12 United States Patent

Sterin et al.

US010866767B2

US 10,866,767 B2
*Dec. 15, 2020

(10) Patent No.:
45) Date of Patent:

(54) ENFORCING LIMITS ON A SELF-SERVE
MODEL FOR PROVISIONING DATA

VOLUMES FOR CONTAINERS RUNNING IN
VIRTUAL MACHINES

(71)
(72)

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventors: Mark Sterin, Mountain View, CA
(US); Andrew Stone, Somerville, MA
(US); Prashant Dhamdhere, Palo Alto,
CA (US); Ritesh H. Shukla, Saratoga,
CA (US); Govindan Thirumal

Thiruvengada, Bangalore (IN)
(73)

(%)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

(21) 15/608,870

(22)

Appl. No.:

Filed: May 30, 2017

(65) Prior Publication Data

US 2017/0344270 Al Nov. 30, 2017

Related U.S. Application Data

Provisional application No. 62/343,780, filed on May
31, 2016.

(60)

Int. CIL.
GO6F 3/06
GO6F 9/455

U.S. CL
CPC

(51)
(2006.01)
(2018.01)
(52)
GOGF 3/0665 (2013.01); GO6F 3/0605

(2013.01); GOGF 3/067 (2013.01); GO6F
3/0608 (2013.01); GOGF 3/0619 (2013.01):

\

(Host Camputer Sysiem
10:1

VIVI{s) 130-1

Container

131

Plug-
i

133

035
140

Dasmon

111
Hypervisor 110-1

CPU({s)

MNIC(s)
p

kerm.

124
HBA(s)

igd

HWW
Platform

120-1

1

GO6F 3/0631 (2013.01); GO6F 3/0632
(2013.01); GO6F 3/0653 (2013.01); GO6F

3/0689 (2013.01); GOGF 9/45558 (2013.01);
GO6F 2009/45562 (2013.01); GO6F
2009/45579 (2013.01); GO6F 2009/45583
(2013.01)

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3/1993 Shinmura

5,193,171 A * GO6F 3/0605

707/999.202
GO6F 9/5083
GO6F 3/0605

711/114

90,852,011 B1* 12/2017 Yemim
2005/0257003 Al*

ttttttttttttttttt

11/2005 Miyazaki

tttttttttttttt

(Continued)

Primary Examiner — Charles] Cho1

(74) Attorney, Agent, or Firm — Patterson + Sheridan,
LLP

(57) ABSTRACT

A computer system has a virtualization software that sup-
ports execution of a virtual machine 1n which a container 1s
run. A method of managing allocation of storage resources
to the container includes the steps of monitoring a virtual
socket, detecting, based on the monitoring, a request from a
plug-in of the container to create a data volume, upon
detecting the request, retrieving a storage resource limit that
has been set for the first virtual machine and determining 11
creation of the data volume causes the storage resource limait
to be exceeded, and communicating the request to the
virtualization soitware to cause the virtualization software to
create the data volume 1f the limit 1s determined to be not
exceeded and returning an error 1f the limit 1s determined to
be exceeded.

20 Claims, 4 Drawing Sheets

(Host Computer Sysiem \‘
100N

VM(s) 130-N

Contamar

Plug-

05 Ir

Daemon

Hypervigor 116-N

CPU(s) Merm.

MBA(S) | | NIC(S)

HW
Flatform

—)

Storage System 150

VM Management Server 160

US 10,866,767 B2
Page 2

(56)

2009/0024752
2009/0240910

2009/0288084

2013/0036266
2013/0086585

2013/0125119
2013/0179648

2015/0378624

References Cited

U.S. PATENT DOCUMENTS

Al 1/2009 Shitomu

Al* 9/2009 Inomata
Al* 11/2009 Astetecc........
Al 2/2013 Naganuma et al.
Al* 4/2013 Huang
Al 5/2013 Vipat et al.

Al* 7/2013 Yagame
Al 12/2015 Choudhary et al.

* cited by examiner

GO6F 3/0605

711/171

GOO6F 9/45533

718/1

HO4L 67/14

718/1

GO6F 3/0604

711/156

US 10,866,767 B2

Sheet 1 of 4

Dec. 15, 2020

U.S. Patent

+ + + + + + + + +F A+ + + + + + + ¥ +F +

+ + + + + + + + + + + + + + + + F+F F A+ttt ettt ottt ettt sttt ottt
+

g

17

+ &+ + + + + + + + + 4+

)

+ + + + + + + + + + + + F + A+ F A F

Laemon

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

C .t ;
LI NN NN N BB B BB EEBEBEEBEERBEERBBEIEBRENEEBIEBEEINEIENEIEIEESELE.]I

HYPervisor
Mlatform

+ + + + + + F + F F F F A+ FFFFEFFFEFEFFEFFEFEFFEFEFEFEFEFFEFEFEFFEFEFEFEFFEFEFFEFEFFFEFFFEFFFEFFEFEFEFFEFFE A FEFEFE A+ + + + + + + + + + + +F F F F A+ FFFFFFFFAFEFFEAFEAFFEAFEFFEAFEFFEF + + + + + + + F F F F A+ FFFFFFFFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFFEAFEFEFEFEFEFEFEFEFEFEFEFEAFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFE

Host Computer System
100-N

* + + + + + F FF F FFFFFEFFFFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFES

110-]

+ + + + + + + + + + + + + + + + F A+ +F Sttt ottt ottt Attt ettt Attt

H VY
Plattorm
12001

L N B NN NS N N NN N N NN NN L N B N NS N N N N L N B BN NN

Llaemon
111
rViSOr

S
4)
R
(U
el
.
O
-,

LI BB BN BB EEBEEEBEEEREEBIENRIEEINIEINEIEIEMNEIEZMIIEIEIIEIIIM.]
+ + + + + + + + &+ + + + + + +F +F + +F + +F F A+

Hype

+ + + F+ + + + + + + F +F FFFFFFFEFFFEFFEFF

Host Computer System
100-1

LB N N B R BB LB BB EEBEBEEBEEBEEBEBEEBEEBEBEEREBEERBEEBEEEBERBELEBEBEREBEBEBBEEBEBEEEBEEBEEBEEBEBEBEBEBEBEBEBEEEBEREBEEEBELEBEBERBEBEBEBEBEEBERBRBBEBEBEEEBEBEBEEBEBEBEBEBEBBEEBEEEBEEBEBEEBEBEBEEBEEBEEBERBBEEBEBELEBEBELEBBEBEBEEBEBEBEERBBEBERBEEBELEBEBERBEBBEEBEBEBEBEERBEEREREBEBEREBEEBEBEBEBEBEBEEBEBEBEENEIBEBINEBEIEEIEIEIBIEIMNEIEIEZSMIEIEBIMI.,]

storage System 150

+ + + + + + + + A+ F T

LA I I N NN N E R R NN BB BB EEBE BB EEBEEBEEEBEREEEREERBEEEEEBEREBEREERBEBEEREREEREEBEREBREEBEEBEBERERBREEBEEERBEEREBEEEBREIEBIENEIEEBIEIEJIEIIEZJISJMN.

+ + + + + + + ++ + ++ +++ +F+F A+ttt ottt ottt ottt ottt e+ttt ettt ottt ottt ettt sttt sttt ottt ottt ettt sttt A+

ament Server 16

ViV Manag

+ + + + + + F + A+ +

FIGURE 1

U.S. Patent Dec. 15, 2020 Sheet 2 of 4 US 10,866,767 B2

= _ 000@

Yes | Create new tenant _—-_-

232

FIGURE 2B

- Max | Max | Max
Yii | Tenant . ‘
Aasian fmits ¢ -- Size | Disks | I10FS
ssign limits to new g + + * _
L ARC 10 GE 50 10000
enant 246 --- ++++++++++++++++++++++++
Assign new VMo | -- 100 GB |

- Assign limi "t:,; to VM
5 220

Assign datasiore {0
new tenant 214

tenant 218

" Exceed N
< lenanthmiis?

Return error

Frovision Vi
226

++

FIGURE 2A

US 10,866,767 B2

Sheet 3 of 4

Dec. 15, 2020

U.S. Patent

T -

gee
SLUNIOA SAOLUSI
O} INA 2InDHUCOSI 01 [4Y SHOALY

T L T R T T T T T T T T R N B T AT TR PR R Iy I TRt R R T JLTERr TRETI FRnT T TR Uie TRCT R T W PR RUTE TR PR I ST R TR R R R T N SR T ¥,

T R T P L I LT T T T L L L L L L I T L RCr TSy Ty PRy R A L A R L R R] N T T LT

739
SLUMOA PPE O WA aInBuL0os)

DUB SWNOA SIEBIS O] |y SNOAU!

[TR . [o—— [——aa

&

ON

—— e oy e e e ey e e e e e ey ey

.
L
b
Y
.....,__....
~
~
-
~
EXEKXENENY *
-
.
.
.
.

Lee JOARI0N

10 WY

iSanDal UCHBaID SLUNioA 109jep pue
A B0 1od pajeubisan JONUON

P
Mellll-lclg

I R R

& SN

LT P LTS LT A R T P P M M AT LT LT R T LT T ST P P R A T ST R L LTS LT A

44
WIBISAS Bl &
AL BUUINIOA 1BULIC

Y — [T P

ML TS T RS M R P4 M ORD U L U P LT MM BT M TR O RT LT P ST FJ W L PR P LT TS S U T LT BT P4 AT ST W U BT VR FS LT T SF D R L LT R4 VT T T VR T MM OTA T am oA e

k43
DUBLULLIOS 918810 DIBMID

R P et Pl Pl o e DR L Pk " Sy i P e B Bt ol el o e T e ke Y Sl e Pl By B el el o) e e o e Pk " M ik P P b i o iy P e o Rk Pk Pt e ke e e B it B S el ol L

col
U0 o

[47 Faur i L R M TA SR M RS M R T T VR LT P M OTU T O A RS BT R W T B L BT T M TU S U T W IR KT R A T T R T RS M T T UM W B BT R AT T T VW R BT U WS SR At R T

e BN O} PUBLLILIOD BJBQID
- PUBS pUR JPLIA 10 ut-bnjd pui4

L
m g5 01 =9uis w
GLOZOPBI=SLRY FPWA=IDALD
 DWINOA IDOp SIBAIY |

el
JBUBILOT

)
aa v =aliSiy
~
\O
J
\S
\&
e
—
= 487 4
DL R PRE 8 > X0qAsng/ 0} sdew gJ0zoipes.
A 8mbByuooa) 0] jdy SvoAU JBL} 05 WiReAs afiy junopy
- | M
53 A
~r A
fm \x ,f,,f,
L A
-~ | e ‘w,.mw,ww X;f,,,
= CGJUBUBLIOL
2@ CL_BUNPA UN
75 S
b
m wmh\w’ 1 o - h - ; T T T - 1“
— PR _— AR,
x o L 7 4
e _ R S | m U-BNid Of DUBLULLICS m
N i SISING . | et UIOISAS S INOQE SANDUL m
'« T e o | 0L LRy U PUBLILIOD 196 DIEMIOS 190 pues pue gpzopRr
M N P B - suwnmpoasoju-bnd puly
2 e _ L m
= 4 b
- 557 by
= 1S9nha) slnoA b IRIBp PR - : m XOQASNG/ G102 01pR)
& A J0 pod pajeubisep Jojuopy A- LN JN00P
Dnl.a L e e e
. el LS
S. Ll -6 A JBUBIIOD
- UCUIDB(]

US 10,866,767 B2

1

ENFORCING LIMITS ON A SELF-SERVE
MODEL FOR PROVISIONING DATA
VOLUMES FOR CONTAINERS RUNNING IN
VIRTUAL MACHINES

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit of priority from U.S.
Provisional Patent Application No. 62/343,780, filed May
31, 2016, which 1s incorporated by reference herein.

BACKGROUND

Increasingly, decisions to provision resources and manage
resources are made by application logic, e.g., containers,
running within virtual machines (VMs), and they typically
require a seli-serve-programmatic model for provisioning
and management. Some frameworks can choose to create an
instance of a container 1image and attach persistent storage
(c.g., data volumes) to the container image, all within the
VM.

However, there exist challenges when trying to meet the
need for a seli-serve-programmatic model. Some existing
management stacks require manual steps, including opening
up a user mterface (Ul) and directing the provisioning of
data volumes through the UI. Other existing management
stacks require mvoking of a remote application program-
ming interface (API) to a control plane for provisioning data
volumes. This latter technique typically also requires per
VM configuration.

SUMMARY

One or more embodiments provide a control plane for
data volume management that can be mvoked within a
container that 1s spun up within a VM. One example of a
data volume 1s a wvirtual disk. More generally, a “data
volume” 1s a place where the container can store data
persistently. The control plane 1s configured as a daemon or
other service that 1s running in the user space of a hypervisor
that 1s supporting the execution of the VM and listens 1n on
a virtual socket provisioned within the VM.

Advantages of employing the control plane within the
hypervisor, according to embodiments, are as follows. First,
it does not require human intervention to carry out the data
volume provisioning requested by the application adminis-
trator. Second, the control plane 1s local to the VM and does
not require any additional configuration beyond the instal-
lation of the data volume plug-in software in the VM.

In one embodiment, to protect against untrusted plug-ins
from sending control operations to a control plane within the
hypervisor, the control plane requires control operations
passed thereto to originate from software running in the root
mode. As a result, only those plug-ins that are trusted
soltware (e.g., signed with proper cryptographic keys) will
be able to send control operations successiully to the control
plane. For example, control operations sent to the control
plane via third party plug-ins, which would be running in
non-root mode, will be not be accepted by the control plane.

A method of method of managing allocation of storage
resources to the container includes the steps of monitoring a
virtual socket, detecting, based on the monitoring, a request
from a plug-in of the container to create a data volume, upon
detecting the request, retrieving a storage resource limit that
has been set for the first virtual machine and determining 11
creation of the data volume causes the storage resource limait

10

15

20

25

30

35

40

45

50

55

60

65

2

to be exceeded, and communicating the request to a virtu-
alization software that supports the execution of a virtual
machine 1n which the container 1s running, to cause the
virtualization software to create the data volume 11 the limit
1s determined to be not exceeded and returning an error if the
limit 1s determined to be exceeded.

Further embodiments include, without limitation, a non-
transitory computer-readable medium that includes instruc-
tions that enable a processor to implement one or more
aspects of the above method as well as a computer system
having a processor, memory, and other components that are
configured to implement one or more aspects of the above
method.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a virtualized computing
environment 1n which embodiment may be practiced.

FIG. 2A 1s a flow diagram of a method of setting storage
allocation limits during provisioning of the virtual machine.

FIG. 2B 1s a conceptual diagram of a data structure that
1s used to track storage allocation limits set for tenants.

FIG. 2C 1s a conceptual diagram of a data structure that
1s used to track storage allocation limits set for virtual
machines.

FIG. 2D 1s a conceptual diagram of a data structure that
1s used to track data volumes that have been created for
virtual machines.

FIG. 3 1s a tlow diagram of a method of creating a data
volume according to embodiments.

FIG. 4 1s a flow diagram of a method of mapping a data
volume to a namespace according to embodiments.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram of a virtualized computing
environment in which embodiments may be practiced. The
virtualized computing environment of FIG. 1 includes a
cluster of host computer systems 100-1 to 100-N, where N
1s 2 or more. Alternatively, embodiments may be practiced
in a virtualized computing environment that includes only a
single host computer system. Host computer system 100-1
has a hardware platform 120-1 that includes one or more
central processing units (CPUs) 121, system memory 122
(typically volatile dynamic random access memory), one or
more network interface controllers (NICs) 123, and one or
more host bus adapters (HBAs) 124. Each of the other host
computer systems 100, including host computer system
100-N which has a hardware platform 120-N, includes the
same (or similar) hardware components as hardware plat-
form 120-1. In addition, a hypervisor 1s mstalled 1n each of
host computer systems 100 as system software. Hypervisor
110-1 supports the execution space of virtual machines
(VMs) 130-1 and hypervisor 110-N supports the execution
space ol VMs 130-M. Hereinafter, VMs will be generally
referred to as VM 130 or VMs 130 and the hypervisor
supporting the VMs 130 will be generally referred to as
hypervisor 110.

As turther 1llustrated 1n FIG. 1, a container 131 runs inside
VM 130-1 on top of an operating system (OS) 140 of VM
130-1. One example of container 131 1s a Docker® con-
tamner that runs on top of a Linux® operating system.
Typically, container 131 includes a management layer
(known as a container engine) on top of OS 140 and one or
more applications deployed therein to run on top of the
management layer.

US 10,866,767 B2

3

In FIG. 1, a plug-1in 133 1s also illustrated. Plug-in 133,
which 1s implemented as part of the plug-in framework of
the container (e.g., as part of Docker® plug-in framework
tor Docker® containers), 1s configured to communicate with
hypervisor 110-1 over a virtual socket provisioned by hyper-
visor 110-1 as part of a virtual hardware platform for VM
130-1. The wvirtual socket i1s also referred to as a back
channel, and enables VM 130-1 to communicate with hyper-
visor 110-1. In one embodiment, the virtual socket 1s 1imple-
mented as shared memory, such as with virtual machine
control mterface (VMCI) employed 1n virtualization prod-
ucts available from VMware, Inc. of Palo Alto, Calif., and 1s
accessed through VMCI ports. More specifically, daemon
111 runs 1n a user space of hypervisor 110-1 to listen 1n on
this virtual socket and, in the embodiments, passes on
control operations received through this virtual socket to
hypervisor 110-1 for execution using standard APIs.
Examples of these standard APIs include creating a data
volume, deleting a data volume, attaching a data volume,
and detaching a data volume. Accordingly, operations to
create, delete, attach, or detach a data volume can be
instigated within container 131 and such control operations
are “plumbed” to plug-in 133 that forwards those control
operations over the virtual socket to daemon 111, which calls
the standard APIs to perform control operations on the data
volume.

A virtual machine management server (VMMS) 160
manages VMs across host computers systems 100. The
execution of the VMs 1s supported by the hypervisors of the
respective host computer systems 100. The standard APIs
exposed by hypervisor 110 for creating, deleting, attaching,
and detaching a data volume are made accessible through a
user interface of VMMS 160 so that control operations for
data volumes of VMs (e.g., virtual disks) can be instigated
by a VM admuinistrator.

The data volumes for the container or the VMSs are stored
in storage system 1350. In the embodiment 1llustrated 1n FIG.
1, storage system 150 1s a shared storage system, which 1s
accessible from host computer systems 100 through their
HBAs 124. In another embodiment, storage system 150 may
be network-attached storage (NAS) or virtual storage area
network (SAN), which 1s accessible from host computer
systems 100 over a network through their NICs 123.

According to embodiments, the data volume control plane
1s 1mplemented 1n hypervisor 110 through daemon 111
which 1s listening 1n on the virtual socket through which
plug-in 133 forwards data volume control operations. As
data volume control operations are passed down from con-
tainer 131 to plug-in 133 and forwarded onto the virtual
socket, daemon 111, upon detection of the data volume
control operation, invokes the standard APIs exposed by
hypervisor 110 for provisioning data volumes. As a way to
protect against untrusted applications or plug-ins from gain-
ing access to the data volume control plane, any application
or plug-in not running in root mode are blocked from
gaining access to the data volume control plane. This 1s
implemented by daemon 111 listening in on a privileged
virtual socket, 1.e., the virtual socket that 1s accessed through
a privileged VMCI port. As such, any control operations
forwarded onto a non-privileged virtual socket will be
ignored by daemon 111. Accordingly, in the embodiments,
plug-in 133 1s implemented as a secure module that runs in
root mode. In order to preserve 1ts 1image and to protect it
against tampering, the executable code of this secure module
1s signed with cryptographic keys of a trusted entity.

In addition, the VM administrator who 1s managing the
virtualized computing environment the infrastructure can set

10

15

20

25

30

35

40

45

50

55

60

65

4

bounds on data volume provisioning. The application
administrator 1s free to perform data volume control opera-
tions so long as they are within these bounds. The bounds
include quotas (capacity), what kind of volumes, and how
many volumes. Roles are also defined by the VM admuinis-
trator. The roles specily which VMs may create or delete,
which VMs may read or write. In addition, the VM admin-
istrator 1s given the ability to view and inspect the run time
of the VMs (which data volumes were created by whom,
who 1s consuming them, which volumes are unused, how
much data was written, etc.)

FIG. 2A 1s a flow diagram of a method of setting storage
allocation limits during provisioning of the virtual machine.
The steps of this method are carried out at VMMS 160 1n
response to an instruction to provision a new VM received
through the UI of VMMS 160.

At step 210, VMMS 160 determines 11 a new tenant 1s
requesting the provisioning of a new VM. If so, at step 212,
VMMS 160 creates the new tenant, leading to a creation of
an entry for that tenant in the table of FIG. 2B. According to
the designation of a datastore made by the new tenant, at step
214, VMMS 160 populates the “datastore” attribute of the
tenant’s entry with the designated datastore. At step 216,
storage limits of the designated datastore are populated nto
the corresponding attributes of the tenant’s entry. In the
embodiments 1llustrated herein, the storage limits defined
for a tenant include maximum size (indicating maximum
storage capacity), maximum number of disks (or data vol-
umes), and maximum JOPS.

Then, VMMS 160 at step 218 assigns the new VM to be
provisioned to the tenant, and at step 220 assigns storage
limits for the new VM. In the embodiments illustrated
herein, the storage limits for a VM 1include maximum size
(indicating maximum storage capacity), maximum number
of disks (or data volumes), and maximum IOPS. If the
storage limits of the VM assigned at step 220 cause the
storage limits for the tenant, which are determined from the
table of FIG. 2B, to be exceeded, VMMS 160 will not permait
the new VM to be provisioned and returns an error at step
224. On the other hand, if the storage limits of the VM
assigned at step 220 do not cause the storage limits for the
tenant to be exceeded, VMMS 160 provisions the new VM
at 226 and the table of FIG. 2C will be updated to include
an entry for the newly provisioned VM. As illustrated, the
entry for the newly provisioned VM 1ncludes the following
attributes: VM 1D, tenant ID, maximum size, maximum
number of disks, and maximum TOPS.

FIG. 3 1s a tlow diagram of a method of creating a data
volume according to embodiments. The method 1llustrated
in FIG. 3 1s carried out by container 131, plug-in 133, and
daemon 111. When the application administrator desires to
create a data volume for contamner 131, the application
administrator enters command line instructions for creating
the data volume at step 311, e.g., “create docker volume,
driver=vindk, name=radio2016, size=10 GB.” In response
to the command line instruction entered at step 311, con-
tainer 131 searches for a plug-in of the driver indicated in the
command, in this example, vindk, and sends the create data
volume command to the plug-in (step 312).

At step 321, the plug-1n, e.g., plug-in 133, upon receipt of
the create data volume command from container 131, for-
wards the create data volume command to daemon 111
through a virtual socket. In particular, plug-in 133 invokes
a virtual socket API to forward the create data volume
command to the virtual socket through a privileged VMCI
port (e.g., a VMCI port that has been pre-designated as a
privileged port).

US 10,866,767 B2

S

Daemon 111 runs as a background process in the user
space ol hypervisor 110, and listens 1n on (monitors) the
privileged virtual socket for new requests at step 331. Upon
detecting a create data volume request, daemon 111 consults
the table of FIG. 2C to determine 1f the creation of the data
volume of the size indicated violates the storage limits that
have been set for the virtual machines that 1s hosting
container 131. If any of the storage limits 1s violated, e.g.,
exceeds maximum size or exceeds maximum number of data
volumes, daemon 111 returns an error at step 333. On the
other hand, 11 none of the storage limits are violated, daemon
111 at step 334 invokes the standard APIs for (1) creating a
data volume for the virtual machine that 1s hosting container
131, and (2) reconfiguring the virtual machine to add the
data volume (1.e., updating the virtual machine configuration
file to include an i1dentifier for the newly provisioned data
volume). In response to the APIs mvoked at step 332,
hypervisor 110 provisions a new data volume, and the newly
provisioned data volume becomes attached to the virtual
machine (i.e., the newly provisioned data volume 1s enu-
merated as one of the devices of the virtual machine). In
addition, daemon 111 updates the table of FIG. 2D, which 1s
maintained 1 memory 122 and persisted 1n storage system
150, to add the newly created data volume 1n association of
with the virtual machine that 1s hosting container 131.

At step 322, plug-in 133 formats the data volume with a
file system. A file system specified by the application admin-
istrator 1n the command line instructions may be used 1n
formatting the data volume. If no such file system 1s speci-
fied, a default file system 1s used.

After the data volume has been formatted with the file
system at step 322, the control returns to daecmon 111, at
which time daemon 111 at step 335 invokes the standard API
for reconfiguring the virtual machine to detach the data
volume (1.e., updating the virtual machine configuration file
to remove the identifier for the newly provisioned data
volume). In response to the API invoked at step 335, the
newly provisioned data volume becomes detached from the
virtual machine (i.e., the newly provisioned data volume 1s
no longer enumerated as one of the devices of the virtual
machine).

FIG. 4 1s a flow diagram of a method of mapping a data
volume to a namespace according to embodiments. The
method 1llustrated i FIG. 4 1s carried out by container 131,
plug-1n 133, and daemon 111, and 1n response to a container
run command. When the application administrator desires to
map a data volume to a namespace for container 131, the
application administrator enters command line instructions
to run the container at step 411, e.g., “docker run,
radio2016:/busybox.” When this particular command line
instruction 1s executed within container 131, container 131
1s spun up using data volume, radio2016, mapped to the
namespace/busybox. Also, 1n response to the command line
instruction entered at step 411, container 131 locates the
plug-in corresponding to the data volume indicated in the
command, 1n this example, radio2016, and sends a get data
volume command to the plug-in (step 412).

At step 421, the plug-in, e.g., plug-in 133, upon receipt of
the get data volume command from container 131, forwards
the get data volume command to daemon 111 through a
virtual socket. In particular, plug-in 133 invokes a virtual
socket API to forward the get data volume command to the
virtual socket through the privileged VMCI port.

Daemon 111 listens 1n on (monitors) the privileged virtual
socket for new requests at step 431. Upon detecting a get
data volume request, daemon 111 at step 432 checks the
table of FIG. 2D to see 1f the data volume exists. If no such

10

15

20

25

30

35

40

45

50

55

60

65

6

data volume exists, daemon 111 returns an error at step 433.
If the data volume exists, daemon 111 at step 434 checks the
table of FIG. 2C to see 1f the data volume belongs to the
same tenant to whom the virtual machine hosting container
131 1s assigned. If so, the tflow proceeds to step 435. If not,
daemon 111 returns an error at step 433.

At step 435, daecmon 111 invokes the standard APIs for
reconfiguring the virtual machine to add the data volume
(1.., updating the wvirtual machine configuration file to
include an 1dentifier for the data volume). In response to the
APIs mvoked at step 435, the data volume becomes attached
to the virtual machine (i1.e., the data volume 1s enumerated
as one of the devices of the virtual machine).

In response to the virtual socket API invoked at step 421,
plug-in 133 at step 422 recerves a device ID corresponding
to the data volume from daemon 111, maps the device ID to
the data volume, and mounts the file system of the data
volume 1nto the namespace used by container 131 so that the
data volume can be mapped to a folder accessible by
container 131, e.g., so that the volume, radi02016, can be
mapped to the/busybox folder.

In the example given above, a container that instigated
creation of a data volume may be the same or different from
a container that 1s run using that data volume. In addition, a
container that mstigated creation of a data volume may be
running in a first virtual machine and a container that 1s run
using that data volume may be running in a second virtual
machine so long as the two virtual machine are assigned to
the same tenant. The first and second virtual machines may
be executed 1n the same or different host computer systems
so long as the host computer systems are accessing the same
storage system 1n which the data volume is provisioned.

Certain embodiments as described above involve a hard-
ware abstraction layer on top of a host computer. The
hardware abstraction layer allows multiple contexts or emu-
lated computing instances to share the hardware resource. In
one embodiment, these emulated computing instances are
1solated from each other, each having at least a user appli-
cation running therein. The hardware abstraction layer thus
provides benefits of resource 1solation and allocation among
the emulated computing instances. In the foregoing embodi-
ments, emulated machines are used as an example for the
emulated computing instances and hypervisors as an
example for the hardware abstraction layer. As described
above, each emulated machine includes a guest operating
system 1n which at least one application runs.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transierred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to 1n terms, such as
producing, 1dentifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be usetul machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral purpose machines may be used with computer programs
written 1n accordance with the teachings herein, or 1t may be

US 10,866,767 B2

7

more convenient to construct a more specialized apparatus
to perform the required operations.
The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers, and the like.
One or more embodiments of the present invention may
be implemented as one or more computer programs or as one
or more computer program modules embodied 1n one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be mput to a computer system com-
puter readable media may be based on any existing or
subsequently developed technology for embodying com-
puter programs in a manner that enables them to be read by
a computer. Examples of a computer readable medium
include a hard drive, network attached storage (INNAS),
read-only memory, random-access memory (e.g., a flash
memory device), a CD (Compact Discs) CD-ROM, a CD-R,
or a CD-RW, a DVD (Dagital Versatile Disc), a magnetic
tape, and other optical and non-optical data storage devices.
The computer readable medium can also be distributed over
a network coupled computer system so that the computer
readable code 1s stored and executed 1n a distributed fashion.
Although one or more embodiments of the present inven-
tion have been described in some detail for clanty of
understanding, 1t will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as illustrative and not restrictive, and the scope of the
claims 1s not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated 1n the
claims.
Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are 1llustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of the invention(s). In
general, structures and functionality presented as separate
components 1n exemplary configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other vanations, modifications, additions, and 1mprove-
ments may fall within the scope of the appended claims.
What 1s claimed 1s:
1. In a computer system having a hypervisor on which a
first virtual machine 1s run, the hypervisor supporting execu-
tion of the first virtual machine 1n which a container 1s run,
the first virtual machine comprising a guest operating system
on which the container executes, the container comprising
one or more applications deployed therein, a method of
managing allocation of storage resources to the container,
comprising;
monitoring, by the hypervisor, a virtual socket of the first
virtual machine, wherein the virtual socket enables the
first virtual machine to commumnicate with the hyper-
V1SOr;

based on said monitoring, detecting, by a component
running within the hypervisor, a request from a plug-in
of the container to create a data volume, the data
volume backed by a storage device, wherein the plug-in

5

10

15

20

25

30

35

40

45

50

55

60

65

8

1s configured to provide an interface between the con-
tamner and the hypervisor, and further wherein the
hypervisor 1s configured to provide an interface
between the plug-in and the storage device;

upon detecting the request, retrieving a storage resource
limit that has been set for the first virtual machine and
determining 1f creation of the data volume causes the
storage resource limit to be exceeded; and

communicating, by the component, the request to the
hypervisor to cause the hypervisor to create the data
volume 11 the storage resource limit 1s determined to be
not exceeded and returning an error if the storage
resource limit 1s determined to be exceeded.

2. The method of claim 1, wherein the storage resource
limit 1s a total size of all data volumes created for the first
virtual machine.

3. The method of claim 1, wherein the storage resource
limit 1s a total number of data volumes created for the first
virtual machine.

4. The method of claim 1, further comprising:

based on said monitoring, detecting a request from a
plug-in of a contamner running 1 a second virtual
machine to perform a control operation on the data
volume;

determining 1f the first virtual machine and the second
virtual machine are assigned to a same tenant;

11 the first virtual machine and the second virtual machine
are assigned to the same tenant, performing the control
operation on the data volume; and

11 the first virtual machine and the second virtual machine
are not assigned to the same tenant, returning an error.

5. The method of claim 4, further comprising:

determining that the data volume has been created prior to
performing the control operation on the data volume.

6. The method of claim 5, wherein the control operation
1s one of attaching the data volume to the second virtual
machine, and deleting the data volume.

7. The method of claim 1, further comprising:

for each new virtual machine to be provisioned, setting
the storage resource limit for the new virtual machine.

8. The method of claim 7, wherein provisioning of a new
virtual machine for a tenant 1s blocked if a total of storage
resource limits of all virtual machines of the tenant, includ-
ing the new virtual machine to be provisioned, exceeds an
aggregate limit set for the tenant.

9. The method of claim 1, wherein the container com-
prises an application logic run within the first virtual
machine.

10. A non-transitory computer readable medium compris-
ing instructions to be executed 1 a computer system having
a hypervisor on which a first virtual machine 1s run, the
hypervisor supporting execution of the first virtual machine
in which a container 1s run, the first virtual machine com-
prising a guest operating system on which the container
executes, the container comprising one or more applications
deployed therein, wherein the instructions when executed
cause the computer system to carry out a method of man-
aging allocation of storage resources to the container, said
method comprising:

monitoring, by the hypervisor, a virtual socket of the first
virtual machine, wherein the virtual socket enables the
first virtual machine to communicate with the hyper-
V1SOT;

based on said monitoring, detecting, by a component
running within the hypervisor, a request from a plug-in
of the container to create a data volume, the data
volume backed by a storage device, wherein the plug-in

US 10,866,767 B2

9

1s configured to provide an interface between the con-
tamner and the hypervisor, and further wherein the
hypervisor 1s configured to provide an interface
between the plug-in and the storage device;
upon detecting the request, retrieving a storage resource
limit that has been set for the first virtual machine and
determining if creation of the data volume causes the
storage resource limit to be exceeded; and

communicating, by the component, the request to the
hypervisor to cause the hypervisor to create the data
volume 11 the storage resource limit 1s determined to be
not exceeded and returning an error if the storage
resource limit 1s determined to be exceeded.

11. The non-transitory computer readable medium of
claim 10, wherein the storage resource limit 1s a total size of
all data volumes created for the first virtual machine.

12. The non-transitory computer readable medium of
claam 10, wherein the storage resource limit 1s a total
number of data volumes created for the first virtual machine.

13. The non-transitory computer readable medium of
claim 10, wherein the storage resource limit 1s a total of
TOPS allocated for data volumes created for the first virtual
machine.

14. The non-transitory computer readable medium of
claim 10, wherein the method further comprises:

based on said monitoring, detecting a request from a

plug-in of a container running 1 a second virtual
machine to perform a control operation on the data
volume;

determining 1f the first virtual machine and the second

virtual machine are assigned to a same tenant;

if the first virtual machine and the second virtual machine

are assigned to the same tenant, performing the control
operation on the data volume; and

if the first virtual machine and the second virtual machine

are not assigned to the same tenant, returning an error.

15. The non-transitory computer readable medium of
claim 14, wherein the method further comprises:

determining that the data volume has been created prior to

performing the control operation on the data volume.

16. The non-transitory computer readable medium of
claim 15, wherein the control operation 1s one of attaching
the data volume to the second virtual machine, and deleting,
the data volume.

17. The non-transitory computer readable medium of
claim 10, wherein the method further comprises:

for each new virtual machine to be provisioned, setting

the storage resource limit for the new virtual machine.

18. The non-transitory computer readable medium of
claim 17, wherein provisioning of a new virtual machine for
a tenant 1s blocked 11 a total of storage resource limits of all

10

15

20

25

30

35

40

45

50

10

virtual machines of the tenant, including the new virtual
machine to be provisioned, exceeds an aggregate limit set
for the tenant.

19. A computer system having a first host computer
system 1ncluding a first virtualization soitware on which a
first virtual machine 1s run, the first virtualization software
supporting execution of the first virtual machine in which a
first container 1s run, the first virtual machine comprising a
guest operating system on which the first container executes,
the first container comprising one or more applications
deployed therein, and a second host computer system
including a second virtualization soitware supporting execu-
tion of a second virtual machine 1n which a second container
1s run, wherein the first virtualization software has a back-
ground process running therein to perform the steps of:

monitoring, by the first virtualization software, a first
virtual socket of the first virtual machine, wherein the
first virtual socket enables the first virtual machine to
communicate with the first virtualization software;

based on said monitoring, detecting a request from a
plug-in of the first container to create a data volume, the
data volume backed by a storage device, wherein the
plug-in 1s configured to provide an interface between
the container and the first virtualization software, and
further wherein the first virtualization software 1s con-
figured to provide an interface between the plug-in and
the storage device;

upon detecting the request, retrieving a storage resource
limit that has been set for the first virtual machine and
determining 1f creation of the data volume causes the
storage resource limit to be exceeded; and

commumnicating the request to the first virtualization soft-
ware to cause the first virtualization software to create
the data volume if the storage resource limit 1s deter-
mined to be not exceeded and returning an error 1i the
storage resource limit 1s determined to be exceeded.

20. The computer system of claim 19, wherein the second
virtualization software has a background process running
therein to perform the steps of:

monitoring a virtual socket;

based on said monitoring, detecting a request from a
plug-in of the second container to perform a control
operation on the data volume;

determining 1f the first virtual machine and the second
virtual machine are assigned to a same tenant;

11 the first virtual machine and the second virtual machine
are assigned to the same tenant, performing the control
operation on the data volume; and

11 the first virtual machine and the second virtual machine
are not assigned to the same tenant, returning an error.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

