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COMPUTING A PRIVATE SET
INTERSECTION

PRIORITY CLAIM

This application claims priority to U.S. Provisional Patent

Application No. 62/667,988, filed May 7, 2018 and titled
“COMPUTING A PRIVATE SET INTERSECTION,” the
disclosure of which 1s expressly incorporated herein by
reference in 1ts entirety.

BACKGROUND

Computing an intersection of a first set held at a first
computing device (e.g. a client device) and a second set held
at a second computing device (e.g. a server), without either
computing device revealing values 1n its set, may be desir-
able. For example, when a user downloads an instant mes-
saging application to a mobile device, it may be desirable to
determine an intersection of the user’s contact set (stored at
the mobile device) and a set of members of the instant
messaging application (stored at an 1instant messaging
server). However, the user may not desire to provide his/her
contact set to the mstant messaging server or an intermedi-
ary. Also, the mstant messaging application may not desire
(c.g. based on legal requirements or best practices) to
transmit 1ts set of members to the mobile device or an
intermediary. As the foregoing illustrates, techniques for
privately computing an intersection of two sets may be
desirable.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the technology are illustrated, by
way of example and not limitation, in the figures of the
accompanying drawings.

FIG. 1 illustrates an example system 1n which a private set
intersection may be computed, 1n accordance with some
embodiments.

FIG. 2 15 a data flow diagram of an example method for
determining whether a value from a receiver device 1s 1n a
set of a sender device, 1n accordance with some embodi-
ments.

FIG. 3 1llustrates a flow chart for an example method for
a sender device to facilitate determining whether a value
from a receiver device 1s 1n a set of a sender device, in
accordance with some embodiments.

FI1G. 4 1llustrates a flow chart for an example method for
a recerver device to facilitate determiming whether a value
from a receiver device 1s 1n a set of a sender device, 1n
accordance with some embodiments.

FIGS. SA-5B are a data flow diagram of an example
method for computing a private set intersection, 1n accor-
dance with some embodiments.

FIGS. 6A-6B are a flow chart of an example method for
a sender device to facilitate computing a private set inter-
section, 1n accordance with some embodiments.

FIG. 7 1s a block diagram illustrating components of a
machine able to read instructions from a machine-readable
medium and perform any of the methodologies discussed
herein, in accordance with some embodiments.

SUMMARY

The present disclosure generally relates to machines con-
figured to compute a private set intersection, including
computerized variants of such special-purpose machines and
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2

improvements to such variants, and to the technologies by
which such special-purpose machines become improved

compared to other special-purpose machines that provide
technology for neural networks. In particular, the present
disclosure addresses systems and methods for computing a
private set intersection.

According to some aspects of the technology described
herein, a system includes processing hardware of a sender
device. The system 1ncludes a memory of the sender device,
the memory storing instructions which, upon execution by
the processing hardware, cause the processing hardware to
perform operations. The operations include storing, in the
memory ol the sender device, a first set of values. The
operations include receiving, from a receiver device, a
homomorphic encryption of a receiver device value. The
operations mclude computing a homomorphically encrypted
number based on a diflerence between the homomorphic
encryption of the receiver device value and each value 1n the
first set of values, and based on a payload function of the
encryption of the receiver device value. "

The operations
include transmitting the homomorphically encrypted num-
ber to the receiver device for determination, at the receiver
device, whether the receiver device value 1s 1n the first set of
values.

According to some aspects, a method 1s implemented at a
receiver device. The method includes computing a homo-
morphic encryption of a receiver device value stored at the
receiver device. The method includes transmitting, to a
sender device, the homomorphic encryption of the receiver
device value. The method includes receiving, from the
sender device, a homomorphically encrypted number 1n
response to the homomorphic encryption of the receiver
device value. The method includes decrypting the homo-
morphically encrypted number to compute a decrypted
number. The method includes determining whether the
receiver device value 1s 1n a first set of values stored at the
sender device based on whether the decrypted number 1s
equal to a payload function of the receiver device value.

According to some aspects, a machine-readable medium
stores 1nstructions which, upon execution by a sender
device, cause the sender device to perform operations. The
operations include storing, at the sender device, a first set of
values. The operations include computing, at the sender
device, a sender hash table for the first set of values. The
operations include receiving, from a receiver device, a
homomorphic encryption of a receiver hash table for a
second set of values, the receiver hash table lacking hash
collisions, and the second set of values being stored at the
receiver device. The operations include batching the homo-
morphic encryption of the receiver hash table and the sender
hash table 1into a plurality of batches. The operations include
splitting each batch of the plurality of batches of the sender
hash table 1nto a plurality of splits. The operations include,
for each split of the sender hash table, for each non-empty
row 1n a corresponding batch of the homomorphic encryp-
tion of the receiver hash table, computing a homomorphic-
ally encrypted number representing whether an unencrypted
value 1n the non-empty row of the receiver hash table 1s
stored 1n a corresponding row of the split; and transmitting,
the homomorphically encrypted number to the receiver
device for determination, at the receiver device, whether the
unencrypted value 1 the non-empty row of the receiver hash

table 1s stored 1n the corresponding row of the split.

DETAILED DESCRIPTION

Overview
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The present disclosure describes, among other things,
methods, systems, and computer program products that
individually provide various functionality. In the following
description, for purposes ol explanation, numerous specific
details are set forth 1n order to provide a thorough under-
standing of the various aspects of different embodiments of
the present disclosure. It will be evident, however, to one
skilled 1n the art, that the present disclosure may be practiced
without all of the specific details.

As set forth above, techniques for computing a private set
intersection (PSI)—privately computing an intersection of
two sets (that are stored at two different devices)—may be
desirable. Some aspects of the technology described herein
are directed to technical solutions to the technical problem
of computing a private set intersection.

Some 1mplementations of the solution to this problem
involve a sender device, which stores a set of sender values,
and a receiver device (that stores a receiver value and
receives an indication of whether the receiver value 1s stored
at the sender device). If the receiver device stores multiple
receiver values, the solution described below may be
repeated multiple times (e.g. once for each value). The
receiver device homomorphically encrypts the receiver
value, and sends the homomorphically encrypted value to
the sender device. The sender device makes a computation
with the homomorphically encrypted value and sends back
an encrypted number. The receiver device decrypts the
encrypted number, and uses the decrypted number to deter-
mine whether the receiver value 1s 1n the set of sender
values. This technique 1s described 1n more detail below, for
example, 1n conjunction with FIG. 2.

As used herein, the phrase “homomorphic encryption”
encompasses 1ts plain and ordinary meaning. In some
examples, homomorphic encryption i1s a form of encryption
that allows computation on ciphertexts, generating an
encrypted result which, when decrypted, matches the result
of the operations as 1f they had been performed on the
plaintext. The purpose of homomorphic encryption 1s to
allow computation on encrypted data. For example, 11 Enc 1s
a homomorphic encryption function and A=B+C*D, then
Enc(A)=Enc(B)+Enc(C)*Enc(D).

FIG. 1 illustrates an example system 100 in which a
private set intersection may be computed, 1n accordance
with some embodiments. As shown, the system 100 includes
a recerver device 110 and a sender device 120 connected to
one another via a network 130. The network 130 may
include one or more of the internet, an intranet, a local area
network (LAN), a wide area network (WAN), a wired
network, a wireless network, and the like. In some examples,
the recerver device 110 may be a client device (e.g. a mobile
phone), and the sender device 120 may be a server. In one
example, the receiver device 110 downloads an instant
messaging application associated with the sender device 120
and wants to determine which members of 1ts contact set are
members of the instant messaging application. However, the
sender device 120 does not wish to share the set of members
of the instant messaging application, and the recerver device
110 does not wish to share its contact set.

The technology described herein may be implemented
with any number of members of the contact set of the
receiver device 110 and any number of members of the
instant messaging application of the sender device 120.
However, 1n some examples, the number of members of the
contact set of the receiver device 110 1s between 50 and
1000, and the number of members of the instant messaging
application of the sender device 120 1s in the thousands or
millions.
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FIG. 2 1s a data flow diagram of an example method 200
for determining whether a value from the receiver device
110 1s 1n a set of the sender device 120, 1n accordance with
some embodiments. The method 200 1s used for the receiver
device 110 to determine whether a single value x,, that 1s
stored at the receiver device 110, 1s also stored at the sender
device 120. It the recerver device 110 stores multiple values,
the method 200 may be implemented multiple times (e.g.
once for each value). In some cases, all of the computations
in the method 200 are done modulo a large prime T. The
prime T 1s greater than a predetermined threshold number.

At operation 210, the recerver device 110 stores the value
X,, and the sender device 120 stores v,, v,, and y,, and their
payload functions P(y,), P(y,), and P(y,). As used herein,
the payload function P may include any function that can be
any function that maps one value to another value. P(y,),
P(v,), and P(y,) may be referred to as the payload(s) of y,,
y,, and y;, respectively. The payload function P may be an
oblivious pseudorandom function (OPRF) that 1s stored at
the sender device 120 and obliviously accessible to the
recerver device 110. In other words, the receiver device 110
can access the payload function P to make calculations, but
cannot determine the coeflicients of the payload function.
Also, while the sender device 120 1s described here as
storing three values—yv,, v,, and y;—the sender device 120
may store any number of values. In some cases, the sender
device 120 stores thousands or millions of values.

As used herein, the phrase “oblivious pseudorandom
function (OPRF)” encompasses its plain and ordinary mean-
ing. In some cases, the receiver device 110 gives the mput
for a pseudorandom function (PRF) to the sender device
120, and the sender device 120 computes the PRF and gives
the output to the recerver device 110. The sender device 120
1s not able to see either the mmput or the output, and the
receiver device 110 1s not able to see the secret key that the
sender device 120 uses with the pseudorandom function.
This enables transactions of sensitive cryptographic infor-
mation to be secure even between untrusted parties, such as
the recetver device 110 and the sender device 120.

At operation 220, the receiver device 110 computes a
homomorphic encryption of x,, Enc(x,), and transmits Enc
(x,) to the sender device 120. The sender device 120
receives Enc(x,). The homomorphic encryption function
Enc and 1ts inverse Decr are accessible to the receiver device
110. However, the homomorphic encryption function Enc
and 1ts inverse Decr are not accessible to the sender device
120.

At operation 230, the sender device 120 computes an
encrypted number Enc(w), using Equation 1, below.

Enc(w)=r*(Enc(x )=y )* (Enc(x )=y)*(Enc(x )-y3)+

H(Enc(x,)) Equation 1
Enc(w)=r[Enc(x) (¥ 1+y2+y3) Enc(x, )+ oty 1y3+
yoy3)Enc(x)-yyoys|+H(Enc(x, ) Equation 1la

In Equation 1, r 1s a random value that ensures that Enc(w)
does not include any private mformation of the sender
device. It should be noted that the polynomial of Equation
la 1s equivalent to that of Equation 1. In some cases, the
polynomial of Equation 1a may be evaluated in place of that
of Equation 1 in order to increase processing speed or
calculation speed.

In some examples, the product of differences 1s (Enc(x, )-
v, )*(Enc(x,)-v,)*(Enc(x,)-y,). This is equal to Enc(x, )’ -
(V1 #Y2+Y3)Enc(x, ) +(y, 2+, Y3 +Y2Y3)Enc(X, )-y, yoys.
Here the coeflicients of the polynomial (in terms of Enc(x,))
are so-called elementary symmetric polynomials 1n the 1tems
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of the sender device 120. When the sender device 120
obtains Enc(x, ), it computes the encryptions of Enc(x,)” and
Enc(x,)” also (in encrypted form) and evaluates the poly-
nomial of Equation la. The coeflicients—(y,+y,+V;),
(V,V-+Y,V3+Y,V3), V,V,¥,—1t has pre-computed and stored
in an oilline phase so this 1s very fast. When the sender has
a lot of items it’s inconvenient to compute y 2,y 3, ...,V k
in encrypted form given just an encryption of vy 1. Therefore
we use also a windowing approach, where the recerver gives
the sender v, y"2, y'4, . . ., y'{2"a} up to a large enough
power 2 a. This makes the sender’s task to compute all
powers of y much easier. There are also some variants of
windowing which make the task even easier. Maybe a
detailed description could be avoided in the claims.

It should be noted that, 1 x, 1s one of vy, y,, or y; (or, 1n
other words, 1f X, 1s stored at the sender device 120), then the
conditions of Equation 2 and Equation 3 apply. The reason
1s that the homomorphic encryption function Enc allows
computation on ciphertexts, generating an encrypted result
which, when decrypted, matches the result of the operations
as 1f they had been performed on the plaintext.

Enc(0)=r*(Enc(x;)-y{)*(Enc(x;)-y,)*(Enc(x,)-vs) Equation 2

Enc(w)=H(Enc(x,))=Enc(H(x)) Equation 3

At operation 240, the sender device 120 transmits Enc(w)
to the recerver device 110. The receiver device 110 receives
Enc(w).

At operation 250, the receiver device decrypts Enc(w) to
yield w using w=Decr(Enc(w)).

At operation 260, the receiver device determines whether
w 1s equal to (represented as == in the figure) the payload
function of x,, P(x,). I so, then at operation 270Y, the
receiver device 110 concludes that x, 1sone ol y,, v, and vy,
and 1s stored at the sender device 120. If not, then at
operation 270N, the receiver device 110 concludes that x; 1s
not one of y,, v,, and y;, and 1s not stored at the sender
device 120.

It should be noted that the technique described herein
could be implemented without the H(Enc(x,)) component of
Equation 1. (In this case, the receiver device 110 would
check whether w 1s equal to O (rather than H(x,)) in
operation 260.) However, this component 1s useful to pre-
vent a malicious sender device 120 from encrypting a zero
to cause the recerver device 110 to incorrectly conclude that
X, 1s stored at the sender device 120.

As discussed above, 1n some cases, all of the computa-
tions 1n the method 200 are done modulo a large prime T.
The prime T 1s greater than a predetermined threshold
number. In some cases, the values calculated 1n the method
200 (and other methods described herein) may be repre-
sented as tuples of numbers modulo T. Each such tuple may
be represented as an extension field element. Using such
tuples reduces computational costs when working with large
numbers (e.g. numbers with more than 80 bits).

FIG. 3 illustrates a flow chart for an example method 300
for the sender device 120 to facilitate determining whether
the value from the receiver device 110 1s 1n the set of the
sender device 120, 1n accordance with some embodiments.

At operation 310, the sender device 120 stores a first set
of values (e.g. v,, V-, and y,). The first set of values may
include any number of values, not necessarily three values.

At operation 320, the sender device 120 recerves, from the
receiver device 110, a homomorphic encryption of a recerver
device value (e.g. Enc(x,)).

At operation 330, the sender device 120 computes a
homomorphically encrypted number (e.g. Enc(w)) based on
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a difference between the homomorphic encryption of the
receiver device value and each value in the first set of values
(e.g. (Enc(x,)-y,), (Enc(x,)-y,), (Enc(x,)-y;)), and based
on a payload function of the encryption of the receiver
device value (e.g. P(Enc(X,))). In some cases, the sender
device 120 computes a set of differences (e.g. (Enc(x;)-vy, ).
(Enc(x,)-v,), (Enc(x,)-y;)). the set of differences includes
the difference between the homomorphic encryption of the
receiver device value and each value 1n the first set of values.
The sender device 120 computes a product of members of
the set of differences (e.g. (Enc(x,)-y,)*(Enc(x,)-y,)*(Enc
(X,)-v3)). The sender device 120 multiplies the product of
the members of the set of differences by a random number
(e.g. r) to compute a first number (e.g. r*(Enc(x,)-y,)*(Enc

(X, )-v,)*(Enc(X,)-v,)). The sender device 120 adds the first

number to the payload function of the encryption of the
receiver device value (e.g. P(Enc(x,))) to compute the
homomorphically encrypted number.

At operation 340, the sender device 120 transmits the
homomorphically encrypted number to the receiver device
110 for determination, at the receirver device 110, whether
the recerver device value 1s 1n the first set of values. The
receiver device 110 may decrypt the homomorphically
encrypted number to compute a decrypted number (e.g. w).
The recerver device 110 may determine whether the receiver
device value 1s 1n the first set of values based on whether the
decrypted number 1s equal to the payload function of the
receiver device value (e.g., P(x,)), when the recerver device
value (e.g. X,) 1s not encrypted. In some cases, the sender
device 120 transmits, to the receiver device 110, a payload
of the homomorphically encrypted number together with the
homomorphically encrypted number.

In some cases, 1t might not be possible for the receiver
device 110 to determine 11 the decrypted value 1t receives 1s
the real label. In other cases, this i1s possible, for example
when the label 1s a hash of the 1tem value to obtain security
against a malicious sender, since the receiver device 110
knows what that label should be. This can be used together
with the techniques described herein for returning encrypted
labels. In other cases, where some actual data 1s returned 1n
addition to the TRUE/FALSE value (whether there was
intersection), some aspects may return the encrypted evalu-
ation of the product of differences polynomial (TRUE/
FALSE value of intersection) in addition to the evaluation of
the label 1nterpolation polynomial that gives the label when
evaluated at the correct value by the sender device 120.

FIG. 4 illustrates a tlow chart for an example method 400
for the recerver device 110 to facilitate determining whether
the value from the receiver device 110 1s 1n the set of the
sender device 120, in accordance with some embodiments.

At operation 410, the receiver device 110 computes a
homomorphic encryption of a receiver device value (e.g. X, )
stored at the receiver device 110.

At operation 420, the receiver device 110 transmits, to the
sender device 120, the homomorphic encryption (e.g. Enc
(x,)) of the receiver device value.

At operation 430, the receiver device 110 receives, from
the sender device, a homomorphically encrypted number
(e.g. Enc(w)) 1n response to the homomorphic encryption of
the receiver device value. In some cases, the homomorphic-
ally encrypted number 1s computed, at the sender device
120, based on the homomorphic encryption of the receiver
device value.

At operation 440, the receiver device 110 decrypts the
homomorphically encrypted number to compute a decrypted
number (e.g. w).
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At operation 450, the receiver device 110 determines,
based on the decrypted number, whether the receiver device
value 1s 1n a first set of values (e.g., v, V., and y;) stored at
the sender device 120. For example, the receiver device 110
determines whether the recerver device value 1s 1n the first
set of values stored at the sender device 120 based on
whether the decrypted number 1s equal to a payload function
of the receiver device value (e.g. P(x,)).

FIGS. 5A-5B are a data flow diagram of an example
method 500 for computing a private set intersection, in
accordance with some embodiments. The method 500 is
implemented using the receiver device 110 and the sender
device 120. In some cases, all of the computations described
in conjunction with the method 500 (and the other methods
described herein) are done modulo a prime number T that 1s
greater than a threshold number.

As shown 1n FIG. 5A, at operation 510, the sender device
120 stores a first set of values Y, which includes: v, v,, Vi,
V., Vs, and y.. The recetver device 110 stores a second set of
values X, which includes: x,, X,, and x;. The first set of
values Y and the second set of values X may include any
number of values, not necessarily 6 values and 3 values, as
described here. In some cases, Y includes much more (e.g.
thousands of times more) values than X.

At operation 520, the sender device 120 computes a hash
table for the first set of values Y. The hash table may be
computed using a hash function H. In some examples, H 1s
selected such that there are no hash collisions for the second
set of values X. In other words, 1f 1), then H(x,)=H(x,).
However, there may be hash collisions for the first set of
values Y, as Y may be much larger than X. In some cases,
the hash function H 1s an OPRF that 1s stored at the sender
device and obliviously accessible to the receiver device. The
receiver device 110 computes a hash table for the second set
of values X using the hash function H. Table 1 illustrates an
example of the values of H(X), and Table 2 illustrates an
example of the values of H(Y). Values in the same row (e.g.,
V., Y., and y,) have a hash collision, as the row corresponc

S
to the value of the hash function. In Table 1 and Table 2, E
indicates an empty value.

TABLE 1

Example H(X) values.

E
H(x3)
E
H(x,)
H(x5)
E

TABLE 2

Example H(Y) values.

E E E E
H(y>) H(y,) H(ye) E
E E E E
E E E H(y;)
E H(y,) E E
E E H(ys) E

Each row corresponds to a value of the hash function. For
example, the second row corresponds to a specific value to
a hash function. Thus, H(x;)=H(y,)=H(v.,)=H(y.). As a
result, x; might be equal to vy,, v,, or y.. However, x; 1s
definitely not equal to y, because H(x;)=H(vy, ).
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At operation 530, the receiver device 110 computes the
homomorphic encryption of H(X), denoted Enc(H(X)). The

receiver device 110 transmits Enc(H(X)) to the sender
device 120. The sender device 120 recerves Enc(H(X)). In
some aspects, the homomorphic encryption 1s computed

using a homomorphic encryption function Enc. The homo-
morphic encryption function 1s not accessible to the sender
device 120. The homomorphic encryption function 1s acces-
sible to the receiver device 110. Similarly, an inverse of the
homomorphic encryption function i1s not accessible to the
sender device 120. The mnverse of the homomorphic encryp-
tion function 1s accessible to the receiver device 110. An
example of Enc(H(X)) corresponding to Table 1 1s 1llustrated
in Table 3. After operation 530, the method 500 continues to
FIG. 5B.

-

TABLE 3

Example Enc(H(X)) values.

E
Enc(H(x3))
E
Enc(H(x,))
Enc(H(x,))
E

As shown 1n FIG. 5B, at operation 540, the sender device
batches Enc(H(X)) and H(Y) into multiple batches. The
batches leave the rows intact and each batch is assigned a set
of rows. Examples of batches of Enc(H(X)) are shown 1n

Tables 4A and 4B. Examples of batches of H(Y) are shown
in Tables 5A and 5B. While two batches are illustrated, any
number of batches are possible.

TABLE 4A

Example batch of Enc(H(X)).
E

Enc(H(x3))
E

TABLE 4B

Example batch of Enc(H(X)).

Enc(H(x,))
Enc(H(x,))
E

TABLE 5A

Example batch of H(Y).

E E E E
H(y>) H(yas) H(ys) B
E E E E
TABLE 3B
Example batch of H(Y).

E E E H(ys)
E H(y,) E E

E E H(ys) E

At operation 530, the sender device then splits each batch
of H(Y) ito multiple splits. The splits leave the columns
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intact and each split 1s assigned a set of columns. Examples
of splits of H(Y) are illustrated 1n Tables 6 A-6D.

TABLE 6A

Example Split of H(Y).

E E

H(y>) H(y,)

E E
TABLE 6B

Example Split of H(Y).

E E
H(ye) E
E E
TABLE 6C
Example Split of H(Y).
E E
B H(y,)
E E
TABLE 6D
Example Split of H(Y).
B H(ys)
E E
H(ys) E

At operation 560, the sender device 120, for each split of
H(Y), encodes a representation of whether value(s) from

H(X) are 1n the split, and transmits the encoded represen-
tations to the receiver device 110. The receiver device 110
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receives the encoded representations and determines, based 40

on the encoded representations, which value(s) from X are
in Y.

In some cases, each split of H(Y) 1s compared with a
corresponding batch of Enc(H(X)). For example, the splits
of Tables 6 A and 6B are compared to the batch of Table 4A.
The splits of Tables 6C and 6D are compared to the batch of
Table 4B. In some cases, the sender device 120, for each
split of the sender hash table, for each non-empty row 1n a
corresponding batch of the homomorphic encryption of the
receiver hash table, computes a homomorphically encrypted
number representing whether an unencrypted value in the
non-empty row of the receiver hash table i1s stored in a
corresponding row of the split. The sender device 120
transmits the homomorphically encrypted number to the
receiver device 110 for determination, at the receiver device
110, whether the unencrypted value 1n the non-empty row of
the receiver hash table 1s stored 1n the corresponding row of
the split. The homomorphically encrypted number for each
row of each split may be computed, for example, using the
technique described above in conjunction with FIG. 2.

In some cases, the sender device 120 has multi-threaded
processing hardware. Each split of the sender hash table (e.g.
cach of Tables 6A-6D) 1s processed using a separate and
distinct thread of the multi-threaded processing hardware.
As a result, computations for each split may be done in
parallel, and the size of the polynomial (of operation 230 in
FIG. 2) may be limited by the size of the split.
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FIG. 6 1s a flow chart of an example method 600 for the
sender device 120 to facilitate computing a private set
intersection, in accordance with some embodiments.

At operation 610, the sender device 120 stores a first set
of values Y (e.g. v,, V-, V1, V4, Vs, and vy, and the receiver
device stores a second set of values X (e.g. X,, X,, and X;).

At operation 620, the sender device 120 computes a
sender hash table H(Y) for the first set of values. The
receiver device 110 computes a recerver hash table H(X) for
the second set of values. The sender hash table and the
receiver hash table are constructed using the hash function
H. H 1s an OPRF that 1s stored at the sender device 120 and
obliviously accessible to the receiver device 110. In some
cases, H guarantees that there are no hash collisions for the
second set of values X. However, there may be hash
collisions for the first set of values Y, which may be much
larger than X. The receiver device 110 computes a homo-
morphic encryption of the receiver hash table, which 1s
represented as Enc(H(X)). In some cases, Enc 1s a homo-
morphic encryption function that 1s accessible to the recerver
device 110 but not to the sender device 120. Similarly, the
decryption function, which 1s the mverse of Enc, 1s acces-
sible to the receiver device 110 but not to the sender device
120.

At operation 630, the sender device 120 receives, from the
receiver device 110, the homomorphic encryption of the
receiver hash table for the second set of values. The receiver
hash table lacks hash collisions.

At operation 640, the sender device 120 batches the
homomorphic encryption of the receiver hash table and the
sender hash table into a plurality of batches. The batches
leave the rows intact and each batch i1s assigned a set of
rOws.

At operation 650, the sender device 120 splits each batch
of the plurality of batches of the sender hash table into a
plurality of splits. The splits leave the columns intact and
cach split 1s assigned a set of rows.

Operation 660 includes operations 662 and 664. For
operation 660, cach split 1s handled individually. In some
cases, the sender device 120 has multi-threaded processing
hardware. Each split of the sender hash table 1s processed
using a separate and distinct thread of the multi-threaded
processing hardware. Alternatively, multiple splits may be
processed by a single thread. At operation 662, for each
non-empty row 1n a corresponding batch of the homomor-
phic encryption of the receiver hash table: the thread com-
putes a homomorphically encrypted number representing
whether an unencrypted value 1n the non-empty row of the
receiver hash table 1s stored 1n a corresponding row of the
split. At operation 664, the thread transmits the homomor-
phically encrypted number to the receiver device for deter-
mination, at the receiver device, whether the unencrypted
value 1n the non-empty row of the receiver hash table 1s
stored 1n the corresponding row of the split.

Table 7 1llustrates some notation used below.

TABLE 7

Notation.

Y 1s the set of the sender device 120; Xis the set of the receiver device
110. In some aspects, it 1s assumed that [Y| » [X].

O 1s the length of items 1n X and Y.

| 1s the length of labels in Labeled PSI.

n 1s the ring dimension 1n the fully homomorphic encryption scheme
(a power of 2);

q 1s the ciphertext modulus; t is the plaintext modulus.

d 1s the degree of the extension field in the Single Instruction Multiple
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TABLE 7-continued

Notation.

Data (SIMD) encoding.

m 1s the hash table size.

¢ 1s the number of partitions we use to split the sender’s set Y in the PSI
protocol.

[i, j] denotes the set {i, i+ 1, ...
for the case 1 = 1.

, i}, and [j] is shorthand

In some cases, to compute the homomorphically
encrypted number, the thread computes a set of diflerences.
The set of differences includes differences between a value
in the non-empty row of the homomorphic encryption of the
receiver hash table and each non-empty value in the corre-
sponding row of the split. The thread computes a product of
members of the set of differences. The thread multiplies the
product of the members of the set of differences by a random
number to compute a first number. The thread adds the first
number to the payload function of the encryption of the
value 1n the non-empty row of the homomorphic encryption
of the receiver hash table to compute the homomorphically
encrypted number. In some cases, the thread carries out all
of these calculations modulo a prime number that 1s greater
than a threshold number (e.g. greater than 2°64 or greater
than 2°128).

PSI allows two devices, the sender device 120 and the
receiver device 110, to compute the intersection of their
private sets without revealing extra information to each
other. Some aspects are directed to the unbalanced PSI
setting, where (1) the set of the receiver device 110 1s
significantly smaller than the set of the sender device 120,
and (2) the receiver device 110 (with the smaller set) 1s a
low-power device. In a Labeled PSI setting, the sender
device 120 holds a label per each item in 1ts set, and the
receiver device 110 obtains the labels from the 1tems in the
intersection. Some aspects add eflicient support for arbitrary
length items, construct and implement an unbalanced
Labeled PSI protocol with small communication complex-
ity, and strengthen the security model using an OPRF 1n the
pre-processing phase. As used herein, the phrase “Labeled
PSI” encompasses its plain and ordinary meaning, and may
refer to, among other things, a PSI problem space where
every element v, i the set of the sender device 120 is
associated with a payload P(y,).

PSI 1s a secure computation protocol that allows two
devices, the sender device 120 and the receiver device 110,
to compute the mtersection of their private sets Y and X with
pre-determined sizes, such that the receiver device 110 only
learns YMX from the interaction and the sender device 120
learns nothing. One example use cases 1s a user of a mobile
phone using which of his/her contacts (stored at the mobile
phone) are users of a messaging service (where the list of
users of the messaging service 1s stored at a server). One
example of a use case 1s two businesses learning their
common customers without either business exposing its
customer list.

In some cases, a pre-processing phase can be performed
to facilitate a more eflicient online phase. The core 1dea 1s to
first update the values being intersected using an oblivious
PRF, where the sender device 120, and not the receiver
device 110, knows the key.

One protocol performs noise flooding to prove the secu-
rity for the sender. The need for this stems from the fact that
noise growth 1 homomorphic operations depends not only
on the ciphertexts being operated on, but also on the
underlying plaintexts. Thus, their security proof might not
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work 11 the result ciphertexts are not re-randomized at the
end, and 11 the underlying noise distribution 1s not hidden by
flooding the noise by an appropriate number of bits.

There are at least two diflerent problems with this
approach. First, it requires the sender device 120 to estimate
a heuristic upper bound on the size of noise, and ensure that
there 1s enough noise room left to perform an approprate
amount of noise tlooding. This makes it impossible to run
their protocol with small fully homomorphic encryption
(FHE) parameters, even for very small sets. Also, their
protocol 1s fragile against malicious attacks. For example,
the receiver can 1insert more noise into its ciphertexts,
causing the sender to noise-flood by fewer bits than 1t thinks.
Now, by examining the noise distribution after the PSI
computation, the receiver device 110 can potentially obtain
extra information about the set of the sender device 120.

Some aspects take a different approach to solving this
problem, removing noise flooding altogether. Namely, some
aspects use an OPRF to hash the items on both sides before
engaging in the PSI protocol. This ensures that the items 1n
the set of the sender device 120 are pseudo-random 1n the
view ol the receiver device 110, preventing the receiver
device 110 from learning anything about the original 1tems,
even 1f 1t learns the hashed values 1n full.

Abstractly, some aspects have, for the sample of the
sender device 120, a key k and instruct the sender device 120
to locally compute Y'={F,(y)lyEY}. The receiver device
110 then interactively applies the OPRF to 1its set, obtaining
X'={F (x)Ix€X}. From a security perspective it is now safe
to send Y' to the receiver, who can infer the intersection from
Y'MX'. However, this approach incurs a very high commu-
nication overhead, since Y' can easily be over a gigabyte.
The communication may be linear in the set Y|, and
compression techniques may introduce false positives.

One approach sidesteps this issue by applying an FHE-
based PSI protocol to the sets Y' and X'. Overall, the
communication complexity of the protocol 1s O(1X| log IY ).
As previously described, some aspects do not need to worry
about noise flooding, since the OPRF already provides
suilicient protection. This allows the protocol to use FHE
parameters that are highly optimized, improving the perfor-
mance and communication overhead.

More broadly, applying the OPRF to the sets also elimi-
nates the need to perform two other procedures which
protect the set of the sender device 120. First, recall that the
sender device 120 performs simple hashing where 1ts Y|
items are mapped to O(1Y]) bins using three hash functions.
In one protocol all of these bins must then be padded with
dummy 1tems to an upper bound. This prevents some partial
information from being leaked to the receiver, e.g. m 1tems
hash to bin i, which implies that [{yEYIh(x)=i}I=m. How-
ever, 1n the case that the OPRF 1s applied, the number of
items 1n any given bin 1s a function of Y', and therefore can
be made public.

Secondly, the polynomials that the sender device 110
evaluates using the set of the receiver device 110 need not
be randomized In one approach, the sender evaluates homo-
morphically a polynomial of the form F(X)=rll c{x-y),
where r<—F" 1s sampled uniformly at random each time the
protocol 1s executed. This additional randomization was
used to ensure that the receiver does not learn the product of
differences between x and Y. It also has an impact on
performance, as it increases the multiplicative depth by one.
However, after the OPRF 1s applied, this polynomuial 1is
formed with respect to Y'—not Y—and therefore revealing
the product of differences 1s no longer a security risk, since
Y' can securely be made public.
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The Diflie-Hellman based OPRF protocol computes the
function F_(y)=(H'(y)"), where H 1s a hash function mod-
cled as a random oracle. In more detail, let G be a cyclic
group with order q, where the One-More-Gap-Dithe-Hell-
man (OMGDH) problem 1s hard. H 1s a random oracle hash
function with range Z _*. The sender device 120 has a key
acZ * and the receiver has an input x&{0, 1}*. The

receiver device 110 first samples f<—Z _* and sends H(x)P
to the sender device 120, which responds with (H(x)f3)”. The

receiver device 110 can then output H'(H(x)*)=H'(((H(x)?)
“YPY. The outer hash function H' is used to map the group
clement to a sufliciently long bit string, and helps facilitate
extraction in the malicious setting.

In particular, by observing the queries made to H(x,), the
simulator can collect a list of pairs {(x,,H(x,))} which are
known to the receiver device 110. From this set the simulator
can compute the set A={(x,H(x,)¥)}. For some subset of the
H(x,), the receiver device 110 sends {H(x,)"} to the simu-
lator, who sends back {H(x,)P"*}. For the receiver device 110
to learn the OPRF value for x,, 1t must send H(x,)™ to the
random oracle H'. At this time the simulator extracts x, 1f
(x, . Hx,)")EA. Although this OPRF does not facilitate
extracting all x, at the time the first message 1s sent, extrac-
tion 1s performed before the receiver device 110 learns the
OPRF value.

In the context of the PSI protocol, this OPRF has the
property that the sender device 120 can use the same key
with multiple different receiver devices 110. This allows the
sender device 120, which has a large and often relatively
static set, to pre-process its set only once. This 1s particularly
valuable since the protocol also allows for eflicient nser-
tions and deletions of data from the pre-processed set.

If the parties perform the OPRF pre-processing phase, this
procedure can be significantly improved. The core 1dea 1s to
first encrypt all of the labels using the associated OPRF
values as the key. All of these encrypted labels can then be
sent to the receiver device 110, which uses the OPRF values
for the items 1n its set to decrypt the associated labels. This
approach makes no security guarantees from the homomor-
phic encryption scheme to ensure that information 1s not
leaked to the receiver about labels for items not in the
intersection.

To avoid linear communication when sending these
encrypted labels, in some aspects, the sender device 120
cvaluates a polynomial which interpolates the encrypted
labels, effectively compressing the amount of data that needs
to be communicated. In more detail, the sender device 120
first computes (v, yv,")=OPRF, (y.) for all y, in its set Y. Here,
y! will be used as the OPRF wvalue for computing the
intersection as before, while the second part y." will be used
to one-time-pad encrypt the label as 1'=1 +y.". The sender
device 120 then computes a polynomial G with minimal
degree such that G (y,)=I".

One advantage of this approach 1s that the degree of the
online computation 1s reduced due to G not requiring
additional randomization. Recall from above that the result
of evaluating the symmetric polynomial F may be random-
1zed by multiplying with a nonzero r. This increases the
degree of the computation by one, which may require larger
FHE parameters.

The approach for improved security against a malicious
sender device 120 uses Labeled PSI, but does not require the
evaluated symmetric polynomial F(x) to be sent back to the
receiver device 110. As such, by not requiring F 1n the
computation of the labels, some aspects gain an addition
performance improvement 1 the malicious setting by not
computing or evaluating F.
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In summary, some aspects of the technology described
herein are directed to techniques for computing a private set
intersection are disclosed. The sender device 120 stores a
first set of values. The sender device 120 receives, from a
receiver device 110, a homomorphic encryption of a recetver
device value. The sender device 120 computes a homomor-
phically encrypted number based on a difference between
the homomorphic encryption of the receiver device value
and each value 1n the first set of values, and based on a hash
function of the encryption of the receiver device value. The
sender device 120 transmits the homomorphically encrypted
number to the receiver device 110 for determination, at the
recerver device 110, whether the recerver device value 1s 1n
the first set of values.

Numbered Examples

Certain embodiments are described herein as numbered
examples 1, 2, 3, etc. These numbered examples are pro-
vided as examples only and do not limit the subject tech-
nology.

Example 1 1s a system comprising: processing hardware
of a sender device; and a memory of the sender device, the
memory storing instructions which, upon execution by the
processing hardware, cause the processing hardware to
perform operations comprising: storing, in the memory of
the sender device, a first set of values; receiving, from a
receiver device, a homomorphic encryption of a receiver
device value; computing a homomorphically encrypted
number based on a diflerence between the homomorphic
encryption of the receiver device value and each value 1n the
first set of values, and based on a payload function of the
encryption of the receiver device value; and transmitting the
homomorphically encrypted number to the receiver device
for determination, at the receiver device, whether the
receiver device value 1s 1n the first set of values.

In Example 2, the subject matter of Example 1 includes,
wherein computing the homomorphically encrypted number
comprises: computing a set of differences, the set of difler-
ences comprising differences between the homomorphic
encryption of the recerver device value and each value 1n the
first set of values; computing a product of members of the set
of differences; multiplying the product of the members of the
set of diflerences by a random number to compute a first
number; and adding the first number to the payload function
ol the encryption of the receiver device value to compute the
homomorphically encrypted number.

In Example 3, the subject matter of Examples 1-2
includes, wherein the receiver device performs operations
comprising: decrypting the homomorphically encrypted
number to compute a decrypted number; and determinming
whether the receiver device value 1s 1n the first set of values
based on whether the decrypted number 1s equal to the
payload function of the receiver device value, wherein the
receiver device value 1s not encrypted.

In Example 4, the subject matter of Examples 1-3
includes, wherein the homomorphic encryption 1s computed
using a homomorphic encryption function, wherein the
homomorphic encryption function 1s not accessible to the
sender device, and wherein the homomorphic encryption
function 1s accessible to the receiver device.

In Example 3, the subject matter of Example 4 includes,
wherein an mverse of the homomorphic encryption function
1S not accessible to the sender device, and wherein the
inverse of the homomorphic encryption function i1s acces-
sible to the receiver device.




US 10,904,225 B2

15

In Example 6, the subject matter of Examples 1-5
includes, the operations further comprising: storing, in the
memory of the sender device, a payload for each value in the
first set of values, the payload for a given value being equal
to the payload function of the given value.

In Example 7, the subject matter of Examples 1-6
includes, wherein the payload function i1s an oblivious
pseudorandom function (OPRF) that is stored at the sender
device and obliviously accessible to the receiver device.

In Example 8, the subject matter of Examples 1-7
includes, wherein computing the homomorphically
encrypted number 1s done modulo a prime number that 1s
greater than a threshold number.

In Example 9, the subject matter of Examples 1-8
includes, wherein the sender device 1s a server, and wherein
the receiver device 1s a client device.

Example 10 1s a method implemented at a receiver device,
the method comprising: computing a homomorphic encryp-
tion of a recerver device value stored at the receiver device;
transmitting, to a sender device, the homomorphic encryp-
tion of the receiver device value; receiving, from the sender
device, a homomorphically encrypted number in response to
the homomorphic encryption of the recerver device value;
decrypting the homomorphically encrypted number to com-
pute a decrypted number; and determining whether the
receiver device value 1s 1n a first set of values stored at the
sender device based on whether the decrypted number 1s
equal to a payload function of the receiver device value.

In Example 11, the subject matter of Example 10 includes,
wherein the homomorphically encrypted number 1s com-
puted at the sender device based on the homomorphic
encryption of the recerver device value.

In Example 12, the subject matter of Examples 10-11
includes, wherein the homomorphic encryption is computed
using a homomorphic encryption function, wherein the
homomorphic encryption function i1s not accessible to the
sender device, and wherein the homomorphic encryption
function 1s accessible to the receiver device.

In Example 13, the subject matter of Examples 11-12
includes, wherein an inverse of the homomorphic encryption
function 1s not accessible to the sender device, and wherein
the 1nverse of the homomorphic encryption function 1s
accessible to the receiver device.

In Example 14, the subject matter of Examples 10-13
includes, wherein the payload function 1s an oblivious
pseudorandom function (OPRF) that is stored at the sender
device and obliviously accessible to the receiver device.

In Example 15, the subject matter of Examples 10-14
includes, wherein the sender device 1s a server, and wherein
the receiver device 1s a client device.

In Example 16, the subject matter of Examples 10-15
includes, wherein the sender device stores a payload asso-
ciated with each member of the first set of values, and
wherein the payload associated with a given member 1s
equal to the payload function of the member.

In Example 17, the subject matter of Examples 10-16
includes, wherein the homomorphic encryption of the
receiver device value and the payload function of the
receiver device value are computed modulo a prime number
that 1s greater than a threshold number.

Example 18 1s a non-transitory machine-readable medium
storing 1nstructions which, upon execution by a sender
device, cause the sender device to perform operations com-
prising: storing, at the sender device, a first set of values;
computing, at the sender device, a sender hash table for the
first set of values; recerving, from a receiver device, a
homomorphic encryption of a receiver hash table for a
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second set of values, the receiver hash table lacking hash
collisions, and the second set of values being stored at the
receiver device; batching the homomorphic encryption of
the receirver hash table and the sender hash table into a
plurality of batches; splitting each batch of the plurality of
batches of the sender hash table into a plurality of splits; and
for each split of the sender hash table: for each non-empty
row 1n a corresponding batch of the homomorphic encryp-
tion of the receiver hash table: computing a homomorphic-
ally encrypted number representing whether an unencrypted
value 1n the non-empty row of the receiver hash table 1s
stored 1n a corresponding row of the split; and transmitting,
the homomorphically encrypted number to the receiver
device for determination, at the receiver device, whether the
unencrypted value in the non-empty row of the recerver hash
table 1s stored in the corresponding row of the split.

In Example 19, the subject matter of Example 18
includes, wherein the sender device comprises multi-
threaded processing hardware, and wherein each split of the
sender hash table 1s processed using a separate and distinct
thread of the multi-threaded processing hardware.

In Example 20, the subject matter of Examples 18-19
includes, wherein computing the homomorphically
encrypted number comprises: computing a set of difler-
ences, the set of differences comprising differences between
a value 1n the non-empty row of the homomorphic encryp-
tion of the receiver hash table and each non-empty value in
the corresponding row of the split; computing a product of
members of the set of differences; multiplying the product of
the members of the set of differences by a random number
to compute a {irst number; and adding the first number to the
payload function of the encryption of the value in the
non-empty row ol the homomorphic encryption of the
receiver hash table to compute the homomorphically
encrypted number.

In Example 21, the subject matter of Example 20
includes, wherein computing the set of differences, comput-
ing the product of the members, multiplying the product of
the members by the random number, and adding the first
number to the payload function of the encryption of the
value 1n the non-empty row of the homomorphic encryption
of the receiver hash table are all done modulo a prime
number that 1s greater than a threshold number.

In Example 22, the subject matter of Examples 18-21
includes, wherein the sender hash table and the receiver hash
table are constructed using a hash function, and wherein the
hash function 1s an oblivious pseudorandom function
(OPRF) that 1s stored at the sender device and obliviously
accessible to the receiver device.

In Example 23, the subject matter of Example 22
includes, wherein the hash function guarantees that there are
no hash collisions for the second set of values.

In Example 24, the subject matter of Examples 18-23
includes, wherein the homomorphic encryption 1s computed
using a homomorphic encryption function, wherein the
homomorphic encryption function 1s not accessible to the
sender device, and wherein the homomorphic encryption
function 1s accessible to the receiver device.

In Example 25, the subject matter of Example 24
includes, wherein an imverse of the homomorphic encryption
function 1s not accessible to the sender device, and wherein
the mverse of the homomorphic encryption function 1s
accessible to the receiver device.

Example 26 1s at least one machine-readable medium
including instructions that, when executed by processing
circuitry, cause the processing circuitry to perform opera-
tions to implement of any of Examples 1-25.
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Example 27 1s an apparatus comprising means to imple-
ment of any of Examples 1-23.

Example 28 1s a system to implement of any of Examples
1-25.

Example 29 1s a method to implement of any of Examples
1-25.

Components and Logic

Certain embodiments are described herein as including
logic or a number of components or mechanisms. Compo-
nents may constitute either software components (e.g., code
embodied on a machine-readable medium) or hardware
components. A “hardware component” 1s a tangible unit
capable of performing certain operations and may be con-
figured or arranged 1n a certain physical manner. In various
example embodiments, one or more computer systems (e.g.,
a standalone computer system, a client computer system, or
a server computer system) or one or more hardware com-
ponents of a computer system (e.g., a processor or a group
of processors) may be configured by software (e.g., an
application or application portion) as a hardware component
that operates to perform certain operations as described
herein.

In some embodiments, a hardware component may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware component
may include dedicated circuitry or logic that 1s permanently
configured to perform certain operations. For example, a
hardware component may be a special-purpose processor,
such as a Field-Programmable Gate Array (FPGA) or an
Application Specific Integrated Circuit (ASIC). A hardware
component may also include programmable logic or cir-
cuitry that 1s temporarily configured by software to perform
certain operations. For example, a hardware component may
include soiftware executed by a general-purpose processor or
other programmable processor. Once configured by such
soltware, hardware components become specific machines
(or specific components of a machine) uniquely tailored to
perform the configured functions and are no longer general-
purpose processors. It will be appreciated that the decision
to implement a hardware component mechanically, 1n dedi-
cated and permanently configured circuitry, or 1in temporar-
1ly configured circuitry (e.g., configured by software) may
be driven by cost and time considerations.

Accordingly, the phrase “hardware component” should be
understood to encompass a tangible record, be that an record
that 1s physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
component” refers to a hardware component. Considering
embodiments 1n which hardware components are temporar-
i1ly configured (e.g., programmed), each of the hardware
components might not be configured or instantiated at any
one mstance in time. For example, where a hardware com-
ponent comprises a general-purpose processor configured by
soltware to become a special-purpose processor, the general-
purpose processor may be configured as respectively differ-
ent special-purpose processors (e.g., comprising different
hardware components) at diflerent times. Software accord-
ingly configures a particular processor or processors, for
example, to constitute a particular hardware component at
one stance of time and to constitute a different hardware
component at a different 1nstance of time.

Hardware components can provide information to, and
receive 1nformation from, other hardware components.
Accordingly, the described hardware components may be
regarded as being communicatively coupled. Where mul-
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tiple hardware components exist contemporaneously, com-
munications may be achieved through signal transmission
(e.g., over appropriate circuits and buses) between or among
two or more of the hardware components. In embodiments
in which multiple hardware components are configured or
instantiated at different times, communications between
such hardware components may be achieved, for example,
through the storage and retrieval of mnformation 1n memory
structures to which the multiple hardware components have
access. For example, one hardware component may perform
an operation and store the output of that operation in a
memory device to which 1t 1s commumicatively coupled. A
turther hardware component may then, at a later time, access
the memory device to retrieve and process the stored output.
Hardware components may also initiate communications
with input or output devices, and can operate on a resource
(e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
components that operate to perform one or more operations
or functions described herein. As used herein, “processor-
implemented component™ refers to a hardware component
implemented using one or more processors.

Similarly, the methods described herein may be at least
partially processor-implemented, with a particular processor
or processors being an example of hardware. For example,
at least some of the operations of a method may be per-
formed by one or more processors or processor-imple-
mented components. Moreover, the one or more processors
may also operate to support performance of the relevant
operations 1 a “cloud computing” environment or as a
“software as a service” (SaaS). For example, at least some
ol the operations may be performed by a group of computers
(as examples of machines imncluding processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate mterfaces (e.g., an API).

The performance of certain of the operations may be
distributed among the processors, not only residing within a
single machine, but deployed across a number of machines.
In some example embodiments, the processors or processor-
implemented components may be located in a single geo-
graphic location (e.g., within a home environment, an office
environment, or a server farm). In other example embodi-
ments, the processors or processor-implemented compo-
nents may be distributed across a number of geographic
locations.

Example Machine and Software Architecture

The components, methods, applications, and so forth
described 1n conjunction with FIGS. 1-6 are implemented 1n
some embodiments 1n the context of a machine and an
assoclated software architecture. The sections below
describe representative software architecture(s) and machine
(e.g., hardware) architecture(s) that are suitable for use with
the disclosed embodiments.

Software architectures are used 1n conjunction with hard-
ware architectures to create devices and machines tailored to
particular purposes. For example, a particular hardware
architecture coupled with a particular software architecture
will create a mobile device, such as a mobile phone, tablet
device, or so forth. A slightly different hardware and soft-
ware architecture may yield a smart device for use in the
“internet of things,” while yet another combination produces
a server computer for use within a cloud computing archi-
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tecture. Not all combinations of such software and hardware
architectures are presented here, as those of skill 1n the art
can readily understand how to implement the disclosed
subject matter in different contexts from the disclosure
contained herein.

FIG. 7 1s a block diagram illustrating components of a
machine 700, according to some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more ol the methodologies discussed herein. Spe-
cifically, FIG. 7 shows a diagrammatic representation of the
machine 700 1n the example form of a computer system,
within which instructions 716 (e.g., soltware, a program, an
application, an applet, an app, or other executable code) for
causing the machine 700 to perform any one or more of the
methodologies discussed herein may be executed. The
istructions 716 transform the general, non-programmed
machine into a particular machine programmed to carry out
the described and illustrated functions 1 the manner
described. In alternative embodiments, the machine 700
operates as a standalone device or may be coupled (e.g.,
networked) to other machines. In a networked deployment,
the machine 700 may operate 1n the capacity of a server
machine or a client machine 1 a server-client network
environment, or as a peer machine 1n a peer-to-peer (or
distributed) network environment. The machine 700 may
comprise, but not be limited to, a server computer, a client
computer, PC, a tablet computer, a laptop computer, a
netbook, a personal digital assistant (PDA), an entertainment
media system, a cellular telephone, a smart phone, a mobile
device, a wearable device (e.g., a smart watch), a smart
home device (e.g., a smart appliance), other smart devices,
a web appliance, a network router, a network switch, a
network bridge, or any machine capable of executing the
instructions 716, sequentially or otherwise, that specily
actions to be taken by the machine 700. Further, while only
a single machine 700 1s 1llustrated, the term “machine” shall
also be taken to include a collection of machines 700 that
individually or jointly execute the instructions 716 to per-
form any one or more ol the methodologies discussed
herein.

The machine 700 may include processors 710, memory/
storage 730, and I/O components 750, which may be con-
figured to communicate with each other such as via a bus
702. In an example embodiment, the processors 710 (e.g., a
Central Processing Unit (CPU), a Reduced Instruction Set
Computing (RISC) processor, a Complex Instruction Set
Computing (CISC) processor, a Graphics Processing Unit
(GPU), a Dagital Signal Processor (DSP), an ASIC, a Radio-
Frequency Integrated Circuit (RFIC), another processor, or
any suitable combination thereol) may include, for example,
a processor 712 and a processor 714 that may execute the
istructions 716. The term “processor” 1s intended to include
multi-core processors that may comprise two or more inde-
pendent processors (sometimes referred to as “cores™) that
may execute instructions contemporaneously. Although
FIG. 7 shows multiple processors 710, the machine 700 may
include a single processor with a single core, a single
processor with multiple cores (e.g., a multi-core processor),
multiple processors with a single core, multiple processors
with multiples cores, or any combination thereof.

The memory/storage 730 may include a memory 732,
such as a main memory, or other memory storage, and a
storage unit 736, both accessible to the processors 710 such
as via the bus 702. The storage unit 736 and memory 732
store the nstructions 716 embodying any one or more of the
methodologies or functions described herein. The nstruc-
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tions 716 may also reside, completely or partially, within the
memory 732, within the storage unit 736, within at least one
of the processors 710 (e.g., within the processor’s cache
memory), or any suitable combination thereof, during
execution thereof by the machine 700. Accordingly, the
memory 732, the storage unit 736, and the memory of the
processors 710 are examples of machine-readable media.

As used herein, “machine-readable medium” means a
device able to store instructions (e.g., istructions 716) and
data temporarily or permanently and may include, but is not
limited to, random-access memory (RAM), read-only
memory (ROM), bufler memory, flash memory, optical
media, magnetic media, cache memory, other types of
storage (e.g., Erasable Programmable Read-Only Memory
(EEPROM)), and/or any suitable combination thereof. The
term “machine-readable medium” should be taken to include
a single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store the instructions 716. The term “machine-readable
medium™ shall also be taken to include any medium, or
combination of multiple media, that 1s capable of storing
istructions (e.g., instructions 716) for execution by a
machine (e.g., machine 700), such that the instructions,
when executed by one or more processors of the machine
(e.g., processors 710), cause the machine to perform any one
or more of the methodologies described herein. Accordingly,
a “machine-readable medium™ refers to a single storage
apparatus or device, as well as “cloud-based” storage sys-
tems or storage networks that include multiple storage
apparatus or devices. The term “machine-readable medium”™
excludes signals per se.

The I/O components 750 may include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. The specific I/O components 750
that are included 1n a particular machine will depend on the
type of machine. For example, portable machines such as
mobile phones will likely include a touch mput device or
other such input mechanisms, while a headless server
machine will likely not include such a touch input device. It
will be appreciated that the I/O components 750 may include
many other components that are not shown in FIG. 7. The
I/O components 750 are grouped according to functionality
merely for simplitying the following discussion and the
grouping 1s 1n no way limiting. In various example embodi-
ments, the I/O components 750 may include output compo-
nents 752 and input components 754. The output compo-
nents 752 may include visual components (e.g., a display
such as a plasma display panel (PDP), a light emitting diode
(LED) display, a liquid crystal display (LCD), a projector, or
a cathode ray tube (CRT)), acoustic components (e.g.,
speakers ), haptic components (e.g., a vibratory motor, resis-
tance mechanisms), other signal generators, and so forth.
The input components 754 may include alphanumeric input
components (€.g., a keyboard, a touch screen configured to
receive alphanumeric input, a photo-optical keyboard, or
other alphanumeric input components), point based input
components (e.g., a mouse, a touchpad, a trackball, a joy-
stick, a motion sensor, or another pointing instrument),
tactile input components (e.g., a physical button, a touch
screen that provides location and/or force of touches or
touch gestures, or other tactile mput components), audio
input components (e.g., a microphone), and the like.

In further example embodiments, the I/O components 750
may include biometric components 756, motion components
758, environmental components 760, or position compo-
nents 762, among a wide array of other components. For
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example, the biometric components 756 may include com-
ponents to detect expressions (e.g., hand expressions, facial
expressions, vocal expressions, body gestures, or eye track-
ing), measure biosignals (e.g., blood pressure, heart rate,
body temperature, perspiration, or brain waves), measure
exercise-related metrics (e.g., distance moved, speed of
movement, or time spent exercising) identify a person (e.g.,
voice 1dentification, retinal i1dentification, facial identifica-
tion, fingerprint identification, or electroencephalogram
based 1dentification), and the like. The motion components
758 may include acceleration sensor components (e.g.,
accelerometer), gravitation sensor components, rotation sen-
sor components (e.g., gyroscope), and so forth. The envi-
ronmental components 760 may include, for example, 1llu-
mination sensor components (e.g., photometer), temperature
sensor components (e.g., one or more thermometers that
detect ambient temperature), humidity sensor components,
pressure sensor components (€.g., barometer), acoustic sen-
sor components (e.g., one or more microphones that detect
background noise), proximity sensor components (e.g.,
infrared sensors that detect nearby objects), gas sensors
(e.g., gas detection sensors to detect concentrations of haz-
ardous gases for safety or to measure pollutants in the
atmosphere), or other components that may provide 1ndica-
tions, measurements, or signals corresponding to a surround-
ing physical environment. The position components 762
may include location sensor components (e.g., a Global
Position System (GPS) receiver component), altitude sensor
components (e.g., altimeters or barometers that detect air
pressure from which altitude may be derived), orientation
sensor components (e.g., magnetometers), and the like.

Communication may be implemented using a wide vari-
ety of technologies. The I/O components 750 may include
communication components 764 operable to couple the
machine 700 to a network 780 or devices 770 via a coupling,
782 and a coupling 772, respectively. For example, the
communication components 764 may include a network
interface component or other suitable device to interface
with the network 780. In further examples, the communi-
cation components 764 may include wired communication
components, wireless communication components, cellular
communication components, Near Field Communication
(NFC) components, Bluetooth® components (e.g., Blu-
ctooth® Low Energy), Wi-Fi® components, and other com-
munication components to provide communication via other
modalities. The devices 770 may be another machine or any
of a wide variety of peripheral devices (e.g., a peripheral
device coupled via a USB).

Moreover, the communication components 764 may
detect identifiers or include components operable to detect
identifiers. For example, the communication components
764 may include Radio Frequency Identification (RFID) tag
reader components, NFC smart tag detection components,
optical reader components, or acoustic detection compo-
nents (e.g., microphones to identify tagged audio signals). In
addition, a variety of information may be derived via the
communication components 764, such as location via Inter-
net Protocol (IP) geolocation, location via Wi-Fi® signal
triangulation, location via detecting an NFC beacon signal
that may indicate a particular location, and so forth.

In various example embodiments, one or more portions of
the network 780 may be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a WAN, a
wireless WAN (WWAN), a metropolitan area network
(MAN), the Internet, a portion of the Internet, a portion of
the Public Switched Telephone Network (PSTN), a plain old
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telephone service (POTS) network, a cellular telephone
network, a wireless network, a Wi-Fi® network, another
type ol network, or a combination of two or more such
networks. For example, the network 780 or a portion of the
network 780 may include a wireless or cellular network and
the coupling 782 may be a Code Division Multiple Access
(CDMA) connection, a Global System for Mobile commu-
nications (GSM) connection, or another type of cellular or
wireless coupling. In this example, the coupling 782 may
implement any of a variety of types of data transier tech-
nology, such as Single Carrier Radio Transmission Technol-
ogy (1xRTT), Evolution-Data Optimized (EVDO) technol-
ogy, General Packet Radio Service (GPRS) technology,
Enhanced Data rates for GSM Evolution (EDGE) technol-
ogy, third Generation Partnership Project (3GPP) including
7G, fourth generation wireless (4G) networks, Umversal
Mobile Telecommunications System (UMTS), High Speed
Packet Access (HSPA), Worldwide Interoperability for
Microwave Access (WIMAX), Long Term Evolution (LTE)
standard, others defined by various standard-setting organi-
zations, other long range protocols, or other data transfer
technology.

The 1nstructions 716 may be transmitted or received over
the network 780 using a transmission medium via a network
interface device (e.g., a network interface component
included in the communication components 764) and uti-
lizing any one of a number of well-known transier protocols
(e.g., HI'TP). Similarly, the instructions 716 may be trans-
mitted or received using a transmission medium via the
coupling 772 (e.g., a peer-to-peer coupling) to the devices
770. The term “transmission medium” shall be taken to
include any intangible medium that 1s capable of storing,
encoding, or carrying the instructions 716 for execution by
the machine 700, and includes digital or analog communi-
cations signals or other intangible media to facilitate com-
munication of such software.

What 1s claimed 1s:

1. A system comprising:

processing hardware of a sender device; and

a memory of the sender device, the memory storing

instructions which, upon execution by the processing

hardware, cause the processing hardware to perform

operations comprising:

storing, 1n the memory of the sender device, a first set
of values:

computing a sender hash table for the first set of values;

receiving, from a receiwver device, a homomorphic
encryption of a receiver hash table for a second set
of values, the recerver hash table including no repeat
values, and the second set of values including fewer
values than the first set of values;

batching the homomorphic encryption of the receiver
hash table and the sender hash table into a plurality
ol batches by separating the homomorphic encryp-
tion of the receiver hash table and the sender hash
table into multiple tables of a same number of rows
to generate batched receiver hash tables and batched
sender hash tables such that an entry in the receiver
hash table appears in only one of the batched
receiver hash tables and an entry 1n the sender hash
table appears 1n only one of the batched sender hash
tables;

splitting each batch of the plurality of batches of the
sender hash table into a plurality of splits by sepa-
rating the batched sender hash tables into multiple
tables of a same number of columns to generate split
batched sender hash tables such that an entry in the
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sender hash table appears 1in only one of the split
batched sender hash tables; and

for each split batched sender hash table of the split
batched sender hash tables:

for each non-empty row 1n a corresponding batched
receiver hash table of the batched receiver hash
tables: computing a homomorphically encrypted
number representing whether an unencrypted value
in the non-empty row of the receiver hash table 1s
stored 1n a corresponding row of a split batched
sender hash table of the split batched sender hash
tables; and

transmitting the homomorphically encrypted number to
the receiver device for determination, at the receiver
device, whether the unencrypted value 1n the non-
empty row of the receiver hash table 1s stored in the
corresponding row of the split.

2. The system of claim 1, wherein computing the homo-
morphically encrypted number comprises:

computing a set of differences, the set of differences

comprising differences between the homomorphic
encryption of the recerver device value and each value
in the first set of values;

computing a product of members of the set of differences;

multiplying the product of the members of the set of

differences by a random number to compute a first
number; and

adding the first number to a payload function of the

encryption of the receiver device value to compute the
homomorphically encrypted number.

3. The system of claim 1, wherein the receiver device
performs operations comprising:

decrypting the homomorphically encrypted number to

compute a decrypted number; and

determining whether the receiver device value is in the

first set of values based on whether the decrypted
number 1s equal to the payload function of the receiver
device value, wherein the receiver device value 1s not
encrypted.

4. The system of claim 1, wherein the homomorphic
encryption 1s computed using a homomorphic encryption
function, wherein the homomorphic encryption function is
not accessible to the sender device, and wherein the homo-
morphic encryption function 1s accessible to the receiver
device.

5. The system of claim 4, wherein an mnverse of the
homomorphic encryption function i1s not accessible to the
sender device, and wherein the inverse of the homomorphic
encryption function 1s accessible to the receiver device.

6. The system of claim 1, the operations further compris-
ng:

storing, 1n the memory of the sender device, a payload for

cach value 1n the first set of values, the payload for a
given value being equal to the payload tunction of the
given value.

7. The system of claim 6, wherein the payload function 1s
an oblivious pseudorandom function (OPRF) that 1s stored at
the sender device and obliviously accessible to the receiver
device.

8. The system of claim 1, wherein computing the homo-
morphically encrypted number i1s done modulo a prime
number that 1s greater than a threshold number.

9. The system of claim 1, the operations further compris-
ng:

transmitting, to the receiver device, a payload of the
homomorphically encrypted number together with the
homomorphically encrypted number.
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10. A method implemented at a device, the method
comprising;
computing, at a sender device, a sender hash table for the
first set of values;
receiving, from a receiver device, a homomorphic encryp-
tion of a receiver hash table for a second set of values,
the receiver hash table including no repeat values, and
the second set of values being stored at the receiver
device and including fewer values than the first set of
values;
batching the homomorphic encryption of the receiver
hash table and the sender hash table into a plurality of
batches by separating the homomorphic encryption of
the receiver hash table and the sender hash table into
multiple tables of a same number of rows to generate
batched recerver hash tables and batched sender hash
tables such that an entry in the receirver hash table
appears 1n only one of the batched receiver hash tables

and an entry in the sender hash table appears 1n only
one of the batched sender hash tables:

splitting each batch of the plurality of batches of the

sender hash table 1nto a plurality of splits by separating,
the batched sender hash tables into multiple tables of a
same number of columns to generate split batched
sender hash tables such that an entry in the sender hash
table appears 1n only one of the split batched sender
hash tables; and

for each split batched sender hash table of the split

batched sender hash tables:
for each non-empty row in a corresponding batched
receiver hash table of the batched receiver hash tables:
computing a homomorphically encrypted number rep-
resenting whether an unencrypted value 1n the non-
empty row of the receiver hash table 1s stored 1n a
corresponding row of a split batched sender hash table
of the split batched sender hash tables; and

transmitting the homomorphically encrypted number to
the receiver device for determination, at the receiver
device, whether the unencrypted value in the non-
empty row of the receiver hash table 1s stored in the
corresponding row of the split.

11. The method of claim 10, wherein the homomorphic-
ally encrypted number 1s computed at the sender device
based on the homomorphic encryption of the receiver device
value.

12. The method of claim 10, wherein the homomorphic
encryption 1s computed using a homomorphic encryption
function, wherein the homomorphic encryption function is
not accessible to the sender device, and wherein the homo-
morphic encryption function 1s accessible to the receiver
device.

13. The method of claim 11, wherein an inverse of the
homomorphic encryption function 1s not accessible to the
sender device, and wherein the inverse of the homomorphic
encryption function is accessible to the receiver device.

14. The method of claim 10, wherein a payload function
1s an oblivious pseudorandom function (OPRF) that 1s stored
at the sender device and obliviously accessible to the
receiver device.

15. The method of claim 10, wherein the sender device 1s
a server, and wherein the receiver device 1s a client device.

16. The method of claim 14, wherein the sender device
stores the payload associated with each member of the first
set of values, and wherein the payload associated with a
given member 1s equal to the payload function of the
member.
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17. The method of claim 14, wherein the homomorphic
encryption of the receiver device value and the payload
function of the recerver device value are computed modulo
a prime number that 1s greater than a threshold number.

18. A non-transitory machine-readable medium storing
instructions which, upon execution by a sender device, cause
the sender device to perform operations comprising:

storing, at the sender device, a first set of values;

computing, at the sender device, a sender hash table for
the first set of values:

receiving, from a receiver device, a homomorphic encryp-

tion of a receiver hash table for a second set of values,
the recerver hash table mncluding no repeat values, and
the second set of values being stored at the receiver
device and including fewer values than the first set of
values;

batching the homomorphic encryption of the receiver

hash table and the sender hash table into a plurality of
batches by separating the homomorphic encryption of
the receiver hash table and the sender hash table into
multiple tables of a same number of rows to generate
hatched receiver hash tables and batched sender hash
tables such that an entry in the receiver hash table
appears 1n only one of the batched receiver hash tables
and an entry 1n the sender hash table appears in only
one of the batched sender hash tables;

splitting each batch of the plurality of batches of the

sender hash table into a plurality of splits by separating
the batched sender hash tables into multiple tables of a
same number of columns to generate split batched
sender hash tables such that an entry 1n the sender hash
table appears 1n only one of the split batched sender
hash tables; and

for each split batched sender hash table of the split

batched sender hash tables:
for each non-empty row 1n a corresponding batched
receiver hash table of the batched receiver hash tables:
computing a homomorphically encrypted number rep-
resenting whether an unencrypted value 1n the non-
empty row of the receiver hash table 1s stored in a
corresponding row of a split batched sender hash table
of the split batched sender hash tables; and

transmitting the homomorphically encrypted number to
the receiver device for determination; at the receiver
device, whether the unencrypted value i the non-
empty row of the receiver hash table 1s stored 1n the
corresponding row of the split.

19. The machine-readable medium of claim 18, wherein
the sender device comprises multi-threaded processing hard-
ware, and wherein each split of the sender hash table 1s
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processed using a separate and distinct thread of the multi-
threaded processing hardware.

20. The machine-readable medium of claim 18, wherein
computing the homomorphically encrypted number com-
Prises:

computing a set of differences, the set of differences
comprising differences between a value in the non-
empty row of the homomorphic encryption of the
receiver hash table and each non-empty value in the
corresponding row of the split;

computing a product of members of the set of differences;

multiplying the product of the members of the set of
differences by a random number to compute a first
number; and

adding the first number to a payload function of the
encryption of the value 1in the non-empty row of the

homomorphic encryption of the recerver hash table to
compute the homomorphically encrypted number.

21. The machine-readable medium of claim 20, wherein
computing the set of differences, computing the product of
the members, multiplying the product of the members by the
random number, and adding the first number to the payload
function of the encryption of the value 1n the non-empty row
of the homomorphic encryption of the receiver hash table
are all done modulo a prime number that 1s greater than a
threshold number.

22. The machine-readable medium of claim 18, wherein
the sender hash table and the receiver hash table are con-
structed using a hash function, and wherein the hash func-
tion 1s an oblivious pseudorandom function (OPRF) that 1s
stored at the sender device and obliviously accessible to the
receiver device.

23. The machine-readable medium of claim 22, wherein
the hash function guarantees that there are no hash collisions
for the second set of values.

24. The machine-readable medium of claim 18, wherein
the homomorphic encryption 1s computed using a homo-
morphic encryption function, wherein the homomorphic
encryption function 1s not accessible to the sender device,
and wherein the homomorphic encryption function 1s acces-
sible to the receiver device.

25. The machine-readable medium of claim 24, wherein
an mverse of the homomorphic encryption function 1s not
accessible to the sender device, and wherein the inverse of
the homomorphic encryption function 1s accessible to the
recelver device.
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