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Methods, systems, and computer-readable media for multi-
threaded rendering for virtualized graphics processing are
disclosed. Commands for a GPU are generated by applica-
tion threads executing in parallel on a computing device. A
virtual GPU 1s implemented using a physical GPU 1n a GPU
server and attached to the computing device over a network.
The GPU server recerves the commands from the computing
device via the network. Individual commands are associated
with 1dentifiers of individual application threads. Based at
least 1n part on the i1dentifiers, the individual commands are
assigned to individual execution threads on the GPU server.
The individual execution threads correspond to individual
application threads. GPU output i1s generated based at least
in part on parallel execution of the commands using the
execution threads.
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Select a virtual compute instance based (at least Iin part) on

the computational and memory resources It provides
209

Select a virtual GPU based (at least in part) on the
graphics processing capabillities It provides
210

Provision the selected virtual compute instance with the

selected virtual GPU attached
215

Execute an application on the virtual compute instance
using the virtual GPU; generate virtual GPU output
220

Provide the virtual GPU output to a client device
229

End
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Provision a virtual compute instance with an attached
virtual GPU in a GPU server: the instance and GPU server
communicate via a network

1100

Initiate execution of one or more applications on the virtual
compute Instance; the application(s) include application

threads that execute In parallel to generate commands
1110

Send the commands (and associated data) to the GPU

server over the network
1120

Assign the commands to individual execution threads that

correspond to the application threads
1130

Using the execution threads executing In parallel, generate

output of the virtual GPU based on the commands
1140

End

FIG. 11
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MULITTHREADED RENDERING FOR
VIRTUALIZED GRAPHICS PROCESSING

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/686,085, filed Aug. 24, 2017, which 1s
hereby incorporated by reference herein 1n 1ts entirety.

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing
systems being co-located (e.g., as part of a local network) or
instead located 1n multiple distinct geographical locations
(e.g., connected via one or more private or public interme-
diate networks). For example, distributed systems housing
significant numbers of interconnected computing systems
have become commonplace. Such distributed systems may
provide back-end services to servers that interact with
clients. Such distributed systems may also include data
centers that are operated by entities to provide computing
resources to customers. Some data center operators provide
network access, power, and secure installation facilities for
hardware owned by various customers, while other data
center operators provide “full service” facilities that also
include hardware resources made available for use by their
customers. As the scale and scope of distributed systems
have increased, the tasks of provisioning, administering, and
managing the resources have become increasingly compli-
cated.

The advent of virtualization technologies for commodity
hardware has provided benefits with respect to managing,
large-scale computing resources for many clients with
diverse needs. For example, virtualization technologies may
allow a single physical computing device to be shared
among multiple users by providing each user with one or
more virtual machines hosted by the single physical com-
puting device. Each such virtual machine may be a software
simulation acting as a distinct logical computing system that
provides users with the illusion that they are the sole
operators and administrators of a given hardware computing
resource, while also providing application isolation and
security among the various virtual machines. With virtual-
ization, the single physical computing device can create,
maintain, or delete virtual machines 1 a dynamic manner.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates an example system environment for
virtualizing graphics processing in a provider network,
according to one embodiment.

FIG. 2A 1llustrates further aspects of the example system
environment for virtualizing graphics processing in a pro-
vider network, including selection of an instance type and
virtual GPU class for a virtual compute instance with an
attached virtual GPU, according to one embodiment.

FIG. 2B illustrates further aspects of the example system
environment for virtualizing graphics processing 1 a pro-
vider network, including provisioning of a virtual compute
instance with an attached virtual GPU, according to one
embodiment.

FIG. 3 illustrates the use of a virtual compute instance
with a virtual GPU to generate virtual GPU output for
display on a client device, according to one embodiment.

FIG. 4 illustrates an example hardware architecture for
implementing virtualized graphics processing, according to
one embodiment.
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2

FIG. 5 1s a flowchart 1llustrating a method for virtualizing,
graphics processing in a provider network, according to one

embodiment.

FIG. 6 A and FIG. 6B illustrate an example system envi-
ronment for multithreaded rendering for virtualized graphics
processing, according to one embodiment.

FIG. 7 illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of query messages for
blocking calls, according to one embodiment.

FIG. 8 illustrates further aspects of the example system
environment for multithreaded rendering for wvirtualized
graphics processing, including the use of multiple data
slices, according to one embodiment.

FIG. 9 illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of a separate network
connection for query messages, according to one embodi-
ment.

FIG. 10 1llustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of multiple network
connections for commands and data, according to one
embodiment.

FIG. 11 1s a flowchart illustrating a method for multi-
threaded rendering for virtualized graphics processing,
according to one embodiment.

FIG. 12 1llustrates an example computing device that may
be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.¢., meaning “having the potential t0”), rather than
the mandatory sense (1.e., meaning “must™). Similarly, the

2% Lel

words “include,” “including,” and “includes™ mean “includ-
ing, but not limited to.”

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of methods, systems, and com-
puter-readable media for multithreaded rendering for virtu-
alized graphics processing are described. Using the tech-
niques described hereimn, a computing device may be
provisioned, and a virtual graphics processing unit (GPU)
may be attached to the computing device to provide virtu-
alized graphics processing over a network connection. The
virtual GPU may be implemented in a GPU server, and the
computing device may implement a wvirtual compute
instance. The computing device, also referred to as an
application host, may be configured to execute one or more
applications that seek to use the virtualized graphics pro-
cessing provided by the virtual GPU. The one or more
applications may include a plurality of application threads
that execute 1n parallel. The various application threads may
generate and send commands (e.g., graphics commands) to
the GPU server over the network for execution using the
virtual GPU. Instead of executing the commands using a
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single thread on the GPU server, the GPU server may launch
a plurality of execution threads. In one embodiment, the
execution threads may correspond to the application threads,
¢.g., with a one-to-one correspondence. When the compute
instance collects and sends commands (and associated data) 5
to the GPU server, a command (and its data) may be
associated with a thread identifier for the application thread
that generated the command. Upon receipt by the GPU
server, a command (and 1ts data) may be assigned to an
execution thread that corresponds to the application thread 10
based (at least 1n part) on the thread 1dentifier. An execution
thread may be launched on receipt of the first command sent
by a corresponding application thread. The execution
threads may execute in parallel on the GPU server, and the
commands may be executed on the virtual GPU to generate 15
output. In one embodiment, an application thread may 1ssue
a blocking call, and the thread may block until a response 1s
received from the GPU server to a query message sent by the
compute instance. In one embodiment, a different network
connection may be used for the query messages and 20
responses than for the commands and data. In one embodi-
ment, multiple network connections or data slices may be
used for sending the commands and data. Using these
techniques, parallelism on the application host may be
maintained on the GPU server that implements the virtual 25
GPU.
Virtualized Graphics Processing in a Provider Network

FIG. 1 1llustrates an example system environment for
virtualizing graphics processing in a provider network,
according to one embodiment. Clients of a provider network 30
100 may use computing devices such as client devices
180A-180N to access an elastic graphics service 110 and
other resources oflered by the provider network. The client
devices 180A-180N may be coupled to the provider network
100 via one or more networks 190. The provider network 35
100 may provide compute virtualization 140 such that a
plurality of virtual compute instances 141A-1417 may be
implemented using a plurality of servers 142A-142N, also
referred to as physical compute mnstances. The virtual com-
pute instances 141 A-1417 may also be referred to herein as 40
virtual machines (VMs). Similarly, the provider network 100
may provide GPU virtualization 150 such that a plurality of
virtual GPUs 151A-1517Z may be implemented using a
plurality of physical GPUs 152A-152N. An example hard-
ware architecture for implementing virtual GPUs using 45
physical GPUs 1s discussed with reference to FIG. 5. The
underlying servers 142A-142N may be heterogeneous, and
the underlying physical GPUs 152A-152N may be hetero-
geneous as well. In one embodiment, the compute virtual-
ization 140 may use techniques for multi-tenancy to provi- 50
sion virtual compute instances 141 A-1417 that exceed the
servers 142A-142N in number. In one embodiment, the GPU
virtualization 150 may use techniques for multi-tenancy to
provision virtual GPUs 151A-1517 that exceed the physical
GPUs 152A-152N 1n number. 55

The elastic graphics service 110 may offer, to clients,
selection and provisioning of virtualized compute instances
with attached wvirtualized GPUs. Accordingly, the elastic
graphics service 110 may include an instance type selection
functionality 120 and an instance provisioning functionality 60
130. In one embodiment, the provider network 100 may
offer virtual compute instances 141A-1417 with varying
computational and/or memory resources. In one embodi-
ment, each of the virtual compute instances 141A-1417 may
correspond to one of several instance types. An instance type 65
may be characterized by 1ts computational resources (e.g.,
number, type, and configuration of central processing units

4

|[CPUs]| or CPU cores), memory resources (e.g., capacity,
type, and configuration of local memory), storage resources
(e.g., capacity, type, and configuration of locally accessible
storage), network resources (e.g., characteristics of 1ts net-
work interface and/or network capabilities), and/or other
suitable descriptive characteristics. Using the instance type
selection Tunctionality 120, an instance type may be selected
for a client, e.g., based (at least in part) on mmput from the
client. For example, a client may choose an instance type
from a predefined set of instance types. As another example,
a client may specily the desired resources of an instance
type, and the 1nstance type selection functionality 120 may
select an 1nstance type based on such a specification.

In one embodiment, the provider network 100 may offer
virtual GPUs 151A-1517 with varying graphics processing
capabilities. In one embodiment, each of the virtual GPUs
151 A-1517 may correspond to one of several virtual GPU
classes. A virtual GPU class may be characterized by its
computational resources for graphics processing, memory
resources lor graphics processing, and/or other suitable
descriptive characteristics. In one embodiment, the virtual
GPU classes may represent subdivisions of graphics pro-
cessing capabilities of a physical GPU, such as a full GPU,
a halt GPU, a quarter GPU, and so on. Using the instance
type selection functionality 120, a virtual GPU class may be
selected for a client, e.g., based (at least mn part) on input
from the client. For example, a client may choose a virtual
GPU class from a predefined set of virtual GPU classes. As
another example, a client may specily the desired resources
of a virtual GPU class, and the instance type selection
functionality 120 may select a virtual GPU class based on
such a specification.

Therefore, using the mnstance type selection functionality
120, clients (e.g., using client devices 180A-180N) may
specily requirements for virtual compute instances and
virtual GPUs. The instance provisioning functionality 130
may provision virtual compute instances with attached vir-
tual GPUs based on the specified requirements (including
any specified instance types and virtual GPU classes). As
used herein, provisioning a virtual compute mstance gener-
ally includes reserving resources (e.g., computational and
memory resources) of an underlying server for the client
(e.g., from a pool of available physical compute instances
and other resources), installing or launching required soft-
ware (e.g., an operating system), and making the virtual
compute 1mstance available to the client for performing tasks
specified by the client. For a particular client, a virtual
compute mstance may be provisioned of the instance type
selected by or for the client, and the virtual compute instance
may be provisioned with an attached virtual GPU of the
GPU class selected by or for the client. In one embodiment,
a virtual GPU of substantially any virtual GPU class may be
attached to a virtual compute instance of substantially any
instance type.

The provider network 100 may be set up by an entity such
as a company or a public sector organization to provide one
or more services (such as various types of cloud-based
computing or storage) accessible via the Internet and/or
other networks to client devices 180A-180N. Provider net-
work 100 may include numerous data centers hosting vari-
ous resource pools, such as collections of physical and/or
virtualized computer servers, storage devices, networking
equipment and the like (e.g., implemented using computing
system 3000 described below with regard to FIG. 12),
needed to implement and distribute the infrastructure and
services offered by the provider network 100. In some
embodiments, provider network 100 may provide comput-
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ing resources, such as compute virtualization service 140
and GPU virtualization service 150; storage services, such
as a block-based storage service, key-value based data
stores, or various types ol database systems; and/or any
other type of network-based services. Client devices 180A -
180N may access these various services offered by provider
network 100 via network(s) 190. Likewise, network-based
services may themselves communicate and/or make use of
one another to provide diflerent services. For example,
computing resources oflered to client devices 180A-180N 1n
units called “instances,” such as virtual or physical compute
instances or storage instances, may make use of particular
data volumes, providing virtual block storage for the com-
pute instances. The provider network 100 may implement or
provide a multi-tenant environment such that multiple cli-
ents (e.g., using client devices 180A-180N) may access or
use a particular resource 1 a substantially simultaneous
manner. The provider network 100 may thus represent a
multi-tenant provider network.

As noted above, compute virtualization service 140 may
offer various virtual compute mnstances 141A-1417 to client

evices 180A-180N. A virtual compute mstance may, for
example, comprise one or more servers with a specified
computational capacity (which may be specified by indicat-
ing the type and number of CPUs, the main memory size,
and so on) and a specified software stack (e.g., a particular
version of an operating system, which may 1n turn run on top
ol a hypervisor). A number of different types of computing
devices may be used singly or 1n combination to implement
the compute 1nstances of the compute virtualization service
140 1n different embodiments, including general purpose or
special purpose computer servers, storage devices, network
devices and the like. In some embodiments, client devices
180A-180N or other any other user may be configured
(and/or authorized) to direct network traflic to a virtual
compute mstance. In various embodiments, virtual compute
instances 141 A-1417 may attach or map to one or more data
volumes provided by a storage service in order to obtain
persistent storage for performing various operations. Using,
the techniques described herein, virtual GPUs 151 A-1517
may be attached to virtual compute instances 141A-1417 to
provide graphics processing for the wvirtual compute
instances.

Virtual compute instances 141A-1417 may operate or
implement a variety of diflerent platforms, such as applica-
tion server instances, Java™ virtual machines (JVMs) or
other virtual machines, general purpose or special-purpose
operating systems, platforms that support various interpreted
or compiled programming languages such as Ruby, Perl,
Python, C, C++ and the like, or high-performance comput-
ing platforms) suitable for performing client applications,
without for example requiring the client devices 180A-180N
to access an instance. In some embodiments, virtual com-
pute instances 141 A-1417 may have diflerent instance types
or configurations based on expected uptime ratios. The
uptime ratio of a particular virtual compute instance may be
defined as the ratio of the amount of time the instance 1s
activated to the total amount of time for which the 1nstance
1s reserved. Uptime ratios may also be referred to as utili-
zations 1n some 1mplementations. If a client expects to use
a compute instance for a relatively small fraction of the time
for which the instance 1s reserved (e.g., 30%-35% of a
year-long reservation), the client may decide to reserve the
instance as a Low Uptime Ratio instance, and the client may
pay a discounted hourly usage fee 1n accordance with the
associated pricing policy. If the client expects to have a
steady-state workload that requires an 1nstance to be up most
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of the time, then the client may reserve a High Uptime Ratio
instance and potentially pay an even lower hourly usage fee,
although 1n some embodiments the hourly fee may be
charged for the entire duration of the reservation, regardless
of the actual number of hours of use, 1n accordance with
pricing policy. An option for Medium Uptime Ratio
instances, with a corresponding pricing policy, may be
supported 1n some embodiments as well, where the upiront
costs and the per-hour costs fall between the corresponding
High Uptime Ratio and Low Uptime Ratio costs.

Virtual compute mstance configurations may also include
virtual compute instances with a general or specific purpose,
such as computational workloads for compute intensive
applications (e.g., high-traflic web applications, ad serving,
batch processing, video encoding, distributed analytics,
high-energy physics, genome analysis, and computational
fluid dynamics), graphics intensive workloads (e.g., game
streaming, 3D application streaming, server-side graphics
workloads, rendering, financial modeling, and engineering
design), memory intensive workloads (e.g., high perfor-
mance databases, distributed memory caches, mm-memory
analytics, genome assembly and analysis), and storage opti-
mized workloads (e.g., data warehousing and cluster file
systems). In some embodiments, particular instance types
for virtual compute 1nstances may be associated with default
classes for virtual GPUs. For example, some instance types
may be configured without a virtual GPU as a default
configuration, while other instance types designated for
graphics intensive workloads may be designated with par-
ticular virtual GPU classes as a default configuration. Con-
figurations of virtual compute instances may also include
their location 1n a particular data center or availability zone,
geographic location, and (1n the case of reserved compute
instances) reservation term length.

The client devices 180A-180N may represent or corre-
spond to various clients or users of the provider network
100, such as customers who seek to use services oflered by
the provider network. The clients, users, or customers may
represent persons, businesses, other organizations, and/or
other entities. The client devices 180A-180N may be dis-
tributed over any suitable locations or regions. Each of the
client devices 180A-180N may be implemented using one or
more computing devices, any of which may be implemented
by the example computing device 3000 1illustrated i FIG.
12.

The client devices 180A-180N may encompass any type
of client configurable to submit requests to provider network
100. For example, a given client device may include a
suitable version of a web browser, or 1t may include a
plug-1n module or other type of code module configured to
execute as an extension to or within an execution environ-
ment provided by a web browser. Alternatively, a client
device may encompass an application such as a database
application (or user interface thereof), a media application,
an oflice application, or any other application that may make
use of virtual compute 1nstances, storage volumes, or other
network-based services 1n provider network 100 to perform
various operations. In some embodiments, such an applica-
tion may include suflicient protocol support (e.g., for a
suitable version of Hypertext Transier Protocol [HTTP]) for
generating and processing network-based service requests
without necessarily implementing full browser support for
all types of network-based data. In some embodiments,
client devices 180A-180N may be configured to generate
network-based service requests according to a Representa-
tional State Transter (REST)-style network-based services
architecture, a document- or message-based network-based
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services architecture, or another suitable network-based
services architecture. In some embodiments, client devices
180A-180N (e.g., a computational client) may be configured
to provide access to a virtual compute instance 1n a manner
that 1s transparent to applications implement on the client
device utilizing computational resources provided by the
virtual compute instance. In at least some embodiments,
client devices 180A-180N may provision, mount, and con-
figure storage volumes implemented at storage services for
file systems implemented at the client devices.

Client devices 180A-180N may convey network-based
service requests to provider network 100 via external net-
work(s) 190. In various embodiments, external network(s)
190 may encompass any suitable combination of networking
hardware and protocols necessary to establish network-
based communications between client devices 180A-180N
and provider network 100. For example, the network(s) 190
may generally encompass the various telecommunications
networks and service providers that collectively implement
the Internet. The network(s) 190 may also include private
networks such as local area networks (LLANs) or wide area
networks (WANs) as well as public or private wireless
networks. For example, both a given client device and the
provider network 100 may be respectively provisioned
within enterprises having their own internal networks. In
such an embodiment, the network(s) 190 may include the
hardware (e.g., modems, routers, switches, load balancers,
proxy servers, etc.) and software (e.g., protocol stacks,
accounting software, firewall/security soitware, etc.) neces-
sary to establish a networking link between the given client
device and the Internet as well as between the Internet and
the provider network 100. It 1s noted that 1n some embodi-
ments, client devices 180A-180N may communicate with
provider network 100 using a private network rather than the
public Internet.

The provider network 100 may include a plurality of
computing devices, any ol which may be implemented by
the example computing device 3000 1llustrated 1n FIG. 12.
In various embodiments, portions of the described function-
ality of the provider network 100 may be provided by the
same computing device or by any suitable number of
different computing devices. If any of the components of the
provider network 100 are implemented using different com-
puting devices, then the components and their respective
computing devices may be communicatively coupled, e.g.,
via a network. Each of the illustrated components (such as
the elastic graphics service 110 and its constituent function-
alities 120 and 130) may represent any combination of

software and hardware usable to perform their respective
functions.

It 1s contemplated that the provider network 100 may
include additional components not shown, fewer compo-
nents than shown, or different combinations, configurations,
or quantities of the components shown. For example,
although servers 142A through 142N are shown for purposes
of example and 1illustration, it 1s contemplated that different
quantities and configurations of servers may be used. Simi-
larly, although physical GPUs 1352A through 152N are
shown for purposes ol example and illustration, 1t 1s con-
templated that different quantities and configurations of
physical GPUs may be used. Additionally, although three
client devices 180A, 180B, and 180N are shown for pur-
poses ol example and illustration, 1t 1s contemplated that
different quantities and configurations of client devices may
be used. Aspects of the functionality described herein for
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providing virtualized graphics processing may be per-
formed, at least in part, by components outside of the
provider network 100.

FIG. 2A 1illustrates further aspects of the example system
environment for virtualizing graphics processing in a pro-
vider network, including selection of an instance type and
virtual GPU class for a virtual compute instance with an
attached virtual GPU, according to one embodiment. As
discussed above, the provider network 100 may ofler to the
client device 180A a plurality of instance types 121 for
virtual compute instances. As shown for purposes of illus-
tration and example, virtual compute instances of type “B”
141B through type “N” 141N may be offered. However, it 1s
contemplated that any suitable number and configuration of
virtual compute nstance types may be oflered to clients by
the provider network 100. An instance type may be charac-
terized by its computational resources (e.g., number, type,
and configuration of central processing units [CPUs] or CPU
cores), memory resources (€.g., capacity, type, and configu-
ration ol local memory), storage resources (e.g., capacity,
type, and configuration of locally accessible storage), net-
work resources (e.g., characteristics of 1ts network interface
and/or network capabilities), and/or other suitable descrip-
tive characteristics. Using the mnstance type selection func-
tionality 120, the client device 180A may provide an indi-
cation, specification, or other selection 201 of a particular
instance type. For example, a client may choose or the
instance type “B” from a predefined set of instance types
using mput 201. As another example, a client may specily
the desired resources of an instance type using mput 201,
and the mstance type selection functionality 120 may select
the mnstance type “B” based on such a specification. Accord-
ingly, the virtual compute instance type may be selected by
the client or on behalf of the client, e.g., using the 1nstance
type selection functionality 120.

As discussed above, the provider network 100 may ofler
to the client device 180A a plurality of virtual GPU classes
122 for virtual GPUs. As shown for purposes of illustration
and example, virtual GPUs of class “B” 151B through class
“N”” 151N may be offered. However, 1t 1s contemplated that
any suitable number and configuration of virtual GPU
classes may be oflered to clients by the provider network
100. A virtual GPU class may be characterized by 1its
computational resources for graphics processing, memory
resources lor graphics processing, and/or other suitable
descriptive characteristics. In one embodiment, the virtual
GPU classes may represent subdivisions ol graphics pro-
cessing capabilities of a physical GPU, such as a full GPU,
a halt GPU, a quarter GPU, and so on. Using the instance
type selection functionality 120, the client device 180A may
provide an indication, specification, or other selection 202 of
a particular virtual GPU class. For example, a client may
choose the virtual GPU class “B” from a predefined set of
virtual GPU classes using input 202. As another example, a
client may specity the desired resources of a virtual GPU
class using mput 202, and the instance type selection func-
tionality 120 may select the virtual GPU class “B” based on
such a specification. Accordingly, the virtual GPU class may
be selected by the client or on behalf of the client, e.g., using
the 1nstance type selection functionality 120.

FIG. 2B illustrates further aspects of the example system
environment for virtualizing graphics processing in a pro-
vider network, including provisioning of a virtual compute
instance with an attached virtual GPU, according to one
embodiment. The instance provisioning functionality 130
may provision a virtual compute instance 141B with an
attached virtual GPU 1351B based on the specified instance
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type “B” and the specified virtual GPU class “B”. The
provisioned virtual compute instance 141B may be imple-
mented by the compute virtualization functionality 140
using suitable physical resources such as a server 142B, and
the provisioned virtual GPU 151B may be 1mplemented by
the GPU wvirtualization functionality 150 using suitable
physical resources such as a physical GPU 152B. As used
herein, provisioning a virtual compute instance generally
includes reserving resources (e.g., computational and
memory resources) of an underlying server for the client
(e.g., Irom a pool of available physical compute instances
and other resources), mstalling or launching required soft-
ware (e.g., an operating system), and making the virtual
compute instance available to the client for performing tasks
specified by the client. In one embodiment, a virtual GPU of
substantially any virtual GPU class may be attached to a
virtual compute mstance of substantially any instance type.
To implement the virtual compute mstance 141B with the
attached virtual GPU 151B, a server 142B may communi-
cate with a physical GPU 152B, e.g., over a network. The
physical GPU 152B may be located 1n a different computing,
device than the server 142B. Even though they may be
implemented using separate hardware, the virtual GPU
151B may be said to be attached to the virtual compute
instance 141B, or the virtual compute mstance may be said
to include the virtual GPU. The virtual GPU 151B may be
installed on a device that may reside in various locations
relative to the physical GPU 152B, e.g., on the same rack,
the same switch, the same room, and/or other suitable
locations on the same network. A vendor of the physical
GPU 152B may be hidden from the client device 180A.

FIG. 3 illustrates the use of a virtual compute instance
with a virtual GPU to generate virtual GPU output for
display on a client device, according to one embodiment.
After the virtual compute istance 141B 1s provisioned with
the attached virtual GPU 151B, the client device 180A may
use the provisioned instance and virtual GPU to perform any
suitable tasks, e.g., based on mput from the client device.
The virtual compute mstance 141B may execute a particular
application 320. The application 320 may be selected or
provided by the client. The virtual compute mstance 141B
may also be configured with a particular operating system
322 that provides support for the application 321. Addition-
ally, the virtual compute mstance 141B may be configured
with a particular graphics driver 321. The graphics driver
321 may 1interact with the virtual GPU 1351B to provide
graphics processing for the application 320, including accel-
erated two-dimensional graphics processing and/or acceler-
ated three-dimensional graphics processing. In one embodi-
ment, the graphics driver 321 may implement a graphics
application programming interface (API) such as Direct3D
or OpenGL. The graphics drniver 321 may represent com-
ponents running in user mode and/or kernel mode. Addi-
tional components (not shown), such as a graphics runtime,
may also be used to provide accelerated graphics processing,
on the virtual compute instance 141B.

The client device 180A may communicate with the virtual
compute instance 141B through a proxy 310. Various other
communications may be sent through the proxy 310, includ-
ing for example virtual GPU output 302 from the virtual
GPU 151B to the client device 180A. Use of the proxy 310
may hide the address of the virtual compute instance and any
associated resources (including a computing device that
implements the virtual GPU 151B) from the client device
180A. The proxy 310 and virtual compute instance 141B
may communicate using a suitable remoting protocol. In
various embodiments, the proxy 310 may or may not be part
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of the provider network 100. The client device 180A may
provide application input 301 to the application 320 running
on the virtual compute nstance 141B. For example, the
application mput 301 may include data to be operated upon
by the application 320 and/or instructions to control the
execution of the application.

Using the graphics processing provided by the virtual
GPU 151B, execution of the application may generate
virtual GPU output 302. The virtual GPU output 302 may be
provided to the client device 180A, e.g., from the virtual
GPU 151B or virtual compute instance 141B. In one
embodiment, the virtual GPU output 302 may be sent {from
the virtual GPU 151B (e.g., from a computing device that
includes the virtual GPU) to the client device 180A while
bypassing the rest of the virtual compute instance 141B
(e.g., the underlying server 142B). The virtual GPU output
302 may also be sent to the client device 180A through the
proxy 310. The proxy 310 and virtual GPU 151B may
communicate using a suitable remoting protocol. In one
embodiment, the virtual GPU output 302 may be returned to
the virtual compute mstance 141B, and the virtual compute
instance may send the virtual GPU output to the client
device 180A. In one embodiment, the client device 180A
may forward the virtual GPU output 302 to another com-
ponent.

In one embodiment, a display device 181 associated with
the client device 180A may present a display 330 of the
virtual GPU output 302. In one embodiment, the virtual
GPU output 302 may include pixel data, image data, video
data, or other graphical data. In one embodiment, the virtual
GPU output 302 may drive a full-screen display on the
display device 181. Portions of the virtual GPU output 302
may be streamed to the client device 180A over time. In one
embodiment, the virtual GPU output 302 may be compos-
ited with one or more other sources of graphical data to
produce the display 330. In one embodiment, the virtual
GPU 151B may be used for general-purpose GPU comput-
ing (e.g., GPGPU computing), and the virtual GPU output
302 may not include pixel data or other graphical data. In
various embodiments, the client device 180A may process or
transform all or part of the virtual GPU output 302 before
displaying the output. For example, a CPU, GPU, or co-
processor on the client device 180A may transform portions
of the virtual GPU output 302 and display the results on the
display device 181.

In various embodiments, any suitable technique(s) may be
used to offload graphics processing from a virtual compute
instance to a physical GPU. In one embodiment, an API
shim may intercept calls to a graphics API and marshal the
calls over a network to an external computing device that
includes a physical GPU. In one embodiment, a driver shim
may surface a proprietary driver to the virtual compute
instance, 1mtercept calls, and marshal the calls over a net-
work to an external computing device that includes a physi-
cal GPU. In one embodiment, a hardware shim may surface
a hardware interface to the virtual compute instance and
marshal attempts by the instance to interact with the physical
GPU.

FIG. 4 1llustrates an example hardware architecture for
implementing virtualized graphics processing, according to
one embodiment. In one embodiment, the virtual compute
instance 141B may be implemented using a server 142B,
and the virtual GPU 151B attached to that instance 141B
may be implemented using a separate and distinct comput-
ing device termed a GPU server 420, also referred to as a
graphics server or graphics appliance. The virtual compute
instance 141B may use a virtual interface 400 to interact
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with an interface device 410. The virtual interface 400 may
enable the wvirtual compute instance 141B to send and
receive network data. The interface device 410 may include
a network interface and a custom hardware interface. Via the
custom hardware interface, the interface device 410 may run
program code to emulate a GPU nterface and appear to the

virtual compute instance 141B to implement or include the
virtual GPU 151B. In one embodiment, the interface device

410 may present a graphics API to the virtual compute
instance 141B and receive API calls for graphics processing
(e.g., accelerated 3D graphics processing). Via the network

interface, the interface device 410 may communicate with
the GPU server 420 (and thus with the physical GPU 152B)
over a network. The interface device 410 may be imple-
mented 1n any suitable manner, e.g., as an expansion card
(such as a PCI Express card) or attached peripheral device
tor the server 142B. The interface device 410 may use single
root I/0O virtualization to expose hardware virtual functions
to the virtual compute nstance 141B. In one embodiment,
the server 142B may implement a plurality of virtual com-
pute instances, each with 1ts own virtual interface, and the
virtual compute mstances may use the interface device 410
to 1teract with the corresponding virtual GPUs on one or
more GPU servers. The server 142B may communicate with
the proxy 310 using a suitable remoting protocol, e.g., to
send data to and receive data from the client device 180A.

Graphics offload performed by the interface device 410
(e.g., by executing custom program code on the interface
device) may translate graphics API commands into network
traflic (encapsulating the graphics APl commands) that 1s
transmitted to the GPU server 420, and the GPU server 420
may execute the commands on behall of the interface
device. The GPU server 420 may include a network adapter
440 that communicates with the interface device 410 (e.g.,
with the network interface of the interface device) over a
network. In one embodiment, the mterface device 410 may
receive calls to a graphics API (using the custom hardware
interface) and generate graphics offload traflic to be sent to
the network adapter 440 (using the network interface). The
GPU server 420 may implement a graphics virtual machine
430. Any suitable technologies for virtualization may be
used to implement the graphics virtual machine 430. In one
embodiment, the graphics virtual machine 430 may repre-
sent a generic virtual machine that 1s GPU-capable and 1s
dedicated to providing accelerated graphics processing
using one or more virtual GPUs. The graphics virtual
machine 430 may be coupled to the network adapter 440
using a virtual interface 401. The virtual interface 401 may
enable the graphics virtual machine 430 to send and receive
network data. The graphics virtual machine 430 may 1mple-
ment the virtual GPU 151B using the graphics processing,
capabilities of the physical GPU 152B. In one embodiment,
the physical GPU 132B can be accessed directly by the
graphics virtual machine 430, and the physical GPU 152B
can use direct memory access to write to and read from
memory managed by the graphics virtual machine. In one
embodiment, the GPU server 420 may implement a plurality
of virtual GPUs (such as virtual GPU 151B) using one or
more physical GPUs (such as physical GPU 152B), and the
virtual GPUs may interact with the corresponding virtual
compute 1stances on one or more servers over a network.
The GPU server 420 may communicate with the proxy 310
using a suitable remoting protocol, e.g., to send data to and
receive data from the client device 180A. For example, the
GPU server 420 may generate virtual GPU output based on
the commands sent from the interface device 410. The
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virtual GPU output may be provided to the client device
180A through the proxy 310, e¢.g., from the server 142B or

GPU server 420.

FIG. 5 1s a flowchart 1llustrating a method for virtualizing,
graphics processing in a provider network, according to one
embodiment. As shown 1 505, a virtual compute 1nstance
may be selected. The wvirtual compute instance may be
selected based (at least in part) on computational and
memory resources provided by the virtual compute 1nstance.
For example, the virtual compute instance may be selected
based (at least 1n part) on a selection of an 1nstance type by
a user. As shown 1n 510, a virtual GPU may be selected. The
virtual GPU may be selected based (at least in part) on
graphics processing capabilities provided by the virtual
GPU. For example, the virtual GPU may be selected based
(at least 1n part) on a selection of a virtual GPU class by a
user. The virtual compute instance and virtual GPU may also
be selected based (at least i part) on availability of
resources 1n a resource pool of a provider network that
manages such resources. In one embodiment, an elastic
graphics service may receive the specifications for and/or
selections of the virtual compute 1nstance and virtual GPU.

As shown 1n 515, the selected virtual compute nstance
may be provisioned with the selected virtual GPU attached.
In one embodiment, the elastic graphics service may interact
with one or more other services or functionalities of a
provider network, such as a compute virtualization func-
tionality and/or GPU virtualization functionality, to provi-
s1on the mnstance with the virtual GPU. The virtual compute
instance may be implemented using central processing unit
(CPU) resources and memory resources of a physical com-
pute 1stance. The virtual GPU may be implemented using
a physical GPU. The physical GPU may be attached to a
different computing device than the computing device that
provides the CPU resources for the virtual compute 1nstance.
The physical GPU may be accessible to the physical com-
pute mstance over a network. The virtual GPU may be said
to be attached to the virtual compute 1nstance, or the virtual
compute mstance may be said to include the virtual GPU. In
one embodiment, the physical GPU may be shared between
the virtual GPU and one or more additional virtual GPUs,
and the additional virtual GPUs may be attached to addi-
tional virtual compute stances. In one embodiment, the
virtual GPU may be accessible to the virtual compute
instance via an interface device that includes a network
interface and a custom hardware interface. Via the custom
hardware interface, the interface device may emulate a GPU
and appear to the virtual compute 1stance to include the
virtual GPU. Via the network interface, the interface device
may communicate with the physical GPU over the network.

As shown 1n 520, an application may be executed on the
virtual compute mstance using the virtual GPU. Execution
of the application may include execution of instructions on
the virtual compute 1nstance (e.g., on the underlying physi-
cal compute instance) and/or virtual GPU (e.g., on the
underlying physical GPU). Execution of the application
using the virtual GPU may generate virtual GPU output,
¢.g., output produced by executing instructions or otherwise
performing tasks on the virtual GPU. As shown 1n 5235, the
virtual GPU output may be provided to a client device. The
virtual GPU output may be provided to the client device
from the virtual compute 1nstance or virtual GPU. In one
embodiment, the virtual GPU output may be displayed on a
display device associated with the client device. The virtual
GPU output may include pixel information or other graphi-
cal data that 1s displayed on the display device. Execution of
the application using the virtual GPU may include graphics
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processing (e.g., acceleration of three-dimensional graphics
processing) for the application using a graphics API.

In some embodiments, scaling techniques may be used
with the techniques for virtualized graphics processing
described herein. A virtual compute instance may be provi-
sioned, and a first set of one or more GPU(s) may be
attached to the instance to provide graphics processing. The
first set of one or more virtual GPUs may provide a
particular level of graphics processing. After a change in
GPU requirements for the instance 1s determined, the second
set ol one or more virtual GPU(s) may be selected and
attached to the wvirtual compute instance to replace the
graphics processing of the first virtual GPU(s) with a dii-
ferent level of graphics processing. The second virtual
GPU(s) may be selected based on the change in GPU

requirements. Depending upon the change in GPU require-
ments, such a scaling operation may migrate graphics pro-
cessing for a virtual compute instance from a less capable or
smaller virtual GPU class to a more capable or larger virtual
GPU class or from a more capable or larger virtual GPU
class to a less capable or smaller virtual GPU class. In one
embodiment, the migration of graphics processing may be
performed based (at least 1n part) on user input representing,
a change 1 GPU requirements. In one embodiment, the
migration ol graphics processing may be performed based
(at least in part) on detection of an increase in graphics
workload. Live migration may be performed while applica-
tions are being executed using the first virtual GPU(s) 1n a
manner that does not require changing or relaunching the
applications. Migration of the virtual compute 1nstance to a
different physical compute instance may also be performed,
¢.g., to reduce network latency associated with virtualized
graphics processing.

In some embodiments, placement optimization tech-
niques may be used with the techniques for virtualized
graphics processing described heremn. Optimization of
resource placement may improve one or more metrics (e.g.,
related to resource usage or cost) for GPU virtualization.
Physical compute instance(s) may be used to implement
virtual compute instance(s), and physical GPU(s) may be
used to mmplement virtual GPU(s) attached to the virtual
compute 1nstance(s). Using techniques for placement opti-
mization, locations of the virtual compute instance(s) and/or
virtual GPU(s) may be selected in the provider network
(from among a set of available physical compute instance(s)
and/or physical GPU(s)) based on any suitable placement
criteria. The one or more placement criteria may be based (at
least 1n part) on metrics associated with maximizing perfor-
mance, minimizing cost, minimizing energy usage, and/or
any other suitable metrics. The placement criteria may also
be associated with network locality. For example, to mini-
mize network latency and/or network usage, a virtual com-
pute instance and attached virtual GPU may be placed 1n the
same rack in the same data center such that network com-
munication between the underlying physical compute
instance and physical GPU may not extend beyond a top-
of-rack switch or other networking component 1n the rack.
If locations within the same rack are not available, then
nearby locations within the same data center may be selected
for a virtual compute instance and attached virtual GPU.
Placement may be optimized in this manner not only for
newly provisioned resources but also for migration of a
virtual compute mstance and/or attached virtual GPU after
their use has begun. When scaling i1s performed for GPU
virtualization as discussed above, the locations of any virtual
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GPUs may be selected based on placement criteria, and/or
the location of the virtual compute instance may be moved
based on placement criteria.

In some embodiments, application-specific techniques
may be used with the techniques for virtualized graphics
processing described herein. A virtual compute instance may
be provisioned and may be configured to execute an appli-
cation. The application may be associated with graphics
requirements. For example, an application manifest may
specily a recommended graphics processing unit (GPU)
class and/or size of video memory for the application, or
analysis of execution of the application may determine
graphics requirements for the application. A virtual GPU
may be selected for the virtual compute instance based (at
least 1n part) on the graphics requirements for the applica-
tion. The virtual GPU may be selected from a set of virtual
GPUs (e.g., belonging to virtual GPU classes) having dii-
ferent capabilities for graphics processing. The virtual GPU
may be implemented using a physical GPU that 1s connected
to the virtual compute 1nstance over a network. The appli-
cation may be executed on the virtual compute instance
using the virtual GPU. Additional applications on the virtual
compute mstance may use different application-specific vir-
tual GPUs, and the application-specific virtual GPUs may
vary 1n graphics processing capabilities based on the varying
requirements of the applications.

In some embodiments, local-to-remote migration tech-
niques may be used with the techmiques for virtualized
graphics processing described herein. A virtual compute
instance may be provisioned with a local graphics process-
ing unit (GPU) to provide graphics processing. The local
GPU may be implemented using attached hardware or using
emulation. Because the local GPU may provide only a low
level of graphics processing capability, a virtual GPU may
be attached to the wvirtual compute instance to provide
improved graphics processing relative to the local GPU. The
virtual GPU may be selected from a set of virtual GPUs
(e.g., belonging to virtual GPU classes) having different
capabilities for graphics processing. The virtual GPU may
be implemented using a physical GPU that 1s connected to
the virtual compute instance over a network. Graphics
processing for the virtual compute instance may be migrated
from the local GPU to the virtual GPU. In one embodiment,
graphics processing for a particular application on the virtual
compute mstance may be migrated from the local GPU to
the virtual GPU during execution of the application. In one
embodiment, the migration of graphics processing may be
performed based (at least in part) on detection of an increase
in graphics workload.

In some embodiments, techniques for graphics library
virtualization may be used with the techniques for virtual-
1zed graphics processing described herein. A virtual compute
instance may be provisioned, and a virtual graphics process-
ing unit (GPU) may be attached to the instance to provide
virtualized graphics processing. One or more graphics
libraries may be installed on the virtual compute instance.
These local graphics libraries, such as versions of Direct3D
or OpenGL, may include sets of graphics functions that are
offered to applications. Some of these graphics libraries,
such as Direct3D, may be specific to a particular platform
(e.g., to a particular operating system family). A graphics
server that includes the virtual GPU may include a driver
associated with a different graphics library, such as Vulkan.
The graphics library associated with the virtual GPU may
represent a cross-platform graphics library that 1s available
on a variety ol computing platforms (e.g., on different
families of operating systems and/or different families of
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computing hardware). On the virtual compute instance, an
intermediate driver may translate calls associated with one
or more of the local graphics libraries (such as Direct3D or
OpenGL) to the equivalent calls associated with a different
graphics library (such as the cross-platform Vulkan library)
implemented by the graphics server. The equivalent calls
may be sent over a network to the graphics server for
execution using the virtual GPU, e.g., using the driver
associated with the cross-platform graphics library. In this
manner, the graphics server may be implemented using any
platform supported by the cross-platform graphjcs library
while providing accelerated graphics processing for an
application host having one or more different (and poten-
tially platform-specific) graphics libraries.

In some embodiments, a network-optimized graphics
library may be used with the techmiques for virtualized
graphics processing described herein. A computing device
may be provisioned, and a virtual graphics processing unit
(GPU) may be attached to the computing device to provide
virtualized graphics processing over a network connection.
The computing device, also referred to as an application
host, may be configured to execute an application using the
virtualized graphics processing provided by the virtual GPU.
One or more graphics libraries may be installed on the
computing device. These local graphics libraries, such as
versions ol Direct3D or OpenGL, may include sets of
graphics functions that are offered to applications. In one
embodiment, the computing device includes a network-
optimized graphics library, also referred to herein as an
intermediate library. Calls made by an application may be
made directly to the network-optimized graphics library or
may be made to a different graphics library and then
translated to a form associated with the network-optimized
graphics library. While expressed in the form associated
with the intermediate library, the calls may be serialized and
sent over a network from the computing device to the GPU
server 1n a manner that reduces network usage 1n compari-
son to other graphics libraries, such as Vulkan. The calls may
be held 1n a command bufler prior to being sent. The GPU
server that implements the virtual GPU may include a driver
associated with another graphics library, e.g., Vulkan. At the
GPU server, the calls received over the network may be
translated to equivalent calls in this other graphics library
and may then be executed using the virtual GPU. The
translation may include the creation of data structures that
were not passed over the network in order to conserve
bandwidth. In this manner, the GPU server may be imple-
mented using a powertul, cross-platform library such as
Vulkan, the application hosts may use any suitable graphics
libraries as desired by application developers, and an inter-
mediate graphics library may translate calls between the two
devices for optimized network usage.

Multithreaded Rendering

FIG. 6 A and FIG. 6B 1illustrate an example system envi-
ronment for multithreaded rendering for virtualized graphics
processing, according to one embodiment. As discussed
above with respect to FIG. 1 through FIG. 5, a virtual
compute instance 141B implemented on top of a server
142B may be provisioned with an attached virtual GPU
151B. The virtual GPU 151B may be included in a GPU
server 420 that implements a graphics virtual machine 430.
The server 1428 and the GPU server 420 may communicate
via a network 690. After the virtual compute mstance 141B
1s provisioned with the attached virtual GPU 151B, the client
device 180A may use the provisioned instance and virtual
GPU to perform any suitable tasks, e.g., based on mnput from
the client device. For example, the virtual compute instance
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141B may execute one or more applications such as appli-
cation(s) 320. The application(s) 320 may be selected or
provided by the client. The virtual compute instance 141B
may also be configured with a particular operating system
322 that provides support for the application(s) 320. The
application(s) 320 may include a plurality of application
threads 321A-321N that are executed in parallel. Using
multithreaded rendering, execution threads 676 A-676N may
execute 1n parallel on the GPU server 420, and the execution
threads 676 A-676N may correspond to application threads
321 A-321N on the application host. For example, execution
thread 676 A may correspond to application thread 321A,
execution thread 676B may correspond to application thread
321B, and execution thread 676N may correspond to appli-
cation thread 321N. Execution of threads in parallel may
include maintaining aspects of the threads in memory simul-
taneously and using one or more processors or pProcessor
cores for simultaneous or concurrent execution of instruc-
tions associated with the threads. Execution of threads in
parallel may include concurrent execution using one pro-
cessor, €.g., using techniques for task switching to create the
appearance of parallel execution.

Additionally, the virtual compute instance 141B may be
configured with one or more graphics libraries. A graphics
library may include a set of graphics functions, calls, or
commands that can be invoked by other software compo-
nents on the virtual compute 1nstance 141B, such as one or
more processes of the application(s) 320. A graphics library
may ofler a graphics application programming interface
(API), and a graphics library may sometimes be referred to
as a graphics API. The virtual compute instance 141B may
include graphics library. The term “graphics library” may
include any set of functions, calls, or commands that are
ultimately executed or implemented using a GPU, even if
one or more of the functions, calls, or commands do not
involve generating displayable output. The graphics library
may represent any suitable family of functionality. For
example, graphics library may represent a version of
Direct3D, such as Direct3D 9, Direct3D 10, Direct3D 11,
and so on. As another example, graphics library may rep-
resent a version ol OpenGL or Vulkan. In some embodi-
ments, the graphics library may include a general-purpose

GPU (GPGPU) computing library such as CUDA and/or
OpenCL.

The GPU server 420 that includes the virtual GPU 151B
may include a driver associated with the same graphics
library or a different graphics library. If the graphics libraries
on the virtual GPU 151B and GPU server 420 differ, then
translation of commands may be implemented to ensure
compatibility. The local graphics library may be specific to
a particular platform (e.g., to a particular operating system
family) associated with the virtual compute instance 141B,
and the remote graphics library associated with the virtual
GPU may represent a cross-platform graphics library that 1s
available on a variety of computing platforms (e.g., on
different families of operating systems and/or diflerent fami-
lies of computing hardware). The set of functions offered by
the local graphics library may differ (at least in part) from
the set of Tunctions offered by the remote graphics library of
the GPU server 420. However, many of the functions 1n the
local graphics library may have equivalent functions in the
remote graphics library of the GPU server 420. If the
graphics libraries differ in this manner, then on the virtual
compute instance, an intermediate driver may translate calls
associated with the local graphics library (such as Direct3D
or OpenGL) to the equivalent calls associated with a difler-
ent graphics library (such as the cross-platform Vulkan
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library) implemented by the GPU server. Equivalent func-
tions or equivalent calls may represent functions or calls that
typically produce the same or similar results even though the
form of the call may differ. The equivalent calls may be sent
over a network from the server 142B to the GPU server 420
for execution on the attached virtual GPU using the driver
associated with the remote graphics library. Converting
Direct3D or OpenGL calls to Vulkan commands may reduce
the round-trip delays and serialization overhead between the
two hosts. If the graphics libraries on the virtual GPU 151B
and GPU server 420 do not differ, then calls to the graphics
library may be passed directly to a rendering client 650
associated with that library without undergoing translation
from one library to another.

In one embodiment, one or more native graphics libraries
on the virtual compute instance may be replaced with
alternative versions in a process referred to as interposition.
The native libraries may be supplied by a vendor of the
physical GPU. When one of the applications 320 attempts to
load a native graphics library, a library interposition func-
tionality may interpose an alternative version instead of the
native version to permit graphics library virtualization. In
various embodiments, the library interposition may be per-
formed using various techniques. Using a {first technique, a
custom version of the display driver may be implemented
and 1nstalled instead of the display driver supplied by the
hardware vendor. Using a second technique, a filter driver
may be installed that makes the application process load the
alternative version of the library instead of the native one,
¢.g., during a LoadLibrary call made by the application. The
names of the native library and the alternative library may be
switched. Using a third technique, the application process
may be injected with an external library (e.g., a dynamic link
library) which detours the graphics library’s calls by chang-
ing the import address table (IAT) of the process. The choice
of interposition technique may vary according to the use
case, e.g., based on the architecture of the library that will be
interposed. For example, for Direct3D, injection of an
external library or direct installation of a custom display
driver may be superior to using a filter driver. As another
example, when coexistence with the hardware vendor driver
1s desired, and the library API 1s small (as 1n a user-mode
display driver), the injection technique may be used. As yet
another example, when the library API 1s large (like
OpenGL), the filter driver may be used.

The graphics library may represent a runtime API. The
runtime API may provide a standard interface to use the
GPU without requiring an application 320 to have knowl-
edge of the hardware being used and the underlying com-
mand bufler system. A runtime API may keep track of the
current state, validate parameters, perform error and consis-
tency checking, manage user-visible resources, and/or vali-
date shader code and shader linkage. On Windows, a graph-
ics acceleration runtime API may be represented by a
dynamic library which lies in the user space. For example,
OpenGL may expose the opengl32.d11 library that also
represents the Installable Client Driver (ICD) that sends
graphics commands directly to the kernel display dniver
through the D3DKMT API exposed by GDI32. As another

example, Direct3D may be represented by a set of libraries
(d3d9.dll, d3d10.dll, d3d11.dll, dxgi.dll) where the draw
calls are translated 1nto a series of graphics commands for an
intermediate driver that i1s called the user-mode display
driver (UMD).

The native UMD for Direct3D may represent a dynamic
library which 1s distributed by the GPU vendor (e.g.,
nvd3dum.dll by NVIDIA or attumd*.dll by AMD). The
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UMD may run 1n the same context and address space of the
API runtime and may have no elevated privileges. The UMD
may 1mplement a lower-level API, the device driver inter-
tace (DDI), which 1s similar to the 3D API but more explicit
about synchronization and memory management. The UMD
may provide per-process command builers that are vendor-
dependent and may contain the actual commands given to
the GPU. The shaders may be compiled 1n runtime, and the
driver may inject custom code to implement speciﬁc func-
tionality that does not translate directly to hardware. When
the command bufler 1s validated for the GPU, it may be
submitted to a kernel-mode display driver (KMD).

The one or more applications 320 may include a plurality
ol application threads 321A-321N that execute 1n parallel.
For example, a single application 320 may include the
multiple application threads 321A-321N. As another
example, the application threads 321 A-321N may belong to
multiple applications 320. In one embodiment, an applica-
tion thread may call the graphics library, e.g., to render all
or part of a 2D or 3D scene. The called library may, for
example, implement the Direct3D or OpenGL API. In one
embodiment, the calls may be intercepted by a client library
on the application host and provided to a rendering client
650. On the compute instance, the rendering client 650 may
be configured to collect and send commands to the GPU
server 420. The rendering client 650 may also be retferred to
as a command streamer. The rendering client 650 may
serialize the translated calls and send them over the network
to the GPU server 420. In one embodiment, a single network
connection (e.g., TCP connection) may be used for sending
the commands and data associated with the calls. As shown
in the example of FIG. 6A and FIG. 6B, the single connec-
tion may use a socket 659 on the client side and a corre-
sponding socket 671 on the server side. In one embodiment,
multiple network connections (e.g., TCP connections) may
be used for sending the commands and data, e.g., using one
connection per application thread. The use of multiple
network connections for commands and data may prevent
one application thread from obstructing other threads by
clogging a single connection with a large quantity of data. In
this manner, the various application threads may generate
and send commands (e.g., graphics commands) to the GPU
server over the network for execution using the virtual GPU.

FIG. 6B illustrates additional details of the rendering
client 650 and rendering agent 670, according to one
embodiment. On the graphics virtual machine 430, a ren-
dering server process 660 may listen to a particular port to
establish a network connection (e.g., TCP connection) with
a client. The rendering server 660 may also be referred to as
a graphics appliance server. When the first graphics com-
mand 1s called, a client transport thread 653 may try to
connect to the rendering server 660. Upon receiving a
connection request, the rendering server 660 may start a
rendering agent process 670. The rendering server 660 may
pass the TCP socket ID to the rendering agent 670 for later
use for command streaming. When the connection 1s ready,
the graphics commands can be collected by the client library
on the application host and pushed into data buflers 651 A-
651N, ¢.g., with one data buller per application thread. The
contents of the data buflers 651 A-651N may be further sent
to a client operation queue 652. When a data buller reaches
a maximum size (e.g., 2 MB) or the command stream must
be flushed, the rendering client 650 may send the data bufler
to the rendering agent 670. The commands and data 1n the
bufler may be sent by the rendering client 650 to the
rendering agent process 670, where the commands can be
unpacked, deserialized, and executed.
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The data bufler sent to the rendering agent 670 may be
received using socket 671, provided to server transport
thread 672, and placed 1n a data buller queue 673 that can
be accessed by a decoder thread 674. In the builer that 1s sent
to the rendering agent 670 (or other component of the GPU
server 420), a command (and its data) may be associated
with a thread identifier for the application thread that 1s
associated with the command. After receipt by the rendering
agent 670 (or other component of the GPU server 420), a
command (and 1ts data) may be assigned to an execution
thread that corresponds to the application thread based (at
least 1n part) on the thread identifier. In one embodiment, a
command may be added to a queue that 1s accessible by the
appropriate execution thread. For example, each execution
thread may have its own command queue or data bufler
queue. As shown 1n the example of FIG. 6B, the queue 675A
may be accessible by execution thread 676A, the queue
6758 may be accessible by execution thread 676B, and the
queue 675N may be accessible by execution thread 676IN.
The execution threads may execute 1n parallel on the GPU
server 420, and the commands managed by the various
execution threads may be executed on the virtual GPU to
generate output. In one embodiment, each application
thread, each command (and its data) generated by that
application thread, and the execution thread corresponding
to the application thread may be associated with the same
thread 1dentifier. If the execution thread corresponding to an
application thread already exists (e.g., based on 1spection
of the thread identifier), then a command associated with
that application thread may be assigned to that execution
thread without the need to launch a new execution thread. I
an execution thread corresponding to a thread 1dentifier does
not exist, then such a thread may be launched by the
rendering agent 670, e¢.g., on receipt of the first command
sent by a corresponding application thread.

An execution thread may mirror the activity of the cor-
responding application thread during the execution of com-
mands. For example, execution thread 676 A may mirror the
activity of application thread 321A, execution thread 6768
may mirror the activity of application thread 321B, and
execution thread 676N may mirror the activity of application
thread 321N. The data butlers sent by the application(s) 320
may be pushed into a generic data buller queue 673 on the
GPU server 420 and then to thread-specific buflers 675A-
675N. When a data buffer 1s acquired by an execution
thread, its commands can be unpacked, deserialized, and
executed 1n the context of the appropriate execution thread.
As the data buflers are processed by different execution
threads that run 1n parallel, the graphics command execution
may reproduce the same parallelism of the application(s)
320.

In one embodiment, the queue that holds commands for a
particular execution thread 1s accessible by two threads (the
decoder thread 674 that adds the commands and the execu-
tion thread that reads them) and may be protected by a lock
such as a mutex. A semaphore on the queue can be used to
understand where an action 1s required by the execution
thread. When a new data bufler 1s inserted into the queue, the
semaphore may be incremented by the decoder thread 674,
or else, when the data bufler 1s dequeued by the execution
thread, the semaphore may be decremented. When the queue
1s empty, no action 1s required, and the execution thread may
stay blocked to that semaphore until 1t 1s incremented by the
decoder thread 674 when a new data buller has been pushed
to the queue.

In some embodiments, different execution threads may be
associated with different graphics libraries, and the multi-
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threaded rendering may enable interoperability of the dii-
ferent graphics libraries on the same compute instance 1418
and also on the graphics virtual machine 430. For example,
one execution thread associated with OpenGL may run 1n
parallel with another execution thread associated with
OpenCL. The execution threads may be closed 1n a manner
dependent on the graphics library that 1s virtualized. For
example, using OpenGL, only one rendering context may be
current to one thread at once. When the execution thread
does not have a current context, it cannot execute graphics
commands or store internal states, and 1t may be closed. In
one embodiment, the execution thread may be closed when
glXMakeCurrent(dpy, drawable, NULL) 1s called. A new
execution thread may be launched 1f another context will be
made current on it. In this manner, the accumulation of
execution threads may be avoided for those application
threads that are closed by the application 320.

Operating in parallel, the various execution threads of the
rendering agent 670 may communicate with the display
driver on the GPU server 420 to execute the calls, e.g., to
render all or part of scene to a frame builer bound to the
application window. The resulting output may be captured 1n
a copyback block and sent back over the network to an
image composition component on the virtual compute
instance 141B. The image composition component may
draw the 1image 1n a window associated with the correspond-
ing application 320. Alternatively, the output of executing
the calls on the virtual GPU may be provided to another
external component such as the client device 180A. For a
GPGPU implementation, the rendering client 650 and ren-
dering agent 670 may be referred to as a compute client and
compute agent, and the compute client and compute agent
may serve similar roles as the rendering client and rendering,
agent. The rendering server 660 may close the rendering
agent process 670 if the corresponding application 320 has
been terminated or the connection 1s lost.

On the GPU server 420, to share the GPU among different
processes, a mechanism may be used to ensure not only that
the commands are executed in order but also that the GPU
can be used by the processes and that no data corruption is
introduced during the scheduling. These operations may be
implemented by a device driver executing in kernel mode
(KMD), where the scheduler and the main command butler
are used to talk to the GPU. A kernel driver scheduler may
read commands (and associated data) from each individual
per-thread bufler and move them to direct memory access
(DMA) buflers. A GPU may include a DMA controller and
a memory management unit (MMU). The DMA bufler may
allow the GPU to talk directly to host RAM to fetch and
write data without CPU intervention. The MMU may vir-
tualize GPU memory and host memory and offers some
memory protection. The DMA buflers may be put into the
main command bufler, which may be a ring bufler (first-in,
first-out) that 1s filled by the CPU and read by the GPU until
it 1s drained. If the ring 1s empty (e.g., 1f write and read
pointers are equal), then the GPU may stall and wait until
has something to do. If the CPU fills the entire bufler, 1t may
be reqmred to wait for the GPU to finish and create free
space 1n the bulfler.

FIG. 7 illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of query messages for
blocking calls, according to one embodiment. The multi-
threaded rendering techniques discussed above may be used
to 1implement parallelism for asynchronous calls. In some
embodiments, the multithreaded rendering techniques dis-
cussed above may also be used to implement parallelism for
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synchronous calls. In one embodiment, an application thread
may 1ssue a blocking call (also referred to as a synchronous
call). The thread may block (with no further execution) until
a response 1s received from the rendering agent (or other
component of the GPU server) to indicate that the applica-
tion thread may resume execution. In one embodiment, one
Or more query messages may be sent by the rendering client
(or other component of the application host) to the rendering
agent (or other component of the GPU server) to inquire as
to the status of the blocking call. In one embodiment, query
messages may be collected in a query message queue 654.

The query messages may be sent with increasing intervals
of time, e.g., using an exponential backofl technique, until a
response 1s received or until a timeout threshold occurs.
When the execution of the blocking call 1s completed, the
result may be pushed into an answer message queue 677.
When a query message arrives for that blocking call, the
queue 677 may be checked to see 1f the result has been
already pushed. If the result 1s not ready, a NULL response
may be sent back to the application thread, and the appli-
cation thread may stay blocked on that function and may
continue to send query messages until the proper response 1s
received. If the result 1s ready 1n the queue 677, then the
corresponding execution thread may generate a response
that indicates that the application thread may resume. The
response may be sent from the rendering agent to the
rendering client, and on receipt of the response, the appli-
cation thread may be unlocked and may resume execution.
By using query messages in this manner, other application
threads may be allowed to execute and send commands to
the virtual GPU while one thread i1s blocked rather than
cllectively blocking or impacting performance for the entire
application and client library by allowing one thread to
occupy the TCP socket.

In one embodiment, when a blocking call 1s serialized, the
data bufler can be flushed, binding 1t mnto a new opcode,
iserting all the mformation that will be used to create a
query message irom the opcode, and pushing 1t into the
opcode queue. For example, opcodes for blocking calls that
return values may include GET_ONE_FIXED (e.g., the data

bufter 1s sent and will wait until 1t receives a fixed vector of

values that are produced by the agent when the bufler 1s
received, deserialized, and the last command executed, 1n
order to execute blocking calls that need to get values when
the size of the vector 1s known on the client and the data
copied on the fly to the array passed externally by the
application) and GET_ONE_VARIABLE (e.g., the data
butler 1s sent and will wait until 1t receives a variable vector
of values that are produced by the agent when the butler 1s
received, deserialized, and the last command executed, 1n
order to execute blocking calls that need to get values when
the size of the vector can be known only on the rendering
agent). Opcodes may also include FLUSH for non-blocking
calls (e.g., the data bufler 1s sent to the rendering agent,
writing directly on the TCP socket, and no answer 1s
required from the rendering agent) and SYNC (e.g., the data
bufler 1s sent to the rendering agent, 1t will wait unfil it
receives a sync acknowledgement produced immediately by
the agent when the bufler 1s received), and FINISH or SWAP
(e.g., the data bufler 1s sent and will wait for an acknowl-
edgement that 1s produced by the agent when the bufler i1s
received, deserialized, and the last command executed, in
order to implement blocking calls that do not need to get a
value as result). After the data bufler 1s flushed to the
rendering agent, the application thread can wait for the
semaphore used by the opcode. When the client transport
processes this particular kind of opcode, 1t may immediately
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send the data buller to the rendering agent. After that, 1t may
create a new query message with the thread identifier, the
semaphore where the application thread 1s blocked, and all
the pointers where the data will be written when an answer
1s received from the rendering agent. If a non-NULL result
1s received from the rendering agent, then the data can be
copied ito the array using the pointer contained into the
message, the semaphore can be signaled to unlock the
application thread, and the message can be removed from
the query message queue 654.

In one embodiment, the number of round-trips generated
for the queries may be reduced by collecting the results and
updating them when any kind of acknowledgement arrives
from the agent. Query messages may not necessarily be sent
or answered for every blocking call. For example, results of
multiple blocking calls from multiple application threads
may be collected 1n the answer message queue 677 by the
rendering agent. When the rendering agent responds to one
query message, the rendering agent may send a response for
that blocking call and also for other blocking calls that have
completed execution, as indicated in the query message
queue 677. The responses may be packed into a bufler and
then unpacked on the client side for the appropriate appli-
cation threads.

FIG. 8 1illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of multiple data
slices, according to one embodiment. In one embodiment,
the time 1nterval for the query messages could increase the
time required to execute a function. For example, if the
blocking call 1s slow enough to require a query every T ms,
then a portion of T may be wasted. Moreover, if the TCP
channel 1s busy with a large amount of data, then the query
message may be received with a delay that could increase
the time required to get the result. In one embodiment, to
address these potential problems, data buflers may be
divided or decomposed 1into multiple data slices that can be
recomposed on the rendering agent. In one embodiment, the
data buflers sent by the client transport can pass through a
data slice decomposer 6355. If the data bufler 1s less than N
MB, 1t can be sent as 1s. Otherwise, no more than N MB may
be sent, and the remaining portion of data bufler may be
inserted again nto the client operation queue 632 to be
processed 1n the next round. On the rendering agent, the data
slice may not be pushed into the data bufler queue but
instead stored 1 a temporary slot, such as the data slice
composer 678, until the next pieces will be collected and
recomposed to build the original data buffer. When the data
bufler 1s reconstructed by, it can be pushed 1n the data bufler
queue 673. If required, an acknowledgement may be sent
only when the data butler 1s complete and can be pushed into
the queue. Using this technique, multiple data slices from
multiple threads may be sent without occupying the whole
channel for one bufler at a time. Additionally, the query
messages may take less time to be sent and received.

FIG. 9 illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of a separate network
connection for query messages, according to one embodi-
ment. In one embodiment, performance may sufler if a
sufliciently large amount of data buflers and query messages
occupy a single TCP connection over a period of time. To
mitigate this potential problem, 1n one embodiment, a dif-
ferent network connection (e.g., TCP connection) may be
used for the query messages and responses than for the
commands and data. In one embodiment, the network con-
nection used for data buflers may also be used for synchro-
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nization acknowledgements. As shown 1n the example of
FIG. 9, one connection including sockets 659A and 671A
may be used to send data buflers (potentially decomposed
into data slices) and acknowledgements, and another con-
nection including sockets 6598 and 671B may be used to
send query messages and answers to query messages. Using
a dedicated TCP connection for query messages, the query
messages may be sent more frequently because the round-
trips do not necessarily slow down the command stream. To
establish the second connection, the client may try a second
connection on the same port as the first, after the first has
been established. In this case, the rendering server may
receive a second attempt that can be considered as associ-
ated with the rendering agent, e.g., if a special flag 1s passed
during the handshake. After the second connection, the
rendering server may launch a new rendering agent, passing,
the two socket identifiers to it.

FIG. 10 illustrates further aspects of the example system
environment for multithreaded rendering for virtualized
graphics processing, including the use of multiple network
connections for commands and data, according to one
embodiment. In one embodiment, multiple network connec-
tions (e.g., TCP connections) may be used for sending the
commands and data. Native TCP multiplexing on the same
port may be used to implement the dedicated network
connections. To have an arbitrary number of network con-
nections, the rendering server may act as an intermediate
process that 1s listening on a particular port. In one embodi-
ment, one dedicated network connection may be opened for
cach application thread that seeks to send commands to the
virtual GPU. In one embodiment, one dedicated network
connection of multiple connections may be shared by mul-
tiple application threads that seek to send commands to the
virtual GPU. The creation of each network connection may
be associated with overhead such as the creation of the TCP
connection, the client transport thread, the server transport
thread, and the decode thread, potentially for each applica-
tion thread that requires a dedicated connection. As shown
in the example of FIG. 10, one application thread 321 A may
be associated with a dedicated data bufler 651A, client op
queue 652 A, client transport thread 653 A, client-side socket
659A, server-side socket 671A, server transport thread
672A, data builer queue 675A, server op queue 679A, and
execution thread 674A, while another application thread
321N may be associated with a dedicated data builer 651N,
client op queue 652N, client transport thread 653N, client-
side socket 659N, server-side socket 671N, server transport
thread 672N, data buller queue 675N, server op queue 679N,
and execution thread 674N. In one embodiment, to mitigate
such overhead, the use of multiple network connections for
commands and data may be disabled or reduced if the
application host includes a sufliciently large number of
application threads.

In one embodiment, 1nstead of 1nitializing a single client
transport only when the first function 1s called and the client
library 1nmitialized, the mnitialization can be performed when
the first graphics command 1s senalized, e.g., for every
thread. In one embodiment, a pointer to the transport object
used for serialization can be stored into the transport layer
security (TLS). When this object 1s used for the serialization,
it can be checked to see 11 the pointer 1s NULL or not. If the
pointer 1s not NULL, 1t means that a client transport (and the
TCP connection) has been already imitialized and can be
used for the serialization, or else a new client transport may
be 1nitialized for that thread. In this case, the client transport
handler can try to connect to the port where the rendering
server 1s listening.
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When the rendering server receives a new client connec-
tion, 1t can read a series of information that 1s transmitted
during the handshake, including the client identifier of the
application that required the connection. If the handshake 1s
successiul, the rendering server may check if the client
identifier has been already pushed 1nto an internal list. If not,
it means that the process 1s calling a graphics function for the
first time and a new rendering agent process should be
launched. After that, a communication pipe may be opened
between the rendering server and the rendering agent. It the
client identifier 1s on the list, the rendering server may
proceed to the next step. The client identifier may be used to
get the communication pipe where the rendering agent 1s
listening. The socket i1dentifier of the TCP connection may
be sent to the rendering agent using that communication
pipe. When the message arrives at the agent, the server
transport handler may use the socket identifier to 1mtialize a
new server transport thread and decode thread associated
with the application thread. On the client side, a new client
transport thread may be mmitialized using the TCP socket.
The new client transport object may be sent to the TLS, and
the check can be repeated again. If the transport object 1s
then found, 1t can be used to serialize the graphics com-
mands. The TCP connections can be closed when no context
1s current the application thread, e.g., when a gl XMakeCur-
rent(dpy, drawable, NULL) 1s executed on the decode
thread. A termination handshake may close the TCP con-
nection, and the client/server threads may be terminated.

Using the full TCP multiplexing for parallel command
execution may provide improved performance with several
acknowledgements and data bufllers sent 1n parallel. How-
ever, the same approach may impact performance due to the
time required to perform the imitialization and the termina-
tion handshakes, especially when the TCP connections are
frequently opened and closed. In one embodiment, to miti-
gate this potential problem, a TCP connection may be closed
when no context 1s current for a sufliciently long amount of
time.

In some embodiments, different network connections may
be employed in parallel for different graphics libraries
present on the application host. For example, the application
host may concurrently offer, to applications, the varying
functionality associated with OpenGL, OpenCL, Vulkan,
and so on. Fach graphics library may have at least one
dedicated TCP connection between the application host and
the GPU server. In one embodiment, a graphics library may
have multiple TCP connections, €.g., one connection for data
buflers and another connection for query messages and
answers, or one connection per application thread. In one
embodiment, data builers for one graphics library may be
decomposed nto data slices, while data buflers for another
graphics library may not. TCP multiplexing on a library-by-
library basis may enable library-specific management of
command streams and other data sent between the applica-
tion host and the GPU server.

FIG. 11 1s a flowchart illustrating a method for multi-
threaded rendering for virtualized graphics processing,
according to one embodiment. As shown 1n 1100, a virtual
compute 1nstance may be provisioned with an attached
virtual GPU. The virtual compute mstance may be selected
based (at least 1 part) on computational and memory
resources provided by the virtual compute instance. For
example, the virtual compute 1nstance may be selected based
(at least 1n part) on a selection of an 1stance type by a client.
The virtual GPU may be selected based (at least 1n part) on
graphics processing capabilities provided by the virtual
GPU. For example, the virtual GPU may be selected based
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(at least 1n part) on a selection of a virtual GPU class by a
client. The virtual compute 1nstance and virtual GPU may
also be selected based (at least in part) on availability of
resources 1n a resource pool of a provider network that
manages such resources. In one embodiment, an elastic
graphics service may receive the specifications for and/or
selections of the virtual compute nstance and virtual GPU.
The elastic graphics service may interact with one or more
other services or functionalities of a provider network, such
as a compute virtualization functionality and/or GPU virtu-
alization functionality, to provision the instance with the

virtual GPU.

The virtual compute 1nstance may be implemented using,
central processing unit (CPU) resources and memory
resources ol a server, also referred to as a physical compute

instance. The virtual GPU may be implemented using a
physical GPU in a GPU server. The physical GPU may be

attached to or included 1n a different computing device (e.g.,
the GPU server) than the computing device that provides the
CPU resources for the virtual compute mstance. The physi-
cal GPU may be accessible to the server over a network. The
virtual GPU may be said to be attached to the wvirtual
compute instance, or the virtual compute instance may be
said to include the virtual GPU. In one embodiment, the
physical GPU may be shared between the virtual GPU and
one or more additional virtual GPUs, and the additional
virtual GPUs may be attached to additional virtual compute
instances. In one embodiment, the virtual GPU may be
accessible to the virtual compute instance via an interface
device that includes a network interface and a custom
hardware interface. Via the custom hardware intertace, the
interface device may emulate a GPU and appear to the
virtual compute mstance to include the virtual GPU. Via the
network interface, the interface device may communicate
with the physical GPU over the network.

As shown 1n 1110, execution of one or more applications
may be mitiated on the virtual compute instance. The one or
more applications may include a plurality of application
threads that execute i parallel. In one embodiment, an
application thread may call a graphics library, e.g., to render
all or part of a 2D or 3D scene. A graphics library may
include a set of graphics functions, calls, or commands that
can be invoked by other software components on the virtual
compute mstance, such as an application. A graphics library
may ofler a graphics application programming interface
(API), and the first graphics library may sometimes be
referred to as a graphics API. By calling the graphics library,
the various application threads may generate and send
commands (e.g., graphics commands) to the GPU server
over the network for execution using the virtual GPU. At
least some of the commands may be associated with data,
¢.g., as mput to a particular command.

As shown 1n 1120, the commands and their associated
data may be sent from the virtual compute instance to the
GPU server. When the virtual compute 1nstance collects and
sends commands and associated data to the GPU server, a
packet with a command and/or data may be associated with
a thread identifier for the application thread that generated
the command. In one embodiment, one bufler sent to the
GPU server may include such packets as generated by (or on
behalf of) multiple application threads. In one embodiment,
the commands and data may be sent over a single network
connection that 1s shared by multiple application threads. In
one embodiment, the commands and data may be sent over
multiple network connections, e.g., one connection per
application thread.
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Instead of executing the commands using a single thread
on the GPU server, the GPU server may launch a plurality
of execution threads that execute in parallel. In one embodi-
ment, the execution threads may correspond to the applica-
tion threads, e.g., with a one-to-one correspondence. As
shown 1n 1130, the commands and their associated data may
be assigned to individual execution threads on the GPU
server. Upon receipt by the GPU server, a command (and 1ts
data) may be assigned to an execution thread that corre-
sponds to the application thread based (at least 1n part) on the
thread identifier. An execution thread may be launched on
receipt of the first command sent by a corresponding appli-
cation thread. In one embodiment, assigning a command to
an appropriate execution thread may include adding the
command to a queue that 1s accessible by that execution
thread and not necessarily by other execution threads.

As shown 1n 1140, the virtual GPU may generate output
based on execution of the commands and the associated
data. For example, the virtual GPU may render all or part of
a 2D or 3D scene or may perform GPGPU computation. At
least some of the commands may be executed in parallel
using the parallel execution threads. Execution of threads in
parallel may include maintaining aspects of the threads in
memory simultaneously and using one or more processing
clements for simultaneous or concurrent execution of
instructions associated with the threads. Execution of
threads 1n parallel may include concurrent execution using
one processor, €.g., using techniques for task switching to
create the appearance of parallel execution. Using these
techniques, parallelism on the application host may be
maintained on the GPU server that implements the virtual
GPU.

[lustrative Computer System

In at least some embodiments, a computer system that
implements a portion or all of one or more of the technolo-
gies described herein may include a computer system that
includes or 1s configured to access one or more computer-
readable media. FI1G. 12 1llustrates such a computing device
3000. In the illustrated embodiment, computing device 3000
includes one or more processors 3010A-3010N coupled to a
system memory 3020 via an mput/output (I/O) interface
3030. Computing device 3000 further includes a network
interface 3040 coupled to 1I/O interface 3030.

In various embodiments, computing device 3000 may be
a uniprocessor system including one processor or a multi-
processor system including several processors 3010A-
3010N (e.g., two, four, eight, or another suitable number).
Processors 3010A-3010N may include any suitable proces-
sors capable of executing instructions. For example, 1n
vartous embodiments, processors 3010A-3010N may be
processors implementing any of a variety of instruction set
architectures (ISAs), such as the x86, PowerPC, SPARC, or
MIPS ISAs, or any other suitable ISA. In multiprocessor
systems, each of processors 3010A-3010N may commonly,
but not necessarily, implement the same ISA.

System memory 3020 may be configured to store program
instructions and data accessible by processor(s) 3010A-
3010N. In various embodiments, system memory 3020 may
be mmplemented using any suitable memory technology,
such as static random access memory (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory,
or any other type of memory. In the illustrated embodiment,
program 1nstructions and data implementing one or more
desired functions, such as those methods, techniques, and
data described above, are shown stored within system
memory 3020 as code (1.e., program nstructions) 3025 and

data 3026.
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In one embodiment, I/O nterface 3030 may be configured
to coordinate I/0O traflic between processors 3010A-3010N,
system memory 3020, and any peripheral devices 1n the
device, including network interface 3040 or other peripheral
interfaces. In some embodiments, I/O interface 3030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component
(e.g., system memory 3020) into a format suitable for use by
another component (e.g., processors 3010A-3010N). In
some embodiments, I/O interface 3030 may include support
for devices attached through various types of peripheral
buses, such as a variant of the Peripheral Component Inter-
connect (PCI) bus standard or the Universal Serial Bus
(USB) standard, for example. In some embodiments, the
function of I/O interface 3030 may be split into two or more
separate components, such as a north bridge and a south
bridge, for example. Also, 1n some embodiments some or all
of the functionality of I/O interface 3030, such as an
interface to system memory 3020, may be incorporated
directly mto processors 3010A-3010N.

Network interface 3040 may be configured to allow data
to be exchanged between computing device 3000 and other
devices 3060 attached to a network or networks 3030. In
various embodiments, network intertace 3040 may support
communication via any suitable wired or wireless general
data networks, such as types of Ethernet network, for
example. Additionally, network interface 3040 may support
communication via telecommunications/telephony networks
such as analog voice networks or digital fiber communica-
tions networks, via storage area networks such as Fibre
Channel SANs, or via any other suitable type of network
and/or protocol.

In some embodiments, system memory 3020 may be one
embodiment of a computer-readable (1.e., computer-acces-
sible) medium configured to store program instructions and
data as described above for implementing embodiments of
the corresponding methods and apparatus. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
readable media. Generally speaking, a computer-readable
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 3000 via 1/0
interface 3030. A non-transitory computer-readable storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc., that may be included 1n some
embodiments of computing device 3000 as system memory
3020 or another type of memory. Further, a computer-
readable medium may include transmission media or signals
such as electrical, electromagnetic, or digital signals, con-
veyed via a communication medium such as a network
and/or a wireless link, such as may be implemented via
network interface 3040. Portions or all of multiple comput-
ing devices such as that illustrated in FIG. 12 may be used
to implement the described functionality in various embodi-
ments; for example, software components running on a
variety of different devices and servers may collaborate to
provide the functionality. In some embodiments, portions of
the described functionality may be implemented using stor-
age devices, network devices, or various types ol computer
systems. The term “‘computing device,” as used herein,
refers to at least all these types of devices, and 1s not limited
to these types of devices.

The various methods as illustrated i1n the Figures and
described herein represent examples of embodiments of
methods. The methods may be implemented 1n software,

10

15

20

25

30

35

40

45

50

55

60

65

28

hardware, or a combination thereof. In various ones of the
methods, the order of the steps may be changed, and various
clements may be added, reordered, combined, omitted,
modified, etc. Various ones of the steps may be performed
automatically (e.g., without being directly prompted by user
input) and/or programmatically (e.g., according to program
instructions).
The terminology used 1n the description of the invention
herein 1s for the purpose of describing particular embodi-
ments only and 1s not intended to be limiting of the inven-
tion. As used in the description of the invention and the
appended claims, the singular forms “a”, “an” and *“the” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will also be under-
stood that the term “and/or” as used herein refers to and
encompasses any and all possible combinations of one or
more of the associated listed items. It will be further
understood that the terms “includes,” “including,” “com-
prises,” and/or “comprising,” when used 1n this specifica-
tion, specily the presence of stated features, integers, steps,
operations, elements, and/or components, but do not pre-
clude the presence or addition of one or more other features,
integers, steps, operations, elements, components, and/or
groups thereof.
As used herein, the term “1”” may be construed to mean
“when” or “upon” or “in response to determining” or “in
response to detecting,” depending on the context. Similarly,
the phrase “if 1t 1s determined” or “if [a stated condition or
event] 1s detected” may be construed to mean “upon deter-
mining” or “in response to determining”’ or “upon detecting
[the stated condition or event]” or “in response to detecting
[the stated condition or event],” depending on the context.
It will also be understood that, although the terms first,
second, etc., may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another. For example, a first contact could be termed a
second contact, and, similarly, a second contact could be
termed a first contact, without departing from the scope of
the present mvention. The first contact and the second
contact are both contacts, but they are not the same contact.
Numerous specific details are set forth herein to provide
a thorough understanding of claimed subject matter. How-
ever, 1t will be understood by those skilled 1n the art that
claimed subject matter may be practiced without these
specific details. In other instances, methods, apparatus, or
systems that would be known by one of ordinary skill have
not been described 1n detail so as not to obscure claimed
subject matter. Various modifications and changes may be
made as would be obvious to a person skilled 1n the art
having the benefit of this disclosure. It 1s intended to
embrace all such modifications and changes and, accord-
ingly, the above description 1s to be regarded 1n an 1llustra-
tive rather than a restrictive sense.
What 1s claimed 1s:
1. A system, comprising;
a computing device comprising one Or more processors
and one or more memories to store computer-execut-
able 1nstructions that, when executed, cause the one or
more processors to:
generate a plurality of commands using a plurality of
application threads executing in parallel on a virtual
compute instance, wherein individual ones of the
commands are associated with identifiers of indi-
vidual ones of the application threads; and

send the plurality of commands to a graphics process-

ing unit (GPU) server via a network, wheremn a
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virtual GPU 1s implemented using a physical GPU of
the GPU server, wherein the individual ones of the
commands are assigned to individual ones of a
plurality of execution threads on the GPU server
based at least 1n part on the 1dentifiers, and wherein
the individual ones of the execution threads corre-
spond to the individual ones of the application
threads.

2. The system as recited 1n claim 1, wherein the one or
more memories store additional computer-executable
instructions that, when executed, cause the one or more
processors to:

store the mdividual ones of the commands 1n a plurality

of thread-specific data bufllers, wherein individual ones
of the thread-specific data buflers correspond to the
individual ones of the application threads.

3. The system as recited in claim 1, wherein the applica-
tion threads comprise a first application thread, wherein the
commands comprise a blocking call generated by the first
application thread, and wherein the one or more memories
store additional computer-executable instructions that, when
executed, cause the one or more processors to:

send, to the GPU server, one or more query messages

associated with the blocking call; and

receive, from the GPU server, a response to the one or

more query messages based at least in part on com-
pleted execution of the blocking call on the GPU server,
wherein the first application thread resumes execution
based at least in part on receipt of the response.

4. The system as recited in claim 3, wherein the com-
mands are sent via a first network connection between the
computing device and the GPU server, and wherein the one
Or more query messages are sent via a second network
connection between the computing device and the GPU
Server.

5. The system as recited 1n claim 1, wherein the applica-
tion threads comprise a first application thread and a second
application thread, wherein the commands comprise a first
blocking call generated by the first application thread and a
second blocking call generated by the second application
thread, and wherein the one or more memories store addi-
tional computer-executable instructions that, when
executed, cause the one or more processors to:

receive, from the GPU server, a buller comprising an

indication that the first blocking call has completed
execution and an indication that the second blocking
call has completed execution.

6. The system as recited 1n claim 1, wherein GPU output

1s generated based at least 1n part on parallel execution of at
least some of the execution threads.
7. A computer-implemented method, comprising:
generating, by a computing device that implements a
virtual compute instance, a plurality of commands,
wherein the commands are generated using a plurality
of application threads executing in parallel on the
virtual compute mstance, and wherein individual ones
of the commands are associated with identifiers of
individual ones of the application threads; and
sending the plurality of commands from the computing
device to a graphics processing unit (GPU) server via
a network, wherein a virtual GPU 1s implemented using
a physical GPU of the GPU server, wherein the indi-
vidual ones of the commands are assigned to individual
ones of a plurality of execution threads on the GPU
server based at least in part on the identifiers, and
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wherein the idividual ones of the execution threads
correspond to the individual ones of the application
threads.

8. The method as recited 1n claim 7, further comprising:

storing, by the computing device, the individual ones of

the commands 1n a plurality of thread-specific data
buflers, wherein individual ones of the thread-specific
data buflers correspond to the individual ones of the
application threads.

9. The method as recited in claim 7, wherein the appli-
cation threads comprise a first application thread, wherein
the commands comprise a blocking call generated by the
first application thread, and wherein the method further
COmMprises:

sending, by the computing device to the GPU server, one

or more query messages assoclated with the blocking
call; and

recerving, by the computing device from the GPU server,

a response to the one or more query messages based at
least 1 part on completed execution of the blocking
call on the GPU server, wherein the first application
thread resumes execution based at least in part on
receipt of the response.

10. The method as recited 1in claim 9, wherein the com-
mands are sent via a first network connection between the
computing device and the GPU server, and wherein the one
Or more query messages are sent via a second network
connection between the computing device and the GPU
SErver.

11. The method as recited 1n claim 7, wherein the appli-
cation threads comprise a first application thread and a
second application thread, wherein the commands comprise
a first blocking call generated by the first application thread
and a second blocking call generated by the second appli-
cation thread, and wherein the method further comprises:

recerving, by the computing device from the GPU server,

a bufler comprising an indication that the first blocking
call has completed execution and an indication that the
second blocking call has completed execution.
12. The method as recited 1n claam 7, wherein the com-
mands are sent via a plurality of concurrent network con-
nections between the computing device and the GPU server.
13. The method as recited 1n claim 7, wherein GPU output
1s generated based at least in part on parallel execution of at
least some of the execution threads.
14. One or more non-transitory computer-readable stor-
age media storing program instructions that, when executed
On Or across one or more processors, perform:
generating, by a computing device that implements a
virtual compute instance, a plurality of commands,
wherein the commands are generated using a plurality
of application threads executing in parallel on the
virtual compute 1nstance, and wherein individual ones
of the commands are associated with identifiers of
individual ones of the application threads; and

sending the plurality of commands from the computing
device to a graphics processing unit (GPU) server via
a network, wherein a virtual GPU 1s implemented using,
a physical GPU of the GPU server, wherein the 1ndi-
vidual ones of the commands are assigned to individual
ones of a plurality of execution threads on the GPU
server based at least in part on the identifiers, and
wherein the individual ones of the execution threads
correspond to the individual ones of the application
threads.

15. The one or more non-transitory computer-readable
storage media as recited in claim 14, wherein the one or
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more storage media store additional program instructions
that, when executed on or across one or more processors,
perform:
storing, by the computing device, the individual ones of
the commands 1n a plurality of thread-specific data
buflers, wherein individual ones of the thread-specific
data buflers correspond to the individual ones of the
application threads.

16. The one or more non-transitory computer-readable
storage media as recited 1n claim 14, wherein the application
threads comprise a first application thread, wherein the
commands comprise a blocking call generated by the first
application thread, and wherein the one or more storage
media store additional program instructions that, when
executed on or across one or more processors, perform:

sending, by the computing device to the GPU server, one

or more query messages associated with the blocking
call; and

receiving, by the computing device from the GPU server,

a response to the one or more query messages based at
least 1n part on completed execution of the blocking
call on the GPU server, wherein the first application
thread resumes execution based at least in part on
receipt of the response.

17. The one or more non-transitory computer-readable
storage media as recited 1n claim 16, wherein the commands
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are sent via a first network connection between the comput-
ing device and the GPU server, and wherein the one or more
query messages are sent via a second network connection
between the computing device and the GPU server.

18. The one or more non-transitory computer-readable
storage media as recited 1n claim 14, wherein the application
threads comprise a first application thread and a second
application thread, wherein the commands comprise a {first
blocking call generated by the first application thread and a
second blocking call generated by the second application
thread, and wherein the one or more storage media store
additional program 1instructions that, when executed on or
across one or more processors, perform:

receiving, by the computing device from the GPU server,

a buller comprising an indication that the first blocking
call has completed execution and an indication that the
second blocking call has completed execution.

19. The one or more non-transitory computer-readable
storage media as recited in claim 14, wherein the commands
are sent via a plurality of concurrent network connections
between the computing device and the GPU server.

20. The one or more non-transitory computer-readable
storage media as recited 1n claim 14, wherein GPU output 1s
generated based at least 1n part on parallel execution of at
least some of the execution threads.
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