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(57) ABSTRACT

A method of calibrating an additive manufacturing machine
includes obtaining a model for the additive manufacturing
machine, obtaiming a baseline sensor data set for a particular
additive manufacturing machine, creating a machine-spe-
cific nominal fingerprint for the particular additive manu-
facturing machine with controllable variation for one or
more process inputs, producing on the particular additive
manufacturing machine a test-page based object, obtaiming
a current sensor data set of the test-page based object on the
particular additive manufacturing machine, estimating a
scaling factor or a bias for each of the one or more process
inputs from the current data set, and updating a calibration
file for the particular additive machine 1f the estimated
scaling error or bias are greater than a respective predeter-
mined tolerance. A system for implementing the method and
a non-transitory computer-readable medium are also dis-

closed.
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ADDITIVE MANUFACTURING MACHINE
CALIBRATION BASED ON A TEST-PAGE
BASED OBJECT

BACKGROUND

The term “additive manufacturing” refers to processes
used to synthesize three-dimensional objects 1 which suc-
cessive layers of material are formed by an additive manu-
facturing machine (herein: “additive manufacturing
machine” or “additive machine”) under computer control to
create an object.

FIG. 1 schematically 1llustrates a cross-sectional view of
a conventional laser additive manufacturing system 100
(e.g., Direct Metal Laser Melting (DMLM), Direct Metal
Laser Sintering (DMLS), Selective Laser Melting (SLM),
etc.). The apparatus 100 builds objects, for example, the part
122, 1n a layer-by-layer manner by sintering or melting a
powder material (not shown) using an energy beam 136
generated by a source such as a laser 120. The powder to be
melted by the energy beam 1s supplied by reservoir 126 and
spread evenly over a build plate 114 using a recoater arm 116
(traveling in direction 134) to maintain the powder at a level
118 within a deposition volume 112. The energy beam 136
sinters or melts a cross sectional layer of the object being
built under control of the galvo scanner 132. The build plate
114 1s lowered and another layer of powder 1s spread over
the build plate and object being built, followed by successive
melting/sintering of the powder by the laser 120. The
process 1s repeated until the part 122 1s completely built up
from the melted/sintered powder material. The laser 120
may be controlled by a control system including a processor
and a memory. The computer system may determine a scan
pattern or “mark” for each layer and control laser 120 to
irradiate the powder material according to the scan pattern.
After fabrication of the part 122 1s complete, various post-
processing procedures may be applied to the part 122. Post
processing procedures include removal of access powder by,
for example, blowing or vacuuming. Other post processing
procedures include a stress reliel process. Additionally,
thermal, mechanical, and chemical post processing proce-
dures can be used to finish the part 122.

Under conventional calibration, the control system sets
the control values for one or more controllable process
inputs. However, the true (realized) values are subject to
various disturbances due to machine degradation, measure-
ment error, and other operational factors. For example, the
laser operating voltage value can be set to target a certain
laser output power, but the actual realized laser power output
from the laser oiten 1s not the exact value set by the control
system. Sources of variation can include: machine degrada-
tion (material wear and tear, material properties change with
time and usage), measurement error, ambient environment
cllects (temperature, pressure, moisture level, wind, sun),
power source variation, ground and building vibration, and/
or setting errors, operator variation. Also, readings provided
by a sensor (a photodiode (PD) or an avalanche photodiode
(APD)) can be impacted by disturbances —e.g., smoke/
spattering from the melt pool, melt pool reflections and
powder suspension within a reflection mirror’s field-oi-
view, coellicient changes over time, particulate matter accu-
mulation along the optical path, sensor degradation, power
source fluctuation, and other factors. The sensor can be
located on (or off) the optical axis of the laser source.

A file containing a 3D computer-aided design (CAD)
model of the object to be manufactured 1s used to control the
additive metal manufacturing machine. The laser’s energy
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beam can be aimed automatically at points i space defined
by the 3D model, thereby melting the material together to
create a solid structure. The nature of the rapid, localized
heating and cooling of the melted matenial enables near-
forged material properties, after any necessary heat treat-
ment 1s applied. In this manner, parts are built up additively
layer by layer. Complex geometries can be created directly
from the 3D CAD file data.

The CAD file 1s created for certain machine conditions
(e.g., new or nominal) to satisty product quality require-
ments. The same build file will respectively produce a
product from the same machine, but after some usage
tolerances can drift due to the disturbances. Substantial
ellort and time 1s required to change or calibrate each part of
the machine and make 1t come back to the nominal condi-
tion.

Degradation or shift from nominal condition 1s a common
1ssue with DMLM machines. To ensure that the machine 1s
in acceptable state so that the same command will generate
same material properties within acceptable tolerance, con-
ventionally a re-calibration 1s performed at regular intervals.
Conventional recalibrations are time consuming (days to
weeks) depending on the machine factors being recalibrated.
Moreover, conventional additive machine recalibration 1s
strongly susceptible to operator-induced variation, as the
recalibration accuracy i1s significantly dependent on the
expertise of the operator and the operator’s familiarity with
the machine being recalibrated.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a conventional laser addi-
tive manufacturing apparatus;

FIG. 2 1llustrates a flowchart for a process to calibrate an
additive manufacturing machine 1n accordance with
embodiments;

FIG. 3 graphically illustrates experimental measurement
results for the process of FIG. 2 1n accordance with embodi-
ments;

FI1G. 4 illustrates tabular simulation results for the process
of FIG. 2 1n accordance with embodiments; and

FIG. § 1illustrates a system for implementing the process
of FIG. 2 1n accordance with embodiments.

DETAILED DESCRIPTION

Embodying systems and methods provide for automatic
calibration of an additive machine. Embodiments generate a
nominal machine-specific fingerprint from sensor data
obtained while the machine 1s 1n 1ts factory-new and/or 1n a
suitable operational condition. The phrase “suitable opera-
tional condition™ 1s used herein to describe the condition of
an additive manufacturing machine that enables the additive
machine to achieve production of a part per the part’s design
requirements. In accordance with embodiments, baseline
sensor data 1s recorded while running a CAD file with a
pre-determined scan pattern that creates a three-dimensional
test-page based object. The nominal machine-specific fin-
gerprint 1s obtained by incorporating the baseline sensor data
into a generic model of the additive machine. The generic
model 1s representative of a manufacturer’s particular line of
additive machines units.

In accordance with embodiments, to verity the calibration
status of an additive a machine, the same test-page CAD file
1s run to create a subsequent exemplar test-page based
object. During the recalibration production of each subse-
quent exemplar test-page based object, current sensor data 1s
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recorded to obtain a current machine fingerprint. A com-
parison between the current and the nominal machine fin-
gerprints can be performed to quantily magnitude difler-
ences between parameters of the fingerprints. These
magnitude differences are used by an embodying additive
machine calibration algorithm to estimate the machine’s
operational drift/shift, which can be used to automatically
adjust and/or update calibration files and tables in the
additive machine.

Broadly, an additive machine (particularly a DMLM
machine) can have three input variables: laser power (LP),
scan speed (SS) and beam size (BS). Similarly, there can be
one process output—i.e., sensor (APD) reading. A general
relationship between the true value (nominal value) and the
measured (realized) value can be expressed as: x_, _=g
(x_, ... )+w (where x can be one of LP, SS, BS setting, or the
APD sensor reading, w 1s a random white noise signal). A
simple linear calibration function that includes a scaling
factor a and a bias b can be used: x_, _=g(x___ )+
w=aX_,  +b+w.

In accordance with embodiments, the measurements of
the one sensor output and the multiple process setting values
can be used to calibrate the input variables and the output
sensor. The fundamental mput/output relationship between
these factors 1s a property of the process itseli—the rela-
tionship itself will not change because of sensor and/or
control variable measurement values. The same 1nput setting
(setting values of input variables) shiits the process working
condition slightly when the machine 1s used compared to the
same 1nput setting when the machine i1s brand new. The
additive machine fingerprint for a specific machine unit 1s
defined and specified when the machine 1s considered 1n
factory-new and/or in suitable operational condition. It 1s at
that juncture when the machine-specific fingerprint has its
best fit to the generic model data (i.e., mimmum {itting,
error).

The measured mput variable setting values and the output
measured values during the usage (calibration time) are
corrected by the calibration functions with a set of guessing
values (or nominal values, previous known values) of the
unknown parameters in the calibration functions. The cor-
rected measured values are fit to the nominal machine-
specific fingerprint, minimizing the fitting error by changing
the calibration parameter. The solution(s) of the minimiza-
tion problem will be the calibration parameter(s)/oflset(s)
needed to maintain operation of the additive machine within
product quality tolerances.

FI1G. 2 1llustrates process 200 for an algorithm to perform
calibration of an additive manufacturing machine using
production of a test-page based object 1n accordance with
embodiments. A generic model of the additive manufactur-
ing machine i1s obtained, step 2035, along with a baseline
sensor data set.

The machine parameters that can shift (e.g., power cali-
bration curve, beam focus, melt pool temperature, etc.) are
treated as the independent variables in the generic model.
The model can be generic for the line of additive machines
represented by the particular machine undergoing calibra-
tion. The baseline sensor data set 1s obtained by recording
APD response values when the additive machine unit 1s in
factory new and/or 1n suitable operational condition. These
test results describe the machine at nominal condition 1n a
response surtace or build a machine/process model (d for
disturbance): APD=y={(LP, SS, BS)+d.

The baseline sensor data set 1s incorporated, step 210, 1nto
the generic model to create a machine-specific fingerprint.
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This fingerprint 1s specific to the particular additive machine
unit from which the baseline sensor data set was obtained.

The machine specific fingerprint 1s perturbed, step 215,
for natural perturbations. The perturbation 1s achieved by
introducing different values into one or more independent
variables of the fingerprint. In accordance with embodi-
ments, the natural perturbation can be estimated by adjusting,
the value of scaling and/or bias error.

At this juncture, the additive machine can begin 1ts
production run. At some future point in time (after some
usage ol the machine), a user can decide to verily the
calibration of the additive machine. This decision can be
based on units produced, operation longevity, manufacturer
recommendation, product inspection results, or other fac-
tors. It should be readily understood that embodying systems
and methods are independent of when the decision 1s made
to verily calibration.

When the decision to calibrate 1s made, process 200
begins a calibration check by running, step 220, a CAD file
for a test-page based object. During production of the
test-page based object, a current sensor data set of APD
response values 1s obtained, step 225.

Any scaling error and/or bias in the additive machine’s
operation can be estimated, step 230, by fitting the current
sensor data set to the machine-specific fingerprint.

Scaling error and/or a bias 1n the additive machine opera-
tional condition 1s evaluated to determine 11 the scaling error
and/or bias are within predetermined tolerance(s), step 235.
A scaling factor approaching 1 and a bias approaching O
indicates acceptable drift 1n the machine’s operational drift.
The tolerances on scaling error and/or bias are determined
by the quality requirements on the production parts built by
the additive machine. If within tolerance, the additive
machine does not need recalibration. Process 200 can con-
tinue to step 220 once a subsequent decision 1s made to
verily calibration.

Should a scaling error and/or bias be determined to be
outside of predetermined tolerances (step 235), process 200
automatically updates, step 240, calibration files, tables,
and/or curves 1n the additive machine. After the update,
process 200 can continue to step 220 once a subsequent
decision 1s made to verify calibration.

Parameters 1n the calibration relationship (i.e., the cali-
bration curves) can be estimated based on the best fit of the
current data set to the machine-specific fingerprint. How-
ever, for certain situations 1t might not be possible to identity
all the calibration curve updates due to confounding terms—
¢.g., linear model cannot estimate two bias terms 1n two
input calibration curves; or one input bias term and one
output bias term.

For most additive manufacturing machines, laser power
(LP) and beam size (BS) an have an effect on APD sensor
response. An increase in laser power can lead to an increased
APD sensor response, but the near-linear relationship
between laser power and sensor response does not hold over
the full range of applicable laser power or sensor dynamic
range. Similarly, increase of beam size can also lead to an
increased APD sensor response, but the relationship behav-
ior has more nonlinearity.

FIG. 3 graphically illustrates experimental results 300 of
an embodying method obtained for differing power levels
and beam conditions. The additive machine was considered
to be 1n 1ts nominal condition. Data was collected for a set

of tests with six different laser power levels (190 W, 220 W,

250 W, 280 W, 310 W, 340 W respectively) and five different
beam sizes (50, 70, 90, 110, 130 micron (um) respectively).
Data sets were collected under different machine operational
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conditions (nominal condition; LP shift down 25 W; LP shiit
down 50 W; BS shift up 20 um; BS shiit up 40 um; LP shait
down 50 W and BS shift up 40 um simultaneously). Each
test 1s a cylindrical part, with 100 layers of material depo-
s1tion.

The mean value of APD sensor response for the top 50
layers of each part 1s used in the modeling and calibration
process. The result of one test 1s a data point in the response
space of APD Vs. Laser Power and Beam Size (Focus). Data
point sets 310, 312, 314, 316, 318 are for the nominal
condition. Data point sets 320, 322, 324, 326, 328 are for the
condition with 350 W shift down (Condition 3) on LP
settings. The response 1s close to a linear relationship, but
showing some nonlinearnity. A full-term quadratic model 1s
used to describe how APD response 1s related to LP and BS
based on the normal test data points (Condition 1):

APD=C [ *LP°+C5*BS?+C3*LP*BS+C, *LP+Cs*BS+
Cﬁ

The coellicient parameters in the above model are esti-
mated as [-0.061154 -0.1118 0.49811 28.552 -52.785

1392.9] with fitting R2=0.9849, which indicates the model
fits to the experiment data producing small residuals. For the
case of BS shift up 40 um (Condition 5), with both bias
terms assumed on LP and BS as the calibration parameters,
the test data set 1s used to matching to the quadratic process
model and leads to the laser power bias term estimated as
—-2.88 with 95% Confidence Interval (CI) as [-4.335, —1.40]
while the beam size bias term estimated as 40.83 with 95%
CI as [38.97, 42.68]. The results indicate that the estimated
bias terms on LP and BS are pretty close to the true values
with only a small bias on the LP bias term.

FIG. 4 depicts Table I presenting simulation results of an
embodying method in accordance with embodiments. The
table includes results from ten simulated cases exemplifying,
a simple case of only laser power degradation. The results of
these simulation demonstrate that an embodying method
provides a good estimate of the calibration parameters
(unbiased, small variation).

For purposes of this example, a process shiit or change are
manifested only as a degradation 1n laser power with scaling,
factor and bias factor—i.e., there are no other changes 1n the

process. (e.g., assume: LP, =0.98-LP, _ -5.0—.e., 0.98

triie ey

and —5.0 are the true values of the calibration parameters, the
scaling factor and the bias, to be estimated).

The values of melt pool width from simulations instead of
measured APD values are used as process output responses.
A high-fidelity, physics-based, nonlinear model 1s used for
the melt pool behavior. In the working range the melt pool
width (um) has the following relationship ({ingerprint
model) with the laser power and the beam size from regres-
sion: W1dth=0.31263*LP+0.23277*BS+62.723.

A total of ten different calibration tests are simulated
(BS=90 um) with white noise (Gaussian normal distribu-
tion) 1n the output, where each test has eighteen data points
(sampled laser power settings, 1.e., values of LP,__ ), and
the melt pool width data 1s recorded and fitted to the
fingerprint with the calibration parameters to be estimated
through optimization.

One case of calibration optimization will lead to:
LP, =0.97868LP__ -4.7746, which 1s a close approxi-

trife Eas

mation of the true values in above assumption. The overall
mean values of the estimated scaling factor and the esti-
mated bias from the 10 tests and the sample estimated
standard deviation are also listed in the table. The mean
estimated calibration parameter values are very close to their
true values respectively, well within the 93% Confident
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Intervals of the estimation, which are 1.96 times of the
standard deviation values respectively.

The following discussion 1s based on a case where both
laser power degradation and beam size shift simultaneously.
Assume the laser power degradation has a scaling factor and

bias factor (e.g., assume LP,, =0.98-LP __ -5.0). A similar

Triie FHERS

assumption 1s made for representing a shift of the beam size
control variable (e.g., assume BS, =1.02-BS___ -1.3). The

Triie FRIERS

melt pool width (um) has the same first order model:
width=0.31263*LP+0.23277*BS+62.723.

Fifty different calibration tests where simulated with noise
in the output, and the sensor results were fitted to a machine-
specific fingerprint 1n accordance with embodiments. Both
the scaling factors for the laser power and the beam size can
be uniquely determined by an embodying method. However
the first order model leads to eflects from the two bias terms
of the two mputs combined together—i.e., confounding
between the effects with the model, and cannot uniquely be
determined.

To separate the confounding eflect, an assumption 1s made
for the minimum variance of the bias terms (min Sum
Square). These assumption results are [0.97899 —-3.8833
1.0268 -2.8929] for LP scaling factor, LP bias, BS scaling
factor and BS bias respectively. If an assumption 1s made
that the bias term 1s proportional to the scaling factors, the
four parameters are [0.97899 —-3.391 1.0268 -3.5567]. With
these bias term assumptions, an embodying method 1mple-
menting the additive machine calibration method can lead to
a close approximation of the mitial assumption of the
calibration parameters. In accordance with embodiments, a
higher order model, which contains more information on the
calibration parameters, can distinguish the bias eflects con-
tributed by two different control variables umiquely without
any extra assumption.

FIG. 5 illustrates system 500 for calibration of an additive
manufacturing machine using production of a test-page
based object in accordance with embodiments. Data store
520 can include additive machine generic model 524, sensor
data set records 526, and additive machine unit fingerprint
records 528.

System 500 can include control processor 510 in com-
munication with data store 520. The control processor can be
in direct communication with the data store, or 1n indirect
communication across electronic communication network
540. Processor unit 512 can execute executable nstructions
522, which cause the processor to perform additive machine
calibration algorithm 532. Memory unit 514 can provide the
control processor with local cache memory.

System 500 can include one or more additive machines
550, 555. Additive machine 550 can be of a first domain, and
additive machine 355 can be of a second domain (i.e.,
different units of the same machine design; different
machine designs; and/or different deposition material). Each
additive machine can include sensor(s) 5352 that provide
sensor data for its respective additive machine. The additive
machine can also include calibration file 554, which pro-
vides the additive machine control with oflsets to control
settings. These oilsets are specific for the particular machine.
The additive machines can be in communication with the
data store across electronic communication network 540.

Embodying systems and methods result in a reduced
machine installation time and re-calibration time. The test-
page based object CAD file can be designed to run in less
than 30 minutes. Embodiments provide predictive recalibra-
tion—i.e., sensor data 1ncorporated into comparison
between an updated machine-specific fingerprint 1ncorpo-
rating current sensor data and a machine-specific nominal
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fingerprint can miform whether a recalibration 1s necessary
or not. This approach eliminates the conventional approach
of scheduling a production halt to perform a manual recali-
bration, which can typically last hours to days. An embody-
ing algorithmic approach 1s not expert dependent, as 1s the
conventional expert-dependent calibration approach. Con-
trary to the conventional approaches, embodying methods
require minimal intervention from a machine’s operator.

Embodying systems and methods provide a reduction in
machine installation labor thus, saving on installation costs
and leading to increased (and sooner) machine production
throughput. By performing predictive recalibration embodi-
ments reduce unnecessary maintenance cost. Additionally,
because the additive machine 1s off production for a mini-
mum time, more insight into the machine’s constituent
component status can be obtained (e.g., i1f the laser requires
frequent calibration, perhaps the laser needs to be checked).
Embodiments are not limited to additive manufacturing
machines and can be implemented in other technology
areas/industries.

In accordance with some embodiments, a computer pro-
gram application stored in non-volatile memory or com-
puter-readable medium (e.g., register memory, processor
cache, RAM, ROM, hard drive, flash memory, CD ROM,
magnetic media, etc.) may include code or executable
instructions that when executed may instruct and/or cause a
controller or processor to perform methods disclosed herein,
such as a method of performing automatic calibration of an
additive machine using a test-page based object CAD file, as
described above.

The computer-readable medium may be a non-transitory
computer-readable media including all forms and types of
memory and all computer-readable media except for a
transitory, propagating signal. In one implementation, the
non-volatile memory or computer-readable medium may be
external memory.

Although specific hardware and methods have been
described herein, note that any number of other configura-
tions may be provided in accordance with embodiments of
the 1nvention. Thus, while there have been shown,
described, and pointed out fundamental novel features of the
invention, 1t will be understood that various omissions,
substitutions, and changes 1n the form and details of the
illustrated embodiments, and i1n their operation, may be
made by those skilled in the art without departing from the
spirit and scope of the invention. Substitutions of elements
from one embodiment to another are also fully intended and
contemplated. The invention 1s defined solely with regard to
the claims appended hereto, and equivalents of the recita-
tions therein.

The 1nvention claimed 1s:

1. A method of calibrating an additive manufacturing
machine, the method comprising:

obtaining a model for the additive manufacturing

machine;

obtaining a baseline sensor data set for a particular

additive manufacturing machine;
creating a machine-specific nominal fingerprint for the
particular additive manufacturing machine with con-
trollable variation for one or more process mputs;

producing on the particular additive manufacturing
machine a test-page based object;

obtaining a current sensor data set of the test-page based

object on the particular additive manufacturing
machine;

estimating a scaling factor error or a bias for each of the

one or more process mputs from the current data set by:
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deriving a machine-specific perturbated fingerprint by
introducing a variation to laser power level process
inputs to the additive manufacturing machine and
beam size process inputs to the additive manufac-
turing machine; and

fitting the current sensor data set to the machine-
specific perturbated fingerprint with the scaling fac-
tor error or the bias as the parameters to be estimated;
and

updating a calibration file for the particular additive

manufacturing machine 1f the estimated scaling factor
error or the estimated bias are greater than a respective
predetermined tolerance.

2. The method of claim 1, including the model generically
representing the particular additive manufacturing machine.

3. The method of claim 1, including recording sensor data
to the baseline sensor data set during operation of the
particular additive manufacturing machine 1in new or suit-
able operational condition.

4. The method of claim 1, including creating the machine-
specific nominal fingerprint by incorporating the baseline
sensor data set 1in the generic model.

5. The method of claim 1, including using a test-page
based object CAD file to produce the test-page based object.

6. The method of claim 1, including recording sensor
response data to the current sensor data set during produc-
tion of the test-page based object.

7. A non-transitory computer-readable medium having
stored thereon instructions which when executed by a pro-
cessor cause the processor to perform calibrating an additive
manufacturing machine, the method comprising:

obtaining a model for the additive manufacturing

machine;

obtaining a baseline sensor data set for a particular

additive manufacturing machine;
creating a machine-specific nominal fingerprint for the
particular additive manufacturing machine with con-
trollable variation for one or more process mputs;

producing on the particular additive manufacturing
machine a test-page based object;

obtaining a current sensor data set of the test-page based

object on the particular additive manufacturing
machine;

estimating a scaling factor error or a bias for each of the

one or more process puts from the current data set by:

deriving a machine-specific perturbated fingerprint by
introducing a variation to laser power level process
inputs to the additive manufacturing machine and
beam size process inputs to the additive manufac-
turing machine; and

fitting the current sensor data set to the machine-
specific perturbated fingerprint with the scaling fac-
tor error or the bias as the parameters to be estimated;
and

updating a calibration file for the particular additive

manufacturing machine if the estimated scaling factor
error or the estimated bias are greater than a respective
predetermined tolerance.

8. The medium of claim 7, the executable instructions
causing the processor to perform the method by the model
generically representing the particular additive manufactur-
ing machine.

9. The medium of claim 7, the executable instructions
causing the processor to perform the method by recording
sensor data to the baseline sensor data set during operation
of the particular additive manufacturing machine in new or
suitable operational condition.
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10. The medium of claim 7, the executable instructions
causing the processor to perform the method by creating the
machine-specific nominal fingerprint by incorporating the
baseline sensor data set in the generic model.

11. The medium of claim 7, the executable instructions
causing the processor to perform the method by using a
test-page based object CAD file to produce the test-page
based object.

12. The medium of claim 7, the executable instructions
causing the processor to perform the method by recording
sensor response data to the current sensor data set during
production of the test-page based object.

13. The medium of claim 7, the executable instructions
causing the processor to perform the method by:

comparing the estimated scaling factor error and the
estimated bias to the respective predetermined toler-
ance;

i outside the predetermined tolerance, automatically
updating calibration files 1n the additive manufacturing
machine; and

if within the predetermined tolerance, performing a cali-
bration check at a later time.
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