
data while simultaneously providing high-bandwidth and
low-latency access to frequently reused data.

When configured for general purpose parallel computa-
tion, a simpler configuration can be used compared with
graphics processing. Specifically, the fixed function graphics
processing units shown in FIG. 3, are bypassed, creating a
much simpler programming model. In the general purpose
parallel computation configuration, the work distribution
unit 323 assigns and distributes blocks of threads directly to

US 10,908,878 B2

17

the DPCs 420. The threads 1 a block execute the same
program, using a unique thread ID 1n the calculation to

ensure each thread generates unique results, using the SM
440 to execute the program and perform calculations, shared
memory/L1 cache 570 to communicate between threads, and
the LSU 3554 to read and write global memory through the
shared memory/LL1 cache 570 and the memory partition unit
380. When configured for general purpose parallel compu-
tation, the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420.

The PPU 300 may be included 1n a desktop computer, a
laptop computer, a tablet computer, servers, supercomputers,
a smart-phone (e.g., a wireless, hand-held device), personal
digital assistant (PDA), a digital camera, a vehicle, a head
mounted display, a hand-held electronic device, and the like.
In an embodiment, the PPU 300 1s embodied on a single
semiconductor substrate. In one embodiment, the PPU 300
1s mncluded 1n a system-on-a-chip (SoC) along with one or
more other devices such as additional PPUs 300, the
memory 204, a reduced instruction set computer (RISC)
CPU, a memory management unit (MMU), a digital-to-
analog converter (DAC), and the like.

In an embodiment, the PPU 300 may be included on a
graphics card that includes one or more memory devices
304. The graphics card may be configured to iterface with
a PCle slot on a motherboard of a desktop computer. In yet
another embodiment, the PPU 300 may be an integrated
graphics processing unmit (1GPU) or parallel processor
included in the chipset of the motherboard.

Exemplary Computing System

Systems with multiple GPUs and CPUs are used 1n a
variety of industries as developers expose and leverage more
parallelism 1n applications such as artificial intelligence
computing. High-performance GPU-accelerated systems
with tens to many thousands of compute nodes are deployed
in data centers, research facilities, and supercomputers to
solve ever larger problems. As the number of processing
devices within the high-performance systems increases, the
communication and data transfer mechanisms need to scale
to support the increased

FIG. 5B 1s a conceptual diagram of a processing system
500 implemented using the PPU 300 of FIG. 3, in accor-
dance with an embodiment. The exemplary system 565 may
be configured to implement the method 100 shown in FIG.
1. The processing system 300 includes a CPU 3530, switch
510, and multiple PPUs 300 each and respective memories
304. The NVLink 310 provides high-speed communication
links between each of the PPUs 300. Although a particular
number of NVLink 310 and interconnect 302 connections
are 1llustrated in FIG. 5B, the number of connections to each
PPU 300 and the CPU 3530 may vary. The switch 510
interfaces between the interconnect 302 and the CPU 530.
The PPUs 300, memories 304, and NVLinks 310 may be
situated on a single semiconductor platform to form a
parallel processing module 525. In an embodiment, the
switch 510 supports two or more protocols to interface
between various different connections and/or links.

In one embodiment (not shown), the NVLink 310 pro-

vides one or more high-speed communication links between
cach of the PPUs 300 and the CPU 530 and the switch 510

interfaces between the interconnect 302 and each of the
PPUs 300. The PPUs 300, memories 304, and interconnect
302 may be situated on a single semiconductor platform to
form a parallel processing module 325. In yet another

10

15

20

25

30

35

40

45

50

55

60

65

18

embodiment (not shown), the interconnect 302 provides one
or more communication links between each of the PPUs 300

and the CPU 530 and the switch 510 interfaces between each
of the PPUs 300 using the NVLink 310 to provide one or
more high-speed communication links between the PPUs
300. In one embodiment (not shown), the NVLink 310
provides one or more high-speed communication links
between the PPUs 300 and the CPU 530 through the switch
510. In yet another embodiment (not shown), the intercon-
nect 302 provides one or more commumnication links
between each of the PPUs 300 directly. One or more of the
NVLmnk 310 high-speed communication links may be
implemented as a physical NVLink interconnect or either an
on-chip or on-die interconnect using the same protocol as

the NVLink 310.

In the context of the present description, a single semi-
conductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit fabricated on a die or chip. It
should be noted that the term single semiconductor platform
may also refer to multi-chip modules with increased con-
nectivity which simulate on-chip operation and make sub-
stantial 1mprovements over utilizing a conventional bus
implementation. Of course, the various circuits or devices
may also be situated separately or in various combinations
of semiconductor platforms per the desires of the user.
Alternately, the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUs 300 and/or memories 304 may be packaged devices.
In an embodiment, the CPU 530, switch 510, and the parallel
processing module 525 are situated on a single semiconduc-
tor platform.

In an embodiment, the signaling rate of each NVLink 310
1s 20 to 25 Gigabits/second and each PPU 300 includes six
NVLink 310 iterfaces (as shown i FIG. 3B, five NVLink
310 interfaces are included for each PPU 300). Each
NVLink 310 provides a data transfer rate of 25 Gigabytes/
second 1 each direction, with six links providing 300
(Gigabytes/second. The NVLinks 310 can be used exclu-
sively for PPU-to-PPU communication as shown in FIG. 5B,
or some combination of PPU-to-PPU and PPU-to-CPU,
when the CPU 530 also includes one or more NVLink 310
interfaces.

In an embodiment, the NVLink 310 allows direct load/
store/atomic access from the CPU 530 to each PPU’s 300
memory 304. In an embodiment, the NVLink 310 supports
coherency operations, allowing data read from the memories
304 to be stored in the cache hierarchy of the CPU 530,
reducing cache access latency for the CPU 530. In an
embodiment, the NVLink 310 includes support for Address
Translation Services (ATS), allowing the PPU 300 to
directly access page tables within the CPU 530. One or more
of the NVLinks 310 may also be configured to operate 1n a
low-power mode.

FIG. 5C illustrates an exemplary system 565 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. The exemplary
system 565 may be configured to implement the method 100
shown 1 FIG. 1 or the method 260 shown 1n FIG. 2D.

As shown, a system 563 1s provided including at least one
central processing unit 530 that 1s connected to a commu-
nication bus 375. The communication bus 375 may be
implemented using any suitable protocol, such as PCI (Pe-
ripheral Component Interconnect), PCI-Express, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
or point-to-point communication protocol(s). The system
5635 also includes a main memory 540. Control logic (soft-

US 10,908,878 B2

19

ware) and data are stored in the main memory 540 which
may take the form of random access memory (RAM).

The system 563 also includes input devices 560, the
parallel processing system 525, and display devices 545, e.g.
a conventional CRT (cathode ray tube), LCD (liquid crystal
display), LED (light emitting diode), plasma display or the
like. User input may be recerved from the mnput devices 560,
e.g., keyboard, mouse, touchpad, microphone, and the like.
Each of the foregoing modules and/or devices may even be
situated on a single semiconductor platform to form the
system 565. Alternately, the various modules may also be
situated separately or 1n various combinations of semicon-
ductor platiforms per the desires of the user.

Further, the system 5635 may be coupled to a network
(c.g., a telecommunications network, local area network
(LAN), wireless network, wide area network (WAN) such as
the Internet, peer-to-peer network, cable network, or the
like) through a network interface 535 for communication
purposes.

The system 565 may also include a secondary storage (not
shown). The secondary storage 610 includes, for example, a
hard disk drive and/or a removable storage drive, represent-
ing a tloppy disk drive, a magnetic tape drive, a compact
disk drive, digital versatile disk (DVD) drive, recording
device, universal serial bus (USB) flash memory. The
removable storage drive reads from and/or writes to a
removable storage umit in a well-known manner.

Computer programs, or computer control logic algo-
rithms, may be stored in the main memory 340 and/or the
secondary storage. Such computer programs, when
executed, enable the system 5635 to perform various func-
tions. The memory 540, the storage, and/or any other storage
are possible examples of computer-readable media.

The architecture and/or functionality of the various pre-
vious figures may be implemented 1n the context of a general
computer system, a circuit board system, a game console
system dedicated for entertainment purposes, an application-
specific system, and/or any other desired system. For
example, the system 565 may take the form of a desktop
computer, a laptop computer, a tablet computer, servers,
supercomputers, a smart-phone (e.g., a wireless, hand-held
device), personal digital assistant (PDA), a digital camera, a
vehicle, a head mounted display, a hand-held electronic
device, a mobile phone device, a television, workstation,
game consoles, embedded system, and/or any other type of
logic.

Machine Learning,

Deep neural networks (DNNs) developed on processors,
such as the PPU 300 have been used for diverse use cases,
from seli-driving cars to faster drug development, from
automatic 1mage captioning 1n online 1mage databases to
smart real-time language translation i video chat applica-
tions. Deep learning 1s a techmque that models the neural
learning process of the human brain, continually learning,
continually getting smarter, and delivering more accurate
results more quickly over time. A child 1s mitially taught by
an adult to correctly identily and classily various shapes,
eventually being able to identily shapes without any coach-
ing. Similarly, a deep learning or neural learning system
needs to be trained 1n object recognition and classification
for 1t get smarter and more eflicient at i1dentifying basic
objects, occluded objects, etc., while also assigning context
to objects.

At the simplest level, neurons in the human brain look at
vartous 1nputs that are recerved, importance levels are

10

15

20

25

30

35

40

45

50

55

60

65

20

assigned to each of these mputs, and output 1s passed on to
other neurons to act upon. An artificial neuron or perceptron
1s the most basic model of a neural network. In one example,
a perceptron may receive one or more mputs that represent
various features of an object that the perceptron 1s being
trained to recognize and classity, and each of these features
1s assigned a certain weight based on the importance of that
feature 1n defining the shape of an object.

A deep neural network (DNN) model includes multiple
layers of many connected nodes (e.g., perceptrons, Boltz-
mann machines, radial basis functions, convolutional layers,
etc.) that can be trained with enormous amounts of 1nput
data to quickly solve complex problems with high accuracy.
In one example, a first layer of the DNN model breaks down
an input 1mage of an automobile into various sections and
looks for basic patterns such as lines and angles. The second
layer assembles the lines to look for higher level patterns
such as wheels, windshields, and mirrors. The next layer
identifies the type of vehicle, and the final few layers
generate a label for the input image, identifying the model
of a specific automobile brand.

Once the DNN 1s trained, the DNN can be deployed and
used to 1dentily and classity objects or patterns in a process
known as inference. Examples of inference (the process
through which a DNN extracts useful information from a
given put) include identifying handwritten numbers on
checks deposited into ATM machines, identifying images of
friends 1n photos, delivering movie recommendations to
over fifty million users, 1dentitying and classitying different
types of automobiles, pedestrians, and road hazards in
driverless cars, or translating human speech 1n real-time.

During training, data flows through the DNN 1n a forward
propagation phase until a prediction 1s produced that indi-
cates a label corresponding to the iput. If the neural
network does not correctly label the imput, then errors
between the correct label and the predicted label are ana-
lyzed, and the weights are adjusted for each feature during
a backward propagation phase until the DNN correctly
labels the input and other inputs 1n a training dataset.
Training complex neural networks requires massive
amounts of parallel computing performance, including float-
ing point multiplications and additions that are supported by
the PPU 300. Inferencing 1s less compute-intensive than
training, being a latency-sensitive process where a trained
neural network 1s applied to new inputs it has not seen before
to classily images, translate speech, and generally infer new
information.

Neural networks rely heavily on matrix math operations,
and complex multi-layered networks require tremendous
amounts of floating point performance and bandwidth for

both efliciency and speed. With thousands of processing
cores, optimized for matrix math operations, and delivering
tens to hundreds of TFLOPS of performance, the PPU 300
1s a computing platform capable of delivering performance
required for deep neural network-based artificial intelligence
and machine learning applications.

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above-described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents.

US 10,908,878 B2

21

What 1s claimed 1s:

1. A method to train a neural network, comprising:

receiving two or more floating point operands;

generating a floating point result based, at least 1n part, on

at least one mathematical operation operating on the >
two or more floating point operands; and

rounding the floating point result in a direction corre-

sponding to a sign of at least one of the floating point
operands.

2. The method of claim 1, further comprising;: 10

determining the at least one of the floating point operands

equals zero; and

based on the determination, setting the rounded floating

point result equal to the floating point result.

3. The method of claim 1, further comprising: 15

designating one of the tloating point operands to be used

for rounding; and

wherein the rounding comprises adding a unit of least

precision to the floating point result 1t a sign of the
designated floating point operand is positive and sub- 20
tracting a unit of least precision from the floating point
result 11 the sign 1s negative.

4. The method of claim 3, wherein the one of the floating
point operands 1s indicated by an ordering of the floating
point operands. 23

5. The method of claim 3, wherein the one of the floating
point operands 1s indicated by a setting.

6. The method of claim 1, wherein the at least one of the
tfloating point operands 1s an mput to an arithmetic operation
instruction. 30

7. The method of claim 1, wherein the at least one of the
floating point operands 1s an expression.

8. A computer-implemented method to train a neural
network, comprising;:

receiving two or more floating point operands; 33

generating a floating point result based, at least 1n part, on

at least one mathematical operation operating on the
two or more tloating point operands; and

rounding the floating point result 1n a direction corre-

sponding to a sign of at least one of the floating point 4V
operands.

9. The method of claim 8, wherein the rounding comprises
adding a unit of least precision to the floating point result 1f
the value 1s within than a predetermined range.

10. The method of claim 8, wherein the rounding com-
prises subtracting a unit of least precision from the floating,
point result 1f the value 1s within than a predetermined range.

11. The method of claim 8, wherein the rounding com-
prises adding a Isb to the floating point result when the value
1s positive. S0

12. The method of claim 8, wherein the rounding com-
prises subtracting a Isb from the floating point result when
the value 1s negative.

22

13. The method of claim 8, further comprising;:

determining the value equals zero; and

based on the determination, setting the rounded floating

point result equal to the floating point result.

14. The method of claim 8, further comprising:

determining the floating point result 1s represented

exactly; and

based on the determination, setting the rounded floating

point result equal to the tloating point result.

15. The method of claim 8, further comprising outputting
at least one signal based on the rounded floating point result,
wherein the at least one signal 1s configured to be used to
update one or more parameters of a neural network.

16. The method of claim 8, wherein generation of a
random value 1s avoided 1n connection with the production
of the rounded floating point result.

17. An apparatus, comprising:

a circuit to train a neural network, the circuit configured

to:

receive two or more floating point operands;

generate a floating point result based, at least 1n part, on
at least one mathematical operation operating on the
two or more floating point operands; and

round the floating point result in a direction corre-
sponding to a sign of at least one of the floating point
operands.

18. The apparatus of claim 17, wheremn the circuit 1s
turther configured to:

determine the floating point result 1s represented exactly;

and

based on the determination, set the rounded floating point

result equal to the floating point result.

19. The apparatus of claam 17, wherein the circuit 1s
configured such that the rounding comprises rounding
towards positive infinity it the sign of a designated floating
point operand 1s positive.

20. The apparatus of claam 17, wheremn the circuit 1s
configured such that the rounding comprises rounding
towards negative infinity 11 the sign of a designated floating
point operand 1s negative.

21. The apparatus of claim 17, wherein the circuit 1s
turther configured to output at least one signal based on the
rounded tloating point result.

22. The apparatus of claim 21, wherein the circuit 1s
configured such that the at least one signal 1s configured to
be used to update one or more parameters ol a neural
network.

23. The apparatus of claim 17, wherein the floating point
result 1s a mantissa of a floating point format number.

24. The apparatus of claim 17, further comprising nor-
malizing the rounded floating point result to produce a
mantissa ol a floating point format number.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

