US010901729B2

12 United States Patent (10) Patent No.: US 10,901,729 B2
Singh et al. 45) Date of Patent: Jan. 26, 2021

(54) SYSTEM AND METHOD FOR MERGING (56) References Cited
SPECIFICATION FILES FOR AN

APPLICATION PROGRAMMING U.S. PATENT DOCUMENTS

INTERFACE 6,366,876 B1* 4/2002 LOONEY ..ovvovevreren.. GOG6F 8/10
703/25
(71) Applicants:Richa Singh, Bellevue, WA (US); Elsi 9,483,260 B1* 11/2016 Haleccccooevvenenne. GOGF 8/73
(}O(lolja:J Bellevuej WA ([JS):j Anurag 2003/0167455 Al1* 9/2003 Iborracocovvevniinin, GO6F 8/30
: : 717/105
Gupta, Bellevue, WA (US); Sebastian 2004/0061719 AL* 4/2004 Barsness GOGF 8/73
Amara, Bellevue, WA (US) 715/760
2006/0288352 Al* 12/2006 Lucas GOGF 8/73
(72) Inventors: Richa Singh, Bellevue, WA (US); Elsi 719/328
Godolja, Bellevue, WA (US); Anurag 2009/0138524 Al* 5/2009 Singhocoovevee... GOGF 9/453
Gupta, Bellevue, WA (US); Sebastian 2013/0086553 Al* 4/2013 Grechanik GO6F 8/70
’ ’ ’ 717/123
Amara, Bellevue, WA (US) 2017/0102925 AL* 42017 ALl ovevccrccrccrccrcren GOGF 8/30
_ 2019/0004873 Al* 1/2019 Liuooooviviiininninnn., GO6F 9/541
(73) Assignee: VISA INTERNATIONAL SERVICE 2019/0034199 Al1* 1/2019 Pollockcovvevnen.nn GO6F 8/73
ASSOCIATION, San Francisco, CA (Continued)
(US)

. , L , OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 Ros, Irene, “REST API Documentation Best Practices,” Bocoup,
U.S.C. 154(b) by 12 days. Aug. 22, 2012, last retrieved from https://bocoup.com/blog/
documenting-your-apt on May 25, 2020. (Year: 2012).*

(21) Appl. No.: 16/359,702 Primary Examiner — Andrew M. Lyons

(22) Filed: Mar. 20. 2019 (74) Attorney, Agent, or Firm — Loeb & Loeb LLP
_ o (57) ABSTRACT
(63) Prior Publication Data Several API specification {files that each include references
US 2020/0301702 Al Sep. 24, 2020 to code elements that are defined within separate definitions
and resources files may be merged together into a single
(51) Int. CL specification for the new API. In this way, specifications for
GO6F 8/73 (2018.01) shared code elements that are common across the several
GO6F 8/10 (2018.01) specification files may be created without rewriting these
(52) U.S. CL specifications each time they are used 1n an API. A speci-
CPC . GO6F 8/73 (2013.01); GO6F 8/10 (2013.01) fication merging tool may look for a common reference 1n
(58) TField of Classification Search the API, match that reference to a definition or resource {from
CPC GOGF 8/10° GOGF &/73 the respective definition or resource document, and add that
USP(i """"""""""""""""""" j 717/123 definition or resource to a merged specification file.
See application file for complete search history. 18 Claims, 6 Drawing Sheets
ALY,

2012

| Receive document and identify
as resource or definition

definttions in same file

Recaive code file

206

208

initialize specification |
document :

_. 210
Resolve References |

Adding resourcas andior definitions.
to the specification document

214
Validate Merged
Specification

T

212

US 10,901,729 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0138376 Al1* 5/2019 Christy Jesuraj GO6F 9/54
2019/0325074 Al1* 10/2019 Ghezziccoeeveene GO6F 8/36
2019/0384856 Al™ 12/2019 Liu ..., GO6F 16/3334

* cited by examiner

US 10,901,729 B2

Sheet 1 of 6

Jan. 26, 2021

U.S. Patent

L "Dl

++++++++++++++++++++:+++.—.++++++++++++++++++++++++++++++++++:++++++++++++++++++++

*
+

+

+ + + + + + ¥ + + ¥ + + ¥ ¥

+ + + + ¥+ F + ¥ F + o+

* + + + + + + + +

+ + + + ¥+ F + ¥ F + o+

* ko ko

481t

+ + + + + + + + +F F+ + o+

* + F ¥+ F ¥ FFFFFEFFFEFFFEFEFEFEFEFEFEFEFEFEFFEFEEFFEFEFEFEFEFEFEFEFEFEFEEFEFEEFFE
+ + ¥+ ¥ + ¥+ +

+ + + + * + + +t+ Ft+

* + + + +

LI I N N

+ * + + * + + + + + + + +

*

a7 Bo7T VITT

+ + + + + + ¥ + +

+
+
+*
+

+ * + + + + + +

s

q0c1t

s

7T

+ + + + + + & + &

+ + + F + F o+ FF

+
+

St

+ +
L N .

L

”~

139

+++++++++++++.—.++++++++++++++++++++++++++++++

+ + + + + + + ¥ + + +

* ko ok ko ko L L N L A

FUIBIBIA UOIIBD1ID3UG

+
++++++++.—.++++++++.—.++++++++++++++.—.+++++++++++++++++++++++++++++++++

+

+

L L N I N B I L B R O D L D B L L R D L L L L

FNPOIA

+ 4+ + + + + + + + + + F + F S

+

+ +

+ + +
+ + + ¥ + + + + + + + + +
+ + +
+ +

+

+ + + + + + + ¥+ +

+ + + + + + + + + + + + o+

* + + ¥+ ¥ + ¥+ +

+*

¥ 29dg

+ + + ¥ + + * +

+
LI B B N N N NN BN

+*
+
+
+*
+
+
+
+
+

+ + + F F F FFFFFFF

50T

+ + + + ¥ F F F FFFFFFFF

* b ko ko

+*

+
+
+*
+
+
+
+
+

+ + + ¥+ + + ¥+ +

+ + +

+
+ + + + + + + +
+ + +
+

+ + + + + + *+ + + + + + + +t +r + +t +t +F+t Attt Attt

+

+ +

+

LLIBISAS 13d0I8A3(Q

++ + + + + + +++ Attt

+ + + + + + + + + + + + ¥

+ + + ¥ + + ¥ F + F F o+ F

E3

+ +
+ +
+* +*
+ +
+ +
+* +*
+ +
+ +
+* +*
+ + + + + + + + + + o+
+ +
+ +
+ +
+ +
+ +
+* +*
+ +
+ +
+- +

o1

L B L L

+ + + + + + + ++ + + + ++F S FFE Attt F

+
+
+
L
+
+ +
+* + +
+ +
+ + +
L
+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
* .
+ + + +
+ + +
L
+ + +
+ +
+
+ +
+

+

.—.

OO0 IU3WdoiRAR(]

UCIIeDNdoy

-+
+++

+ +

+ + + + + + + + + + + + + + + ++ + F

+ + + + + + + + + + + + + + ++ ottt ettt sttt ottt ettt ottt sttt sttt ottt ottt sttt ettt ottt sttt ottt ottt Ett

S. Patent Jan. 26, 2021 Sheet 2 of 6 S 10.901.729 B2

+
+*
+
+
+
+
+
-
+ + + + + + + + + + F + + F + A FFFE A FEFFEFE A FEFE R FE Rt
+*
+
+
] r "]
+ . . -
+ . .
+
+* .
+
+
+
+ "] n N
+
+
+
+
+*
+
+
+
+
+
+
+*
+
+
+
+
+
+ + +
+ +
+ + + +
+ + + + +
+ + + +
L +*
+ + + -+
+ +
+
+
+
+ ++
++ + + + + + + + + + + + + F + + + + + F A+ +F A+ FEE +++ + + + ++
+
+ +
+ +
- H . +*
+ +
+ +
+) +
+ +
+ +
+ L n L | N r +
+ ITETL 1 - +
+ +
- +*
+ +
+ +
+ +
+ F + + +F + +F + + +F ++ +++ + + + + + + + + + + + + + + + + + + F +F A+ F
+
+
+*
+
+
+
+
+
+
+ +
+ + + + +
+ + +
+* = o+
+ + +
+ +
+ +
+ +
+
+
+
+ ++
+++++++++++++-I-+++++++-I--I--I-+++++++++-I-+++‘I-+++++++++++++++++++++++++++++++
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
- +
+ F A+ A A A F A A
+
+
+
+
+
+
+ +
+ + + +
+ + + + +
+ + + +
+ +
+ + +
-+
+ +
+ + +
+
* +
+ + + + + + + + + + + + + + + F + + F + +FF A+ ++
. +
a [| E [] E [| .
+
+
. +
+
+
+
+
+
+
+
d +
+
. +
+ +
+
+ +
+ + + + +
+ + + +
+ + + +
+ + + +
+ + +
+ + +
+ + +
+
+ +
+ +
++
+++
+ +
+
+ +
+
+
+
+
+
+
+
+
+
+
+
+
H +
+
+
+ H -
+
+
+
+
+
+
+
+
+
+
. +
+++++++-I--I-+++-I--I-++++++++-I--I-++++++++++++++‘I-++++++++++++++++++++++++++++++
+
+
+
* o
+
+
+
+
+ +
+ + + +
+ + + +
+ + +
+ + + +
+ + +
+ +
-+
+
+
+
+

+
+ + *+ + + + + + F F F FF F A FFEFFFEFFFEFFFEFFFEFFFEFEFFEFFEFEFFFEFEFFEFEFEFEFEFEFEFFEFEFFFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFFEFFE A FEFFFEFFEFEFFEFEFFE A F

AJAIing resources anag/or defimtions

10 the specitication document

+ + + F F F F FFFFFFEFFF

+
+
+ + + ¥ +F + F FF o FFFFFHF

+ +
+ + +

+

++ + 4+ +F F o+ FFFFFFF A FEFEFFFEFFEFEFFEFEFFFFFEFE A FFEFFEFEFEFEFFE R +++ + + +++

Validate Merged

Specification

+ 4+ o+ FFFFEFFFEFFFF A FFEFFFFFEFFEFEF A FEEFEFEFFEFEFFE S

+ + + + + + + +F 4+ FF o+ F
* + + kot

+
+ + +

+
+ + + + + + + + + + + + + + +

+
+ + + + + + + + + + + + + + ++ A+

Fila. 2

U.S. Patent Jan. 26, 2021 Sheet 3 of 6 US 10,901,729 B2

300

302 304

25

PR AR

302 378

U.S. Patent Jan. 26, 2021 Sheet 4 of 6 US 10,901,729 B2

44

OO

“Sref”: “ExternalAPl/definitions/payments.json”

++++++++++
+++
lll
-

302 404

FiG. 4A

425

“S ref”: “ExternalAPl/resources/payments.json”

=4 ow
=
+++++
+++++++++++++

-
+

302 429

FiG. 48

S. Patent Jan. 26, 2021 Sheet 5 of 6 S 10.901.729 B2

+*
+* + + F F F ok FFFFFEFFFEFFFFEFFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEAFFEFEFEFFEFFEFEFFFEAFFEFEAFFEFEAFFFEAFFEFEAFFEFEFEFEFEAF A

+ +
L
+ + +
+++++++++++++++++
+ +
+

Farse code file

+* + F + +F + F F o+ FFFFFFFFF

+

+ +

+
+

+ +
+ + +
+ + +
+ + +
+
&
+
+

+

+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+

+
+++++++++++++++++++++++++++++++++++++++-I-+++

Compare code file elements

COMMON raesouress and detfin

+ F + F FF o FF A FFFFFEFFEFFFEFE A FFE A FFEFFFEFFEFEF A FEEFFEFEFFEFE A FFE A FEFEFEFEFEFFEFFE A F
+

+ 4+ + + F o+t

+
+ +
+ + + +
+ + + + + + + + + + + +

+ + + + + + + + + + ++ + ++++F+++F+ ettt

+ + + + + + + + + + + + + + +F + + +F +F F FF A FFAFFAFEAFAFAFEAFFEAFEAFFEAFFF

+
+
+
+
+ L
+ F:-
+
e *
+
+
+
+
+ + + + 1
+ + +
+ K +
+ + + +
+ + +
+ 4 +
+ +
+ +
+ +
+ +
+ +
L o N N R N N N N N N N A R N N R N N R N N R N N NN N
+ +
+
+ +
+
+ +
+ +
+ +
+ +
+ h +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
R RN RN RN NN NENENENEFEEN
+
+
+
+
+
+
+
+
+ + +
+ + + +
LIE
+ +
+ o+ +
+ +
+
+ +
+
+

+ + + + + +F A+ F A F
+

Fila. 5

S. Patent Jan. 26, 2021 Sheet 6 of 6 S 10.901.729 B2

+
+ F
+
+
*
-
»
»
*
L]
L]
+ + + 4 + 4+ = - 4 L } L 4 L ELLELLEL I ELLLLLLLLLLLLLLLLLLLLLLSESE S NS NSNS E 2N fF F SN A S S E s maaaE btk b bt bt b E ko EEE
* L]
- P L L R R i i i i i e - i i e e i - e - i i e i - i i e i e »
*
* 1 ’
+
* - L]
*
* 1 L
-
* - -
’ &
* = A L]
= i
r - -
-
* - T
b
r - =
-
r a4 -
-
T - T * ¥ =t . .
- +
- a4 - -
- i
+ - T b
-
T & = 4
- -
-
T . wr L] L] .
T] T
1 1
- - -
i LT T R T R RN Y R R E R LR R LR LR LR r Ry R E R w R r LA ' 1] -
T -
- [l il
T - . -
1 b il
- 1 d 1
1 . d . 1
T - . y 4 : ' 1
T + . - ¥
T i -4 +
¥ d 1
T L] d +
- d = omoE o oE omoE 4
¥ r d - *
+ [l il
¥ - . + L
- b 1
> * [l + *
¥ [l 1
¥ ¥ b 1 ¥+ hH
+ + + ! d + * 1
» [' ']
+ * " + [l
¥ [l 1
+ + - + 4
. * . " . . P A N N N AN R EEE R R R R EE EE EN N EEE R A EEE A N A YR
+ + + . " . 4
¥ [l t
+ + & + d
* [l
+ + r r + d
+ 3 .
+ + * - + [l
+ * 4k
+ + - + L]
+ [l
+ * -4 + d
. + N d . N # bb-i--i-i-i-i-i-i-ibbbi-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-ii-i-iiiiiiiiiiiiiffiiiiiiiiii
+ d 1
+ + b + ¥+
+ 3 1
+ + r + *
+ * + . [l L] H !
+ [l t i
+ + r + *
+ [l 1
+ + -4 + *
+ d 1
+ + * + *
+ + d 1
+ + + - + * *
+ & + - 1
+ o+ + - + *
+ + + * 3 1
+ o+ k F F r + *
+ [l 1
+ * r + ¥+ :
+ + + . . + * !
+ d 1
+ + r + *
+ d 1
+ + r + ¥+ :
+ [l 1
+ + . + *
+ d 1
+ + r + *
+ d 1
+ + r + ¥+
+ [l 1
+ + r + * :
+ 3 + 1
+ + -4 + * +
. + N [l _‘ N i R o N I
+ 3]
+ + -4 + * +
+ d +
+ + r + *
+ 3
+ + + + ¥
+ [l +
+ +] + ¥ +
+ 3 +
+ + r + ok +
+ + &
+ + r + +
+ - +
+ + F +
+ [l
+ + 1 +
+ r
+ + r +
+ 3
+ + r +
+ 3
+ +] +
+ 1
+ + 1 +
+ r
+ + r +
+ + £ 4+
+ + F + +
+ r +
+ + F + +
+ 3 +
+ +] + +
+ r +
+ + r +
+ r - H
+ + F + +
+ - + +
+ + Ll +
+ L3 F +
+ + r +
- = - -
* * r * +
+ r r +
+ + Ll + +
* r 3 +
+ + r + +
+ - r +
* * - * +
+ 3 r +
+ + A + +
* r r +
+ + r + +
+ - r +
* * - * +
+ + 4+ + F + F F Rt Rt dAAAAA RS r +
+ r + +
* r +
+ r + +
+ r -
* . r . . * +
+ R N N R N NG R, + h 4+ + + + + + + + + bttt P + +
+ L] + +
+ + + +
* L] + * * + L]
L3 + + P+ o+
+ - + + +
+ *
+ + 4 + L] +
® 4 4+ + + + + 4 + + + F + T FEEEEEEREEEEELFEAE +
* L] * * +
+ L] . + +
+ L] -, + L] +
* L] . * * +
+ L]] + + +
+ L] - -, - L] +
+ 4 + + + + F + + F + F P F A+t F F F kd 4 A+ 1 1 0N
* + L] . * * +
+ -] - L] +
LERE NN NN Y
+ - -, + +
H + L]
* P N L PN P L L] . * L] . .
+ T L] - L] - +
*] * . R R OE R R OE R E O E R R EEEEEEEEEREEp Ry aaappa
+ * 3 - -, + + L]
+ - + L]
* * r - . * L] L]
+ - + +
+ * - r - - + L]
¥ ’ = * L]
+ + 3 r 1= L] + L] L]
+ + + L3 + L]
+ * L] * 3 L ’ * L]
+ LB + L]
- + * - [» * [[E |
= LR E R EEE * =
- r 3 3 - + = :
* + L]
* .3 - - L] L]
= + L]
+ 3 3 ’ + L]
* *) 3 r -’ = * ¥ »
= + L] x
* R R G R OE R OE R R EOEEEEE R EEEEEEEE L E & s F - - a
- - L]
+ 3 L] . AL L EL N
+ - L] L]
* - a2 = - =- - 3 X
- -
T - - - ;1-" L] - - h
T * - L4 = L
T ! = T
- * r L L "
- - r
- £ . - P r .
- + . . FE R oA M WM W T M e R M W AP % R MY M m A oa aomoa @ A - -
- - . - r -
- " = LY - L .
T - * - b H
- &L h B - &
+ L = - 1 - r r
. - + . . . ﬁ - . - L
L
r =] b | i T
- T - » -
+ [k] ’ T
" + r £ r L
+ L] T’ - T
L - - 1.-..--1.---1.1.-|.-|.-|.-|.-|.-|.-|.-|.-|.-1.1.1.--1.1-----------..-.-J.--.]-.---nl LS
- 1] T T
+ it rrrrrrrrrrrrdyryrrrryr sy ey § L] L4 + -
- B - - v
* = - r L
N . = B . - & ﬁ <
T T
= LY * L = r
¥ v + ¥ -
. -1.-1.1.--.|-.|-.|-i..-.ri.i..-i..-‘.r.r.-r.-.-------------.----.,--.i. k & ¥ &
"
N . 4 & . I ¥ &
Y & * L
+ & Lok b b b bk b ohochochochoh bk hchohohowh hohowch ok - + N .
t L 4 4 b b ow b ow h woh kLAt F+ towk Lot] FFFFFFt ALl Er r B .
.
i L -
t t N .
+ & Low ik g - + +
L - * +
+ & & - - 1 +
+ + 4+ b 4 bk 4 & d dd d dddddddddyrddddrr - ¥ +
* 1 - - * + N
+ 1 d - + + N t
+ 1 d - + + +
¥ 1
* * [l - * +
1 * H H
+ + [- H * + . +
+ + d - E H hd *
i " t 1 *
* * [l - = + *
1 *
+ + [- + +
1 + *
+ + d - + + i
+ +
* * [l - * * *
+ * *
+ + [- *
+ + d - . ; : * . v 4k
ilr 1 L] t . . T
* * * - + + . .
+ + [- +
LN NN e ; t * *
+ * - + +
+ +
* . - * * bk
+ # i-iiii-iii-i-ii-i-ii-ii+++i++++iiiif+++ii++i1‘+ +
+ + -
* - t
* & - *
& -
+ & -
. +
+ . +
FE]
* *
+ +
+ +
*+ t
+ +

FiG. ©

US 10,901,729 B2

1

SYSTEM AND METHOD FOR MERGING
SPECIFICATION FILES FOR AN

APPLICATION PROGRAMMING
INTERFACE

BACKGROUND

Accurate documentation 1n software design 1s crucial for
the long-term viability of an application programming inter-
tace (API). Documentation essentially forms a reference
manual for the API and 1s meant for developers to read and
understand. Without proper documentation, developers may
struggle to fully understand the code and its dependencies
which will degrade the developer experience (DX). The
better the DX, the greater chances are that the API 1tself waill
succeed as 1t will be easier to incorporate 1nto existing user
interfaces. Good documentation will also decrease the
amount of time to bring new users to the API as well as limut
the use of scarce resources such as customer service or other
direct support to make up for poor documentation.

While there are many tools available to generate and
maintain API documentation, past efforts have failed to
merge existing API specifications. For example, previous
solutions could only resolve references defined within a
single specification, not across multiple specifications.

SUMMARY

The following presents a simplified summary of the
present disclosure 1n order to provide a basic understanding
of some aspects of the disclosure. This summary 1s not an
extensive overview. It 1s not mtended to i1dentity key or
critical elements of the disclosure or to delineate 1ts scope.
The following summary merely presents some concepts in a
simplified form as a prelude to the more detailed description
provided below.

The disclosure presents practical applications to software
design and API documentation and maintenance by employ-
ing a common set of specification resources and definitions
tor API code elements that are used across multiple APIs and
then merged into a single specification for each API that
includes a shared code element. Several API specification
files that each include references to code elements that are
defined within separate definitions and resources files may
be merged together into a single specification for the new
API. In this way, specifications for shared code elements that
are common across the several specification files may be
created without rewriting these specifications each time they
are used 1n an API. A specification merging tool may look for
a common reference (e.g., an “$ref” property) in the API,
match that reference to a definition or resource from the
respective defimition or resource document, and add that
definition or resource to a merged specification file. The
resulting merged specification file may then be validated.

In some embodiments, a processor-implemented method
may create a merged specification file for a software appli-
cation. The method may receive a plurality of application
programming 1interface (API) specifications. Each API
specification may include one or more resources and defi-
nitions. The method may then identity each API specifica-
tion as either an API resource or an API definition and
receive a code file corresponding to the software application.
The code file may include references to at least one of the
one or more resources and definitions. After iitializing a
specification document for the software application, the
method may resolve the references to the corresponding one
or more resources and definitions of the API specifications

10

15

20

25

30

35

40

45

50

55

60

65

2

and add the corresponding one or more resources and
definitions of the API specifications to the specification
document.

In further embodiments, a system may also create a
merged specification file for a software application. The
system may comprise a processor and memory hosting an
application development system, and a database coupled to
the processor and the memory. The database may store a
plurality of application programming interface (API) speci-
fications, each API specification including one or more
resources and definitions, and a code file corresponding to
the software application, the code file including references to
at least one of the one or more resources and definitions. The
memory may include instructions that are executable by the
processor. For example, the memory may include 1instruc-
tions for identifying each API specification as either an API
resource or an API definition, and imitializing a specification
document for the software application. Further instructions
may resolve the references to the corresponding one or more
resources and definitions of the API specifications, and add
the corresponding one or more resources and defimitions of
the API specifications to the specification document.

BRIEF DESCRIPTION OF THE FIGURES

The mvention may be better understood by references to
the detailed description when considered 1n connection with
the accompanying drawings. The components in the figures
are not necessarily to scale, emphasis nstead being placed
upon 1illustrating the principles of the mmvention. In the
figures, like reference numerals designate corresponding
parts throughout the different views.

FIG. 1 shows an 1llustration of an exemplary system for
creating a merged API specification document;

FIG. 2 shows a flowchart of a method for creating a
merged API specification document;

FIG. 3A shows an exemplary reference for a definition
that may reside 1in the same domain as the API;

FIG. 3B shows an exemplary reference for a resource that
may reside in the same domain as the API;

FIG. 4A shows an exemplary reference for a definition
that may reside 1n a different domain as the API;

FIG. 4B shows an exemplary reference for a resource that
may reside 1 a different domain as the API;

FIG. 5 shows an exemplary method for determining when

a code file for an API suggests merging the common
resources and definitions mto a single, merged specification
document; and

FIG. 6 shows an exemplary computing device that may be
physically configured to execute the methods and include
the various components described herein.

Persons of ordinary skill 1in the art will appreciate that
clements 1n the figures are illustrated for simplicity and
clanity so not all connections and options have been shown
to avoid obscuring the inventive aspects. For example,
common but well-understood elements that are useful or
necessary 1 a commercially feasible embodiment are not
often depicted in order to facilitate a less obstructed view of
these various embodiments of the present disclosure. It will
be further appreciated that certain actions and/or steps may
be described or depicted in a particular order of occurrence
while those skilled in the art will understand that such
specificity with respect to sequence 1s not actually required.
It will also be understood that the terms and expressions
used herein are to be defined with respect to their corre-

US 10,901,729 B2

3

sponding respective areas ol inquiry and study except where
specific meanings have otherwise been set forth herein.

DETAILED DESCRIPTION

The present invention now will be described more fully
with reference to the accompanying drawings, which form a
part hereot, and which show, by way of illustration, specific
exemplary embodiments by which the mvention may be
practiced. These 1llustrations and exemplary embodiments
are presented with the understanding that the present dis-
closure 1s an exemplification of the principles of one or more
inventions and 1s not intended to limit any one of the
inventions to the embodiments illustrated. The invention
may be embodied 1n many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclo-
sure will be thorough and complete, and will fully convey
the scope of the mnvention to those skilled in the art. Among,
other things, the present invention may be embodied as
methods, systems, computer readable media, apparatuses,
components, or devices. Accordingly, the present invention
may take the form of an entirely hardware embodiment, an
entirely software embodiment, or an embodiment combining
software and hardware aspects. The following detailed
description 1s, therefore, not to be taken 1n a limiting sense.

FIG. 1 generally illustrates one embodiment of an appli-
cation development system 100 for creating and managing
software code. In some embodiments, the system 100
includes a developer computer system 102 having a proces-
sor 104 for executing processor-executable instructions of
vartous modules that are stored in processor-readable
memories of the system 100, such as memory 106. One
module may include an application development tool 108.
The application development tool 108 may include an
integrated development environment (IDE), software frame-
work, or other set of processor-executable instructions for
execution on the developer computer system 102 that pro-
vide features to computer programmers for software devel-
opment. Some features of the tool 108 may include a source
code editor, build automation tools, a debugger, and a
compiler or interpreter (or both). The tool 108 may also
include modules that provide generic functionality that a
developer can selectively change by additional developer-
written code to build application-specific software. The tool
108 may be communicatively coupled to a code repository
110 and a specification merging module 112. The code
repository 110 may include code segments 114, 116, 118 or
a set of subroutine definitions, communication protocols,
and tools for building software using the tool 108 such as an
application programming interface (API). Each code seg-
ment or API 114, 116, 118 may include a specification
document 114A, 116A, 118A. In some embodiments, a
specification document (e.g., merged specification document
118A) may be a merged combination of two or more other
specification documents (e.g., 114A, 116 A) where a code
segment or API 118 corresponding to the specification
merged specification document 118A 1includes modules,
subroutines, classes, methods, etc., that are common to other
code segments (e.g., code segment 114 or 116). Each of the
specification documents 114A, 116A, 118A may also be a
combination of two or more documents that may be 1den-
tified as resources or definitions, as described herein.

In some embodiments, the module 112 may access a
common resources and definitions document 120 that
includes one or more common definitions or resources

120A, 120B, 120C for common code elements. For

10

15

20

25

30

35

40

45

50

55

60

65

4

example, ErrorResponse 1s a common definition defined 1n
common.json file. ErrorResponse may be used in code
segments or APIs 114, 116, and 118. The common resources
and definitions document 120 may include a common defi-
nition for ErrorResponse and the specification documents
114A, 116A, and 118A may include a reference to this
common definition or resource (e.g., 120A, 1208, 120C). In
some embodiments, the common definition or resource
120 A may be referenced using a property in a code file 1186
for the API 118 that one or more processor-executable
instructions of the specification merging module 112 may
use as a signal to cause the processor 104 to execute a further
instruction to resolve the referenced property to a common
definition or resource 120A, 120B, 120C, and add the
common definition or resource to a specification document
(1.e., ErrorResponse from the common.json file) to the
merged specification document 118A. In some embodi-
ments, the property 1n the code file 1186 for the API 118 may
include:

“ref$”: “./common.jsont/definitions/ErrorResponse”

Of course, the code segments or APIs 114, 116, 118 may
include any number of properties that may be resolved by
processor-executable instructions of the specification merg-
ing module 112 using the common resources and definition
document 120.

The specification merging module 112 may also include
instructions to validate the merged specification document
118A. In some embodiments, the module 112 may use an
open source specification validator such as the Swagger
Spec Validator or other validation tools offered on GitHub
that may validate the merged specification document 118 A
against a known specification (e.g., the Swagger 2.0 speci-
fication).

FIG. 2 1s a flowchart of a method 200 for creating a
merged specification document 118A employing the system
100 of FIG. 1. Each step of the method 200 1s one or more
computer-executable instructions performed on a processor
(e.g., 104) of a server or other computing device (e.g.,
developer computer system 102 or other computer system)
which may be physically configured to execute the different
aspects of the method. Each step may include execution of
any of the instructions as described 1n relation to the system
100 as part of the application development tool 108, the
specification merging module 112, or other component that
1s 1nternal or external to the system 100. While the below
blocks are presented as an ordered set, the various steps
described may be executed 1n any particular order to com-
plete the real-time optimal pricing methods described
herein.

At block 202, the method 200 may execute instructions
for recerving one or more specification documents (e.g.,
114 A, 116 A) and 1dentity each document as either a resource
or a definition. For example, the method 200 may parse a
document 114A, 116 A to 1dentily a resource as an object that
can be represented as data and includes at least one uniform
resource 1dentifier (URI), 1.e., a sequence of characters that
identifies a logical or physical resource. The method 200
may use a tag, file extension, or other element within the
specification document 114 A, 116 A to 1dentily a resource. A
resource name may include a script name such as “custom-
ers.json.” The method 200 may also identily the document
(114A, 116A) as a definition. A definition may be a logical
entity that can exist individually and provides information
about how the API functions, how 1t links to other APIs, and
expected results 1n a machine-readable format. In further
embodiments, the specification documents 114A, 116A may
be i1dentified by the programmer as either a resource or a

US 10,901,729 B2

S

definition. Block 202 may also include an instruction to,
upon execution by the processor 104, initialize and store the
specification documents 114A, 116 A 1n either an internal-
facing directory (e.g., “source/Internal API””) or an external-
facing directory (e.g., “source/External API”’), depending on
identification of a file type and/or choice of the programmer.

At block 204, the method 200 may execute instructions
for grouping all related defimitions that were 1dentified at
block 202 mto a common resources and definitions docu-

ment 120. For example, the logical entity “Address” would
have related definitions BaseAddress, AddressLinks,
AddresslList, etc., within the same common resources and
definitions document 120.

At block 206, the method 200 may execute istructions to
receive the code file 118B or other code corresponding to a
software application. The code file 118B may include ret-
erences to the one or more resources and definitions of the
software application to the corresponding one or more
resources and definitions of the API specifications;

At block 208, the method 200 may execute instructions
for mnitializing a specification document that 1s a shell for a
merged specification document 118A corresponding to the
API 118. In some embodiments, the specification document
(which becomes the merged specification document 118A,
as described herein) may be created in a public facing/
external source directory for the API 118 (e.g., “source/
External API”) or in non-public/internal source directory for
the API 118 (e.g., “source/Internal API™).

At block 210, the method may execute instructions for
resolving the referenced property to a corresponding com-

mon definition or resource 120A, 120B, 120C, and, at block

-h, --help

10

15

20

25

30

-a, --all

-s NAME [NAME...], --specific NAME [NAME ...] to indicate the specific
specification documents to merge (no path of .json needed)

-0 [OUTFILE], --outfile [OUTFILE] to indicate a name forthe output file 1n
an output directory (no .json needed)

-d [SOURCEDIRECTORY], --sourcedirectory[SOURCEDIRECTORY] to
indicate a name for an mput directory where the common resources and definitions
document 120 is located.

212, adding the referenced common definition or resource
(1.e., ErrorResponse from the common.json file) to the
mitialized specification document (i.e., the merged specifi-
cation document 118A). With brief reference to FIG. 3A, an
internal definitions reference 300 may include a reference
portion 302 and an internal definitions pointer portion 304 to
specily the target file or part of a file within an internal
source directory to reference for the resulting merged speci-
fication document 118A. For an internal definitions refer-
ence 300 referring to a local document, the mternal pointer
portion 304 must include the file name for the merged
specification document 118A. For example, an internal
definitions reference 300 for the merged specification docu-
ment 118 A for the file “newSpec.json” would include the file
title 1n the internal definitions pointer portion 304 of the
internal definitions reference 300:

“Sref”: “./newSpec.json#/definitions/NewSpecModel”

for definitions related to the file “newSpec.json.” With
reference to FIG. 3B, an internal resources reference 325 for
the merged specification document 118 A for resources of the
file “newSpec.json” would also include the reference portion
302 and an internal resources pointer portion 328 of the
internal resources reference 325:

45

50

55

60

65

6

“Sref”: “./newSpec.json#/resources/NewSpecModel”

With reference to FIG. 4A, an external definitions refer-
ence 400 for an API may include the reference portion 302
and an external definitions pointer portion 404 to specity the
target path or part of a file within an external source
directory to reference for the resulting merged specification
document 118A. Likewise, with reference to FIG. 4B, an
external resources reference 423 for an API may include the
reference portion 302 and an external resources pointer
portion 429 to specily the target path or part of a file within
an external source directory to reference for the resulting
merged specification document 118A.

Returning to FIG. 2, at block 212, adding the referenced
resources and/or definitions to the mmitialized specification
document creates the merged specification document 118A.
In some embodiments, the method 200 may replace one or
more internal definitions references 300, internal resources
references 325, external definitions references 400, and
external resources references 425 with defimtions or
resources 120A, 120B, 120C {rom the common resources
and definitions document 120 to create the merged specifi-
cation document 118A. The method 200 may also specity a
merge tool path, a resource specification location, external
and 1nternal resources locations, external and internal defi-
nitions locations, as well as a location for the merged
specification document 118 A. For example, the command to
initiate the merge process of block 210 may include the
command “$ python merge.py -h” with a usage of:
“merge.py [-h](-al-s NAME [NAME . . .]l-o
JOUTFILE])”. Several optional arguments may also be used
with the merge command. For example, the command may
include:

to show this help message and exit
to merge all the specs inside a source directory

In some embodiments, a command to merge all specifi-
cation documents within a source directory may include:
python merge.py -all
In other embodiments, a command to merge particular
specification documents within a source directory may
include:

python merge.py -specific <filenamel><filename2> . . .
Dependencies for the various blocks and commands 1ndi-

cated 1n the method 200 above may include an open-source
programming environment such as Python or similar pro-
gramming languages and an API programming environment
such as Swagger and the Swagger Spec Validator tool.

At block 214, the method 200 may validate the merged
specification document 118A. In some embodiments, the
method may validate the merged specification document
using the open source Swagger Spec Validator tool against
the Swagger 2.0 specification.

With reference to FIG. 5, a further method 500 may
automatically recognize code elements within the API 118
and cause the system to suggest creating a merged specifi-
cation document 118A. For example, block 502 may parse
the code file 1186 and block 504 may compare various code
clements within the code file 1186 to the one or more
different common definition or resource documents 120A,

US 10,901,729 B2

7

120B, and 120C. At block 506, the method 200 may
determine that the code file 118B includes elements that
correspond to definitions and resources that are present 1n
multiple different files. If elements are found, then the
method may proceed to block 508. If not, the method 500
may return to block 502. At block 508, 1n response to
determining elements are present in the code file 1186, the
processor may execute further mstructions to suggest merg-
ing the various defimitions and resources into a single,
merged specification document 118A for the API 118. In
some embodiments, block 508 includes opening a dialog
within the system 100 that suggests merging the definitions
and resources that are identified within the code file 118B
from the other specification documents 120A, 1208, 120C
into the merged specification document 118A. In other
embodiments, block 508 includes creating an API inventory
document 118C for the API. The API mventory document
118C may include indications of which other APIs are used
within the API 118. In still other embodiments, block 508
may suggest the merge action only 1f the number of APIs
indicated within the code file 1186 are above a threshold
number. The threshold number may include a value that
above which would cause undue burden on future develop-
ers of the API 118 11 the indicated resources and definitions
were not commonly maintained. After suggesting the merge,
the method 500 may end.

Thus, the present disclosure provides a technical solution
to the technical problem of merging specification elements
such as resources and definitions for re-used computer
soltware code for an API into a single specification docu-
ment for the API and to combine existing complete API
specification documents that may reference each other into
a single specification document. Multiple specification
documents that include resources and definitions may be
merged nto a single document that presents uniform docu-
mentation for APIs that share common software code ele-
ments without being forced to individually update each
document for a new API that includes the shared elements.
The disclosure improves API documentation by ensuring
that common API code elements are documented consis-
tently across all APIs that share the code elements.

FIG. 6 1s a high-level block diagram of an example
computing environment 900 for the system 100 and methods
(c.g., method 200) as described herein. The computing
device 900 may include a server, a mobile computing
device, a cellular phone, a tablet computer, a Wi-Fi-enabled
device or other personal computing device capable of wire-
less or wired communication, a thin client, or other known
type of computing device (e.g., the developer computer
system 102). Logically, the computing device 900 may be
designed and built to specifically execute certain tasks.

As will be recognized by one skilled 1n the art, 1n light of
the disclosure and teachings herein, other types of comput-
ing devices can be used that have different architectures.
Processor systems similar or identical to the example sys-
tems and methods described herein may be used to imple-
ment and execute the example systems and methods
described heremn. Although the example system 900 is
described below as including a plurality of peripherals,
interfaces, chips, memories, etc., one or more of those
clements may be omitted from other example processor
systems used to implement and execute the example systems
and methods. Also, other components may be added.

As shown 1n FIG. 6, the computing device 901 includes
a processor 902 that 1s coupled to an interconnection bus.
The processor 902 includes a register set or register space
904, which 1s depicted in FIG. 6 as being entirely on-chip,

10

15

20

25

30

35

40

45

50

55

60

65

8

but which could alternatively be located entirely or partially
off-chip and directly coupled to the processor 902 via
dedicated electrical connections and/or via the interconnec-
tion bus. The processor 902 may be any suitable processor,
processing unit or microprocessor. Although not shown in
FIG. 6, the computing device 901 may be a multi-processor
device and, thus, may include one or more additional
processors that are identical or similar to the processor 902
and that are communicatively coupled to the interconnection
bus.

The processor 902 of FIG. 6 1s coupled to a chipset 906,
which includes a memory controller 908 and a peripheral
input/output (I/O) controller 910. As 1s well known, a
chipset typically provides I/O and memory management
functions as well as a plurality of general purpose and/or
special purpose registers, timers, etc. that are accessible or
used by one or more processors coupled to the chipset 906.
The memory controller 908 performs functions that enable
the processor 902 (or processors 1f there are multiple pro-
cessors) to access a system memory 912 and a mass storage
memory 914, that may include either or both of an 1n-
memory cache (e.g., a cache within the memory 912) or an
on-disk cache (e.g., a cache within the mass storage memory
914).

The system memory 912 may include any desired type of
volatile and/or non-volatile memory such as, for example,
static random access memory (SRAM), dynamic random
access memory (DRAM), tlash memory, read-only memory
(ROM), etc. The mass storage memory 914 may include any
desired type of mass storage device. For example, the
computing device 901 may be used to implement a module
916 (e.g., the various modules as herein described). The
mass storage memory 914 may include a hard disk drive, an
optical drive, a tape storage device, a solid-state memory
(e.g., a flash memory, a RAM memory, etc.), a magnetic
memory (e.g., a hard drive), or any other memory suitable
for mass storage. As used herein, the terms module, block,
function, operation, procedure, routine, step, and method
refer to tangible computer program logic or tangible com-
puter executable instructions that provide the specified func-
tionality to the computing device 901, the systems and
methods described herein. Thus, a module, block, function,
operation, procedure, routine, step, and method can be
implemented 1n hardware, firmware, and/or software. In one
embodiment, program modules and routines are stored 1n
mass storage memory 914, loaded into system memory 912,
and executed by a processor 902 or can be provided from
computer program products that are stored in tangible com-
puter-readable storage mediums (e.g. RAM, hard disk, opti-
cal/magnetic media, etc.).

The peripheral 1/O controller 910 performs functions that
enable the processor 902 to communicate with a peripheral
iput/output (I/0) device 924, a network interface 926, a
local network transceiver 928, (via the network interface
926) via a peripheral I/O bus. The I/O device 924 may be
any desired type of I/O device such as, for example, a
keyboard, a display (e.g., a liquid crystal display (LCD), a
cathode ray tube (CRT) display, etc.), a navigation device
(e.g., a mouse, a trackball, a capacitive touch pad, a joystick,
etc.), etc. The I/O device 924 may be used with the module
016, etc., to receive data from the transceiver 928, send the
data to the components of the system 100, and perform any
operations related to the methods as described herein. The
local network transceiver 928 may include support for a
Wi-F1 network, Bluetooth, Infrared, cellular, or other wire-
less data transmission protocols. In other embodiments, one
clement may simultaneously support each of the various

US 10,901,729 B2

9

wireless protocols employed by the computing device 901.
For example, a software-defined radio may be able to
support multiple protocols via downloadable 1nstructions. In
operation, the computing device 901 may be able to peri-
odically poll for visible wireless network transmitters (both
cellular and local network) on a periodic basis. Such polling
may be possible even while normal wireless traflic 1s being,
supported on the computing device 901. The network inter-
face 926 may be, for example, an Ethernet device, an
asynchronous transier mode (ATM) device, an 802.11 wire-
less interface device, a DSL modem, a cable modem, a
cellular modem, etc., that enables the system 100 to com-
municate with another computer system having at least the
clements described in relation to the system 100.

While the memory controller 908 and the I/0O controller
910 are depicted 1n FIG. 6 as separate functional blocks
within the chipset 906, the functions performed by these
blocks may be integrated within a single integrated circuit or
may be implemented using two or more separate integrated
circuits. The computing environment 900 may also 1mple-
ment the module 916 on a remote computing device 930.
The remote computing device 930 may communicate with
the computing device 901 over an Ethernet link 932. In some
embodiments, the module 916 may be retrieved by the
computing device 901 from a cloud computing server 934
via the Internet 936. When using the cloud computing server
934, the retrieved module 916 may be programmatically
linked with the computing device 901. The module 916 may
be a collection of various software platforms including
artificial telligence soitware and document creation soit-
ware or may also be a Java® applet executing within a
Java® Virtual Machine (JVM) environment resident in the
computing device 901 or the remote computing device 930.
The module 916 may also be a “plug-1n” adapted to execute
in a web-browser located on the computing devices 901 and
930. In some embodiments, the module 916 may commu-
nicate with back end components 938 via the Internet 936.

The system 900 may include but 1s not limited to any
combination of a LAN, a MAN, a WAN, a mobile, a wired
or wireless network, a private network, or a virtual private
network. Moreover, while only one remote computing
device 930 1s illustrated 1n FIG. 6 to simplify and clarify the
description, 1t 1s understood that any number of client
computers are supported and can be 1 communication
within the system 900.

Additionally, certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute either software mod-
ules (e.g., code or instructions embodied on a machine-
readable medium or 1n a transmission signal, wherein the
code 1s executed by a processor) or hardware modules. A
hardware module 1s tangible umt capable of performing
certain operations and may be configured or arranged 1n a
certain manner. In example embodiments, one or more
computer systems (e.g., a standalone, client or server com-
puter system) or one or more hardware modules of a
computer system (e.g., a processor or a group of processors)
may be configured by software (e.g., an application or
application portion) as a hardware module that operates to
perform certain operations as described herein.

In various embodiments, a hardware module may be
implemented mechanically or electronically. For example, a
hardware module may comprise dedicated circuitry or logic
that 1s permanently configured (e.g., as a special-purpose
processor, such as a field programmable gate array (FPGA)
or an application-specific integrated circuit (ASIC)) to per-
form certain operations. A hardware module may also com-

10

15

20

25

30

35

40

45

50

55

60

65

10

prise programmable logic or circuitry (e.g., as encompassed
within a general-purpose processor or other programmable
processor) that 1s temporarily configured by software to
perform certain operations. It will be appreciated that the
decision to implement a hardware module mechanically, 1n
dedicated and permanently configured circuitry, or 1n tem-
porarily configured circuitry (e.g., configured by software)
may be driven by cost and time considerations.

Accordingly, the term “hardware module” should be
understood to encompass a tangible entity, be that an entity
that 1s physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi-
ments 1 which hardware modules are temporarily config-
ured (e.g., programmed), each of the hardware modules need
not be configured or instantiated at any one instance 1n time.
For example, where the hardware modules comprise a
general-purpose processor configured using software, the
general-purpose processor may be configured as respective
different hardware modules at different times. Software may
accordingly configure a processor, for example, to constitute
a particular hardware module at one 1nstance of time and to
constitute a diflerent hardware module at a different instance
of time.

Hardware modules can provide information to, and
recetve information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple of such
hardware modules exist contemporaneously, communica-
tions may be achieved through signal transmission (e.g.,
over appropriate circuits and buses) that connect the hard-
ware modules. In embodiments 1n which multiple hardware
modules are configured or instantiated at different times,
communications between such hardware modules may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple
hardware modules have access. For example, one hardware
module may perform an operation and store the output of
that operation 1n a memory device to which it 1s communi-
catively coupled. A further hardware module may then, at a
later time, access the memory device to retrieve and process
the stored output. Hardware modules may also imtiate
communications with mput or output devices, and can
operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods or routines described herein may
be at least partially processor-implemented. For example, at
least some of the operations of a method may be performed
by one or processors or processor-implemented hardware
modules. The performance of certain of the operations may
be distributed among the one or more processors, not only
residing within a single machine, but deployed across a
number of machines. In some example embodiments, the
processor or processors may be located in a single location
(e.g., within a home environment, an oflice environment or

US 10,901,729 B2

11

as a server farm), while 1 other embodiments the processors
may be distributed across a number of locations.

The one or more processors may also operate to support
performance of the relevant operations 1n a “cloud comput-
ing”” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including,
processors), these operations being accessible via a network
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., application program interfaces (APlIs).)

The performance of certain of the operations may be
distributed among the one or more processors, not only
residing within a single machine, but deployed across a
number of machines. In some example embodiments, the
one or more processors or processor-implemented modules
may be located 1n a single geographic location (e.g., within
a home environment, an oflice environment, or a server
farm). In other example embodiments, the one or more
processors or processor-implemented modules may be dis-
tributed across a number of geographic locations.

Some portions of this specification are presented 1n terms
of algorithms or symbolic representations of operations on
data stored as bits or binary digital signals within a machine
memory (e.g., a computer memory). These algorithms or
symbolic representations are examples of techniques used
by those of ordinary skill in the data processing arts to
convey the substance of their work to others skilled in the
art. As used herein, an “algorithm™ 1s a self-consistent
sequence ol operations or similar processing leading to a
desired result. In this context, algorithms and operations
involve physical manipulation of physical quantities. Typi-
cally, but not necessarily, such quantities may take the form
of electrical, magnetic, or optical signals capable of being
stored, accessed, transierred, combined, compared, or oth-
erwise manipulated by a machine. It 1s convenient at times,
principally for reasons ol common usage, to refer to such

signals using words such as “data,” “content,” “bits,” “val-
ues,” “elements,” “symbols,” “characters,” “terms,” “num-
bers,” “numerals,” or the like. These words, however, are

merely convenient labels and are to be associated with
appropriate physical quantities.

Unless specifically stated otherwise, discussions herein
using words such as “processing,” “computing,” “calculat-
ing,” “determining,” “presenting,” “displaying,” or the like
may refer to actions or processes of a machine (e.g., a
computer) that manipulates or transforms data represented
as physical (e.g., electronic, magnetic, or optical) quantities
within one or more memories (e.g., volatile memory, non-
volatile memory, or a combination thereof), registers, or
other machine components that receive, store, transmit, or
display information.

As used herein any reference to “some embodiments’™ or
“an embodiment” or “teaching” means that a particular
element, feature, structure, or characteristic described in
connection with the embodiment 1s 1ncluded 1n at least one
embodiment. The appearances of the phrase “in some
embodiments™ or “teachings™ in various places in the speci-
fication are not necessarily all referring to the same embodi-
ment.

Some embodiments may be described using the expres-
s1on “coupled” and “connected” along with their derivatives.
For example, some embodiments may be described using
the term “coupled” to indicate that two or more elements are
in direct physical or electrical contact. The term “coupled,”
however, may also mean that two or more elements are not

bl B Y 4

10

15

20

25

30

35

40

45

50

55

60

65

12

in direct contact with each other, but yet still co-operate or
interact with each other. The embodiments are not limited 1n
this context.

Further, the figures depict preferred embodiments for
purposes of 1llustration only. One skilled in the art waill
readily recognize from the following discussion that alter-
native embodiments of the structures and methods illustrated
herein may be employed without departing from the prin-
ciples described herein

Upon reading this disclosure, those of skill 1n the art will
appreciate still additional alternative structural and func-
tional designs for the systems and methods described herein
through the disclosed principles herein. Thus, while particu-
lar embodiments and applications have been 1llustrated and
described, it 1s to be understood that the disclosed embodi-
ments are not limited to the precise construction and com-
ponents disclosed herein. Various modifications, changes
and variations, which will be apparent to those skilled 1n the
art, may be made in the arrangement, operation and details
of the systems and methods disclosed herein without depart-

ing from the spirit and scope defined in any appended
claims.

The mmvention claimed 1s:

1. A processor-implemented method for creating a merged
specification file for a software application, the method
comprising:

receiving a plurality of application programming interface

(API) specifications, each API specification including
one or more resources and definitions;

identifying each of the one or more resources and defi-

nitions of the plurality of API specifications as either an
API resource or an API definition;
recerving a code file corresponding to the software appli-
cation, the code file including references to at least one
of the one or more resources and definitions;
imitializing a specification document for the software
application;
resolving each of the references of the code file to the
respective API resource or API definition of the API
specifications; and
adding the respective API resource or API defimtion of
the API specifications to the specification document;

wherein the API resource includes an object and at least
one uniform resource identifier and the API definition
includes a logical entity that defines how the API
definition links to other APIs and expected results 1n a
machine-readable format.

2. The method of claim 1, further comprising validating
the specification document.

3. The method of claim 1, further comprising storing each
API specification within one of an external source directory
or an internal source directory.

4. The method of claim 1, further comprising grouping
related API resources and API definitions, 1f any, within a
common resources and definitions document.

5. The method of claim 1, wherein at least one of the
references includes one or more of an internal definitions
reference and an external definitions reference.

6. The method of claim 5, wherein the internal definitions
reference includes a file name for the specification docu-
ment, a reference portion, and an internal definitions pointer
portion to specily respective one or more definitions of the
API specifications added to the specification document.

7. The method of claim 5, wherein the external definitions
reference includes a reference portion and an external defi-

US 10,901,729 B2

13

nitions pointer portion to specily the respective one or more
definitions of the API specifications added to the specifica-
tion document.

8. The method of claim 1, wherein at least one of the
references includes one or more of an internal resources
reference and an external resources reference.

9. The method of claim 8, wherein the internal resources
reference includes a reference portion and an internal
resources pointer portion to specily the respective one or
more resources of the API specifications added to the
specification document.

10. The method of claim 8, wherein the external resources
reference includes a reference portion and an external
resources pointer portion to specily the respective one or
more resources of the API specifications added to the
specification document.

11. A system for creating a merged specification file for a
software application, the system comprising:

a processor and memory hosting an application develop-

ment system; and

a database coupled to the processor and the memory, the

database storing a plurality of application programming
interface (API) specifications, each API specification
including one or more resources and defimitions, and a
code file corresponding to the software application, the
code file including references to at least one of the one
or more resources and definitions;

wherein the memory includes instructions that are execut-

able by the processor for:

identifying each of the one or more resources and defi-

nitions of the plurality of API specifications as either an
API resource or an API definition;

iitializing a specification document for the software

application;

resolving each of the references of the code file to the

respective API resource or API definition of the API
specifications; and

adding the respective API resource or API defimition of

the API specifications to the specification document;

10

15

20

25

30

35

14

wherein the API resource includes an object and at least
one uniform resource identifier and the API definition
includes a logical entity that defines how the API
definition links to other APIs and expected results 1n a
machine-readable format.

12. The system of claim 11, further comprising nstruc-
tions for validating the specification document.

13. The system of claim 11, further comprising nstruc-
tions for storing each API specification within one of an
external source directory or an internal source directory.

14. The system of claim 11, further comprising nstruc-
tions for grouping related API resources and API definitions,
il any, within a common resources and defimitions document.

15. The system of claim 11, wherein at least one of the
references includes one or more of an internal definitions
reference and an external definitions reference.

16. The system of claim 15, wherein the internal defini-
tions reference includes a file name for the specification
document, a reference portion, and an internal definitions
pointer portion to specily respective one or more definitions
of the API specifications added to the specification docu-
ment.

17. The system of claim 15, wherein the external defini-
tions reference includes a reference portion and an external
definitions pointer portion to specily the respective one or
more definitions of the API specifications added to the
specification document.

18. The system of claim 11, wherein at least one of the
references includes one or more of an internal resources
reference and an external resources reference, wherein the
internal resources reference includes a reference portion and
an internal resources pointer portion to specily the respec-
tive one or more resources of the API specifications added
to the specification document, and the external resources
reference 1includes a reference portion and an external
resources pointer portion to specity the respective one or
more resources ol the API specifications added to the
specification document.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 10,901,729 B2 Page 1 of 1
APPLICATION NO. : 16/359702

DATED : January 26, 2021

INVENTOR(S) : Singh et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Column 1, item (71) Applicants: please delete “Richa Singh, Bellevue, WA (US); Elsi Godolja,
Bellevue, WA (US); Anurag Gupta, Bellevue, WA (US); Sebastian Amara, Bellevue, WA (US)” and
insert --VISA INTERNATIONAL SERVICE ASSOCIATION, San Francisco, CA (US)-- therefor.

Signed and Sealed this
Eighth Day of March, 2022

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

