

US010907386B2

(12) United States Patent

Walawender et al.

(10) Patent No.: US 10,907,386 B2

(45) **Date of Patent:**

Feb. 2, 2021

(54) SIDE DOOR PUSHBUTTON RELEASES

(71) Applicant: Ford Global Technologies, LLC,

Dearborn, MI (US)

(72) Inventors: Chester Stanislaus Walawender,

Livonia, MI (US); Rajesh K. Patel,

Farmington Hills, MI (US)

(73) Assignee: Ford Global Technologies, LLC,

Dearborn, MI (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 310 days.

(21) Appl. No.: 16/002,650

(22) Filed: **Jun. 7, 2018**

(65) Prior Publication Data

US 2019/0376324 A1 Dec. 12, 2019

(51) **Int. Cl.**

E05B 81/76	(2014.01)
E05F 15/60	(2015.01)
E05F 15/76	(2015.01)
B60R 25/01	(2013.01)
B60R 25/20	(2013.01)

(Continued)

(52) **U.S. Cl.**

CPC *E05B 81/77* (2013.01); *B60R 25/01* (2013.01); *B60R 25/2036* (2013.01); *B60R 25/30* (2013.01); *E05B 17/10* (2013.01); *E05F 15/60* (2015.01); *E05F 15/76* (2015.01)

(58) Field of Classification Search

CPC E05B 81/77; E05B 17/10; E05F 15/60; E05F 15/76; B60R 25/01; B60R 25/2036; B60R 25/30

(56) References Cited

U.S. PATENT DOCUMENTS

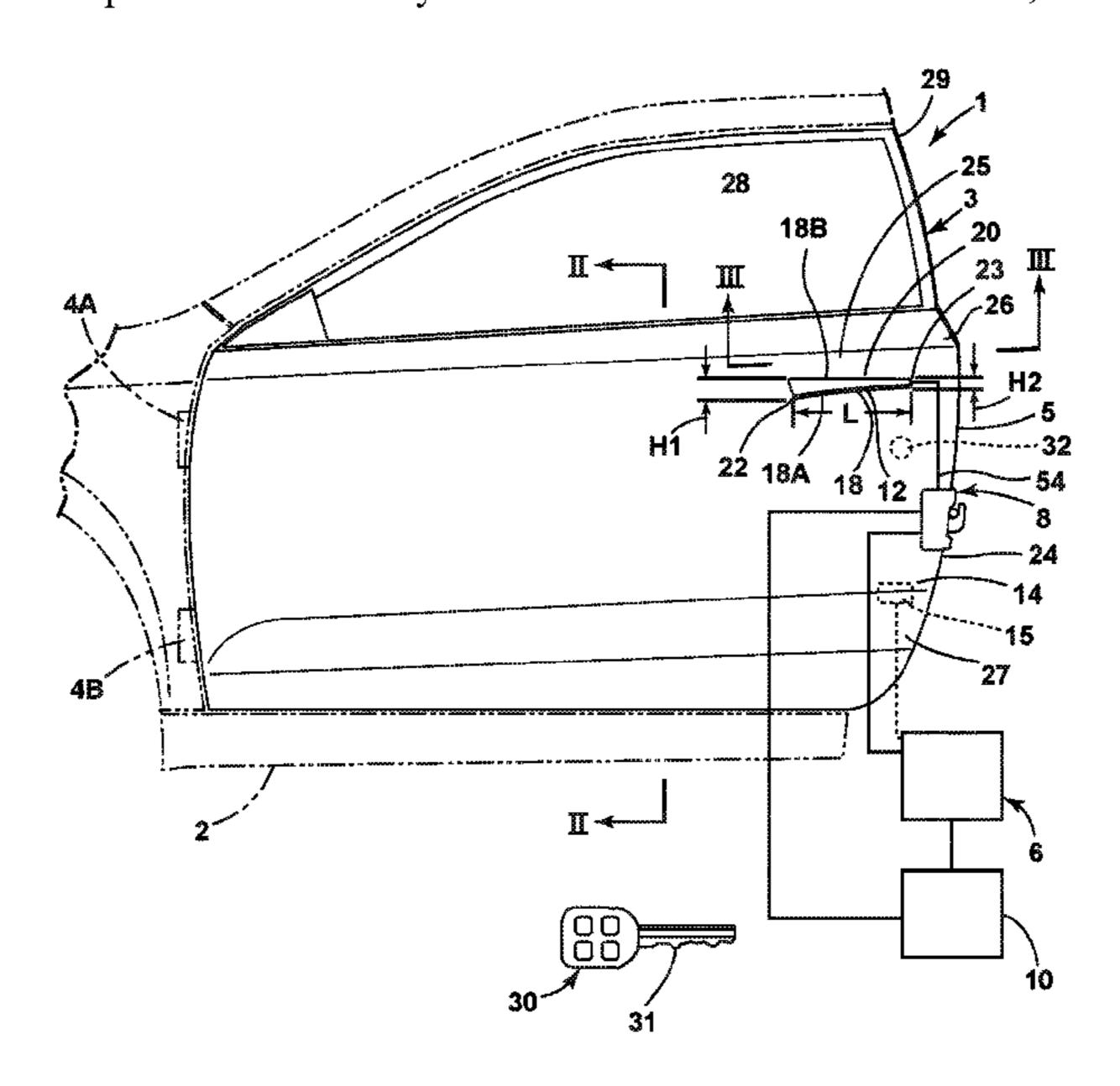
2,229,909 A 1/1941 Wread 2,553,023 A 5/1951 Walters 3,479,767 A 11/1969 Gardner et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN 1232936 C 12/2005 CN 201198681 Y 2/2009 (Continued)

OTHER PUBLICATIONS

"Push Button to open your car door" Online video clip. YouTube, Mar. 10, 2010. 1 page.


(Continued)

Primary Examiner — Justin V Lewis (74) Attorney, Agent, or Firm — David L. Coppiellie; Price Heneveld LLP

(57) ABSTRACT

A vehicle door system includes a controller and a powered latch that is configured to selectively retain a door structure in a closed position when the powered latch is latched. The powered latch permits the door to be opened when the powered latch is unlatched. An electronic door release pad is disposed on an outer side of the door structure. The door release pad includes a pad surface that faces outwardly away from the door structure. A generally flat outer side of the door structure extends around the perimeter of the pad surface. The pad surface preferably comprises a sensor. The controller is configured to generate a signal to unlatch the powered latch if the door release pad generates a signal indicating that a user has touched the pad surface and/or that an object has been detected adjacent the pad.

19 Claims, 5 Drawing Sheets

US 10,907,386 B2 Page 2

(51)	Int. Cl. B60R 25/30 E05B 17/10		(2013.01) (2006.01)	6,075,294 6,089,626 6,091,162 6,099,048	A A	7/2000 7/2000	Van den Boom et al Shoemaker Williams, Jr. et al. Salmon et al.
(5.0)		D . f		6,125,583 6,130,614		10/2000 10/2000	Murray et al. Miller
(56)		Keieren	ces Cited	6,145,918	A	11/2000	Wilbanks, II
	U.S.]	PATENT	DOCUMENTS	6,157,090 6,181,024		12/2000 1/2001	Vogel Geil
	3,605,459 A	9/1971	Van Dalen	6,198,995 6,241,294			Settles et al. Young et al.
	3,751,718 A 3,771,823 A		Hanchett Schnarr	6,247,343	B1	6/2001	Weiss et al.
	3,854,310 A	12/1974	Paul1	6,256,932 6,271,745			Jyawook et al. Anazi et al.
	3,858,922 A 4,193,619 A	1/1975 3/1980	Yamanaka Jeril	6,305,737			Corder et al.
	4,206,491 A	6/1980	Ligman et al.	6,341,448 6,357,803		1/2002 3/2002	_
	4,425,597 A 4,457,148 A		Schramm Johansson et al.	6,361,091 6,405,485			Weschler Itami et al.
	4,640,050 A		Yamagishi et al.	6,406,073			Watanabe
	4,672,348 A 4,674,230 A	6/1987 6/1987	Takeo et al.	6,441,512 6,460,905		8/2002 10/2002	Jakel et al.
	4,674,781 A 4,702,117 A		Reece et al. Tsutsumi et al.	6,470,719	B1	10/2002	Franz et al.
	4,848,031 A	6/1989	Yamagishi et al.	6,480,098 6,481,056		11/2002 11/2002	
	4,858,971 A 4,889,373 A	8/1989 12/1989	Haag Ward et al.	6,515,377	B1	2/2003	Uberlein et al.
	4,929,007 A	5/1990	Bartczak et al.	6,523,376 6,550,826			Baukholt et al. Fukushima et al.
	5,018,057 A 5,056,343 A		Biggs et al. Kleefeldt et al.	6,554,328	B2	4/2003	Cetnar et al.
	5,058,258 A	10/1991	Harvey	6,556,900 6,602,077			Brynielsson Kasper et al.
	5,074,073 A 5,092,637 A	3/1991	Zwebner Miller	6,606,492		8/2003	Losey
	5,173,991 A	12/1992	Carswell	6,629,711 6,639,161			Gleason et al. Meagher et al.
	5,239,779 A 5,263,762 A		Deland et al. Long et al.	6,657,537 6,659,515		12/2003	Hauler Raymond et al.
	5,297,010 A 5,332,273 A		Camarota et al. Komachi	6,701,671	B1	3/2004	Fukumoto et al.
	, ,		Abe et al.	6,712,409 6,715,806			Monig Arlt et al.
	5,494,322 A 5,497,641 A		Menke Linde et al.	6,734,578	B2	5/2004	Konno et al.
	5,535,608 A	7/1996	Brin	6,740,834 6,768,413			Sueyoshi et al. Kemmann et al.
	5,547,208 A 5,551,187 A		Chappell et al. Brouwer et al.	6,779,372	B2	8/2004	Arlt et al.
	5,581,230 A	12/1996	Barrett	6,783,167 6,786,070			Bingle et al. Dimig et al.
	5,583,405 A 5,613,716 A		Sai et al. Cafferty	6,794,837		9/2004	Whinnery et al.
	5,618,068 A	4/1997	Mitsui et al.	6,825,752 6,829,357			Nahata et al. Alrabady et al.
	5,632,120 A 5,632,515 A		Shigematsu et al. Dowling	6,843,085 6,854,870		1/2005 2/2005	Dimig Huizenga
	5,644,869 A 5,653,484 A		Buchanan, Jr. Brackmann et al.	6,879,058	B2	4/2005	Lorenz et al.
	5,662,369 A	9/1997	Tsuge	6,883,836 6,883,839			Breay et al. Belmond et al.
	5,684,470 A 5,744,874 A		Deland et al. Yoshida et al.	6,910,302	B2	6/2005	Crawford
	5,755,059 A	5/1998	Schap	6,914,346 6,923,479		7/2005 8/2005	Gırard Aiyama et al.
	5,783,994 A 5,802,894 A		Koopman, Jr. et al. Jahrsetz et al.	6,933,655	B2	8/2005	Morrison et al.
	5,808,555 A	9/1998	Bartel	6,946,978 7,005,959			Schofield Amagasa
	5,852,944 A 5,859,479 A	1/1998	Collard, Jr. et al. David	7,038,414 7,055,997		5/2006 6/2006	Daniels et al.
	5,895,089 A		Singh et al.	7,055,997			Saitoh et al.
	5,896,026 A 5,896,768 A		Higgins Cranick et al.	7,070,018 7,070,213			Kachouh Willats et al.
	5,898,536 A 5,901,991 A	4/1999 5/1999	Won Hugel et al.	7,090,285	B2	8/2006	Markevich et al.
	5,921,612 A	7/1999	Mizuki et al.	7,091,823 7,091,836			Ieda et al. Kachouh et al.
	5,927,794 A 5,964,487 A		Mobius Shamblin	7,097,226	B2	8/2006	Bingle et al.
	5,979,754 A	11/1999	Martin et al.	7,106,171 7,108,301		9/2006 9/2006	Burgess Louvel
	5,992,194 A 6,000,257 A		Baukholt et al. Thomas	7,126,453	B2	10/2006	Sandau et al.
	6,027,148 A	2/2000	Shoemaker	7,145,436 7,161,152		12/2006 1/2007	Ichikawa et al. Dipoala
	6,038,895 A 6,042,159 A		Menke et al. Spitzley et al.	7,170,253	B2	1/2007	Spurr et al.
	6,043,735 A	3/2000	Barrett	7,173,346 7,176,810			Aiyama et al. Inoue
	6,050,117 A 6,056,076 A		Weyerstall Bartel et al.	7,180,400	B2	2/2007	Amagasa
	6,065,316 A 6,072,403 A		Sato et al. Iwasaki et al.	7,192,076 7,204,530		3/2007 4/2007	
	0,072,703 A	U/ ZUUU	iwasani Ct al.	7,207,330	DZ	T/ ZUU /	LCC

US 10,907,386 B2 Page 3

(56)		Referen	ces Cited	9,522,590 9,546,502			Fujimoto et al. Lange	
	U.S.	PATENT	DOCUMENTS	9,551,166 9,725,069	B2	1/2017	Patel et al. Krishnan	
7,205,777	В2	4/2007	Schultz et al.	9,777,528	B2	10/2017	Elie et al.	
7,221,255			Johnson et al.	9,797,178			Elie et al.	
7,224,259			Bemond et al.	9,797,181			Wheeler et al.	. 1
7,248,955			Hein et al.	9,834,964 9,845,071			Van Wiemeersch et a Krishnan	П.
7,263,416 7,270,029			Sakurai et al.	9,903,142			Van Wiemeersch et a	a1.
7,270,029			Papanikolaou et al. Coleman et al.	9,909,344			Krishnan et al.	
7,342,373			Newman et al.	/ /			Patel et al.	
7,360,803		4/2008	Parent et al.	2001/0005078		_	Fukushima et al.	
7,363,788			Dimig et al.	2001/0030871			Anderson	
7,375,299			Pudney	2002/0000726 2002/0111844		1/2002 8/2002	Vanstory et al.	
7,399,010 7,446,645			Hunt et al. Steegmann	2002/0121967			Bowen et al.	
7,576,631			Bingle et al.	2002/0186144	A1	12/2002	Meunier	
7,642,669		1/2010	•	2003/0009855			Budzynski	
7,686,378			Gisler et al.	2003/0025337			Suzuki et al.	
7,688,179			Kurpinski et al.	2003/0038544 2003/0101781		2/2003 6/2003	Spurr Budzynski et al.	
7,705,722 7,747,286			Shoemaker et al. Conforti	2003/0101/01			Pang et al.	
7,747,280			Gotou et al.	2003/0111863			Weyerstall et al.	
7,791,218			Mekky et al.	2003/0139155		7/2003		
7,926,385			Papanikolaou et al.	2003/0172695			Buschmann	
7,931,314			Nitawaki et al.	2003/0182863 2003/0184098		10/2003	Mejean et al.	
7,937,893 8,028,375			Pribisic Nakaura et al.	2003/0104030		11/2003		
8,028,373			Kurpinski et al.	2004/0061462			Bent et al.	
8,126,450			Howarter et al.	2004/0093155			Simonds et al.	
8,141,296		3/2012		2004/0124708 2004/0195845			Giehler et al.	
8,141,916			Tomaszewski et al.	2004/0193843			Chevalier Garnault et al.	
8,169,317 8,193,462			Lemerand et al. Zanini et al.	2005/0057047			Kachouch	
8,224,313			Howarter et al.	2005/0068712			Schulz et al.	
8,272,165	B2	9/2012	Tomioka	2005/0216133			MacDougall et al.	
8,376,416			Arabia, Jr. et al.	2005/0218913 2006/0056663		10/2005 3/2006		
8,398,128 8,405,515			Arabia et al. Ishihara et al.	2006/0030003			Luebke et al.	
8,405,527			Chung et al.	2006/0186987			Wilkins	
8,419,114			Fannon	2007/0001467			Muller et al.	
8,451,087			Krishnan et al.	2007/0090654 2007/0115191		4/2007 5/2007	Eaton Hashiguchi et al.	
8,454,062 8,474,889			Rohlfing et al.	2007/0113131			Nakashima	
8,532,873			Reifenberg et al. Bambenek	2007/0126243			Papanikolaou et al.	
8,534,101			Mette et al.	2007/0132553			Nakashima	
8,544,901			Krishnan et al.	2007/0170727 2008/0021619			Kohlstrand et al.	
8,573,657			Papanikolaou et al.	2008/0021019			Steegmann et al. Johansson et al.	
•			Yamaguchi Klein et al.	2008/0068129			Ieda et al.	
8,616,595			Wellborn et al.	2008/0129446		6/2008		
8,648,689			Hathaway et al.	2008/0143139			Bauer et al.	
8,690,204			Lang et al.	2008/0202912 2008/0203737			Boddie et al. Tomaszewski et al.	
8,746,755 8,826,596			Papanikolaou et al. Tensing	2008/0211623			Scheurich	
8,833,811			Ishikawa	2008/0217956			Gschweng et al.	
8,903,605			Bambenek	2008/0224482			Cumbo et al.	
8,915,524			Charnesky	2008/0230006 2008/0250718			Kirchoff et al. Papanikolaou et al.	
8,963,701 8,965,287		2/2015	Rodriguez	2008/0296927			Gisler et al.	
9,003,707			Reddmann	2008/0303291	A1	12/2008	Spurr	
9,076,274			Kamiya	2008/0307711			Kern et al.	
9,159,219			Magner et al.	2009/0033104 2009/0033477			Konchan et al. Illium et al.	
9,184,777 9,187,012			Esselink et al. Sachs et al.	2009/0033477			Pecoul et al.	
9,187,012			Penilla et al.	2009/0160211			Krishnan et al.	
9,260,882			Krishnan et al.	2009/0177336			McClellan et al.	
9,284,757			Kempel	2009/0240400			Lachapelle et al.	
9,322,204		4/2016		2009/0257241 2010/0007463			Meinke et al. Dingman et al.	
9,353,566 9,382,741			Miu et al. Konchan et al.	2010/000/403			Arabia et al.	
9,405,120		8/2016		2010/0052337			Arabia, Jr. et al.	
9,409,579		8/2016	Eichin et al.	2010/0060505	A 1	3/2010	Witkowski	
9,416,565			Papanikolaou et al.	2010/0097186			Wielebski	
9,475,369			Sugiura et al.	2010/0175945		7/2010		
9,481,325 9,493,975			•	2010/0235057 2010/0235058			Papanikolaou et al. Papanikolaou et al.	
, ,			Krishnan				Krishnan et al.	
٠,٥١٥,١٥٥		,,				• • • •		

US 10,907,386 B2 Page 4

(56)	Referen	ices Cited		22742 A1 58588 A1		Seki et al. Wheeler et al.
U.S	. PATENT	DOCUMENTS	2017/00	74006 A1 01076 A1*	3/2017	Patel et al. Krishnan E05B 81/78
2010/0237635 A1		Ieda et al.	2017/02	47016 A1 70490 A1	8/2017	Krishnan Penilla et al.
2010/0253535 A1 2010/0265034 A1		Thomas Cap et al			-	Och et al.
2010/0203034 A1 2010/0315267 A1		Cap et al. Chung et al.				Krishnan
2011/0041409 A1	2/2011	Newman et al.		38147 A1		Linden et al.
2011/0060480 A1		Mottla et al.		51493 A1 51498 A1		Krishnan et al. Van Wiemeersch et al.
2011/0148575 A1 2011/0154740 A1		Sobecki et al. Matsumoto et al.		58128 A1		Khan et al.
2011/0180350 A1		Thacker		65598 A1		Krishnan
2011/0203181 A1		Magner et al.		80270 A1		Khan et al.
2011/0203336 A1 2011/0227351 A1		Mette et al. Grosedemouge	2018/01	28022 A1	3/2018	Van Wiemeersh et al.
2011/0248862 A1		Budampati		FOREIGI	N PATE	NT DOCUMENTS
2011/0252845 A1		Webb et al.				
2011/0254292 A1 2011/0313937 A1		Moore, Jr. et al.	CN	201280		7/2009
2012/0119524 A1		Bingle et al.	CN CN	101527 201567		9/2009 9/2010
2012/0154292 A1		Zhao et al.	CN	101932		12/2010
2012/0180394 A1 2012/0205925 A1		Shinohara Muller et al.	CN	201915		8/2011
2012/0228886 A1		Muller et al.	CN CN	2022009 202686		4/2012 1/2013
2012/0252402 A1			CN	103206		7/2013
2013/0049403 A1 2013/0069761 A1		Fannon et al. Tieman	CN	103264		8/2013
2013/0079984 A1		Aerts et al.	CN CN	203511 204326		4/2014 5/2015
2013/0104459 A1		Patel et al.	DE		655 A1	8/1995
2013/0127180 A1 2013/0138303 A1		Heberer et al. McKee et al.	DE		059 A1	11/1997
2013/0207794 A1			DE DE		698 A1 698 A2	4/1998 11/2000
2013/0282226 A1		Pollmann	DE		794 A1	6/2003
2013/0295913 A1 2013/0311046 A1		Matthews, III et al. Heberer et al.	DE		915 U1	11/2003
2013/0321065 A1		Salter et al.	DE DE	10309	821 A1 551 A1	9/2004 3/2007
2013/0325521 A1	12/2013		DE	102006029		1/2008
2014/0000165 A1	* 1/2014	Patel E05B 81/76 49/31	DE	102006040		3/2008
2014/0007404 A1	1/2014	Krishnan et al.	DE DE	102006041 102010052		3/2008 5/2012
2014/0015637 A1		Dassanakake et al.	DE	102011051		12/2012
2014/0088825 A1 2014/0129113 A1		Lange et al. Van Wiemeersch et al.	DE	102015101		7/2015
2014/0150581 A1		Scheuring et al.	DE EP	$\frac{102014107}{0372}$	809 A1 791 A2	12/2015 6/1990
2014/0156111 A1		Ehrman	EP		664 A1	1/1996
2014/0188999 A1 2014/0200774 A1		Leonard et al. Lange et al.	EP		332 A1	12/2001
2014/0227980 A1		Esselink et al.	EP EP		334 A1 403 A2	2/2003 3/2003
2014/0242971 A1		Aladenize et al.	EP	1284	334 A1	9/2003
2014/0245666 A1 2014/0256304 A1		Ishida et al. Frye et al.	EP		204 A2	9/2004
2014/0278599 A1			EP EP		119 A1 731 A2	10/2004 2/2005
2014/0293753 A1		Pearson Vraug et el	EP	1944	436 A2	7/2008
2014/0338409 A1 2014/0347163 A1		Kraus et al. Banter et al.	EP EP		744 A2 803 A2	4/2009 4/2011
2015/0001926 A1	1/2015	Kageyama et al.	FR		838 A1	6/1994
2015/0048927 A1 2015/0059250 A1		Simmons Miu et al.	FR		547 A1	3/2000
2015/0039230 A1 2015/0084739 A1		Lemoult et al.	FR FR		285 A1 261 A1	12/2003 4/2005
2015/0149042 A1		Cooper et al.	FR		402 A1	7/2009
2015/0161832 A1 2015/0197205 A1		Esselink et al. Xiong	FR		604 A1	7/2011
2015/0197203 A1 2015/0240548 A1		Bendel et al.	GB GB		840 A 754 A	12/2004 5/2013
2015/0294518 A1		-	JP		256 A	11/1987
2015/0330112 A1 2015/0330113 A1		Van Wiemeersch et al. Van Wiemeersch et al.	JP		855 A	3/1993
2015/0330113 A1 2015/0330114 A1		Linden et al.	JP JP	406167 406185		6/1994 7/1994
2015/0330117 A1		Van Wiemeersch et al.	JP	2000064		2/2000
2015/0330133 A1 2015/0360545 A1		Konchan et al. Nanla	JP	2000314		11/2000
2015/0300343 A1 2015/0371031 A1		Ueno et al.	JP JP	2007100 2007138		4/2007 6/2007
2016/0060909 A1		Krishnan et al.	KR	20030025	738 A	3/2003
2016/0130843 A1 2016/0138306 A1		Bingle Krishnan et al.	KR WO	20120108		10/2012
2016/0153336 A1		Funahashi et al.	WO WO		695 A1 776 A1	4/2001 11/2003
2016/0273255 A1		Suzuki et al.	WO	2013111	615 A1	8/2013
2016/0326779 A1 2017/0014039 A1		Papanikolaou et al. Pahlevan et al.	WO WO	2013146		10/2013 9/2014
2017/0014039 A1	1/201/	ramevan et al.	WO	2014146	100 A1	J/2014

(56) References Cited FOREIGN PATENT DOCUMENTS WO 2015064001 A1 5/2015 WO 2015145868 A1 10/2015 WO 2017160787 A2 9/2017

OTHER PUBLICATIONS

Car of the Week: 1947 Lincoln convertible by: bearnest May 29, 2012 http://www.oldcarsweekly.com/car-of-the-week/car-of-the-week-1947-lincoln-convertible. 7 pages.

Kisteler Instruments, "Force Sensors Ensure Car Door Latch is Within Specification," Article, Jan. 1, 2005, 3 pages.

General Motors Corporation, 2006 Chevrolet Corvette Owner Manual, © 2005 General Motors Corporation, 4 pages.

General Motors LLC, 2013 Chevrolet Corvette Owner Manual, 2012, 17 pages.

General Motors, "Getting to Know Your 2014 Corvette," Quick Reference Guide, 2013, 16 pages.

InterRegs Ltd., Federal Motor Vehicle Safety Standard, "Door Locks and Door Retention Components," 2012, F.R. vol. 36 No. 232—Feb. 12, 1971, 23 pages.

Ross Downing, "How to Enter & Exit a Corvette With a Dead Battery," YouTube video http://www.youtube.com/watch?v=DLDqmGQU6L0, Jun. 6, 2011, 1 page.

Jeff Glucker, "Friends videotape man 'trapped' inside C6 Corette with dead battery," YouTube via Corvett Online video http://www.autoblog.com/2011/05/14/friends-videotape-man-trapped-inside-c6-corvette-with-dead-bat/, May 14, 2011, 1 page.

Don Roy, "ZR1 Owner Calls 911 After Locking Self in Car," website http://www.corvetteonline.com/news/zr1-owner-calls-911-after-locking-self-in-car/, Apr. 13, 2011, 2 pages.

Zach Bowman, "Corvette with dead battery traps would-be thief," website http://www.autoblog.com/2011/10/25/corvette-with-dead-battery-traps-would-be-thief/, Oct. 25, 2011, 2 pages.

U.S. Appl. No. 14/468,634, filed Aug. 26, 2014, 15 pages.

U.S. Appl. No. 13/608,303, filed Sep. 10, 2012, 15 pages.

Bryan Laviolette, "GM's New App Turns Smartphones into Virtual Keys," Article, Jul. 22, 2010, 2 pages.

Hyundai Bluelink, "Send Directions to your car," Link to App, 2015, 3 pages.

U.S. Appl. No. 14/276,415, filed May 13, 2014, 18 pages.

Office Action dated Mar. 10, 2017, U.S. Appl. No. 15/174,206, filed Jun. 6, 2016, 17 pages.

Zipcar.com, "Car Sharing from Zipcar: How Does car Sharing Work?" Feb. 9, 2016, 6 pages.

Department of Transportation, "Federal Motor Vehicle Safety Standards; Door Locks and Door Retention Components and Side Impact Protection," http://www.nhtsa.gov/cars/rules/rulings/DoorLocks/DoorLocks_NPRM.html#VI_C, 23 pages, Aug. 28, 2010.

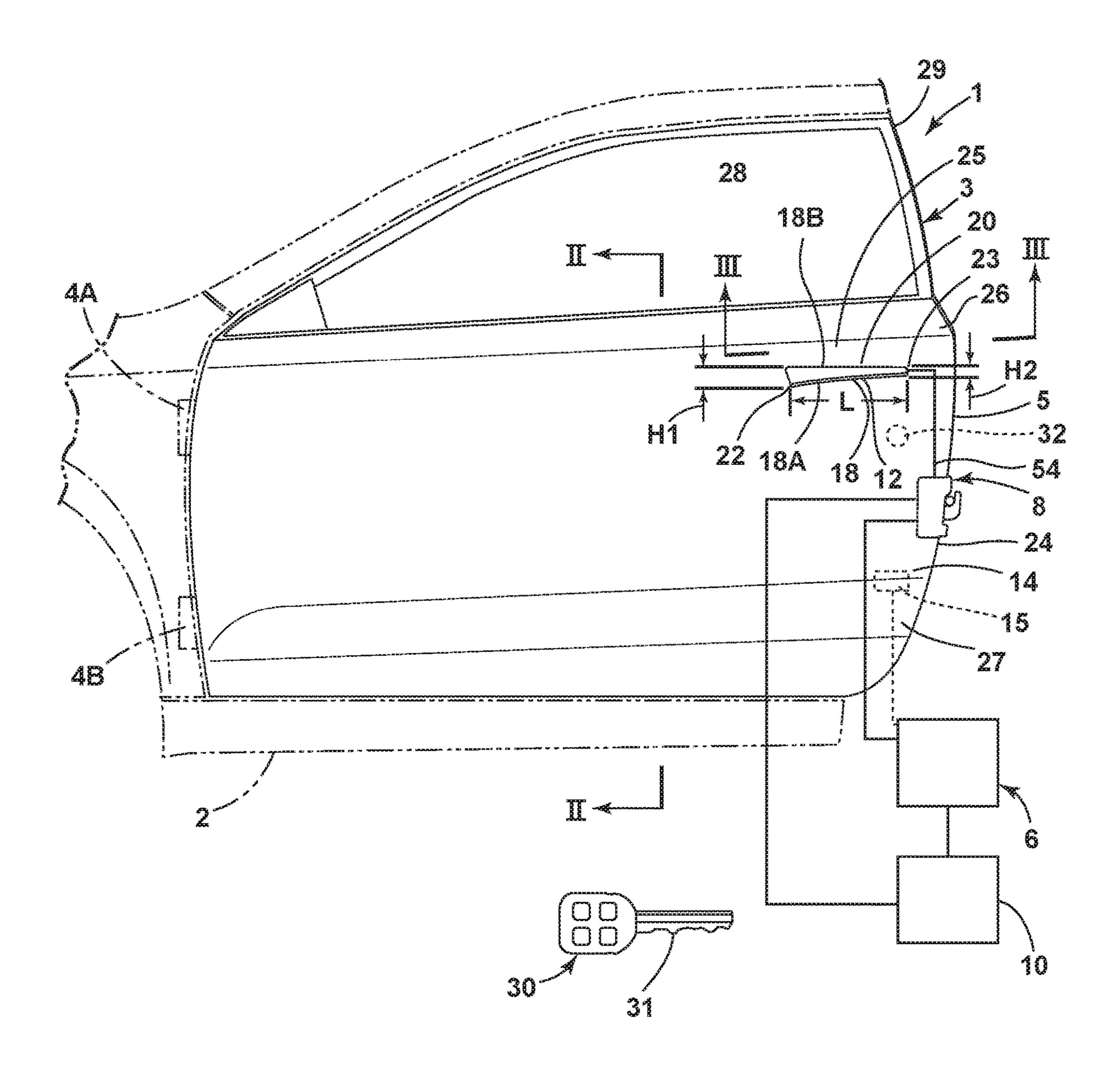
U.S. Appl. No. 14/276,415, Office Action dated Mar. 28, 2018, 19 pages.

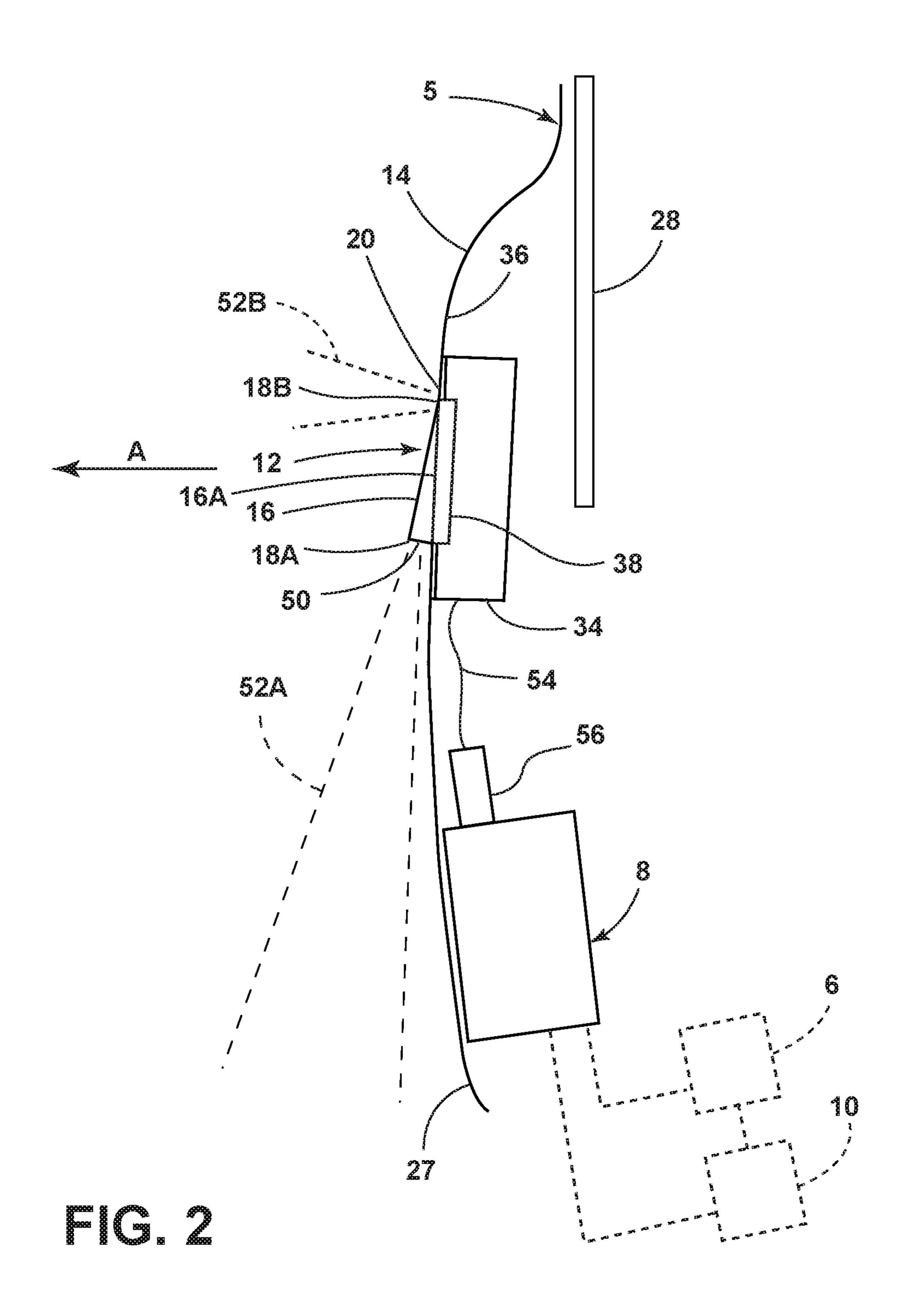
U.S. Appl. No. 12/402,744, Office Action dated Oct. 23, 2013, 7 pages.

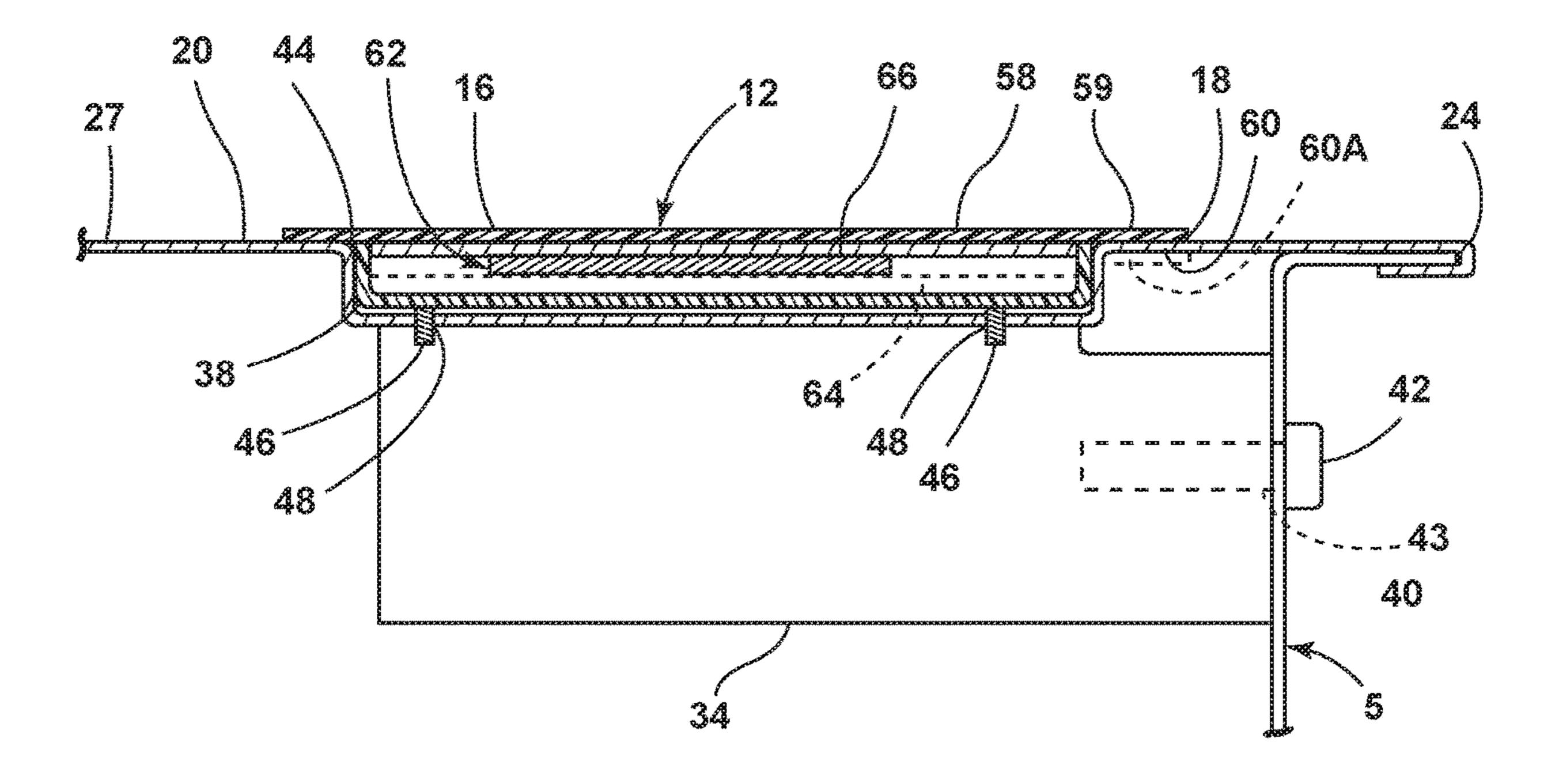
U.S. Appl. No. 12/402,744, Advisory Action dated Jan. 31, 2014, 2 pages.

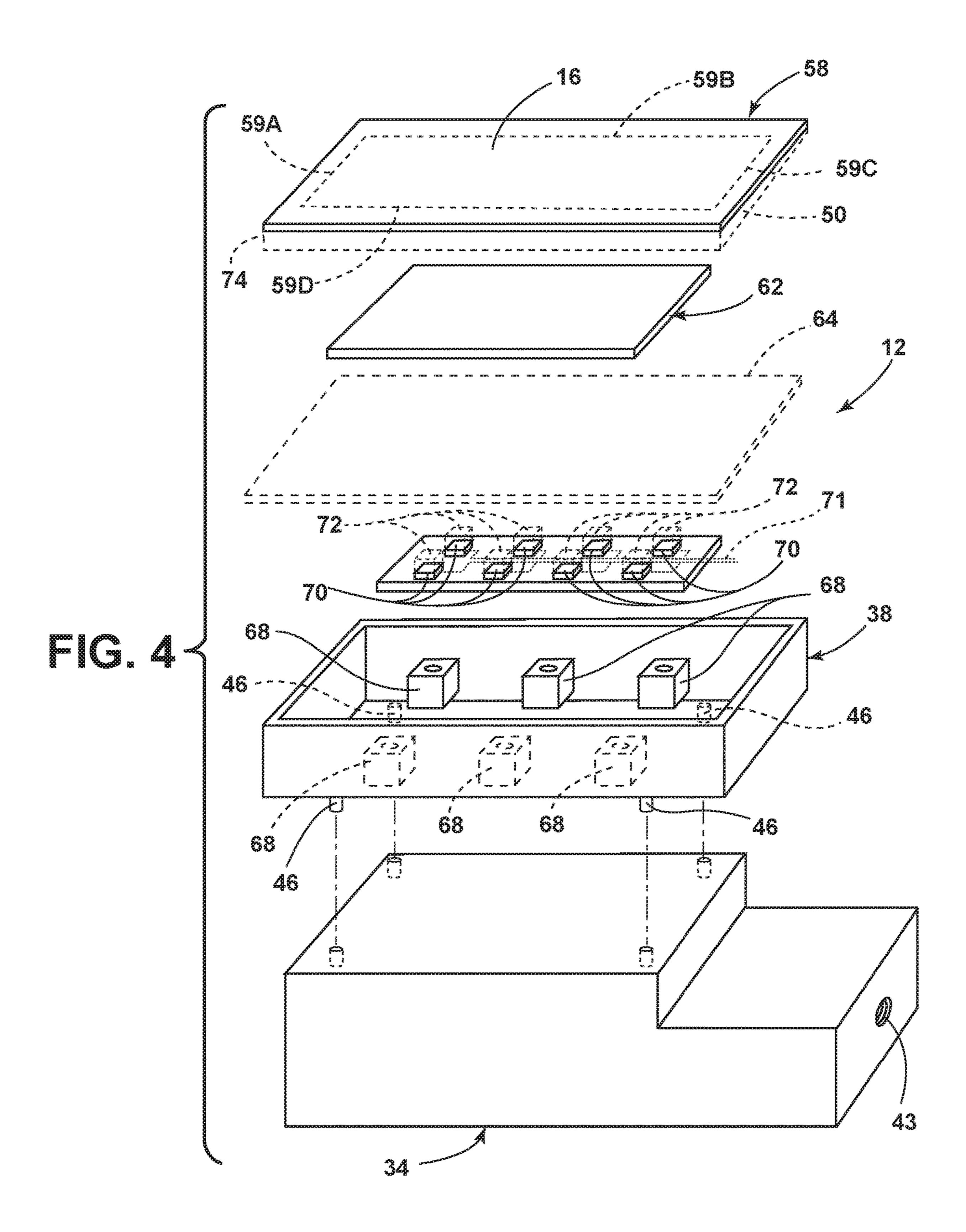
U.S. Appl. No. 14/280,035, filed May 16, 2014, entitled "Powered Latch System for Vehicle Doors and Control System Therefor." U.S. Appl. No. 14/281,998, filed May 20, 2014, entitled "Vehicle Door Handle and Powered Latch System."

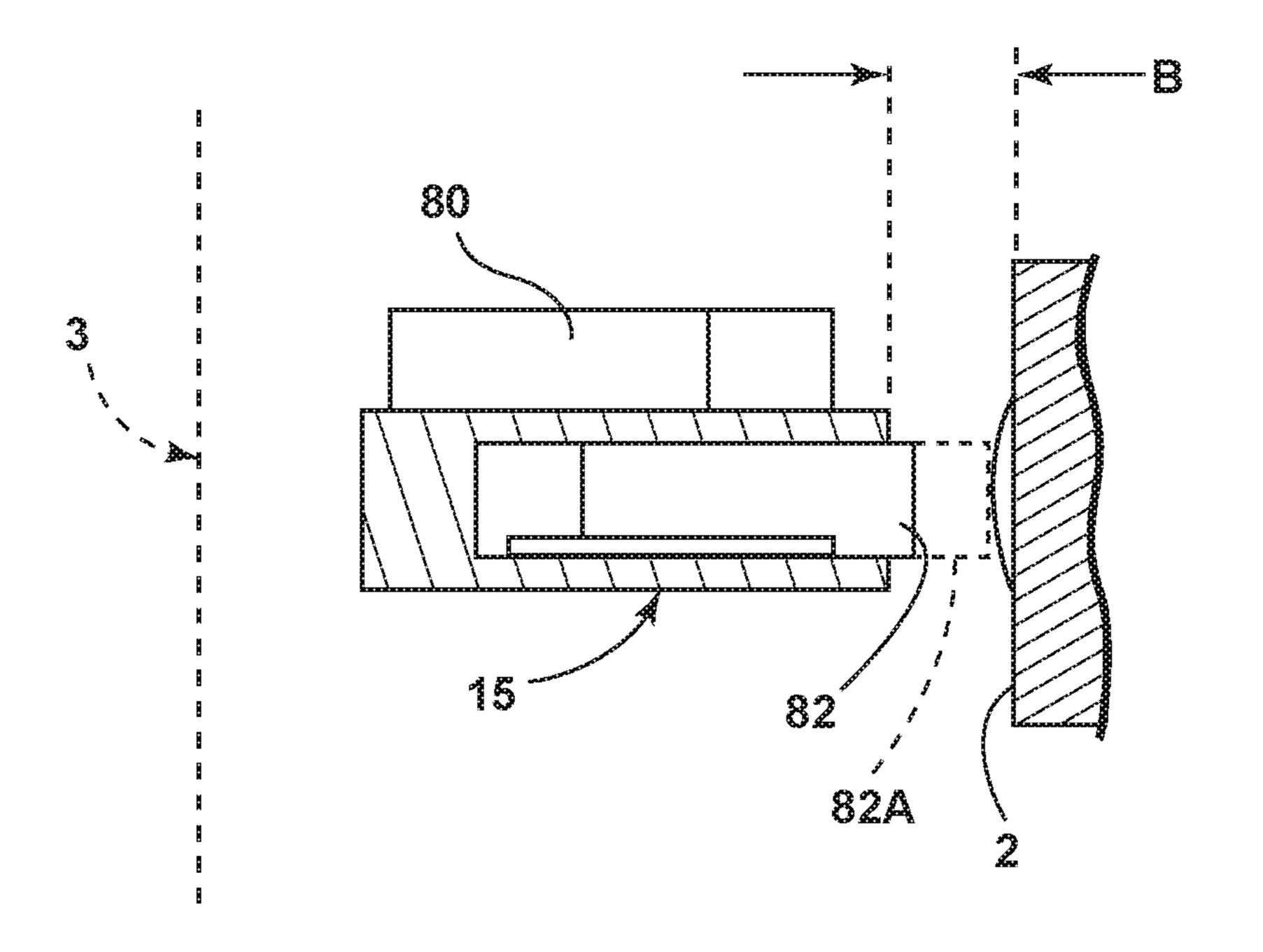
U.S. Appl. No. 14/282,224, filed May 20, 2014, entitled "Powered Vehicle Door Latch and Exterior Handle With Sensor."

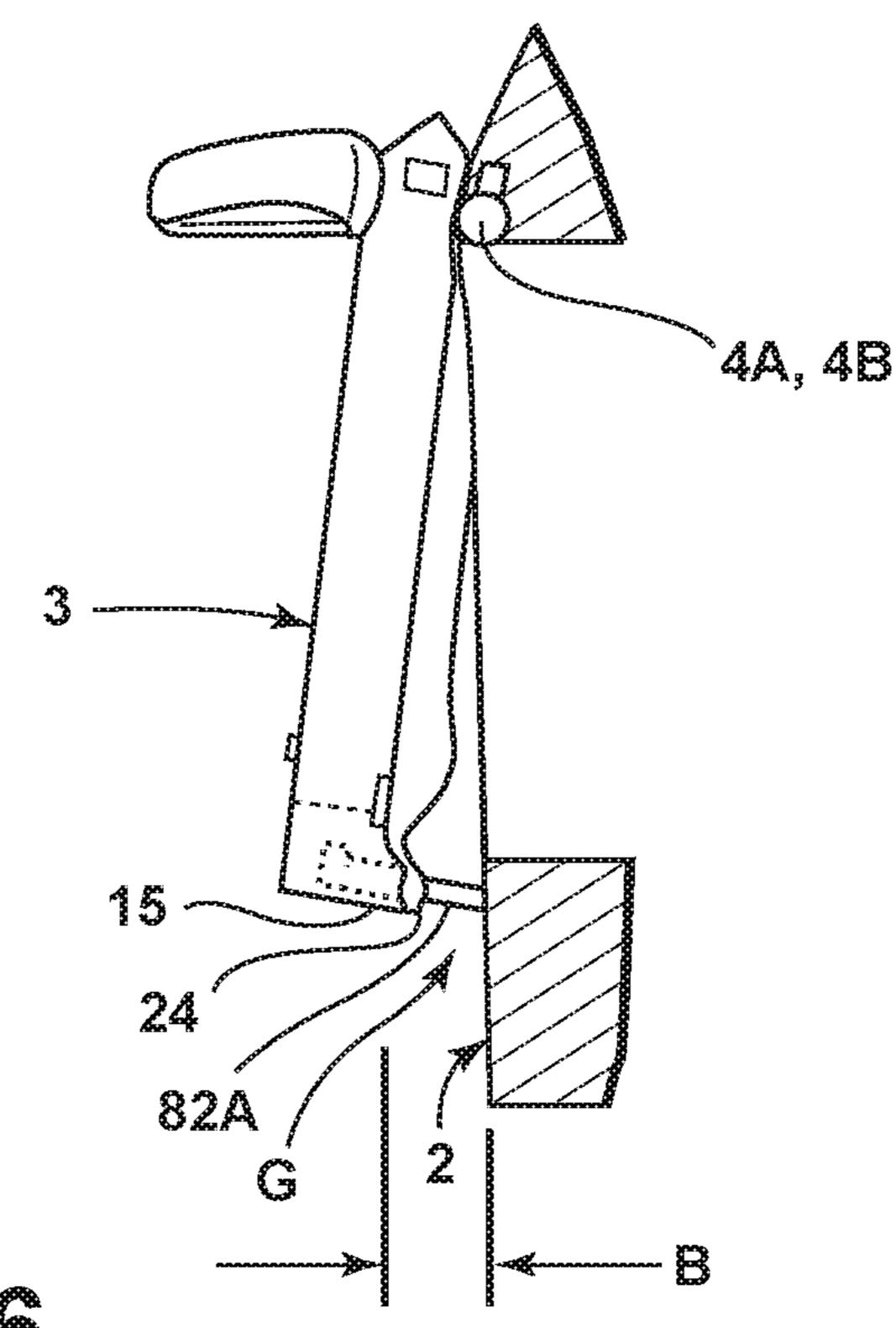

George Kennedy, "Keyfree app replaces conventional keys with your smart phone," website, Jan. 5, 2015, 2 pages.


Hyundai Motor India Limited, "Hyundai Care," website, Dec. 8, 2015, 3 pages.


Keyfree Technologies Inc., "Keyfree," website, Jan. 10, 2014, 2 pages.


Prweb, "Keyfree Technologies Inc. Launches the First Digital Car Key," Jan. 9, 2014, 3 pages.


* cited by examiner



SIDE DOOR PUSHBUTTON RELEASES

FIELD OF THE INVENTION

The present invention generally relates to vehicle door ⁵ releases, and more particularly relates to a vehicle door that includes a sensor pad or button that can be utilized to unlatch and open a door.

BACKGROUND OF THE INVENTION

Various types of vehicle doors and door handles have been developed. Outside door handles typically protrude outwardly from the door. These door handles may be mechanically connected to a door latch by a linkage, and 15 movement of the door handle is typically required to unlatch the door. However, existing door handles may suffer from various drawbacks.

SUMMARY OF THE INVENTION

According to one aspect of the present disclosure, a vehicle door system includes a door structure that is configured to be movably mounted to a vehicle body structure. The vehicle door system further includes a controller and a 25 powered latch that is configured to retain the door structure in a closed position when the powered latch is latched. The powered latch permits the door to be opened when the powered latch is unlatched. The vehicle door system further includes an electronic door release pad that is disposed or 30 fixed on an outer side of the door structure. The door release pad may have a substantially flat sensing surface facing outwardly away from the door structure, and a perimeter extending around the flat sensing surface. An outer side of the door structure may have a substantially flat outer surface 35 extending continuously around the perimeter of the flat sensing surface in close proximity thereto. The flat sensing surface of the door release pad preferably comprises a sensor, such as a touch sensor and/or a capacitive sensor. The controller is configured to generate a signal to unlatch the 40 powered latch if the door release pad generates a signal indicating that a user has touched the flat sensing surface and/or that an object has been detected adjacent the door release pad.

Embodiments of the first aspect of the disclosure can 45 include any one or a combination of the following features:

The door releases/unlatches if a capacitive sensor detects a user and also detects a force change applied to the door release pad.

The controller may be configured to require both a change 50 in capacitance and a force change before generating a door unlatch command.

The door release pad or a region of the door adjacent the door release pad may illuminate upon activation to open, or turn red when the vehicle door is locked and 55 latched.

The vehicle door may be designed to operate as a "approach unlock/unlatch and power present the door" and walk away lock (as a person with a fob or keycard who is the legitimate owner of the vehicle with an 60 authenticating fob or keycard walk away from the vehicle, the vehicle will lock itself).

The vehicle door may include a powered actuator that initially shifts the door to a partially open presented position after the powered latch is unlatched.

The vehicle door may have a substantially smooth outer surface without a protruding handle.

2

A vehicle door system according to another aspect of present disclosure including a powered latch and a powered door opener mounted to door structure. The vehicle door further includes a stationary horizontally elongated piezo-electric strip on the outside of the door. The vehicle door further includes a controller that is configured to illuminate a lower edge of the piezoelectric strip if a fob is detected. The controller is further configured to unlatch the powered latch followed by actuation of the door opener if a single touch is detected anywhere on the piezoelectric strip.

These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a partially schematic side elevational view of a vehicle door according to one aspect of the present disclosure;

FIG. 2 is a partially schematic cross sectional view of the vehicle door of FIG. 1 taken along the line II-II;

FIG. 3 is a cross sectional view of a portion of the vehicle door of FIG. 1 taken along the line III-III;

FIG. 4 is an exploded perspective view of a sensor pad assembly according to one aspect of the present disclosure;

FIG. 5 is a partially schematic view of a powered actuator that initially opens the vehicle door to a partially open "presented" position;

FIG. 6 is a partially schematic top plan view showing the vehicle door in a partially open "presented" position.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For purposes of description herein, the terms "upper," "lower," "right," "left," "rear," "front," "vertical," "horizontal," and derivatives thereof shall relate to the disclosure as oriented in FIG. 1. However, it is to be understood that the disclosure may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.

In this document, relational terms, such as first and second, top and bottom, and the like, are used solely to distinguish one entity or action from another entity or action, without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "comprises . . . a" does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.

With reference to FIG. 1, a motor vehicle 1 includes a body structure 2 and a door 3 having a door structure 5 that

is movably mounted to the body structure 2 by suitable structure such as hinges 4A and 4B. The vehicle door 3 comprises a door system that includes a door structure 5 and a controller 6. A powered latch 8 is operably connected to the controller 6. The controller 6 and powered latch 8 may be operably connected to an electrical power supply 10. It will be understood that electrical power supply 10 may comprise one or more batteries or other suitable sources of electrical power.

The powered latch **8** is configured to retain the door 10 structure **5** in a closed position when the powered latch **8** is latched, and the powered latch **8** permits the door to be opened when the powered latch is unlatched. Powered latch **8** may comprise a powered door latch as described in U.S. patent application Ser. No. 14/696,749, filed on Apr. 27, 15 2015, now U.S. Pat. No. 10,323,442, entitled ELECTRONIC SAFE DOOR UNLATCHING OPERATIONS, the entire contents of which are incorporated herein by reference.

The vehicle door 3 further includes a door release pad 12 20 that is disposed or fixed on an outer side 14 of the door structure 5 (see also FIG. 2). The door release pad 12 includes a substantially flat surface 16 that faces outwardly in the direction of "A" of FIG. 2 away from the door structure 5. The door release pad 12 further includes a 25 perimeter 18 extending around the flat sensing surface 16 as shown in FIGS. 2 and 3. The outer side of the door structure 5 has a substantially flat outer surface 20 extending continuously around the perimeter 18 of the flat sensing surface 16 in close proximity thereto. As discussed in more detail 30 below, the flat surface 16 of the door release pad 12 may comprise a sensing surface including touch sensor and/or other suitable sensors (e.g. capacitive sensitivity). The controller 6 may be configured to generate a signal to unlatch the powered door latch 8 if the door release pad 12 generates 35 a signal indicating that a user has touched the flat sensing surface 16. As discussed in more detail below, a connection with FIGS. 5 and 6, vehicle 1 may include a powered actuator 15 that shifts door 3 to a partially open position to permit a user to grasp rear edge 24 of door 3 to pull door 3 40 to a fully open position.

Referring again to FIG. 1, the perimeter 18 of door release pad 12 is generally oblong, with an elongated narrow shape extending in a horizontal direction. Perimeter 18 has a length "L", a height "H" at a forward N22 of door release pad 22, 45 and a height "H2" at a rearward end 23 of the door release pad. The dimensions L, H and H2 may be varied as required for a particular application. In general, the length L is preferably about 150-200 mm, the height H is about 25 mm, and the dimension H2 is about 12 mm. However, it will be 50 understood that virtually any size or shape may be utilized. The door release pad 12 may be positioned in an upper rear portion 25 of door 3 adjacent rear edge 24 below beltline 26 of door 3. The beltline 26 generally comprises the region of outer skin 27 of door structure 5 immediately below window 55 28 of door 3. Thus, the door release pad 12 may be positioned in a region of door 3 that is commonly used to mount conventional protruding door handles. This position of door release pad 12 is typically more intuitive for users who are accustomed to using conventional door handles. 60 However, it will be understood that the door release pad 12 is not a door handle in a conventional sense, and door release 12 does not need to include a gripping feature that a user could grasp to pull the door 3 open. In general, the door release pad 12 could have virtually any shape or size, and 65 could be positioned in virtually any location either on door 3 or on vehicle body 2. For example, a door release pad 12

4

could be mounted on a rear portion of frame 29 of door structure 5 adjacent window 28. As discussed in more detail below, a fob 30 may be configured to communicate wirelessly with controller 6 to provide for authentication of a user to permit unlatching of powered door latch 8 if fob 30 recognized (authorized). The fob 30 may optionally include a key 31 that is configured to engage in optional lock cylinder 32 in the event the door release pad 12 or other electrical components malfunction.

With further reference to FIGS. 2 and 3, door release pad 12 may comprise a housing 38 that is secured to the door structure 5 by a support structure 34. In the illustrated example, the support structure 34 is secured to a rear edge structure 40 (FIG. 3) of door structure 5 by a threaded fastener 42 that engages a threaded opening 43 of support structure 34. The housing 38 may comprise a polymer material, and may be disposed in a shallow pocket 44 formed in outer skin 27 of door structure 5. Housing 38 may include pins 46 that extend through openings 48 in outer skin 27 in end pocket 44 to thereby locate and secure the housing 38 to the door structure 5. It will be understood that a wide variety of housings, mounting structures and the like may be utilized to secure the door release pad 12 to the door structure 5.

Referring again to FIG. 2, a horizontally extending lower edge 50 of door release pad 12 may optionally project outwardly away from outer side 14 of door structure 5 such that a lower edge portion of door release pad 12 is spaced outwardly (e.g. 5 mm or other suitable dimension) from outer surface 20 of door structure 5. The edge 50 may be illuminated by LEDs or other suitable light sources to form a "light bar" that projects light **52** downwardly adjacent door 3 if predefined conditions occur. Light 52 may have sufficient brightness to illuminate a ground surface below and adjacent door 3 at night. The edge 50 may comprise a downwardly-facing surface extending along a generally horizontal lower perimeter portion 18A. In a preferred embodiment, only the lower perimeter portion 18A at edge **50** is illuminated. However, the entire perimeter **18** of door release pad 12 may be illuminated, or only selected portions of perimeter 18 may be illuminated. For example, a horizontal upper portion 18 of perimeter 18 may be illuminated, and may transit light 52A outwardly in the direction of arrow "A". Also, lower perimeter 18A may be flush with outer surface 20 of door structure 5 such that surface 16A of door release pad 12 is flush (substantially coplanar) with surface **20**.

The door release pad 12 may be operably interconnected to powered door latch 8 by conductors such as electrical lines 54 and a 5-pin sealed connector 56, or other suitable connecting arrangement. It will be understood that the various components of vehicle 1 may be configured to communicate via electrically conductive lines, fiber optic lines, wireless communication systems, or virtually any other suitable arrangement.

With reference to FIGS. 3 and 4, door release pad 12 may comprise an outer layer 58 having an edge portion 59 that overlaps a portion 60 of outer skin 27 around the pocket 44. The outer layer 58 may comprise a light-transmitting polymer material or other suitable material. Optionally, a region 60A of outer skin 27 may be recessed inwardly in an amount that is approximately equal to a thickness of outer layer 58, such that flat sensing surface 16 formed by outer layer 58 is substantially co-planar with flat outer surface 20 of outer skin 27 of door structure 5.

The door release pad 12 also includes a sensor 62 that is positioned immediately inside outer layer 58, and a printed

circuit board 66. An optional support structure such as plate 64 may be utilized to support the sensor 62 on internal supports 68 of housing 38. The sensor 62 may comprise a capacitive sensor that is configured to detect the presence of an object (e.g. a user's hand) that is located directly adjacent 5 the flat sensing surface 16 formed by outer layer 58. The sensor 62 may also comprise a force resistance sensor, a load sensor, an inductive sensor, or a piezoelectric sensor. As discussed above, the door release pad 12 is operably connected to the controller 6. In particular, the sensor 62 may be 10 operably connected to the controller 6. The controller 6 may be configured to "look for" (i.e. require) both a capacitance change and a force change before allowing an unlatched signal to the powered door latch 8 to be processed. More specifically, as noted above, the sensor **62** may comprise a 15 capacitive sensor in combination with a second sensing capability, wherein the second sensing capability comprises one or more of 1) force resistance, 2) load sensing, 3) inductive sensing, or 4) piezoelectric sensing. If sensor 62 is configured in this manner, controller 6 may be configured to 20 ignore a "capacitive only" signal or a "force change only" signal from sensor 62. If controller 6 is required to receive two separate inputs from sensor 62, this reduces inadvertent unlatching that could otherwise result if sensor 62 comprises only a capacitive sensor or only a second sensor (wherein the 25) second sensor comprises one of a force resistance sensor, a load sensor, an inductive sensor, or a piezoelectric sensor). Controller 6 may also be configured to require detection.

Alternatively, the sensor 62 may comprise a single sensor. For example, the sensor 62 may comprise a force sensor 30 only, such that a force applied to flat sensing surface 16 by a user will be detected by sensor 62, causing a signal to be sent to the controller 6. Controller 6 may optionally be configured to require an authorization signal from fob 30 or other suitable authorization signal in addition to detection of 35 a force on flat sensing surface 16 in order to generate an unlatched signal to powered door latch 8.

Alternatively, sensor **62** may comprise a capacitive sensor only, and controller **6** may be configured to unlatch powered latch **8** if a user's hand is detected in the vicinity of sensing 40 surface **16**.

Referring again to FIG. 4, one or more light sources such as LEDS 70 may be mounted to the printed circuit board 66. Printed circuit board 66 may include electrical conductors 71 that operably interconnect the printed circuit board 66 to 45 the controller 6. One or more light pipes 72 may be configured to transmit light from the LEDS 70 to one or more edge portions **59**A-**59**D of outer layer **58** to thereby illuminate selected portions of outer layer **58**. Outer layer **58** may comprise a transparent or translucent light-transmitting polymer material. It will be understood that the light pipes 72 are shown in schematic form in FIG. 4. Also, light pipes 72 may comprise transparent polymer, and may be configured as required to illuminate one or more specific portions of outer layer 581n particular, outer layer 58 may include an 55edge 74 having an increased thickness to thereby form an illuminated edge **50**. As discussed above, the illuminated edge 50 may face downwardly (FIG. 2) to project light 52A downwardly.

LEDS 70 may be configured to provide various colors and 60 intensities of light. For example, if a user having an authorized fob 30 approaches the vehicle 1, controller 6 may be configured to cause LEDS 70 to illuminate to provide a soft blue or soft white color light 52A and/or 52B (FIG. 2). The same light may change to green when the controller 6 65 unlocks and/or unlatches powered door latch 8. Also, controller 6 may be configured to cause the LEDS to generate

6

red light if the vehicle door 3 is latched and locked. It will be understood that the powered door latch 8 may have a locked and unlocked state (e.g. stored in memory), and latch 8 may require unlocking (e.g. require detection of an authorized fob 30) prior to generating an unlatch signal. This locking and unlatching function may generally correspond to locking and unlatching functions of conventional mechanical door latches which require the door to be unlocked, and also require movement of a handle to mechanically unlatch the door latch.

With reference to FIGS. 5 and 6, the door system may include a powered door opening device 15 having an electrically-powered actuator 80 and a plunger 82 that extends to an extended position 82A upon actuation of the electric actuary 80. The door opening device 15 is operably connected to the controller 6. During operation of door 3, the controller 6 unlocks and unlatches powered door latch 8 according to predefined criteria as discussed in more detail above. After the powered door latch 8 is unlatched, controller 6 causes the door opening device 15 to be actuated, thereby shifting plunger 82 outwardly to move door 3 from a closed position to an open position. The door opening device 15 is preferably positioned adjacent rear edge 24 of door 3, such that the door opening device 15 partially opens door 3 when the electric actuator 80 is actuated. The rear edge 24 of door 3 may be positioned outwardly a distance "B", thereby forming a gap "G" between the rear edge **24** of door 3 and the vehicle body structure 2 upon actuation of door opening device 15. A user can then insert a portion of his or her hand into the gap "G" and pull the door 3 to a fully opened position. Thus, the door opening device 15 permits the door 3 to be grasped and pulled to a fully opened position without the need for an external handle on door 3. The door opening device 15 may comprise an actuator as described in detail in U.S. patent application Ser. No. 15/269,281, filed on Sep. 19, 2016, now U.S. Pat. No. 10,458,171, entitled ANTI-PINCH LOGIC FOR DOOR OPENING ACTUA-TOR, the entire contents of which are hereby incorporated herein by reference.

It will be understood by one having ordinary skill in the art that construction of the described disclosure and other components is not limited to any specific material. Other exemplary embodiments of the disclosure disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.

For purposes of this disclosure, the term "coupled" (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.

It is also important to note that the construction and arrangement of the elements of the disclosure as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the

subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members 5 or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide 10 sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, oper- 15 ating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.

It will be understood that any described processes or steps within described processes may be combined with other 20 disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.

It is to be understood that variations and modifications can 25 be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

What is claimed is:

- 1. A vehicle door system, comprising:
- a vehicle door including a door structure configured to be movably mounted to a vehicle body structure to permit passenger entry and exit when the vehicle door is in an 35 open position, the door structure including an outer side;
- a controller;
- a powered latch configured to retain the vehicle door in a closed position when the powered latch is latched, and wherein the powered latch permits the vehicle door to be opened when the powered latch is unlatched, and wherein the powered latch has locked and unlocked states;
- an electronic door release pad disposed on an outer side 45 of the door structure, the door release pad having a substantially flat sensing surface facing outwardly away from the door structure, and a perimeter extending around the flat sensing surface, the outer side of the door structure having a substantially flat outer surface 50 extending continuously around the perimeter of the flat sensing surface in proximity thereto;
- wherein the flat sensing surface of the door release pad comprises a touch sensor;
- wherein the controller is configured to generate a signal to 55 unlatch the powered latch if the powered latch is unlocked and if the door release pad generates a signal indicating that a user has touched the flat sensing surface;
- a powered actuator configured to move the door structure from a closed position to an open position after the controller causes the powered latch to unlatch.
- 2. The vehicle door system of claim 1, wherein:

the door release pad comprises a piezoelectric sensor.

- 3. The vehicle door system of claim 2, wherein:
- the flat sensing surface of the door release pad has an elongated shape defined by the perimeter and extending

8

- in a horizontal direction and having a horizontal dimension of 150-200 mm and a vertical dimension of at least 12 mm.
- 4. The vehicle door system of claim 3, wherein:
- the flat sensing surface is at least 4 inches long, and has a maximum vertical dimension of less than 2 inches; and
- wherein substantially the entire flat sensing surface comprises a single sensing surface.
- 5. The vehicle door system of claim 3, including:
- a capacitive sensor; and wherein:
- the controller is configured to generate a signal to unlatch the powered latch only if: 1) the capacitive sensor detects an object; and 2) the door release pad generates a signal indicating that a user has touched the flat sensing surface.
- 6. The vehicle door system of claim 5, wherein:
- the touch sensor is selected from the group consisting of three resistance sensors, load sensors, inductive sensors, and piezo sensors.
- 7. The vehicle door system of claim 1, wherein:
- the controller is configured to unlock and unlatch the vehicle door system and actuate the powered actuator to open the vehicle door if an authenticated keycard is detected.
- 8. A vehicle door system, comprising:
- a vehicle door including a door structure configured to be movably mounted to a vehicle body structure to permit passenger entry and exit when the vehicle door is in an open position, the door structure including an outer side;
- a controller;
- a powered latch configured to retain the vehicle door in a closed position when the powered latch is latched, and wherein the powered latch permits the vehicle door to be opened when the powered latch is unlatched;
- an electronic door release pad disposed on an outer side of the door structure, the door release pad having a substantially flat sensing surface facing outwardly away from the door structure, and a perimeter extending around the flat sensing surface, the outer side of the door structure having a substantially flat outer surface extending continuously around the perimeter of the flat sensing surface in proximity thereto;
- wherein the flat sensing surface of the door release pad comprises a touch sensor; and
- wherein the controller is configured to generate a signal to unlatch the powered latch if the door release pad generates a signal indicating that a user has touched the flat sensing surface;
- wherein the door release pad comprises a piezoelectric sensor;
- wherein the flat sensing surface of the door release pad has an elongated shape defined by the perimeter and extending in a horizontal direction;
- the perimeter of the door release pad including a horizontally-extending lower edge that is spaced outwardly from the outer surface of the door structure, the door release pad further including a light bar extending along the lower edge, wherein the controller causes the light bar to be illuminated if a predefined condition occurs.
- 9. The vehicle door system of claim 8, wherein:
- the predefined condition is selected from the group consisting of: a user having a recognized fob approaches the vehicle, the controller unlatches the powered latch, and the controller latches the powered latch.

- 10. The vehicle door system of claim 8, wherein: the light bar comprises a downwardly-facing surface.
- 11. The vehicle door system of claim 8, wherein:
- the controller causes the light bar to be illuminated a first color if a first predefined condition occurs, and causes 5 the light bar to be illuminated a second color that is not the same as the first color if a second predefined condition occurs.
- 12. A vehicle door system, comprising:
- a vehicle door including a door structure configured to be movably mounted to a vehicle body structure to permit passenger entry and exit when the vehicle door is in an open position, the door structure including an outer side;
- a controller;
- a powered latch configured to retain the vehicle door in a closed position when the powered latch is latched, and wherein the powered latch permits the vehicle door to be opened when the powered latch is unlatched;
- an electronic door release pad disposed on an outer side 20 of the door structure, the door release pad having a substantially flat sensing surface facing outwardly away from the door structure, and a perimeter extending around the flat sensing surface, the outer side of the door structure having a substantially flat outer surface 25 extending continuously around the perimeter of the flat sensing surface in proximity thereto;
- wherein the flat sensing surface of the door release pad comprises a touch sensor; and
- wherein the controller is configured to generate a signal to 30 unlatch the powered latch if the door release pad generates a signal indicating that a user has touched the flat sensing surface, and including:
- a light source configured to illuminate an edge of the door release pad when the controller generates a signal to 35 unlatch the powered latch.
- 13. The vehicle door system of claim 12, wherein:
- the light source is configured to generate green light when the controller generates a signal to unlatch the powered latch, and to generate red light if the vehicle door 40 system is in a locked state.
- 14. A vehicle door system, comprising:
- a vehicle door including a door structure configured to be movably mounted to a vehicle body structure to permit passenger entry and exit when the vehicle door is in an 45 open position, the door structure including an outer side;
- a controller;
- a powered latch configured to retain the vehicle door in a closed position when the powered latch is latched, and

- wherein towered latch permits the vehicle door to be opened when the powered latch is unlatched;
- an electronic door release pad disposed on an outer side of the door structure, the door release pad having a substantially flat sensing surface facing outwardly away from the door structure, and a perimeter extending around the flat sensing surface, the outer side of the door structure having a substantially flat outer surface extending continuously around the perimeter of the flat sensing surface in proximity thereto;
- wherein the flat sensing surface of the door release pad comprises a touch sensor; and
- wherein the controller is configured to generate a signal to unlatch the powered latch if the door release pad generates a signal indicating that a user has touched the flat sensing surface;
- a sensing system configured to detect humans in a vicinity outside the vehicle; and wherein:
- the controller is configured to: 1) determine an intent of the detected humans; and 2) only unlock or unlatch the powered latch if the intent is to enter the vehicle.
- 15. A vehicle door configured to permit passenger entry and exit when the vehicle door is in an open position, the vehicle door comprising:
 - a powered latch and a powered door Opener mounted to a door structure;
 - a stationary horizontally elongated piezoelectric strip on an outside of the door structure; and
 - a controller configured to illuminate a lower edge of the piezoelectric strip if a fob is detected, and unlatch the powered latch followed by actuating the door opener if a single touch is detected anywhere on the piezoelectric strip.
 - 16. The vehicle door of claim 15, wherein:
 - the piezoelectric strip has a flat outer surface.
 - 17. The vehicle door of claim 15, wherein:
 - the piezoelectric strip comprises a pad having an upper edge that is flush with an outer surface of the door structure, and a lower edge that is spaced outwardly away from the outer surface of the door structure.
 - 18. The vehicle door of claim 17, wherein:
 - the lower edge of the piezoelectric strip includes a surface that faces downwardly.
 - 19. The vehicle door of claim 18, wherein:
 - the downwardly-facing surface comprises a light-transmitting material, and including:
 - an LED light source disposed in the pad to illuminate the downwardly facing surface.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 10,907,386 B2

APPLICATION NO. : 16/002650

DATED : February 2, 2021

INVENTOR(S) : Walawender et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 8;

Claim 6, Line 19:

"three" should be --force--.

Column 10;

Claim 14, Line 1:

After "wherein" insert --the--.

Claim 14, Line 1:

"towered" should be --powered--.

Claim 15, Line 25:

"Opener" should be --opener--.

Signed and Sealed this Twentieth Day of April, 2021

Drew Hirshfeld

Performing the Functions and Duties of the Under Secretary of Commerce for Intellectual Property and Director of the United States Patent and Trademark Office