12 United States Patent

Milojicic et al.

US010884953B2

US 10,884,953 B2
Jan. 5, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

8,501,037 B2
8,793,686 B2

CAPABILITY ENFORCEMENT
PROCESSORS

Applicant: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP,
Houston, TX (US)

Dejan S Milojicic, Palo Alto, CA (US);
Chris I Dalton, Bristol (GB); Paolo
Faraboschi, Palo Alto, CA (US); Kirk
M Bresniker, Palo Alto, CA (US)

Inventors:

Assignee: Hewlett Packard Enterprise

Development LP, Houston, TX (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Notice:

Appl. No.: 15/693,149

Filed: Aug. 31, 2017

Prior Publication Data

US 2019/0065408 Al Feb. 28, 2019

Int. CIL.
GoO6F 12/14

U.S. CL
CPC

(2006.01)

GOGF 12/1466 (2013.01); GOGF 12/1483
(2013.01); GO6F 2212/1052 (2013.01)

Field of Classification Search
CPC GO6F 12/1466; GO6F 2212/1052; GO6F
3/0622; GO6F 3/0637; GO6F 3/067; GO6F

12/1483; GO6F 12/1458
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

10/2013 Wallach et al.
7/2014 Aasheim

2006/0179273 Al 8/2006 Cole et al.

2011/0296117 Al* 12/2011 Fukuda GO6F 12/1483
711/154

2012/0159518 Al* 6/2012 Boliek GOG6F 9/4843
719/318

2016/0077852 Al 3/2016 Kissell

2016/0283402 Al1* 9/2016 Schulz GOG6F 12/145

2017/0063615 Al 3/2017 Yang et al.

2017/0371663 Al 12/2017 Milojicic et al.

2018/0063158 Al 3/2018 Dalton et al.

(Continued)

OTHER PUBLICATTONS

Watson et al; Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-set architecture Technical Report #3850 [online],
Apr. 2014 [Retrieved on Aug. 17, 2018]. Retrieved from the Internet
<URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.
pdf> <ISSN 1476-2986> (Year: 2014).*

(Continued)

Primary Examiner — David Y1
Assistant Examiner — Dustin B. Fulford

(74) Attorney, Agent, or Firm — Hewlett Packard
Enterprise Patent Department

(57) ABSTRACT

Example implementations relate to a capability enforcement
processor. In an example, a capability enforcement proces-
sor may be interposed between a memory that stores data
accessible via capabilities and a system processor that
executes processes. The capability enforcement processor
intercepts a memory request from the system processor and
enforces the memory request based on capability enforce-
ment processor capabilities maintained 1n per-process capa-
bility spaces of the capability enforcement processor.

15 Claims, 5 Drawing Sheets

100

J

S STEM PROCESSOR 12

MEMORY REQUEST 120 .y

CAFPABILITY SPACE
116-1

145~ |

-
CEP CAPABILITIES 114

CAPABILITY ENFORCEMENT PROCESSOR 110
(o [ntercent memory request and enforce memory request based on CEP capabilites)

CAPABILITY SPACE
118-N

P
CEP CAPABILITIES 114

b4

PER-PROCESS CAPABILITY SPACES 116

MEMORY 104

DATA ACCESSIBLE BY
CAPABILITIES 106

US 10,884,953 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0114011 Al 4/2018 Dalton et al.
2019/0129864 Al 5/2019 Faraboschi

OTHER PUBLICATIONS

Neumann et al; Modular Research-Based Composably Trustworthy

Mission-Oriented Resilient Clouds (MRC2) Final Technical Report
[online], Feb. 2016 [retrieved on Aug. 17, 2018]. Retrieved from the
Internet <URL:http://www.dtic. mil/dtic/tr/fulltext/u2/1005641.
pdf> (Year: 2016).*

MIPS Technologies; “MIPS64® Architecture for Programmers vol.
II: The MIPS64® Instruction Set” [online], Jul. 1, 2005. [retrieved
on Feb. 6, 2019]. Retrieved from the Internet <URL:https://scc.
ustc.edu.cn/zlsc/Ixwyc)/200910/W020100308600769158777 .pdt>
(Year: 2005).*

Levy, Henry “Capability Based Computer Systems™ Original print
publication Digital Press 1984, now [online]. [retrieved on Nov. 12,
2019]. Retrieved from the Internet <URL:https://book.huthoo.com/
pdf/capability-based-computer-systems/> (Year: 1984).*

Peter G. Neumann et al., “Modular Research-based Composably

Trustworthy Mission-oriented Resilient Clouds,” Oct. 30, 2012, pp.
1-59, SRI International and University of Cambridge.

* cited by examiner

U.S. Patent Jan. 5, 2021 Sheet 1 of 5 US 10,884,953 B2

100

J

SYSTEM PROCESSOR 102

MEMORY REQUEST 120

CAPABILITY ENFORCEMENT PROCESSOR 110
(to Intercept memory request and enforce memory request based on CEP capabilities)

CAPABILITY SPACE CAPABILITY SPACE
16-1 116-N

115 L .
~ o L o L
N N
CEP CAPABILITIES 114 CEP CAPABILITIES 114

%f—/
PER-PROCESS CAPABILITY SPACES 116

MEMORY 104

DATA ACCESSIBLE BY
CAPABILITIES 106

FIG. 1

US 10,884,953 B2

Sheet 2 of §

Jan. 5, 2021

U.S. Patent

00¢

N-C5¢ NOLLILEVd
AROWIW TVA0TO

09¢
ALITIEYdVO
d3LSVYIA

L-¢G¢ NOLLIL LYY
AGOWIN VEOTO

06¢
ALONIW TVE0TD

¢ Il

N-CLC
d0553008d

PZmzmoEOmzm. .______W
ALPIEYdYD | /

0L
$licithb

84C dV¥O d30 LOANNOOYI LN

30VdS "dvO |

V-CLC
HOSSIO0¥d
INFNZOHO AN

N-90¢ AHOWZN

N-81Z S30VdS ALTTIEYEYD §53004d-¥4d
\IKJ
N-71Z 'd¥D d30 N-VLZ 'd¥O d30
e A
F0YdS dvo J3VdS 'dvd

N-P0¢ J0SS300Ud LINJNIFDHOINT ALIHEVAVO

N-20¢ HOSS300Ud WALSAS

=912 SHOVdS ALTITBYAVO S53004Hd-d4d

b-v1¢ 'dV0 d30

— ———
. P _.
40YdS d¥O

ALTHEVY AV

U.S. Patent Jan. 5, 2021 Sheet 3 of 5 US 10,884,953 B2

300

302 START

MAINTAIN, BY A CAPABILITY ENFORCEMENT PROCESSOR INTERPOSED
304 BETWEEN A SYSTEM PROCESSOR AND A MEMORY, CAPABILITY
ENFORCEMENT PROCESSOR CAPABILITIES (CEP CAPABILITIES) IN A
PER-PROCESS CAPABILITY SPACE

306 INTERCEPT, BY THE CAPABILITY ENFORCEMENT PROCESSOR. MEMORY
REQUESTS FROM THE SYSTEM PROCESSOR

308 ENFORCE, BY THE CAPABILITY ENFORCEMENT PROCESSOR, THE
MEMORY REQUEST BASED ON THE CEP CAPABILITIES MAINTAINED IN
THE PER-PROCESS CAPABILITY SPACE

310 ND

FIG. 3

U.S. Patent Jan. 5, 2021 Sheet 4 of 5 US 10,884,953 B2

404 — PROGRAM, BY A TRUSTED SECURITY BASE, A CAPABILITY
ENFORCEMENT PROCESSOR WITH INITIAL CAPABILITY RELATED TO
INTTIAL PARTITION OF MEMORY

400 —~_| INTERCEPT, BY CAPABILITY ENFORCEMENT PROCESSOR, MEMORY

REQUESTS FROM SYSTEM PROCESSOR

408 — | SELECT PER-PROCESSOR CAPABILITY SPACE FROM AMONG PLURALITY
1 OF PER-PROCESS CAPABILITY SPACES BASED ON CONTEXT IDENTIFIER

o DETERMINE IF THE MEMORY REQUEST MATCHES A VALID CEP
M0~ CAPABILITY AMONG THE CEP CAPABILITIES AND IF THE MEMORY
REQUEST CONFORMS TO PERMISSIONS OF THE VALID CEP CAPABILITY

412 — MEM. REQUEST MATCHES VALID
CEP CAPABILITY?
420 414

MEM. REQUEST MEM. REQUEST
ADDRESS THE IN TO PER-PROCESS CONFORMS TO

MEMORY? - CAPABILITY SPACE _ _ PERMISSIONS?
424 NO 418 NO

\ YES

MEM. REQUEST
ADDRESS OTHER /
REMOTE MEM.?

ISSUE MEMORY
PROTECTION
EXCEPTION

PASS MEM. REQUEST TO
CAPABILITY ENFORCEMENT

PROCESSCR ASSOCIATED
WITH REMOTE MEMORY

116 — | PERMIT ME
REQUEST

3

FIG. 4

U.S. Patent Jan. 5, 2021 Sheet 5 of 5 US 10,884,953 B2

INSTRUCTIONS TO INTERCEPT MEMORY REQUESTS FROMA SYSTEM || 4 506
PROCESSOR -
INSTRUCTIONS TO COMPARE THE MEMORY REQUEST AGAINST CEP
CAPABILITIES IN A PER-PROCESS CAPABILITY SPACE TO DETERMINE IF THE |
MEMORY REQUEST MATCHES A VALID CEP CAPABILITY AMONG THE CEP | 508
CAPABILITIES AND IF THE MEMORY REQUEST CONFORMS TO PERMISSIONS |
OF THE VALID CEP CAPABILITY

INSTRUCTIONS TO PERMIT THE MEMORY REQUEST IN RESPONSE TO A
DETERMINATION THAT THE MEMORY REQUEST MATCHES AVALID CEP |

CAPABILITY AND THAT THE MEMORY REQUEST CONFORMS TO PERMISSIONS |~
OF THE VALID CEP CAPABILITY -

510

!

. PER-PROCESS

' CAPABILITY SPACE
L~ 524

{

i s a il o e T e i |

FIG. 5

US 10,884,953 B2

1

CAPABILITY ENFORCEMENT
PROCESSORS

BACKGROUND

A computing system may employ capabilities or unforge-
able tokens of authority to address data in memory and
protect access to that data. For example, the content of a
capability may include a base address and a length to refer
or point to a portion of memory where the data 1s located. A
capability may also include metadata that specifies other
parameters of the data access, such as permissions (e.g.,
allowance of read, write operations). Validity of a capability
may be indicated by a capability tag associated with the
capability.

Support for capabilities may be implemented in processor
architecture (1.e., architecture of a central processing unit, or
CPU), memory architecture, instruction set architecture
(ISA), or operating system design. For example, capabilities
may be loaded into capability registers, and may be deret-
erenced, manipulated, or otherwise accessed solely through
privileged instructions of a capability-supporting CPU
architecture or operating system. However, implementing or
influencing architectural changes to support capabilities may
be diflicult. Also, operating system-based approaches may
bear undesirable overhead upon processing each memory
operation.

BRIEF DESCRIPTION OF THE DRAWINGS

Various examples will be described below with reference
to the following figures.

FIG. 1 1s a block diagram depicting an example system
that includes a capability enforcement processor.

FIG. 2 1s a block diagram depicting an example system
that includes a plurality of capability enforcement proces-
SOIS.

FIG. 3 1s a flow diagram depicting an example method
that employs a capability enforcement processor.

FIG. 4 1s a flow diagram depicting another example
method that employs a capability enforcement processor.

FIG. 5 1s a block diagram of an example capability
enforcement processor that includes a non-transitory,
machine readable medium encoded with example mnstruc-
tions.

Throughout the drawings, i1dentical reference numbers
may designate similar, but not necessarily identical, ele-
ments. Use herein of a reference numeral without a hyphen-
ated index number, where such reference numeral is referred
to elsewhere with a hyphenated index number, may be a
general reference to the corresponding plural elements,
collectively or individually.

DETAILED DESCRIPTION

Examples disclosed herein may relate to, among other
things, a capability enforcement processor interposed
between a system processor and memory storing data acces-
sible via capabilities. The capability enforcement processor
may 1ntercept memory requests from the system processor,
and enforce those memory requests based on the capability
enforcement processor (CEP) capabilities maintained in a
per-process capability space of the capability enforcement
Processor.

By virtue of implementing a capability enforcement pro-
cessor as described herein, a system may support capabili-
ties and gain attendant benefits such as data security without

10

15

20

25

30

35

40

45

50

55

60

65

2

reliance on CPU architectural changes or incurring operating
system overhead. In some examples, a capability enforce-
ment processor may provide capability functionality in a
system where the CPUs do not support capabilities. Addi-
tional useful aspects of the systems and methods of the
present disclosure will become apparent and will be
described further herein below.

Referring now to the figures, FIG. 1 1s a block diagram
depicting an example system 100 that includes a capabaility
enforcement processor 110. In some examples, the system
100 may serve as or form part of a computing system, such
as a server, an mformation technology appliance, a work-
station, etc.

The system 100 includes a system processor 102, a
memory 104, and a capability enforcement processor 110
interposed between the memory 104 and the system proces-
sor 102. More particularly, 1n some implementations, the
capability enforcement processor 110 may be closely
coupled to the memory 104. The system processor 102 may
be or include a CPU 1n some implementations. The system
processor 102 may also be or include other types of pro-
cessing resource, such as a microcontroller, a microproces-
sor, an application-specific integrated circuit (ASIC), a field
programmable gate array (FPGA), etc. The system processor
102 may run a hypervisor, run an operating system, execute
processes (1.€., applications), and/or carry out other compu-
tational tasks.

In some 1implementations, the system processor 102 may
be deemed local to the memory 104. In other implementa-
tions, the system processor 102 may be remote to the
memory 104. Remoteness of the system processor 102 may
be defined in terms of access latency, for example.

The memory 104 may be volatile memory or non-volatile

memory. Non-volatile memory stores information non-vola-
tilely, meaning that the information persists even alter power
1s removed from the memory, while volatile memory stores
information volatilely, meaning that the information is lost
when power 1s removed from the memory. Examples of
volatile memory may include dynamic random access
memory (DRAM), static random access memory (SRAM),
ctc. Examples of non-volatile memory may include flash
memory, phase-change memory, spin-transfer torque
memory, resistive random-access memory, memristive
memory, etc. The memory 104 may store data 106 that 1s
accessible via capabilities. In some instances, master capa-
bilities for accessing the data 106 may be stored 1n a tagged
architecture portion of memory 104.
The capability enforcement processor 110 may include
dedicated hardware, circuitry, a processor executing
machine readable instructions, or any combination of the
foregoing, to implement the functionality described herein
below. For example, the capability enforcement processor
110 may be or include a coprocessor, a microcontroller, a
microprocessor, one or more cores ol a multi-core processor,
an ASIC, an FPGA, etc. In some implementations, the
capability enforcement processor 110 may be separate from
the system processor 102, and may be understood to supple-
ment the functionality of the system processor 102 with the
capabilities-related functionality described below.

The capability enforcement processor 110, being situated
between the system processor 102 and the memory 104, can
intercept a memory request 120 from the system processor
102. For example, each process executing on the system
processor 102 may be allocated a virtual address space that
maps to physical address space of the memory 104. A
process may address a virtual address 1n its allocated virtual
address space, which 1s translated to a physical address (e.g.,

US 10,884,953 B2

3

by a memory management unit, or MMU) included with the
memory request 120. Thus, the memory request 120 may be
specific to a process and the associated virtual address space.

The capability enforcement processor 110 may maintain
or hold capability enforcement processor capabilities 114
(also referred to herein as CEP capabilities) in per-process
capability spaces 116 (e.g., 116-1 through 116-N). The CEP
capabilities 114 may be copies of master capabilities (e.g.,
stored 1n tagged memory of memory 104 or other memory
not shown) or may be pointers to those master capabilities.
Establishing the CEP capabilities 114 on the capability
enforcement processor 110 1n a first instance will be
described further herein below. The per-process capability
spaces 116 refer to CEP capabilities 114 being 1dentifiable
by processes executing on the system processor 102. For
example, a first process executing on the system processor
102 and the virtual address space allocated to that first
process may be associated with a first per-process capability
space 116-1, while a second process executing on the system
processor 102 and the virtual address space allocated to that
second process may be associated with a second per-process
capability space 116-N. In some implementations, each
per-process capability space 116 may be i1dentified or
referred to by a context identifier or the like that relates to
a particular process, operating system, node, or other granu-
larity of the system 100. The CEP capabilities 114 may be
held 1n registers, a cache, or other hardware-based element
of the capability enforcement processor 110.

The capability enforcement processor 110 enforces the
intercepted memory request 120 based on the CEP capabili-
ties 114 maintained in the per-process capability spaces 116.
In some implementations, the capability enforcement pro-
cessor 110 enforces the memory request 120 by comparing
the memory request 120 against the CEP capabilities 114 to
determine if the memory request 120 matches a valid CEP
capability (e.g. 115, for illustration purposes) from among
the CEP capabilities 114 and 1f the memory request 120
complies with permissions of the valid CEP capability 115.
For example, a memory request 120 matches a valid CEP
capability 115 1 the content of the memory request 120 (e.g.,
the memory pointer) 1s the same as that of one of the CEP
capabilities 114 and that matched CEP capability 114 has a
tag signifying its nature as a capability. A memory request
120 complies with permissions 1f the memory request 120
does not enlarge the scope of what 1s permitted and specified
by the valid CEP capability 115 (e.g., read or write permis-
sions, and memory range).

In some implementations, the capability enforcement
processor 110 may determine which per-process capability
space of the per-process capability spaces 116 to use for
enforcement against the intercepted memory request 120
based on a related context identifier sent by the system
processor 102 or other capable elements, such as a hyper-
v1sSOr or operating system executing on the system processor
102, 1f present. Such a determination may also be referred to
as context switching. For example, the system processor 102
may send a context identifier with each memory request 120
when the context changes. The context identifier may retlect
which process, operating system, node, etc. of the system
processor 102 1ssued the memory request 120. After using a
context identifier to i1dentily the relevant per-process capa-
bility space (e.g., 116-1 for illustration purposes), the capa-
bility enforcement processor 110 then enforces the memory
request 120 against the CEP capabilities 114 of the deter-
mined per-process capability space (e.g., 116-1).

The capability enforcement processor 110 may respond to
a determination that the memory request 120 both matches

10

15

20

25

30

35

40

45

50

55

60

65

4

a valid CEP capability 115 and complies with permissions of
the valid CEP capability 115, by permitting the memory
request 120 via the valid CEP capability 115. For example,
in some cases, the capability enforcement processor 110
may permit the memory request 120 by reading the memory
104 using the valid CEP capability 115 and according to the
memory range specified by the intercepted memory request
120 and may return the read data to the system processor
102. In some cases, the capability enforcement processor
may write to the memory 104, according to the payload of
the memory request 120, using the valid CEP capability 115.

In some instances of enforcement against a memory
request 120, the capability enforcement processor 110 may
determine that the memory request 120 relates to a capabil-
ity that 1s not maintained by the capability enforcement
processor 110 but does address the memory 104. For
example, the memory request 120 may match a master
capability stored in the memory 104. The capability enforce-
ment processor 110 may respond in such cases by copying
that related master capabaility from the memory 104 1n to a
per-process capability space 116 (based on a context iden-
tifier, 11 provided) as a CEP capability 114, to establish the
CEP capability 114 1n a first instance. Alternatively or
additionally, the capability enforcement processor 110 may
establish a CEP capability 114 that points to the related
memory capability 1n the memory 104. Subsequent memory
requests may then be enforced against a corresponding CEP
capability 114 by the capability enforcement processor 110.

In some implementations, the capability enforcement
processor 110 may encrypt data being written to the memory
104 by a memory request 120 using a key that 1s bound to
the valid CEP capability 115 corresponding to the memory
request 120. The capability enforcement processor 110 also
may decrypt data accessed by a memory request 120 using
the key bound to the valid CEP capability 113 corresponding
to the memory request 120. For example, an encryption
algorithm such as AES-X'TS may be used where memory
104 1s persistent, non-volatile memory. A key management
system, such as an out-of-band processor or an in-band
system, may maintain the association between CEP capa-
bilities 114 and corresponding keys. By virtue of such
encryption, access to an encrypted location of memory 104
without going through the capability enforcement processor
110 would result 1n encrypted data being read back.

In some implementations, the system 100 may include a
trusted security base. The trusted security base may be
constructed around the capability enforcement processor
110 (e.g., at a system processor-side interface with the
capability enforcement processor 110), 1n order to control or
restrict access to a management interface of the capability
enforcement processor 110. For example, the trusted secu-
rity base may be an out-oi-band interface, a secure enclave
of the system processor 102, hypervisor extensions, operat-
ing system controls, or other security mechanisms. In some
implementations, any commands to program the capability
enforcement processor 110 would first be validated by the
trusted security base. The trusted security base may be used
in some 1mplementations to program the capability enforce-
ment processor 110 with an 1nitial capability to partition the
memory 104. Other management operations that may
involve validation by the trusted security base include
commands to flush some or all of the CEP capabilities 114,
context switching, storing encryption keys or binding keys
to CEP capabilities 114, or other capability management
functions.

By virtue of the foregoing, even where an instruction set
architecture of the system processor 102 does not include

US 10,884,953 B2

S

capability-specific support, the system 100 may nevertheless
employ capabilities by virtue of the capability enforcement
processor 110.

FIG. 2 1s a block diagram depicting an example system
200. The system 200 includes a plurality of capability
enforcement processors 204-1 through 204-N and 272-1
through 272-N that are similar 1n many respects to the
capability enforcement processor 110 described above. The
system 200 includes a plurality of arrangements such as a
capability enforcement processor 204-1 interposed between
and coupled to a memory 206-1 and a system processor
202-1. Another such arrangement may include a capability
enforcement processor 204-N interposed between and
coupled to a memory 206-N and a system processor 202-N.
The system processors 202-1 through 202-N may be analo-
gous 1n many respects to the system processor 102 described
above. The memories 206-1 through 206-N may be analo-
gous 1n many respects to the memory 104 described above,
and 1n some 1mplementations, may be volatile DRAM {for
example.

The system 200 also may include a plurality of global
memory partitions 252-1 through 252-N. A global memory
partition may be a non-volatile memory device. Each global
memory partition 252-1 through 2352-N may be associated
with and coupled to a respective capability enforcement
processor 272-1 through 272-N (e.g., capability enforcement
processor 272-1 1s paired with global memory partition
252-1, capability enforcement processor 272-N 1s paired
with global memory partition 252-N).

Collectively, the global memory partitions 252 may be
understood to serve as or form a global memory 2350
accessible to the system processors 202-1 through 202-N. In
other words, a global memory 250 may include a plurality
of partitions 252. The quantity of global memory partitions
252 and associated capability enforcement processors 272
may be a function of scale of the system 200. For example,
for each system processor like 202-1 included 1n the system
200, a global memory partition like 252-1 and associated
capability enforcement processor like 272-1 may be added
to the system 200.

The global memory 250 (and more particularly, a global
memory partition 252-1 for example) may store data 262
accessible via master capability 260. For example, the data
262 may be analogous 1n many respects to the data 106 of
FIG. 1. The master capability 260 may be stored 1n a tagged
architecture portion of the global memory partition 252-1
and the data 262 may be stored 1n an untagged portion of the
global memory partition 252-1. Similarly, memories 206-1
through 206-N also may store data and master capabilities
for accessing that data (not shown).

An interconnect fabric 270 communicatively couples
many of the components of the system 200 to each other,
including at least the capability enforcement processors
204-1 through 204-N and 272-1 through 272-N. A system
processor may be deemed local to a memory within the same
arrangement (e.g., system processor 202-1 1s local to the
memory 206-1 and the capability enforcement processor
204-1), and a system processor may be deemed remote to
any memory that 1s reached via the interconnect fabric 270
(e.g., system processor 202-1 1s remote to the memory
206-N and the capability enforcement processor 204-N, as
well as the global memory partitions 252-1 through 252-N
and the associated capability enforcement processors 272-1
through 272-N).

Each of the capability enforcement processors 204-1
through 204-N and 272-1 through 272-N may intercept and

enforce memory requests from system processors against

10

15

20

25

30

35

40

45

50

55

60

65

6

capability-accessed data stored on the memory to which the
respective capability enforcement processor 1s coupled and/
or associated, in a manner described above with respect to
the capability enforcement processor 110 (i.e., checking 1t
the memory request matches a valid CEP capability and
complies with permissions of the valid CEP capability). For
example, the capability enforcement processors 204-1
through 204-N may intercept memory requests addressing
the memories 206-1 through 206-N respectively, and the
capability enforcement processors 272-1 through 272-N
may 1ntercept and enforce memory requests addressing the
global memory partitions 252-1 through 252-N respectively.

For this purpose, each of the capability enforcement
processors may maintain CEP capabilities in per-process
capability spaces that are copies of or pointers to master
capabilities 1n the memory associated with or coupled to the
respective capability enforcement processor. The CEP capa-
bilities may reference data or another capability in an
associated memory. For example, as illustrated in FIG. 2,
capability enforcement processors 204-1, 204-N, 272-1
hold, 1n per-process capability spaces 216-1, 216-N, 276
respectively, CEP capabilities 214-1, 214-N, 278 respec-
tively, which are copies of or pointers to master capabilities
in memories 206-1, 206-N, 252-1 respectively. Per-process
capability spaces and CEP capabilities of FIG. 2 may be
analogous 1n many respects to per-process capability spaces
116 and CEP capabilities 114 described above. In some
implementations, per-process capability spaces may be logi-
cal constructs on hardware such as registers, cache, memory,
etc.

A memory request may be forwarded for enforcement to
the capability enforcement processor that 1s associated with
or coupled to the memory addressed by the memory request,
particularly i1f the system processor issuing the memory
request 1s remote to the memory addressed by the memory
request and remote to the capability enforcement processor
associated with that memory. For example, the capabaility
enforcement processor 204-1 may intercept a memory
request from the system processor 202-1 and determine
whether the memory request relates to a capability that 1s not
maintained by the capability enforcement processor 204-1
but addresses a memory to which the system processor
202-1 1s remote, such as the memory 206-N or the global
memory partition 252-1. Responsive to that determination,
the capability enforcement processor 204-1 may pass the
memory request to be handled and enforced by the capabil-
ity enforcement processor associated with that memory,
such as the capability enforcement processor 204-N 1f the
memory request addresses memory 206-N or the capability
enforcement processor 272-1 i1 the memory request
addresses global memory partition 252-1.

For example, 1f the memory request 1s forwarded to the
capability enforcement processor 272-1, the capability
enforcement processor 272-1 may determine that the
memory request matches a valid CEP capability 278 1n a
per-process capability space 276 (among other CEP capa-
bilities and per-process capability spaces not shown) and
that the memory request complies with permissions of the
CEP capability 278. The capability enforcement processor
272-1 may execute the memory request (read or write) usmg
the CEP capability 278 to access the data 262 directly or via
the master capability 260.

Other aspects described above with respect to the capa-
bility enforcement processor 110, such as inclusion of a
trusted security base, encryption/decryption, context switch-
ing, etc., may also apply to the capability enforcement

US 10,884,953 B2

7

processors 204-1 through 204-N, 272-1 through 272-N,
when processing memory requests from both remote and
local system processors.

In some 1mplementations, a capability enforcement pro-
cessor 204-1 through 204-N or 272-1 through 272-N, may
exclusively enforce memory requests against a specific
address range of an associated memory. For example, such
a specific address range may be a part of an address space
that 1s mapped remotely (e.g., a limited range in the global
memory 250); a part of an address space that is shared
between nodes and/or processes; or other address ranges.
Exclusively enforcing memory requests against a specific
address range (as opposed to the entire address space) may
be usetul for increasing the performance of a capability
enforcement processor.

FIGS. 3 and 4 are flow diagrams depicting various
example methods. In some 1mplementations, one or more
blocks of a method may be executed substantially concur-
rently or 1 a different order than shown. In some 1mple-
mentations, a method may include more or fewer blocks
than are shown. In some 1mplementations, one or more of
the blocks of a method may, at certain times, be ongoing,
and/or may repeat.

The methods may be implemented 1n the form of execut-
able 1instructions stored on a machine readable medium and
executed by a processing resource and/or in the form of
clectronic circuitry. For example, the methods below are
described as being performed in part or in whole by a
capability enforcement processor, such as the capability
enforcement processors 110, 204-1, or 272-1 described
above, and may operate within the context of a system like
system 100 or 200. The capability enforcement processor
may be coupled to a memory, and may be interposed
between a system processor and a memory. As described
above, the capability enforcement processors may include
hardware, such as registers, a cache, memory, etc. to hold
CEP capabilities. Each CEP capability may belong to a
process-specific (1.e., per-process) capability space. A CEP
capability may point to data in the memory or to a master
capability for accessing that data.

FIG. 3 1s a flow diagram depicting an example method
300 that employs a capability enforcement processor.
Method 300 begins at block 302 and continues to block 304,
where the capability enforcement processor maintains CEP
capabilities 1n a per-process capability space. At block 306,
the capability enforcement processor intercepts memory
requests from a system processor. At block 308, the capa-
bility enforcement processor enforces the memory request
based on the CEP capabilities maintained in the per-process
capability space. Method 300 ends at block 310.

FIG. 4 1s a flow diagram depicting an example method
400 that employs a capability enforcement processor.
Method 400 begins at block 402 and continues to block 404,
where the capability enforcement processor 1s programmed,
by a trusted security base, with an mitial CEP capability
related to an 1nitial partitioning of the memory. Subsequent
memory operations may, for example, allocate portions of
the 1nitial memory partitioming and create new associated
capabilities.

At block 406, the capability enforcement processor inter-
cepts memory requests from a system processor. At block
408, the capability enforcement processor may select a
per-process capability space from among a plurality of
per-process capability spaces present at the capability
enforcement processor based on a related context 1dentifier
from the system processor (or a hypervisor, operating sys-
tem, etc. executing on the system processor). The context

10

15

20

25

30

35

40

45

50

55

60

65

8

identifier may accompany the intercepted memory request or
may be received from the system processor separately.

At block 410, the capability enforcement processor deter-
mines 1I the memory request intercepted at block 406
matches a valid CEP capability among CEP capabilities
maintained in the per-process capability space selected at
block 408. For example, the capability enforcement proces-
sor may compare a memory address included 1n the memory
request against memory addresses included in CEP capa-
bilities 1n the per-process capability space. The capability
enforcement processor also determines 1 the memory
request complies with permissions of a matched valid CEP
capability, such as memory range and permitted read/write
operations.

If the memory request matches a valid CEP capability 1n
the per-process capability space (“YES™ at block 412) and
the memory request complies with permissions of the valid
CEP capability (“YES” at block 414), method 400 proceeds
to block 416, where the capability enforcement processor
permits the memory request. For example, the capability
enforcement processor may permit the memory request by
using the valid CEP capability to carrying out a read of or
write to the memory range as specified by the memory
request and return results to the requesting process executing
on the system processor. After block 416, method 400 ends
at block 428.

Returning to after block 410, it the memory request
matches a valid CEP capability in the per-process capability
space (“YES” at block 412) and the memory request does
not comply with permissions of the valid CEP capability
(“NO” at block 414), method 400 proceeds to block 418
where the capability enforcement processor 1ssues a memory
protection exception to the requesting process executing on
the system processor. A memory request may fail to comply
il 1t 1s broader than the permissions of the valid CEP
capability. For example, the operation (read or write) may
not be permitted by the valid CEP capability, or the memory
request may be attempting to reference a memory range
larger than what 1s permitted by the valid CEP capability.
After block 418, the method 400 ends at block 428.

Returning to atter block 410, 1f the memory request does
not match a valid CEP capability maintained by the capa-
bility enforcement processor (“NO” at block 412), the
capability enforcement processor determines whether the
memory request addresses the memory to which the capa-
bility enforcement processor 1s coupled. For example with
reference to the system 200 of FIG. 2, a memory request
from the system processor 202-1 intercepted by the capa-
bility enforcement processor 204-1 addresses the memory to
which the capability enforcement processor 204-1 1s coupled
i the memory request addresses memory 206-1. In that
example, the memory request from the system processor
202-1 does not address the memory coupled to the capabaility
enforcement processor 204-1 1, for example, the memory
request addresses memory 206-N or any of global memory
partitions 252-1 through 252-N.

If the memory request addresses the memory coupled to
the capability enforcement processor (“YES” at block 420),
method 400 proceeds to block 422 where the capability
enforcement processor copies a related master capability
from the memory 1n to the per-process capability space
(selected at block 408) as a CEP capability. In this manner,
subsequent memory requests can utilize the CEP capability
copied at block 422. After block 422, method 400 proceeds
to block 414 as described above.

If the memory request does not address the memory
coupled to the capability enforcement processor (“NO™ at

US 10,884,953 B2

9

block 420) and does not address other memory of the system
such as remote memory (“NO” at block 424), method 400
proceeds to block 418 to 1ssue a memory protection excep-
tion. If the memory request does not address the memory
coupled to the capability enforcement processor (“NO™ at
block 420) but does address another memory of the system
such as a memory to which the requesting system processor

1s remote (“YES” at block 424), method 400 proceeds to
block 426.

At block 426, the capability enforcement processor passes
the memory request to be handled by a capability enforce-
ment processor associated with and coupled to the memory
addressed by the memory request (i.e., the memory to which
the system processor 1s remote). That capability enforce-
ment processor coupled to the memory addressed by the
memory request may then itself perform method 400 to
enforce the memory request against CEP capabilities 1t 1s
holding. For example with reference to FIG. 2, the capability
enforcement processor 204-1 may pass a memory request
from the system processor 202-1 that references a memory
address of the global memory partition 252-1 to the capa-
bility enforcement processor 272-1 via the interconnect
tabric 270. The capability enforcement processor 272-1 may
then determine that the memory request matches CEP capa-
bility 278 and complies with associated permissions and
carry out that memory request using the CEP capability 278
to access either data 262 directly or via the master capability
260. After block 426, method 400 ends at block 428. In some
implementations, at least parts of blocks 412, 414, 416, 418,
420, 422, 424, 426 may be useiul for implementing block
308 of method 300.

FIG. 5 1s a block diagram of an example capability
enforcement processor 300 that includes a processing
resource 502 coupled to a non-transitory, machine readable
medium 504 encoded with example instructions. The pro-
cessing resource 502 may include a microcontroller, a
microprocessor, central processing unit core(s), an ASIC, an
FPGA, and/or other hardware device suitable for retrieval
and/or execution of instructions from the machine readable
medium 504 to perform {functions related to various
examples. Additionally or alternatively, the processing
resource 502 may include electronic circuitry for performing
the functionality of the instructions described herein.

The machine readable medium 504 may be any medium
suitable for storing executable instructions, such as RAM,
ROM, EEPROM, flash memory, a hard disk drive, an optical
disc, or the like. The machine readable medium 504 may be
disposed within the capability enforcement processor 500,
as shown 1n FIG. 5, 1n which case the executable instructions
may be deemed “installed” on or “embedded” 1n the capa-
bility enforcement processor 500. Alternatively, the machine
readable medium 504 may be a portable (e.g., external)
storage medium, and may be part of an “installation pack-
age.”

As described further herein below, the machine readable
medium 504 may be encoded with a set of executable
instructions 506, 508, 510. It should be understood that part
or all of the executable 1nstructions and/or electronic circuits
included within one box may, 1n alternate implementations,
be included 1n a different box shown 1n the figures or 1 a
different box not shown.

Instructions 306, upon execution, cause the processing
resource 302 to intercept memory requests from a system
processor. In some 1mplementations, the system processor
may be external to the capability enforcement processor 500.
For example, instructions 506 may be usetul for performing

blocks 306 or 406 described above.

10

15

20

25

30

35

40

45

50

55

60

65

10

Instructions 508, upon execution, cause the processing
resource 302 to compare the memory request against CEP
capabilities 522 1n a per-process capability space 524 of the
capability enforcement processor 500 to determine 1if the
memory request matches a valid CEP capability among the
CEP capabilities 522 and if the memory request complies
with permissions of the valid CEP capability. For example,
istructions 508 may be useful for performing blocks 410,
412, 414 described above. Instructions 508 may also deter-
mine whether the memory request addresses the memory
coupled to the capability enforcement processor 500 or a
memory that 1s not coupled to the capability enforcement
processor 500 but i1s addressable by and/or remote to the
system processor that issued the memory request.

Instructions 510, upon execution, cause the processing
resource 502 to permit the memory request 1n response to a
determination by instructions 508 that the memory request
matches a valid CEP capability and that the memory request
complies with permissions of the valid CEP capability. For
example, instructions 510 may be useful for performing
block 416 of method 400.

In some implementations, the machine readable medium
504 may 1include additional instructions, which may be
useful for performing aspects of methods 300 or 400 or
aspects of the capability enforcement processors described
above with respect to FIGS. 1 and 2. For example, the
machine readable medium 504 also may include instructions
to respond to a determination (e.g., by instructions 508), that
the memory request relates to a capability that 1s not
maintained by the capability enforcement processor 500 by
copying a related master capability from the memory
coupled to the capability enforcement processor 500 1n to
the per-process capability space 524 as a CEP capability
522. Such nstructions may be usetul for performing blocks
420, 422 of method 400.

As another example, the machine readable medium 504
also may include instructions to encrypt data being written
to the memory by a memory request using a key bound to the
valid CEP capability 522 matched by that memory request.
The machine readable medium 504 also may include
instructions to decrypt data being read from the memory by
a memory request using a key bound to the valid CEP
capability 522 matched by that memory request.

In the foregoing description, numerous details are set
forth to provide an understanding of the subject matter
disclosed herein. However, implementation may be prac-
ticed without some or all of these details. Other implemen-
tations may include modifications and variations from the
details discussed above. It 1s intended that the following
claims cover such modifications and vanations.

What 1s claimed:

1. A system comprising:

a global, non-volatile memory to store data accessible via
capabilities;

a system processor to execute processes, the system
processor comprising a central processing unit (CPU)
associated with a first instruction set architecture (first
ISA), the first ISA lacking instructions for capability-
specific functionality;

a capability enforcement processor interposed between
the global, non-volatile memory and the system pro-
cessor; and

an associated memory coupled to the capability enforce-
ment processor,

wherein the global, non-volatile memory 1s shared across
the processes, across the system processor and the

US 10,884,953 B2

11

capability enforcement processor remotely, and the
associated memory 1s remote from the system proces-
sor, and

wherein the capability enforcement processor 1s config-

ured to:

intercept a memory request from the system processor,
wherein the memory request comprises an 1dentifier
corresponding with a virtual address space and the
system processor, and

enforce the memory request based on capability
enforcement processor capabilities (CEP capabili-
ties) maintained in a per-process capability space of
the capability enforcement processor, wherein
enforcing the memory request comprises 1dentiiying
the per-process capability space based on a related
context 1dentifier associated with the memory
request,

wherein the capability enforcement processor exclu-
sively enforces memory requests against a specific
range of the associated memory and against a spe-
cific range of the global, non-volatile memory, and

wherein the capability enforcement processor 1s a sepa-
rate processor from the system processor, the capa-
bility enforcement processor associated with a sec-
ond 1nstruction set architecture (second ISA)
comprising capability-specific instructions enabling
capability-specific functionality independent of the
first ISA of the system processor, such that the
capability enforcement processor employs capabili-
ties independent of the first ISA.

2. The system of claim 1, wherein to enforce the memory
request, the capability enforcement processor 1s to:

compare the memory request against the CEP capabilities

to determine 1f the memory request matches a valid
CEP capability and 1f the memory request complies
with permissions of the valid CEP capability; and
permit the memory request via the valid CEP capability 1n
response to a determination that the memory request
matches a valid CEP capability and that the memory
request complies with permissions of the valid CEP
capability.

3. The system of claim 1, wherein:

the capability enforcement processor 1s a first capability

enforcement processor; and

the first capability enforcement processor 1s to pass the

memory request to be handled by a second capability
enforcement processor associated with a second
memory to which the system processor 1s remote, in
response to a determination that the memory request
relates to a capability that 1s not maintained by the first
capability enforcement processor and addresses the
second memory to which the system processor 1s
remote.

4. The system of claim 1, wherein the capability enforce-
ment processor 1s among a plurality of capability enforce-
ment processors including a first capability enforcement
processor coupled to a first memory and a second capability
enforcement processor coupled to a second memory;

the system processor 1s local to the first capability

enforcement processor and the first memory; and

the system processor i1s remote to the second capability

enforcement processor and the second memory.

5. The system of claim 1, wherein the memory 1s a global
memory including a plurality of partitions;

the capability enforcement processor 1s among a plurality

of capability enforcement processors; and

10

15

20

25

30

35

40

45

50

55

60

65

12

cach capability enforcement processor of the plurality of
capability enforcement processors 1s paired to a respec-
tive partition of the plurality of partitions to intercept
memory requests addressing the respective partition, to
maintain a CEP capability that references data or a
capability 1n the respective partition, and to enforce an
intercepted memory request against the CEP capability
that references data or a capability in the respective
partition.
6. The system of claim 1, wherein the capability enforce-
ment processor 1s to encrypt data being written to the
memory by the memory request using a key bound to the
valid CEP capability matched by the memory request.
7. The system of claim 1, further comprising a trusted
security base to program the capability enforcement proces-
sor with an 1nitial capability to partition the global, non-
volatile memory.
8. The system of claim 1, further comprising a trusted
security base, wherein access to a management interface of
the capability enforcement processor 1s restricted to the
trusted security base.
9. A method comprising;
maintaining, by a capability enforcement processor inter-
posed between a system processor and a global, non-
volatile memory, the capability enforcement processor
maintaining capability enforcement processor capabili-
ties (CEP capabilities) in a per-process capability
space, wherein the global, non-volatile memory 1s
shared across the processes, across the system proces-
sor and the capability enforcement processor remotely,
and an associated memory that 1s coupled to the capa-
bility enforcement processor, wherein the associated
memory 1s remote from the system processor;

intercepting, by the capability enforcement processor,
memory requests from the system processor, wherein
the system processor comprises a central processing
unit (CPU) associated with a first instruction set archi-
tecture (first ISA), wherein the first ISA lacks mnstruc-
tions for capability-specific functionality, and wherein
cach memory request of the memory requests com-
prises an 1dentifier corresponding with a virtual address
space and the system processor; and
enforcing, by the capability enforcement processor, the
memory request based on the CEP capabilities main-
tamned 1n the per-process capability space, wherein
enforcing the memory request comprises i1dentifying
the per-process capability space based on a related
context 1dentifier associated with the memory request,

wherein the capability enforcement processor exclusively
enforces memory requests against a specific range of
the associated memory and against a specific range of
the global, non-volatile memory, and

wherein the capability enforcement processor 1s a separate

processor Irom the system processor, the capability
enforcement processor associated with a second
instruction set architecture (second ISA) comprising
capability-specific instructions enabling capability-spe-
cific functionality independent of the first ISA of the
system processor, such that the capability enforcement
processor employs capabilities independent of the first
ISA.

10. The method of claim 9, wherein the enforcing com-
Prises:

determining, by the capability enforcement processor, 1f

the memory request matches a valid CEP capability
among the CEP capabilities maintained in the per-

US 10,884,953 B2

13

process capability space and 11 the memory request

complies with permissions of the valid CEP capability;
permitting, by the capability enforcement processor, the

memory request 1n response to a determination, by the

determining, that the memory request matches a valid

CEP capability and that the memory request complies
with permissions of the valid CEP capability; and

issuing, by the capability enforcement processor, a

memory protection exception 1n response to a determi-
nation, by the determiming, that the memory request
does not match a valid CEP capability or that the
memory request violates permissions of the valid CEP
capability.

11. The method of claim 10, further comprising:

responsive to a determination that the memory request

relates to a capability that 1s not maintained by the
capability enforcement processor and addresses a sec-
ond memory to which the system processor 1s remote,
passing the memory request to be handled by a capa-
bility enforcement processor associated with the sec-
ond memory to which the system processor 1s remote;
and

responsive to a determination that the memory request

relates to a capability that 1s not maintained by the
capability enforcement processor and addresses the
memory, copying a related master capability from the
memory 1n to the per-process capability space as a CE
capability.

12. The method of claim 9, further comprising program-
ming, by a trusted security base, the capability enforcement
processor with an initial capability related to an initial
partitioning of the global, non-volatile memory.

13. A non-transitory machine readable medium storing
instructions executable by processing resource of a capabil-
ity enforcement processor,

wherein a global, non-volatile memory 1s shared across

processes, across a system processor and the capability
enforcement processor remotely, and an associated
memory 1s remote from the system processor, wherein
the global, non-volatile memory stores data accessible
via capabilities, and the non-transitory machine read-
able medium comprising:

instructions to intercept memory requests from a system

processor, wherein the system processor comprises a
central processing unit (CPU) associated with a {first
istruction set architecture (first ISA), wherein the first

10

15

20

25

30

35

40

45

14

ISA lacks instructions for capability-specific function-
ality, and wherein each memory request of the memory
requests comprises an identifier corresponding with a
virtual address space and the system processor;
instructions to identify a per-process capability space of
the capability enforcement processor based on a con-
text 1dentifier associated with the memory request, the
per-process capability space maintaining capability
enforcement processor capabilities (CEP capabilities);
instructions to compare the memory request against the
CEP capabilities 1n the 1dentified per-process capability
space ol the capability enforcement processor to deter-
mine 1 the memory request matches a valid CEP
capability among the CEP capabilities and if the
memory request complies with permissions of the valid
CEP capability; and
instructions to permit the memory request in response to
a determination that the memory request matches a
valid CEP capability and that the memory request
complies with permissions of the valid CEP capability,
wherein the capability enforcement processor exclusively

enforces memory requests against a specific range of
the associated memory and against a specific range of
the global, non-volatile memory, and

wherein the capability enforcement processor 1s a separate

processor from the system processor, the capability
enforcement processor associated with a second
instruction set architecture (second ISA) comprising
capability-specific instructions enabling capability-spe-
cific functionality independent of the first ISA of the
system processor, such that the capability enforcement
processor employs capabilities independent of the first
ISA.

14. The non-transitory machine readable medium of claim
13, further comprising instructions to respond to a determi-
nation that the memory request relates to a capability that 1s
not maintained by the capability enforcement processor by
copying a related master capability from the memory 1n to
the per-process capability space as a CEP capability.

15. The non-transitory machine readable medium of claim
13, further comprising instructions to encrypt data being
written to the memory by the memory request using a key
bound to the valid CEP capability matched by the memory
request.

	Front Page
	Drawings
	Specification
	Claims

