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SYSTEM AND METHOD FOR AUTOMATED
ANGIOGRAPHY UTILIZING A NEURAL
NETWORK

BACKGROUND

The subject matter disclosed herein relates to medical
imaging and, 1 particular, to a system and method for
performing automated computed tomography angiography.

Volumetric medical imaging technologies use a variety of
techniques to gather three-dimensional information about
the body. For example, computed tomography (CT) imaging,
system measure the attenuation of X-ray beams passed
through a patient from numerous angles. Based upon these
measurements, a computer 1s able to reconstruct 1mages of
the portions of a patient’s body responsible for the radiation
attenuation. As will be appreciated by those skilled in the art,
these 1mages are based upon separate examination of a series
of angularly displaced measurements. It should be pointed
out that a CT system produces data that represent the
distribution of linear attenuation coeflicients of the scanned
object. The data are then reconstructed to produce an image
that 1s typically displayed on a screen, and may be printed
or reproduced on film.

For example, in the field of CT angiography (CTA),
vasculature and other circulatory system structures may be
imaged, typically by administration of a radio-opaque dye
prior to 1maging. Visualization of the CTA data typically 1s
performed 1n a two-dimensional manner, 1.e., slice-by-slice,
or 1n a three-dimensional manner, 1.e., volume visualization,
which allows the data to be analyzed for vascular patholo-
gies. For example, the data may be analyzed for aneurysms,
vascular calcification, renal donor assessment, stent place-
ment, vascular blockage, and vascular evaluation for sizing
and/or runofl. Once a pathology is located, quantitative
assessments ol the pathology may be made of the on the
original two-dimensional slices.

The CTA process may include processes for segmenting,
structures 1n the image data, such as the vasculature and/or
the bone structures. Such segmentation typically involves
identifying which voxels of the image data are associated
with a particular structure or structures of interest. Seg-
mented structures may then be viewed outside of the context
of the remainder of the image data or may be masked from
the remainder of the image data to allow otherwise
obstructed structure to be viewed. For example, in CTA,
segmentation may be performed to identify all voxels asso-
ciated with the vasculature, allowing the entire circulatory
system 1n the imaged region to be extracted and viewed.
Similarly, all voxels of the bone structures may be identified
and masked, or subtracted, from the image data, allowing
vasculature and/or other structures which might otherwise
be obscured by the relatively opaque bone structures to be
observed during subsequent visualization.

However, segmentation of vasculature and bone struc-
tures may be complicated by a variety of factors. For
example, 1n CTA, overlapping image intensities, close prox-
imity of imaged structures, limited detector resolution, slow
imaging volume coverage (i.e., slow scan speed), calcifica-
tion, complexity of the anatomic regions and sub-regions,
imperfect contrast timing, and interventional devices may
make the identification and segmentation of bone and vas-
cular structures dithicult. Because of these complicating
factors, 1image visualization specialists are utilized to manu-
ally intervene to generate images for radiologists. For
example, these 1image visualization specialists both manu-
ally detect and/or remove structures (e.g., vein, artery, etc.)
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from the reconstructed CT data and reformat (e.g., transform
or sample) the 1image volume to generate two-dimensional
(2D) images. The utilization of these 1mage visualization
specialist 1s labor mtensive and costly. In addition, on lower
tier scanners (1.¢. less than 16 rows) 1t 1s physically 1impos-
sible to acquire a vascular study of the arteries without
contamination of the veins given the required acquisition
time. It may, therefore, be desirable to automate the detec-
tion and/or removal of structures from the reconstructed CT
data as well as reformatting of the image volume 1n the CTA
pProcess.

BRIEF DESCRIPTION

Certain embodiments commensurate 1n scope with the
originally claimed subject matter are summarized below.
These embodiments are not intended to limit the scope of the
claimed subject matter, but rather these embodiments are
intended only to provide a brief summary of possible forms
of the subject matter. Indeed, the subject matter may encom-
pass a variety ol forms that may be similar to or diflerent
from the embodiments set forth below.

In accordance with a first embodiment, a method for
analyzing computed tomography angiography (CTA) data 1s
provided. The method includes receiving, at a processor,
three-dimensional (3D) CTA data. The method also includes
automatically, via the processor, detecting objects of interest
within the 3D CTA data. The method further includes
generating, via the processor, a CTA image volume that only
includes the objects of interest.

In accordance with a second embodiment, a method for
analyzing computed tomography angiography (CTA) data 1s
provided. The method includes receiving, at a processor,
four-dimensional (4D) CTA data. The method also 1includes
generating, via the processor, non time-resolved CTA data
from the 4D CTA data. The method turther includes gener-
ating, via the processor, a first set of 4D 1mages including
veins only from the 4D CTA data. The method still further
includes generating, via the processor, a second set of 4D
images including arteries only from the 4D CTA data. The
method yet further includes traiming, via the processor, a
convolutional neural network utilizing the non time-re-
solved CTA data, the first set of 4D images, and the second
set of 4D 1mages to generate a trained convolutional neural
network.

In accordance with a third embodiment, a method for
analyzing computed tomography angiography (CTA) data 1s
provided. The method includes obtaining, at the processor,
past review types utilized by users, 1mage reformat render-
ing angles relative to computed tomography (CT) system
landmarks for a respective past review type selected by the
users, and 1mage reformat rendering angles relative to ana-
tomical landmarks for the respective past review type
selected by the users. The method also includes training, via
the processor, the convolutional neural network utilizing the
past review types utilized by users, the image reformat
rendering angles relative to CT system landmarks for the
respective past review type selected by the users, and the
image relormat rendering angles relative to anatomical
landmarks for the respective past review type selected by the
users to generate a tramned convolutional neural network.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
tollowing detailed description 1s read with reference to the
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accompanying drawings in which like characters represent
like parts throughout the drawings, wherein:

FIG. 1 1s a block diagram depicting components of a
computed tomography (CT) imaging system, in accordance
with aspects of the present disclosure;

FIG. 2 1s a flow chart of an embodiment of a method for
analyzing computed tomography angiography (CTA) data;

FIG. 3. 1s a flow chart of an embodiment of a method for
training a neural network with four-dimensional (4D) CTA
data for utilization 1n detecting or removing objects from
three-dimensional (3D) CTA data;

FIG. 4 1s a graphical representation of CTA data for a
given voxel location over time;

FIG. § 1s flow chart of an embodiment of a method for
utilizing a trained neural network to detect or remove objects
from 3D CTA data;

FIG. 6 1s a flow chart of an embodiment of a method for
training a neural network for utilization 1n reformatting an
image volume; and

FIG. 7 1s a flow chart of an embodiment of a method for
utilizing a tramned neural network to reformat an 1mage
volume.

DETAILED DESCRIPTION

One or more specific embodiments will be described
below. In an eflort to provide a concise description of these
embodiments, all features of an actual implementation may
not be described 1n the specification. It should be appreciated
that 1n the development of any such actual implementation,
as 1n any engineering or design project, numerous imple-
mentation-specific decisions must be made to achieve the
developers’ specific goals, such as compliance with system-
related and business-related constraints, which may vary
from one implementation to another. Moreover, it should be
appreciated that such a development effort might be com-
plex and time consuming, but would nevertheless be a
routine undertaking of design, fabrication, and manufacture
for those of ordinary skill having the benefit of this disclo-
sure.

When introducing elements of various embodiments of
the present subject matter, the articles “a,” “an,” “the,” and
“said” are mtended to mean that there are one or more of the
clements. The terms “comprising,” “including,” and “hav-
ing”” are intended to be inclusive and mean that there may be
additional elements other than the listed elements. Further-
more, any numerical examples 1n the following discussion
are mntended to be non-limiting, and thus additional numer:-
cal values, ranges, and percentages are within the scope of
the disclosed embodiments.

Disclosed herein are systems and methods for analyzing
computed tomography angiography (CTA) data. In particu-
lar, the disclosed embodiments utilize processing circuitry
(e.g., of a console or computer of a computed tomography
(CT) imaging system) to automatically isolate (via detection
and/or removal) an object of interest (e.g., vein, artery, soit
tissue, bone, etc.) from three-dimensional (3D) CTA data
and to automatically (1.e., without user interaction or input)
reformat an 1imaging volume (e.g., only having the object of
interest) to generate two-dimensional (2D) images. In cer-
tain embodiments, a neural network may be trained on
tour-dimensional (4D) CTA data to learn how to automati-
cally detect or remove objects from reconstructed 3D CTA
data to generate i1mage volumes. In addition, a neural
network may be trained to i1dentily an object of interest and
desired orientation of a particular view based on past review

types utilized by users and their respective 1image reformat
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rendering angles relative to CT system landmarks and/or
anatomical landmarks utilized 1n those past review types.
The automatization of the 1solation of an object of interest
and reformatting of CTA data enables analysis and visual-
ization ol CTA data on lower tier scanners (e.g., with less
than 16 row scanners) having a slow volume coverage
and/or situations with imperfect contrast timing. In addition,
on fast volumetric coverage systems, the disclosed tech-
niques reduce venous contamination due to imperfect con-
trast timing. Further, this automatization reduces both the
time and costs associated with utilizing visualization spe-
cialists 1n generating CTA data for analysis.

With this 1n mind, an example of a CT 1maging system 10
designed to acquire X-ray attenuation data at a variety of
views around a patient (or other subject or object of interest)
and suitable for automated angiography (i.e., automated
object 1dentification and reformatting) 1s provided in FIG. 1.
Although the techmiques below are discussed in the context
of a C'T imaging system, the techniques may also be utilized
in other 1maging systems (e.g., magnetic resonance (MR)
imaging system, X-ray system, ultrasound system, positron
emission tomography (PET) system, etc.). In the embodi-
ment 1llustrated 1n FIG. 1, imaging system 10 includes a
source of X-ray radiation 12 positioned adjacent to a colli-
mator 14. The X-ray source 12 may be an X-ray tube, a
distributed X-ray source (such as a solid-state or thermionic
X-ray source) or any other source of X-ray radiation suitable
for the acquisition of medical or other 1images.

The collimator 14 permits X-rays 16 to pass 1nto a region
in which a patient 18, 1s positioned. In the depicted example,
the X-rays 16 are collimated to be a cone-shaped beam, 1.¢.,
a cone-beam that passes through the imaged volume. A
portion of the X-ray radiation 20 passes through or around
the patient 18 (or other subject of interest) and 1mpacts a
detector array, represented generally at reference numeral
22. Detector elements of the array produce electrical signals
that represent the intensity of the incident X-rays 20. These
signals are acquired and processed to reconstruct images of
the features within the patient 18.

Source 12 1s controlled by a system controller 24, which
furnishes both power, and control signals for CT examina-
tion sequences, including acquisition of 2D localizer or
scout 1mages used to 1dentily anatomy of interest within the
patient for subsequent scan protocols. In the depicted
embodiment, the system controller 24 controls the source 12
via an X-ray controller 26 which may be a component of the
system controller 24. In such an embodiment, the X-ray
controller 26 may be configured to provide power and
timing signals to the X-ray source 12.

Moreover, the detector 22 1s coupled to the system con-
troller 24, which controls acquisition of the signals gener-
ated 1n the detector 22. In the depicted embodiment, the
system controller 24 acquires the signals generated by the
detector using a data acquisition system 28. The data acqui-
sition system 28 receives data collected by readout electron-
ics of the detector 22. The data acquisition system 28 may
receive sampled analog signals from the detector 22 and
convert the data to digital signals for subsequent processing
by a processor 30 discussed below. Alternatively, in other
embodiments the digital-to-analog conversion may be per-
formed by circuitry provided on the detector 22 itself. The
system controller 24 may also execute various signal pro-
cessing and filtration functions with regard to the acquired
image signals, such as for initial adjustment of dynamic
ranges, interleaving of digital image data, and so forth.

In the embodiment illustrated 1n FIG. 1, system controller
24 1s coupled to a rotational subsystem 32 and a linear




US 10,902,585 B2

S

positioning subsystem 34. The rotational subsystem 32
enables the X-ray source 12, collimator 14 and the detector
22 to be rotated one or multiple turns around the patient 18,
such as rotated primarily 1n an X, y-plane about the patient.
It should be noted that the rotational subsystem 32 might
include a gantry upon which the respective X-ray emission
and detection components are disposed. Thus, 1n such an
embodiment, the system controller 24 may be utilized to
operate the gantry.

The linear positioning subsystem 34 may enable the
patient 18, or more specifically a table supporting the
patient, to be displaced within the bore of the CT system 10,
such as i1n the z-direction relative to rotation of the gantry.
Thus, the table may be linearly moved (in a continuous or
step-wise fashion) within the gantry to generate 1mages of
particular areas of the patient 18. In the depicted embodi-
ment, the system controller 24 controls the movement of the
rotational subsystem 32 and/or the linear positioning sub-
system 34 via a motor controller 36.

In general, system controller 24 commands operation of
the 1maging system 10 (such as via the operation of the
source 12, detector 22, and positioning systems described
above) to execute examination protocols and to process
acquired data. For example, the system controller 24, via the
systems and controllers noted above, may rotate a gantry
supporting the source 12 and detector 22 about a subject of
interest so that X-ray attenuation data may be obtained at
one or more views relative to the subject. In the present
context, system controller 24 may also include signal pro-
cessing circuitry, associated memory circuitry for storing
programs and routines executed by the computer (such as
routines for executing image visualization techmiques that
enable automatic (1.e., without user intervention) detection
of objects of interests and reformatting of 2D 1mages from
an 1maging volume as described herein), as well as configu-
ration parameters, image data, reconstructed images, and so
torth.

In the depicted embodiment, the image signals acquired
and processed by the system controller 24 are provided to a
processing component 30 for reconstruction ol 1mages in
accordance with the presently disclosed algorithms. The
processing component 30 may be one or more general or
application-specific microprocessors. The data collected by
the data acquisition system 28 may be transmitted to the
processing component 30 directly or after storage mn a
memory 38. Any type of memory suitable for storing data
might be utilized by such an exemplary system 10. For
example, the memory 38 may include one or more optical,
magnetic, and/or solid-state memory storage structures.
Moreover, the memory 38 may be located at the acquisition
system site and/or may include remote storage devices for
storing data, processing parameters, and/or routines for
image reconstruction as described herein.

The processing component 30 may be configured to
receive commands and scanning parameters from an opera-
tor via an operator workstation 40, typically equipped with
a keyboard and/or other mnput devices. An operator may
control the system 10 via the operator workstation 40. Thus,
the operator may observe the reconstructed images and/or
otherwise operate the system 10 using the operator work-
station 40. For example, a display 42 coupled to the operator
workstation 40 may be utilized to observe the reconstructed
images and to control imaging. Additionally, the images may
also be printed by a printer 44 which may be coupled to the
operator workstation 40.

Further, the processing component 30 and operator work-
station 40 may be coupled to other output devices, which
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may include standard or special purpose computer monitors
and associated processing circuitry. One or more operator
workstations 40 may be further linked in the system for
outputting system parameters, requesting examinations,
viewing images, and so forth. In general, displays, printers,
workstations, and similar devices supplied within the system
may be local to the data acquisition components, or may be
remote from these components, such as elsewhere within an
istitution or hospital, or 1 an entirely different location,
linked to the image acquisition system via one or more
configurable networks, such as the Internet, virtual private
networks, and so 1

orth.

It should be further noted that the operator workstation 40
may also be coupled to a picture archiving and communi-
cations system (PACS) 46. PACS 46 may 1n turn be coupled
to a remote client 48, radiology department information
system (RIS), hospital information system (HIS) or to an
internal or external network, so that others at different
locations may gain access to the raw or processed 1mage
data.

While the preceding discussion has treated the various
exemplary components of the imaging system 10 separately,
these various components may be provided within a com-
mon platform or 1n interconnected platiforms. For example,
the processing component 30, memory 38, and operator
workstation 40 may be provided collectively as a general or
special purpose computer or workstation configured to oper-
ate 1 accordance with the aspects of the present disclosure.
In such embodiments, the general or special purpose com-
puter may be provided as a separate component with respect
to the data acquisition components of the system 10 or may
be provided 1n a common platform with such components.
Likewise, the system controller 24 may be provided as part
of such a computer or workstation or as part of a separate
system dedicated to 1image acquisition.

As discussed herein, the system 10 of FIG. 1 may be used
to conduct a computed tomography (CT) scan to acquire 3D
or 4D CTA data from a patient 18 or object. The 4D CTA
may be utilized by the system to train a neural network (e.g.,
convolutional neural network) or machine learning algo-
rithm to detect objects of interest within 3D CTA data. In
addition, past activities or review types (and the associated
image reformat rendering angles utilized relative to CT
system or anatomical landmarks) conducted by advanced
visualization specialists may be utilized to train the neural
network or machine learning algorithm to learn anatomical
locations and reformat planes for utilization 1n i1dentifying
the location of objects of interests (e.g., vessels) and a
desired orientation of view an CTA imaging volume derived
from the 3D CTA data. The neural network or machine
learning algorithm may enable the system to automatically
detect object of interests from 3D CTA data and to auto-
matically reformat the CTA mmaging volume to generate
desired 2D mmages of only the object of interest.

FIG. 2 1s a flow chart of an embodiment of a method 50
for analyzing CTA data. Some or all of the steps of the
method 50 may be performed by the system controller 24,
processing component 30, and/or operator workstation 40.
One or more steps of the illustrated method 50 may per-
formed 1n a different order from the order depicted 1in FIG.
2 and/or simultaneously. The method 50 includes acquiring
CT data (e.g., 3D CTA data) of a patient or object (e.g.,
utilizing system 10) (block 52). The method 50 also includes
reconstructing the CT data (block 54).

The method 350 further includes automatically (1.e., with-
out user interaction) detecting or identifying (e.g., via seg-
mentation) an object of interest (e.g., artery, vein, bone, or
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soit tissue) from the reconstructed CT data to generate an
image volume of interest (e.g., 3D CTA mmage volume)
(block 56). In certain embodiments, the method 50 includes
removing other objects other than the object of interest from
the reconstructed CT data. For example, 1f the object of
interest 1s an artery, veins, bone, and/or soft tissue may be
removed from the image volume. The detection and/or
removal ol objects may be automatically executed via a
trained neural network or machine learning algorithm. In
certain embodiments, the trained neural network may be a
convolutional neural network (CNN) that utilizes cross-
correlation 1n analyzing imaging data. The CNN utilizes
different multilayer perceptrons that require minimal pre-
processing. As a result, the CNN learns the filters or weights
to be utilized (enabling independence from prior knowledge
and human eflort). In addition, the CNN shares weights that
are utilized in the convolutional layers to reduce memory
footprint and improve performance. The training of the
neural network for object detection or i1dentification 1s
described 1n greater detail below.

The method 50 yet further includes automatically (1.e.,
without user interaction) reformatting (1.e., sampling or
transforming) or planar reformatting the image volume (e.g.,
CTA mmage volume) to generate one or more 2D images
(e.g., Tor a specific review type) that include only the object
of interest (block 58). Reformatting may utilize volume
rendering, directional maximum intensity projection (MIP),
or other visualization techmique i1n generating the 2D
images. The image reformat rendering angles of the 2D
images may be set relative to global CT system landmarks
(e.g., axial, coronal, or sagittal MIPs). In addition, the image
reformat rendering angles of the 2D i1mages may be set
relative to anatomical landmarks (e.g., volume rendering of
circle of Willis, left carotid, right carotid, etc.). The refor-
matting or planar reformatting may be automatically
executed via a trained neural network or machine learning
algorithm. The training of the neural network for reformat-
ting 1s described 1n greater detail below. The method 50 even
turther includes providing the one or more generated 2D
images to PACS (block 60) for visualization (e.g., 1 a
radiologist report).

FIG. 3 1s a flow chart of an embodiment of a method 62
for training a neural network 89 with four-dimensional (4D)
CTA data for utilization in detecting or removing objects
from three-dimensional (3D) CTA data. Some or all of the
steps of the method 62 may be performed by the system
controller 24, processing component 30, and/or operator
workstation 40. One or more steps of the illustrated method
62 may performed in a different order from the order
depicted 1n FIG. 3 and/or simultaneously. The method 62
includes acquiring or obtaiming 41 CTA data 64 of a patient
(e.g., utilizing system 10) (block 66). 4D CTA data includes
X, v, and z data 1n conjunction with time. FIG. 4 1s a
graphical representation 68 of CTA data for a given voxel
location over time (1.e., 4D CTA data). The graph 68
includes an x-axis 70 representing time and a y-axis 72
representing CT intensity (e.g., due to the presence of a
contrast agent). CTA may be collected at various times (T,
T,, T;, etc.) for the given voxel location to form the 4D CTA
data. Plot 74 represents the signal from artery and plot 76
represents the signal from the veimn. As depicted in FIG. 4,
initially (e.g., at T,) the majority of the contribution to the
intensity 1s from the artery (where most of the contrast agent
1s located). Then, (e.g., at 'T,) the contribution to the inten-
sity 1s split between both the artery and the vein (due to the
presence of the contrast agent 1n both). Finally, (e.g., at T;)
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the majority of the contribution to the intensity 1s from the
vein (where most of the contrast agent 1s located).

The method 62 includes generating a weighted average
from acquired or obtained 4D CTA data (X, v, and z data 1n
conjunction with time) (block 78). For example, the data
pomnts T, T,, and T; may be given diflerent weights, where
the normalized weighted sum the weights may equal 1. In
certain embodiments, data points that include the majority of
intensity in the artery (e.g., T,) may be given a higher weight
than data points that include the majority of intensity in the
vein (e.g., T;). In other embodiments, data points that
include the majority of intensity in the vein (e.g., T5) may be
given a higher weight than data points that include the
majority of intensity in the artery (e.g., T,). The method 62
also includes generating non-time resolved or static 3D CTA
image(s) 80 with arteries and veins based on the weighted
average of the 4D CTA data (block 82). Non-time resolved
images are similar to i1mages acquired in standard CT
acquisition.

The method 62 further includes generating artery 84
and/or vein 86 only 4D images from the 4D CTA data (block
88). 4D segmentation techmiques are utilized to generate the
artery only images 84 and the vein only images 86. The 4D
segmentation techniques 1dentily different classes of tissues
(e.g., vein, artery, soft tissue, or bone) 1n the 4D CTA data.
The method 62 even further includes training a neural
network 89 (e.g., CNN as described above) or machine
learning algorithm to detect or identily (or remove) objects
of interest (e.g., vein, artery, soft tissue, bone) from 3D CTA
data (block 90). In certain embodiments, the neural network
89 is trained on the non-time resolved image(s) 80, artery
only 1mages 84, and vein only images 86. In other embodi-
ments, the neural network 89 1s trained on one or more of the
non-time resolved 1mage(s) 80, artery only images 84, and
vein only images 86. The weights learned by the trained
neural network 89 may be stored for the application of the
trained neural network 89 to 3D CTA data.

FIG. 5 1s flow chart of an embodiment of a method 92 for
utilizing the trained neural network 89 to detect or remove
objects from 3D CTA data. Some or all of the steps of the
method 92 may be performed by the system controller 24,
processing component 30, and/or operator workstation 40.
The method 92 includes applying the trained neural network
89 to the acquired 3D CTA data 94 from the patient (block
96). As noted above, the trained neural network 89 may
utilize the weights learned during training to the 3D CTA
data. The method 92 also includes automatically detecting or
identifying (or removing) objects from the 3D CTA data (via
the applied trained neural network 89) to generate a 3D CTA
image volume 98 that only includes the object of interest
(e.g., veln, artery, solt tissue, bone) (block 100).

FIG. 6 15 a flow chart of an embodiment of a method 102
for training a neural network 104 for utilization in refor-
matting (e.g., planar reformatting) an image volume. Some
or all of the steps of the method 92 may be performed by the
system controller 24, processing component 30, and/or
operator workstation 40. For a given CT protocol and review
type, advanced visualization specialists or users manually
determine 1mage reformat rendering angles for an object
interest 1 an 1mage volume. In particular, the advanced
visualization specialists set the image reformat rendering
angles relative CT system landmarks (e.g., axial, coronal,
and/or sagittal MIPs) and/or image reformat rendering
angles relative to anatomical landmarks (e.g., volume ren-
dering of the Circle of Willis, volume rendering of the left
carotid, volume rendering of the right carotid, etc.) in
generating the 2D 1mages with only the object of interest.
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Past review types 106, associated image reformat rendering
angles 108 relative to system landmarks for these respective
past review types, associated i1mage reformat rendering
angles 110 relative to anatomical landmarks for these
respective past review types, and the 3D CTA data (imaging
volumes) 112 utilized 1n these past review types may be
monitored and stored for utilization in training the neural
network 104 (e.g., CNN) or machine learning algorithm.
The method 102 includes obtaining these past review types
106 and associated information (e.g., associated 1mage
reformat rendering angles 108, 110 and/or associated 3D
CTA data 112) (block 114). The method 102 also includes
training the neural network 104 (e.g., CNN) with past review
types 106 1image reformat rendering angles 108, 110, and/or
associated 3D CTA data 112 (block 116). The neural network
104 learns anatomical locations and reformat planes as well
identifies a location of an object of interest (e.g., vessel of
interest) and the desired orientation of the view based on the
review type. Thus, the trained neural network 104 when
applied can automatically set the image reformat rendering
angles relative to system landmarks and anatomical land-
marks based on the CT protocol and review type.

FI1G. 7 1s a flow chart of an embodiment of a method 118
for utilizing the trained neural network 104 to reformat an
image volume. Some or all of the steps of the method 92
may be performed by the system controller 24, processing,
component 30, and/or operator workstation 40. The method
118 includes applying the trained neural network 104 to an
image volume (e.g., acquired 3D CTA data 94 from the
patient) (block 122). The method 118 also includes auto-
matically reformatting or planar reformatting the image
volume (via the applied trained neural network 104) to
generate 2D CTA 1images 124 that only include the object of
interest (e.g., artery, vein, bone, soft tissue) for the CT
protocol and review type (block 126).

Technical effects of the disclosed embodiments include
providing systems and methods that automatically 1solate
(via detection and/or removal) an object of interest (e.g.,
veln, artery, soit tissue, bone, etc.) from 3D CTA data and
automatically (i.e., without user interaction or input) refor-
mat an i1maging volume (e.g., only having the object of
interest) to generate 2D CTA 1mages. The automatization of
the 1solation of an object of interest and reformatting of CTA
data enables analysis and visualization of CTA data on lower
tier scanners (e.g., with less than 16 row scanners) having a
slow volume coverage and/or situations with 1mperfect
contrast timing. In addition, on fast volumetric coverage
systems, the disclosed technmiques reduce venous contami-
nation due to imperfect contrast timing. Further, this
automatization reduces both the time and costs associated
with utilizing visualization specialists in generating CTA
data for analysis.

This written description uses examples to disclose the
invention, mcluding the best mode, and also to enable any
person skilled 1n the art to practice the invention, including,
making and using any devices or systems and performing
any incorporated methods. The patentable scope of the
invention 1s defined by the claims, and may include other
examples that occur to those skilled 1n the art. Such other
examples are intended to be within the scope of the claims
if they have structural elements that do not differ from the
literal language of the claims, or 1f they include equivalent
structural elements with insubstantial differences from the
literal languages of the claims.

The 1invention claimed 1is:

1. A method for analyzing computed tomography angiog-
raphy (CTA) data, comprising:
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obtaining, at a processor, past review types utilized by
users, image reformat rendering angles relative to com-
puted tomography (C'T) system landmarks for a respec-
tive past review type selected by the users, and 1image
reformat rendering angles relative to anatomical land-
marks for the respective past review type selected by
the users:

training, via the processor, a convolutional neural network
utilizing the past review types utilized by users, the
image reformat rendering angles relative to CT system
landmarks for the respective past review type selected
by the users, and the 1mage reformat rendering angles
relative to anatomical landmarks for the respective past
review type selected by the users to generate the traimned
convolutional neural network;

recerving, at the processor, three-dimensional (3D) CTA

data;
automatically, via the processor, detecting objects of
interest within the 3D CTA data, wherein automatically
detecting the objects of interest within the CTA data
comprises applying, via the processor, the trained con-
volutional neural network to the 3D CTA data to
segment the objects of 1nterest from the 3D CTA data;

generating, via the processor, a CTA 1mage volume that
only includes the objects of interest; and

utilizing, via the processor, the trained convolutional

neural network to automatically reformat the CTA
image volume to generate one or more two-dimen-
stonal (2D) CTA 1images.

2. The method of claim 1, wherein the objects of interest
comprise arteries, veins, soit tissue, or bone.

3. The method of claim 1, comprising:

recerving, at the processor, four-dimensional (4D) CTA

data;

generating, via the processor, non time-resolved CTA data

from the 4D CTA data;

generating, via the processor, a first set of 4D 1mages

including veins only from the 4D CTA data; and
generating, via the processor, a second set of 4D 1mages
including arteries only from the 4D CTA data.

4. The method of claim 3, comprising training, via the
processor, a convolutional neural network utilizing the non
time-resolved CTA data, the first set of 4D 1mages, and the
second set of 4D 1mages to generate the trained convolu-
tional neural network.

5. The method of claim 3, comprising training, via the
processor, a convolutional neural network utilizing the non
time-resolved CTA data, the first set of 4D 1images, or the
second set of 4D 1mages to generate the tramned convolu-
tional neural network.

6. The method of claim 3, wherein generating the non
time-resolved CTA data comprises applying, via the proces-
sor, a weighted average to the 4D CTA data.

7. The method of claim 3, wherein generating the first and
second sets of 4D 1mages comprises performing, via the
processor, 4D segmentation on the 4D CTA data.

8. The method of claim 1, wherein the trained convolu-
tional neural network, via the processor, 1n reformatting the
CTA image volume 1dentifies an anatomical location of the
objects of 1nterest within the CTA 1mage volume and deter-
mines a desired orientation of the one or more 2D CTA
1mages.

9. A method for analyzing computed tomography angiog-
raphy (CTA) data, comprising:

recerving, at a processor, four-dimensional (4D) CTA

data;




US 10,902,585 B2

11

generating, via the processor, non time-resolved CTA data
from the 4D CTA data;

generating, via the processor, a first set of 4D 1mages

including veins only from the 4D CTA data;

generating, via the processor, a second set of 4D images >

including arteries only from the 4D CTA data; and
training, via the processor, a convolutional neural network

utilizing the non time-resolved CTA data, the first set of

4D 1mages, and the second set of 4D 1images to generate

a trained convolutional neural network. 10

10. The method of claim 9, comprising;

receiving, at the processor, three-dimensional (3D) CTA

data;
automatically, via the processor, detecting objects of
interest within the 3D CTA data by applying the trained 15
convolutional neural network to the 3D CTA data to
segment the objects of interest from the CTA data; and

generating, via the processor, a CTA 1mage volume that
only includes the objects of interest.

11. The method of claim 10, comprising automatically, via 2Y
the processor, reformatting the CTA 1mage volume to gen-
erate one or more two-dimensional (2D) CTA images.

12. The method of claim 11, wherein automatically refor-
matting the CTA 1image volume comprises applying, via the
processor, the trained convolutional neural network to the 2°
CTA 1mage volume to reformat the CTA 1image volume.

13. The method of claim 12, comprising:

obtaining, at the processor, past review types utilized by

users, image reformat rendering angles relative to com-
puted tomography (CT) system landmarks for a respec- 39
tive past review type selected by the users, and 1image
reformat rendering angles relative to anatomical land-
marks for the respective past review type selected by
the users; and

training, via the processor, the convolutional neural net- 39

work utilizing the past review types utilized by users,
the 1mage reformat rendering angles relative to CT
system landmarks for the respective past review type
selected by the users, and the image reformat rendering
angles relative to anatomical landmarks for the respec- 49
tive past review type selected by the users to generate
the trained convolutional neural network.

14. A method {for analyzing computed tomography
angiography (CTA) data, comprising;

obtaining, at the processor, past review types utilized by 4>

users, 1image reformat rendering angles relative to coms-
puted tomography (CT) system landmarks for a respec-

12

tive past review type selected by the users, and 1image
reformat rendering angles relative to anatomical land-
marks for the respective past review type selected by
the users; and

training, via the processor, a convolutional neural network

utilizing the past review types utilized by users, the
image reformat rendering angles relative to CT system
landmarks for the respective past review type selected
by the users, and the 1mage reformat rendering angles
relative to anatomical landmarks for the respective past
review type selected by the users to generate a tramned
convolutional neural network.
15. The method of claim 14, comprising automatically,
via the processor, reformatting a CTA image volume to
generate one or more two-dimensional (2D) CTA 1images by
applying the trained convolutional neural network to the
CTA mmage volume, wherein the CTA 1mage volume only
includes objects of interest segmented from three-dimen-
sional (3D) CTA data.
16. The method of claim 15, wherein the trained convo-
lutional neural network, via the processor, in reformatting
the CTA 1mage volume 1dentifies an anatomical location of
the object of interest within the CTA image volume and
determines a desired orientation of the one or more 2D CTA
1mages.
17. The method of claim 15, comprising:
recerving, at the processor, the 3D CTA data;
automatically, via the processor, detecting the objects of
interest within the 3D CTA data by applying the trained
convolutional neural network to the 3D CTA data to
segment the objects of interest from the CTA data; and

generating, via the processor, the CTA image volume that
only includes the objects of interest.

18. The method of claim 17, comprising:

receiving, at the processor, four-dimensional (4D) CTA

data;

generating, via the processor, non time-resolved CTA data

from the 4D CTA data;

generating, via the processor, a first set of 4D 1mages

including veins only from the 4D CTA data;
generating, via the processor, a second set of 4D 1mages
including arteries only from the 4D CTA data; and
training, via the processor, the convolutional neural net-
work utilizing the non time-resolved CTA data, the first
set ol 4D 1mages, and the second set of 4D 1mages to
generate the trained convolutional neural network.
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