United States Patent

US010860604B1

(12) 10) Patent No.: US 10,860,604 B1
Pandey et al. 45) Date of Patent: Dec. 8, 2020
(54) SCALABLE TRACKING FOR DATABASE 7,657,574 B2 2/2010 Gupta et al.
UDPATES ACCORDING TO A SECONDARY 8,554,724 B2 10/2013 Zunger
INDE X 2005/0033777 Al1* 2/2005 Moraesco...... GO6F 16/27
2005/0240531 Al1* 10/2005 Woldl, Jr. G06Q 20/382
(71) Applicant: Amazon Technologies, Inc., Reno, NV 705/53
(US) 2006/0271510 Al1* 11/2006 Harward GO6F 9/52
2010/0132024 Al1* 5/2010 Ben-Natan GO6F 9/545
(72) Inventors: Prashant Pandey, Pleasanton, CA _ 726/9
(US); Benjamin Aldouby Schwartz, (Continued)
East Palo Alto, CA (US); Swaminathan
Sivasubramanian, Sammamish, WA OTHER PUBLICATIONS
(US); Khawaja Salman Shams,
Seattle, WA (US) U.S. Appl. No. 15/625,976, filed Jun. 16, 2017, Sharatkumar
Nagesh Kuppahally et al.
(73) Assignee: Amazon Technologies, Inc., Seattle,
WA (US) _
Primary Examiner — EBtienne P Leroux
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner — Farhad Agharahimi
%aglg 118 SZ}ESDS edl f ; Oaélilussted under 33 (74) Attorney, Agent, or Firm — Robert C. Kowert;
o Y JS Kowert, Hood, Munyon, Rankin & Goetzel, P.C.
(21) Appl. No.: 14/566,447
(22) Filed: Dec. 10, 2014 (57) ABSTRACT
(51) Int. CL. A database client may implement scalable tracking for
GOGF 1627 (2019.01) database updates according to a secondary index. As update
GOGF 11/14 (2006.01) requests are generated and sent to a database, tracking
GO6F 16/22 (2019.01) attributes may be included 1n the update requests 1n order to
GO6F 16/23 (2019.01) be 1nserted into the database with respect to a portion of the
(52) U.S. CL database for which the requested update 1s performed.
CPC ... GO6F 16/27 (2019.01); GO6F 11/1412 Tracking attributes may include a sequence number which
(2013.01); GO6F 16/22 (2019.01); GO6F may be used to determine an order in which the updates are
16/23 (2019.01) performed at the database. Tracking attributes may also
(58) Field of Classification Search include a bucket identifier, which may categorize or label the
O GOGF 17/30286; GO6F 17/27 ~ portion of data updated as part of an update. These tracking
See application file for complete search history. attributes may be replicated to a secondary index maintained
for the database. Queries to the secondary index based on the
(56) References Cited tracking attributes may identify updates performed to the

U.S. PATENT DOCUMENTS

5,806,075 A * 9/1998 Jamcooeevvennnnn, GO6F 16/27
6,226,650 Bl 5/2001 Mahajan et al.
7,356,550 B1* 4/2008 Linccooovevniinn, GO6F 16/275
igentify
-~ \ Updates
i
condary tabie - update
> ?ﬂdg;, ! ! :i fracker(s)
124 Bt 130
= B
wd
repiicate update
racking noifications
attribute(s) L) 134
126
fracking-
: database table update
enab!ffoﬂﬁenf 127 listener(s)
— 140
publish
update requesi(s ~./ update
112 1 ~ Gatabose 120 d1, notiications
lracking 136

altribute(si
114

database. Notifications of the 1dentified updates may then be
provided.

20 Claims, 9 Drawing Sheets

Primary Key | Attribute | Affribute Bucket identifier | Sequence number | dalzbase
12345 o | b .. | bucketB | 10007 1~ table
12346 bucke! C 10005 122
12347 buckei A 10003
_____________ 72346 F . 1 .. 4 ..} bucket8 | 10007
12348 » » buckel A | 10002
12350 bucket D | 10004
12351 e s buickst B 15006
| secondary
Bucket Identifier | Sequenice number | Primary Key | Projected Attribute - table incex
 buckst B 10001 12348 — 124
hucke! A 10002 12349
hucket A 10003 12347
puckst D 10004 12350
Diicket C 10005 12346
bucket B 1000€ 12351
auicket B 10067 12345

US 10,860,604 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2010/0318795 Al1* 12/2010 Haddad HO4W 12/06
713/168

2011/0113117 ALl* 5/2011 Genest GOO6F 11/3476
709/217

2012/0096046 Al* 4/2012 Kucera G06Q 30/01
707/802

2012/0310878 Al 12/2012 Vuksan et al.

2013/0238556 Al 9/2013 Mielenhausen

2014/0258226 Al 9/2014 Noteboom

2014/0279855 Al* 9/2014 Tan GOO6F 16/2228
707/609

2015/0268890 Al 9/2015 Stefani et al.

2016/0132581 Al 5/2016 Hsieh et al.

* cited by examiner

U.S. Patent

Dec. 8, 2020

Sheet 1 of 9

secondary table

ingex
124

US 10,360,604 B1

identify
updates

§132
| _

update

tracker(s)

130

replicate | update
racking | notifications
attribute(s) | 134
126 |
|
I
engg l(;gfgen 1‘ database table : update
110 122 | listener(s)
- I | 140
|
| | publish
| update request(s) | | update
11z _ dalaba Sf__%l notifications
tracking 136
aftribute(s)
- FIG. 1A
Primary Key | Attribute | Attribute | Bucket Identifier | Sequence number | database
12345 | .. .| .. | bucketB 10007 |~ table
12346 . | bucket C 10005 122
12347 bucket A 10003
12348 bucket B 10001
12349 bucket A 10002
12350 bucket D 10004
12351 bucket B 10006
~ secondary
Bucket Identifier | Sequence number | Primary Key | Projected Attribute | table index
bucket B 100071 12348 —) 124
bucket A 10002 12349
bucket A 10003 12347
pucket D 10004 1230 1 ... |
‘bucket C 10005 | 12346 | .
bucket B 10006 12351 .
bucket B 10007 12345

FIG. 1B

360,604 B1

2

US 10

Sheet 2 of 9

Dec. 8, 2020

U.S. Patent

74
(S)a2ini08 Bunndwiod Jsy;o

¢ Ol

09¢
YIOM]BU

¢0C

e0s¢
JUSHI

uLiojield Sa2IAIas Paseq-yIomjau

0¢¢
(S)92iniaS 86E.10}S 18Y)0

0
99IA18S buindwiod jeniiA

0L
9INIBS
952qejep [2uUoelal-Uuou

U.S. Patent Dec. 8, 2020 Sheet 3 of 9 US 10,860,604 B1

database client
(e.q., tracking-
enabled client database client

application, update 310n
tracker)
310a

non-relational database service 330

front end module administrative functions
340 3950

storage node storage node
instance instance
3603 360n

FIG. 3

US 10,360,604 B1

Sheet 4 of 9

Dec. 8, 2020

U.S. Patent

84y

(S)uopeaynou -

ajepdn ysignd

-

JoUd)SI 8)epan

0Fp
J8Ud)SsI 8)epan

qovy
JoLB]SIf a1epan

10474
18U8)S1| 8jepdn

v Ol
967
(s)uoneaynou
ajepdn apiroid
444
(S)asuodsal Aienb

4572
(S)J8j)i 8jepdn

0ch
(S)J8x0R.1) 81epdn

4 4
Xapul
A1epu02as ajepan

447
Xopui
ajqe] A1epuooss

0¥ (S)apou 8be.o;s _

06y
(s)amnquye
bunjoe.y buipnjoui
(S);1s8nba. ajepdn

AN
9/qe] aseqelep

0LF (S)opou obe.o)s

US 10,360,604 B1

Sheet 5 of 9

Dec. 8, 2020

U.S. Patent

0GS
(S)iownsuoo
ajepdn

AL
(S)ajepdn
ysiqnd

ors
(S)18UBISI
a)epdn

pEG
(S)ajepdn
Anou

G Ol

0€S
(S)i1ox08.4]
ajepdn

AA
a0B LIl
90IAI8S

>

|
AX* 'w

(S)a1epdn
Jojiuow

02%
90INIBS

aseqejep
[euoneo.
-uou

AA
80.118)U]
90IAJ8S

(S)asU0dSs.

_
_
_
_
_
| peaJ

916
(S)180nbs.

pea

I N\ 7IlG
' (s)isanba.

ESETENYEI

]
I
§92.N0S8.
bunjoe.y youney

/5/Ge] 81280

OLG
JusIfo
po|qeus
-bunjoe.)

U.S. Patent Dec. 8, 2020 Sheet 6 of 9 US 10,860,604 B1

Initiate an update to a portion of a database
610

Determine a tracking attribute for the update that is a bucket

identifier for the update
620

Assign a tracking attribute for the update that is a sequence
number for the update

630

Insert the tracking attributes to be included with a request fo
perform the update
040

Send the request to perform the update to the portion of the
database such that a secondary index for the database IS
updated to include the tracking attributes

650

FIG. 6

U.S. Patent Dec. 8, 2020 Sheet 7 of 9 US 10,860,604 B1

Query a secondary index for a database according to one or
more tracking attributes maintained in the secondary index
10

Based, at least in part, on a response to the query, identify

update(s) performed to respective portion(s) of the database
720

Identify update listener(s) to notify of the identified update(s)
130

Provide a notification of the identified update(s) to the identified
listener(s)

740

Update a delete?
790

Delete the respective
portion from the

database
760

U.S. Patent Dec. 8, 2020 Sheet 8 of 9 US 10,860,604 B1

Receive, at an update listener, update notification(s) for

respective portions of a database
810

Evaluate the update notification(s) according to publication
polic(ies)

820

Based, at least in part, on the evaluation, publish the update
notification(s) to update consumer(s)

830

FIG. 8

U.S. Patent Dec. 8, 2020 Sheet 9 of 9 US 10,860,604 B1

computer system 1000

I/O
device(s)

persistent

c . Storage
1010a 1010n 1060

Processor Processor

1080

I/0 interface
1030

system memory 1020 network

Interface
1040

program
da 1‘1803 %O" < instructions

1025

computer . remote
system(s) VO ?ggéces storage

1090 1070

FIG. 9

US 10,860,604 Bl

1

SCALABLE TRACKING FOR DATABASE
UDPATES ACCORDING TO A SECONDARY
INDEX

BACKGROUND

Numerous business applications are being migrated to
“cloud” environments 1n recent years. Data centers housing
significant numbers of interconnected computing systems
for cloud-based computing have become commonplace,
such as private data centers that are operated by and on
behalf of a single organization, and public data centers that
are operated by entities as businesses to provide computing
resources to customers. In addition to core computing
resources, operators of some public data centers implement
a variety ol advanced network-accessible services, includ-
ing, for example, distributed database services, object stor-
age services and the like. Such storage-related services
typically support very high levels of scalability, data dura-
bility and availability. By using the resources of public
provider networks, clients can scale their applications up
and down as needed, often at much lower costs that would
have been required 11 the required computing infrastructure
had to be set up on client-owned premises. Using virtual-
1zation techniques, provider network operators may often
use a given hardware server on behalf of many diflerent
clients, while maintaining high service quality levels for
cach of the clients. Sharing resources via such virtualization-
based multi-tenancy may enable the provider network opera-
tors to increase hardware utilization levels, matching

resource demand with supply more efliciently and keeping,
costs low.

As the costs of computing and data storage fall with the
increased use of virtualization and cloud computing, new
applications for data analysis are becoming more cost-
cllective. Many database services implemented at provider
networks support very high volumes of updates, leading to
data sets that may have to be distributed across tens or
hundreds of physical storage devices, sometimes spread
across multiple data centers. The database services may
expose APIs (application programming interfaces) for reads
and writes (e.g., creates/inserts, deletes, and updates of
database records), which enable clients to easily change the
contents of data objects such as tables and view the current
version of the contents. However, while the interfaces pro-
vided by the database services may enable clients to access
the data objects, and thus the cumulative impact of all the
changes that have been performed, 1t may not be straight-
forward for clients to determine the sequence in which
various changes were applied to the data or groups of data
which were changed. Information about the changes that are
performed on tables and other data objects may be useful for
a number of applications such as oflfline data miming to
identily trends, selective checkpointing of relevant subsets
of data at remote sites, and so on. Furthermore, at high
volume data stores that are intended to handle hundreds of
thousands (or even millions) of modifications per second,
extracting information about the operations being performed
without 1mpacting incoming client requests may present a
challenge.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram 1llustrating scalable tracking
ol database updates according to a secondary index, accord-
ing to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1B 1s a diagram illustrating an example database
table and secondary index table generated from tracking

attributes, according to some embodiments.

FIG. 2 1s a block diagram 1llustrating an example provider
network, according to some embodiments.

FIG. 3 1s a block diagram 1llustrating a database service,
according to some embodiments.

FIG. 4 1s a block diagram 1illustrating a logical data flow
ol database updates, according to some embodiments.

FIG. 5 1s a block diagram 1llustrating various interactions
among a tracking enabled client, non-relational database
service, update trackers, update listeners, and update con-
sumers, according to some embodiments.

FIG. 6 15 a high-level flowchart illustrating various meth-
ods and techniques for including tracking attributes 1n

update requests to update portions of a database, according
to some embodiments.

FIG. 7 1s a high-level tlowchart illustrating various meth-
ods and techniques for providing notifications of database
updates, according to some embodiments.

FIG. 8 1s a high-level tlowchart 1llustrating various meth-
ods and techniques for publishing updates to a database at an
update listener, according to some embodiments.

FIG. 9 a block diagram illustrating an example computing,
system, according to some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that the embodiments
are not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed
description thereto are not intended to limit embodiments to
the particular form disclosed, but on the contrary, the inten-
tion 1s to cover all modifications, equivalents and alterna-
tives falling within the spirit and scope as defined by the
appended claims. The headings used herein are for organi-
zational purposes only and are not meant to be used to limait
the scope of the description or the claims. As used through-
out this application, the word “may” 1s used 1n a permissive
sense (1.e., meaning having the potential to), rather than the
mandatory sense (1.e., meaning must). Similarly, the words

“include”, “including”, and “includes” mean including, but
not limited to.

DETAILED DESCRIPTION

Systems and methods described herein may be employed
in various combinations and in various embodiments to
scalable tracking of database updates according to a sec-
ondary index. In various database system architectures,
determining the updates that are performed to a given
database may be costly in terms of computing resources. For
example, distributed database systems which are sharded
may be dithicult to track updates (as updates may be per-
formed at different shards that may be distributed across
different nodes in the distributed database system). How-
ever, 1dentifying database updates may provide for further
analysis, operation, and/or optimization of database systems.
For example, updates to a database that are identified may be
replayed to a replica of a database that 1s unavailable to
receive updates directly from the database. Therefore, track-
ing updates to a database 1n a manner that scales with the
s1ze and/or architecture of a database (such as the sharded
database described above) may obtain information about
performed updates without burdening the functioning and/or
cost of the database.

FIG. 1A 1s a block diagram illustrating scalable tracking
of database updates according to a secondary index, accord-

US 10,860,604 Bl

3

ing to some embodiments. Database 120 may be any kind of
database (e.g., relational or non-relational), or structured
data store, which may be configured to implement a sec-
ondary table index based on a database table. A secondary
table index may be a table of attributes, or data that 1s
projected from a master or base database table that may be
indexed (e.g., reordered or keyed) on different values to
provide an eflicient search for data according to those
different values. As illustrated in FIG. 1A, database 120
implements a database table 122 and maintains a secondary
table index 124.

FIG. 1B 1s a diagram 1illustrating an example database
table and secondary index table generated from tracking
attributes, according to some embodiments. In database
table 122, a primary key value 1s illustrated, along with
multiple other attributes. As illustrated 1n FIG. 1A, tracking
attributes, such as a bucket identifier and sequence number
may be mserted along with updates to particular portions of
data (e.g., bucket identifier and sequence number 1n database
table 122). These tracking attributes may be indexed as part
of the secondary table index 124 in order to provide access
to updates 1dentified by the tracking attributes. For example,
a bucket 1dentifier may 1dentily a group or collection of data
that 1s updated, whereas a sequence identifier may provide
an ordering of the performance of updates. Thus, queries
upon secondary table index 124 according to tracking attri-
butes, such as a bucket 1dentifier and/or a sequence number,
may be able to identily updates to specific buckets, and the
order 1n which the updates are received.

Thus, as illustrated 1n FIG. 1A, a tracking-enabled client
110 may be configured to send update requests 112 to
database 120 to update portions of database table 122.
Tracking-enabled client 110 may insert tracking attribute(s)
114 (which may be bucket identifiers, sequence numbers,
nonces, or any other attribute which may provide for more
cllicient tracking of updates, such as tombstone records
included to mark portions of data for soft deletes). Database
120 may replicate tracking attribute(s) 126, along with other
projected attributes, to secondary index table 124. Update
tracker(s) 130 may be configured to query secondary index
table 124 to 1dentify updates that have been made according,
to the tracking attributes included 1n secondary index table
124. Update tracker(s) 130 may then provide update noti-
fications 134 to update listener(s) 140. Update listener(s)
140 may then be configured to publish update notifications
136 to diflerent respective update consumers (e.g., in order
to perform various actions based on the update notifications,
storing the updates, triggering events, placing the updates 1n
an update stream, and/or analyzing the updates).

Please note that FIG. 1 1s provided as a logical 1llustration
of scalable tracking of database updates according to a
secondary index, and thus 1s not intended to be limiting.
Various types of databases (e.g., relational or non-rela-
tional), secondary table imndexes, update trackers, tracking-
ecnabled clients may be implemented (1n the same or different
configurations). Moreover, 1n some embodiments, update
trackers, update listeners, and/or tracking-enabled clients
may be implemented together in different combinations.

This specification begins with a general description of a
non-relational database service implemented by a provider
network, which may provide scalable tracking of database
updates according to a secondary index. Then various
examples ol a database service and database tracking are
discussed, including different components/modules, or
arrangements ol components/module that may be employed
as part of implementing a database service and clients,
update trackers, and update listeners. Various interactions

10

15

20

25

30

35

40

45

50

55

60

65

4

between a database service and clients, update trackers, and
update listeners, as well as other systems, such as an update
consumer, are described, as well as the various configura-
tions of application clients that may utilize scalable tracking
for database updates. A number of different methods and
techniques to 1mplement scalable tracking of database
updates according to a secondary index are then discussed,
some of which are illustrated in accompanying flowcharts.
Finally, a description of an example computing system upon
which the various components, modules, systems, devices,
and/or nodes may be implemented 1s provided. Various
examples are provided throughout the specification.

FIG. 2 1s a block diagram 1llustrating an example provider
network, according to some embodiments. In the 1llustrated
embodiment, a number of clients (shown as clients 250a-
250») may be configured to interact with a network-based
services platform 202 via a network 260 implemented as
part of provider network 200. Provider network 200 may be
set up by an entity such as a company or a public sector
organization to provide one or more services (such as
various types of cloud-based computing or storage) acces-
sible via the Internet and/or other networks to clients 2350.
Provider network 200 may include numerous data centers
hosting various resource pools, such as collections of physi-
cal and/or virtualized computer servers, storage devices,
networking equipment and the like (e.g., computing system
1000 described below with regard to FIG. 9), needed to
implement and distribute the infrastructure and services
offered by the provider network 200. Network-based ser-
vices platform 202 may be an configured to interface with
non-relational database service 210, a virtual computing
service 220, an object storage service 230 and/or one or
more other virtual computing services, such as other com-
puting service(s) 240. It 1s noted that where one or more
instances of a given component may exist, reference to that
component herein may be made 1n either the singular or the
plural. However, usage of either form i1s not intended to
preclude the other.

In various embodiments, the components 1illustrated 1n
FIG. 2 may be implemented directly within computer hard-
ware, as 1nstructions directly or indirectly executable by
computer hardware (e.g., a microprocessor or computer
system), or using a combination of these techniques. For
example, the components of FIG. 2 may be implemented by
a system that includes a number of computing nodes (or
simply, nodes), each of which may be similar to the com-
puter system embodiment 1000 illustrated 1n FIG. 9 and
described below. In various embodiments, the functionality
of a given service system component (e.g., a component of
the object-backed block-based storage service, non-rela-
tional database service, object storage service or virtual
computing service) may be implemented by a particular
node or may be distributed across several nodes. In some
embodiments, a given node may implement the functionality
of more than one service system component (€.g., more than
one object-backed block-based storage service system com-
ponent).

Generally speaking, clients 250 may encompass any type
of client configurable to submit network-based services
requests to network-based services platform 202 via network
260, including requests for database services (e.g., a request
to generate a snapshot, etc.). In at least some embodiments,
clients 250 may be a tracking-enabled client, and may
encompass an operating system or application such as a
media application, an oflice application or any other appli-
cation that may make use of a database in non-relational
database service 210. However, some requests may also be

US 10,860,604 Bl

S

made according various different kinds of other network-
based protocols. For example, a given client 250 may
include a suitable version of a web browser, or may 1nclude
a plug-in module or other type of code module configured to
execute as an extension to or within an execution environ-
ment provided by a web browser. In some embodiments,
such an application may include sutlicient protocol support
(e.g., Tor a suitable version of Hypertext Transier Protocol
(HTTP)) for generating and processing network-based ser-
vices requests without necessarily 1mplementing full
browser support for all types of network-based data. That 1s,
client 250 may be an application configured to interact
directly with network-based services platform 200. In some
embodiments, client 250 may be configured to generate
network-based services requests according to a Representa-
tional State Transier (REST)-style network-based services
architecture, a document- or message-based network-based
services architecture, or another suitable network-based
services architecture.

In some embodiments, a client 250 (e.g., a non-relational
database service 210 client) may be configured to provide
access to a non-relational database service 210 to other
applications 1n a manner that 1s transparent to those appli-
cations. For example, client 250 may be configured to
integrate with an operating system or file system to provide
block-based storage 1n accordance with a conventional stor-
age device mterface (e.g., small computer interface (SCSI)).
In such an embodiment, applications may not need to be
modified to make use of a non-relational database service
210. Instead, the details of interfacing to network-based
services platform 202 or a non-relational database service
210 client may be coordinated by client 250 and the oper-
ating system or file system on behalf of applications execut-
ing within the operating system environment according to a
network-based storage protocol.

Clients 250 may convey network-based services requests
(e.g., requests to update a database which may include
tracking attributes, queries to a secondary mdex of a data-
base) to and receive responses from network-based services
platform 202 (or directly to non-relational database service
210, virtual computing service 220, object storage service
230 or other computing service(s) 240) via network 260. In
various embodiments, network 260 may encompass any
suitable combination of networking hardware and protocols
necessary to establish network-based-based communica-
tions between clients 250 and platform 200. For example,
network 260 may generally encompass the various telecom-
munications networks and service providers that collectively
implement the Internet. Network 260 may also include
private networks such as local area networks (LANs) or
wide area networks (WANs) as well as public or private
wireless networks. For example, both a given client 250 and
network-based services platform 202 may be respectively
provisioned within enterprises having their own internal
networks. In such an embodiment, network 260 may include
the hardware (e.g., modems, routers, switches, load balanc-
ers, proxy servers, etc.) and solftware (e.g., protocol stacks,
accounting soiftware, firewall/security software, etc.) neces-
sary to establish a networking link between given client 250
and the Internet as well as between the Internet and network-
based services platiorm 202. It 1s noted that in some embodi-
ments, clients 250 may communicate with network-based
services platform 202 using a private network rather than the
public Internet.

Generally speaking, network-based services platform 202
may be configured to implement one or more service end-
points configured to recerve and process network-based

10

15

20

25

30

35

40

45

50

55

60

65

6

services requests, such as requests to allocate virtual block
storage. For example, network-based services platform 202
may include hardware and/or software configured to 1mple-
ment a particular endpoint, such that an HTTP-based net-
work-based services request directed to that endpoint 1s
properly received and processed. In one embodiment, net-
work-based services platform 202 may be implemented as a
server system configured to receive network-based services
requests from clients 250 and to forward them to compo-
nents of a system that implements a non-relational database
service 210 for processing. In other embodiments, network-
based services platiorm 202 may be configured as a number
of distinct systems (e.g., 1n a cluster topology) implementing
load balancing and other request management features con-
figured to dynamically manage large-scale network-based
services request processing loads. In various embodiments,
network-based services platform 202 may be configured to
support REST-style or document-based (e.g., SOAP-based)
types of network-based services requests.

In addition to functioning as an addressable endpoint for
clients’ network-based services requests, 1n some embodi-
ments, network-based services platform 202 may implement
various client management features. For example, platform
202 may coordinate the metering and accounting of client
usage of network-based services, including storage
resources, such as by tracking the identities of requesting
clients 250, the number and/or frequency of client requests,
the size of data tables (or records thereot) stored or retrieved
on behalf of clients 250, overall storage bandwidth used by
clients 250, class of storage requested by clients 250, or any
other measurable client usage parameter. Platform 202 may
also implement financial accounting and billing systems, or
may maintain a database of usage data that may be queried
and processed by external systems for reporting and billing
of client usage activity. In certain embodiments, platform
202 may be configured to collect, monitor and/or aggregate
a variety of storage service system operational metrics, such
as metrics reflecting the rates and types of requests received
from clients 250, bandwidth utilized by such requests,
system processing latency for such requests, system com-
ponent utilization (e.g., network bandwidth and/or storage
utilization within the storage service system), rates and types
ol errors resulting from requests, characteristics of stored
and requested data pages or records thereof (e.g., size, data
type, etc.), or any other suitable metrics. In some embodi-
ments such metrics may be used by system administrators to
tune and maintain system components, while 1n other
embodiments such metrics (or relevant portions of such
metrics) may be exposed to clients 250 to enable such clients
to monitor their usage of non-relational database service 210
(or the underlying systems that implement those services,
such as virtual computing service 220 or object storage
service 230).

In some embodiments, network-based services platform
202 may also implement user authentication and access
control procedures. For example, for a given network-based
services request to create or modily a particular database,
platiorm 202 may be configured to ascertain whether the
client 250 associated with the request 1s authorized to create
or modily the particular data volume. Platform 202 may
determine such authorization by, for example, evaluating an
identity, password or other credential against credentials
associated with the particular database, or evaluating the
requested access to the particular database against an access
control list for the particular database. For example, 1f a
client 250 does not have suflicient credentials to create or
modily the particular data volume, platform 202 may reject

US 10,860,604 Bl

7

the corresponding network-based services request, for
example by returning a response to the requesting client 250
indicating an error condition. Various access control policies
may be stored as records or lists of access control informa-
tion by non-relational database service 210.

It 1s noted that while network-based services platiorm 202
may represent an interface through which clients 250 may
access some features of non-relational database service 210,
it need not represent the sole interface to such features. In at
least some embodiments, virtual computing service 220 may
implement virtual compute 1nstances that implement track-
ing-enabled clients, update trackers, update listeners, and/or
update consumers, as opposed to clients external 250 from
provider network 200. For example, virtual compute service
220 may ofler various compute instances to clients 250. A
virtual compute mstance may, for example, comprise one or
more servers with a specified computational capacity (which
may be specified by indicating the type and number of
CPUs, the main memory size, and so on) and a specified
software stack (e.g., a particular version of a tracking-
enabled client, update tracker, update listener, and an oper-
ating system, which may 1n turn run on top of a hypervisor).
A number of different types of computing devices may be
used singly or in combination to implement the compute
instances of virtual compute service 220 in different embodi-
ments, including general purpose or special purpose com-
puter servers, storage devices, network devices and the like.
In some embodiments 1instance clients 250 or other any other
user may be configured (and/or authorized) to act as an
update tracker for changes made to a database 1 non-
relational database service 210, including sending queries to
non-relational database service 210 for the secondary table
index.

Database service 210 1s illustrated i FIG. 2 as imple-
mented as part of network-based services platform 200.
However, a database system or structured data store service
implementing secondary table indexes may also be imple-
mented independently of the network-based services plat-
form. FIG. 3 1s a block diagram illustrating a database
service, according to some embodiments, which may be
implemented either as part of a network-based services
plattorm or as a standalone service. While the database
service discussed with regard to FIG. 3 1s given to be a
non-relational database servicer, similar architectures or
schemas may be implemented to provide a relational data-
base (or otherwise structured service), and thus the follow-
ing description 1s not mtended to be limiting as to the type
of database for which scalable tracking of updates may be
provided. It 1s noted that where one or more instances of a
given component may exist, reference to that component
herein below may be made in either the singular or the
plural. However, usage of either form 1s not intended to
preclude the other. In various embodiments, the components
illustrated 1n FIG. 3 may be implemented directly within
computer hardware, as instructions directly or indirectly
executable by computer hardware (e.g., a microprocessor or
computer system), or using a combination of these tech-
niques. For example, the components of FIG. 3 may be
implemented by a distributed system including a number of
computing nodes (or simply, nodes), such as computing
system 1000 1n FIG. 9 described below. In various embodi-
ments, the functionality of a given computing system com-
ponent may be implemented by a particular computing node
or may be distributed across several computing nodes. In
some embodiments, a given computing node may imple-
ment the functionality of more than one database service
system component.

10

15

20

25

30

35

40

45

50

55

60

65

8

Generally speaking, database clients 310¢-310z may
encompass any type of client configurable to submit web
services requests to non-relational database service 330 via
network 320, such as application provider(s) 220 or appli-
cation client(s) 230 described above. For example, a given
database client 310 may include a suitable version of a web
browser, or a plug-in module or other type of code module
configured to execute as an extension to or within an
execution environment provided by a web browser to pro-
vide database or data storage service clients (e.g., client
applications, users, and/or subscribers) access to the services
provided by non-relational 330. Alternatively, a database
client 310 may encompass an application such as a database
application, media application, oflice application or any
other application that may make use of persistent storage
resources (such as application provider(s) 220 and applica-
tion client(s) 230). For example, a database client 310 may
be a tracking-enabled client, configured to request updates to
a database maintained 1n 1n non-relational database service
330, or an update tracker configured to query information
from a secondary index of database table generated from
tracking attributes. In some embodiments, such an applica-
tion may include suflicient protocol support (e.g., for a
suitable version of Hypertext Transter Protocol (HTTP)) for
generating and processing web services requests without
necessarily implementing full browser support for all types
of web-based data. That 1s, database client 310 may be an
application configured to interact directly with non-rela-
tional database service 330. In various embodiments, data-
base client 310 may be configured to generate web services
requests according to a Representational State Transfer
(REST)-style web services architecture, a document- or
message-based web services architecture, or another suitable
web services architecture.

Database clients 310 may convey web services requests to
and receive responses from non-relational database service
330 via network 320. Similar to network 260 described
above, 1 various embodiments, network 320 may encom-
pass any suitable combination of networking hardware and
protocols necessary to establish web-based communications
between clients 310 and network-based storage service 330.
For example, network 320 may generally encompass the
various telecommunications networks and service providers
that collectively implement the Internet. Network 320 may
also include private networks such as local area networks
(LANSs) or wide area networks (WANSs) as well as public or
private wireless networks. For example, both a given data-
base client 310 and non-relational database service 330 may
be respectively provisioned within enterprises having their
own 1nternal networks. In such an embodiment, network 320
may include the hardware (e.g., modems, routers, switches,
load balancers, proxy servers, etc.) and soitware (e.g.,
protocol stacks, accounting software, firewall/security soft-
ware, etc.) necessary to establish a networking link between
given database client 310, delegation service 370, and the
Internet as well as between the Internet and network-based
storage service 330, and delegation service 370. It 1s noted
that in some embodiments, database clients 310 may com-
municate with non-relational database service 330 using a
private network rather than the public Internet. For example,
clients 310 may be provisioned within the same enterprise as
the data storage service (and/or the underlying system)
described herein. In such a case, clients 310 may commu-
nicate with non-relational database service 330 entirely
through a private network 320 (e.g., a LAN or WAN that
may use Internet-based communication protocols but which
1s not publicly accessible).

US 10,860,604 Bl

9

Generally speaking, non-relational database service 330
may be configured to implement one or more service end-
points configured to receive and process web services
requests, such as requests to access tables maintained on
behalf of application providers and application clients by a
database service or a data storage service, and/or the 1tems
and attributes stored in those tables. For example, non-
relational database service 330 may include hardware and/or
software configured to implement various service endpoints
and to properly receive and process HI'TP-based web ser-
vices requests directed to those endpoints. In one embodi-
ment, non-relational database service 330 may be imple-
mented as a server system configured to receive web
services requests from clients 310 and to forward them to
various components that collectively implement a database
system for processing. In other embodiments, non-relational
database service 330 may be configured as a number of
distinct systems (e.g., in a cluster topology) implementing
load balancing and other request management features con-
figured to dynamically manage large-scale web services
request processing loads.

As 1illustrated in FIG. 3, non-relational database service
330 may include a front end module 340 (which may be
configured to receive, authenticate, parse, throttle and/or
dispatch service requests, among other things). In various
embodiments, front end module 340 may implement fine-
grained access control manager 342. Non-relational data-
base service 330 may also implement a component to
provide administrative functions 350 (which may be con-
figured to provide a variety of wvisibility and/or control
functions, as described in more detail herein), and a plurality
of storage node instances (shown as 360a-360), cach of
which may maintain and manage one or more tables on
behalf of clients/users or on behall of the data storage
service (and its underlying system) itself. Some of the
tfunctionality provided by each of these types of components
1s described 1n more detail herein, according to various
embodiments. Note that in some embodiments, non-rela-
tional database service 330 may include different versions of
some of the components illustrated in FIG. 3 to provide
functionality for creating, accessing, and/or managing tables
maintained i1n database instances within a single-tenant
environment than those that provide functionality for creat-
ing, accessing, and/or managing tables maintained in data-
base 1nstances within a multi-tenant environment. In other
embodiments, functionality to support both multi-tenant and
single-tenant environments may be included in any or all of
the components illustrated 1n FIG. 3. Note also that in
various embodiments, one or more database instances may
be 1mplemented on each of the storage nodes 360a-3601,
and each may store tables on behalf of clients. Some of these
database instances may operate as 1f they were in a multi-
tenant environment (storing data for different clients at a
same storage node instance 360), and others may operate as
if they were 1n a single-tenant environment. In some
embodiments, database instances that operate as 1n a multi-
tenant environment may be implemented on diflerent com-
puting nodes (or on different virtual machines executing on
a single computing node) than database instances that oper-
ate as 1n a single-tenant environment.

Front end module 340 may include one or more modules
configured to perform parsing and/or throttling of service
requests, authentication and/or metering of service requests,
dispatching service requests, and/or maintaining a partition
map cache. In addition to these component-specific mod-
ules, front end module 340 may include components that are
common to multiple types of computing nodes that collec-

10

15

20

25

30

35

40

45

50

55

60

65

10

tively implement network-based services platiorm 200, such
as a message bus and/or a dynamic configuration module. In
other embodiments, more, fewer, or diflerent elements may
be included 1n front end module 340, or any of the elements
illustrated as being included 1n front end module 340 may be
included in another component of non-relational database
service 330 or in a component configured to interact with
non-relational database service 330 to provide the data
storage services described herein.

Administrative functions 350 may also be implemented
by non-relational database service 330. These may include
one or more modules configured to provide visibility and
control to system administrators, or to perform heat balanc-
ing, and/or anomaly control, and/or resource allocation.
Administrative functions 350 may also include an admin
console, through which system administrators may interact
with key value data store (and/or the underlying system). In
some embodiments, admin console may be the primary
point of visibility and control for the database service (e.g.,
for configuration or reconfiguration by system administra-
tors). For example, admin console may be implemented as
a relatively thin client that provides display and control
functionally to system administrators and/or other privileged
users, and through which system status indicators, metadata,
and/or operating parameters may be observed and/or
updated.

Storage node instances 360 may include one or more
modules configured to provide partition management, to
implement replication and failover processes, and/or to
provide an application programming interface (API) to
underlying storage. Various diflerent ones of administrative
and/or control plane operations may be performed locally
(e.g., on a given storage node instance 360) based, e.g., on
one or more measures of the utilization of provisioned
resources on the storage devices or logical storage volumes
of the storage node 1nstance.

As noted above, different storage nodes 360 may be
implementing or maintaining resources 1n multiple different
arrangements, some of which may be part of larger collec-
tions or groups of resources. A replica group, for example,
may be composed of a number of storage nodes maintaining
a replica of particular portion of data (e.g., a partition of a
table) for the storage service. Moreover, diflerent replica
groups may utilize overlapping nodes, where a storage node
may be a member of multiple replica groups, maintaining
replicas for each of those groups whose other storage node
members differ from the other replica groups. Thus if, for
example replica group 1 has storage nodes A, B, and C,
replica group 2 may have storage nodes B, D, and E. Besides
differing groups of storage nodes, in various embodiments,
storage nodes may have different relationships to other
storage nodes. Continuing with the above example, for
replica group 1, storage node A may be a leader node,
performing special functions with regard to access requests
directed toward the partition maintained by replica group 1.
For replica group 2, however, storage node B may be the
leader node. Therelore, a storage node’s relationship to other
storage nodes may be different depending on the particular
grouping evaluated. These various examples of different
arrangements ol resources among storage nodes highlight
the various diflerent ways that control plane operations may
interact with resources that are not solely devoted to one
particular (though they may be) function, data replica, etc.

As 1llustrated 1n this example, each storage node 1nstance
360 may include a storage engine, which may be configured
to maintain (1.e. to store and manage) one or more tables
(and associated table data) in storage (which 1n some

US 10,860,604 Bl

11

embodiments may be a non-relational database) on behalt of
one or more clients/users. In addition to these component-
specific modules, storage node instance 360 may include
components that are common to the different types of
computing nodes that collectively implement non-relational
database service 330, such as a message bus and/or a
dynamic configuration module. In other embodiments,
more, fewer, or diflerent elements may be included in
storage node 1nstance 360, or any of the elements illustrated
as being included in storage node instance 360 may be
included 1n another component of network-based storage
service 330 or in a component configured to interact with
network-based storage service 330 to provide the data
storage services described herein.

The systems underlying the database service described
herein may store data on behalf of database service clients
(e.g., client applications, users, and/or subscribers) in tables
containing 1tems that have one or more attributes. In some
embodiments, the database service may present clients/users
with a data model 1n which each table maintained on behalf
of a client/user contains one or more i1tems, and each item
includes a collection of attributes, such as a key value data
store. The attributes of an 1tem may be a collection of
name-value pairs, 1 any order. In some embodiments, each
attribute 1 an 1tem may have a name, a type, and a value.
Some attributes may be single valued, such that the attribute
name 1s mapped to a single value, while others may be
multi-value, such that the attribute name 1s mapped to two
or more values. In some embodiments, the name of an
attribute may always be a string, but 1ts value may be a
string, number, string set, or number set. The following are
all examples of attributes: “ImagelD”=1, “Title”="tlower”,
“Tags”={“flower”, “jasmine”, “white”}, “Ratings”={3, 4,
2}. The items may be managed by assigning each item a
primary key value (which may include one or more attribute
values), and this primary key value may also be used to
uniquely i1dentify the item. In some embodiments, a large
number of attributes may be defined across the items in a
table, but each 1tem may contain a sparse set of these
attributes (with the particular attributes specified for one
item being unrelated to the attributes of another 1tem 1n the
same table), and all of the attributes may be optional except
for the primary key attribute(s). In other words, unlike 1n
traditional databases, the tables maintained by the data
storage service (and the underlying storage system) may
have no pre-defined schema other than their reliance on the
primary key. Note that in some embodiments, 11 an attribute
1s included 1n an 1tem, its value cannot be null or empty (e.g.,
attribute names and values cannot be empty strings), and,
and within a single 1tem, the names of its attributes may be
unique. However, in at least some other embodiments,
traditional database schemes may be employed, such as the
various types ol relational databases implemented using
Server Query Language (SQL).

In various embodiments, non-relational database service
330 may be configured to support different types of web
services requests. For example, in some embodiments, net-
work-based storage service 330 may be configured to imple-
ment a particular web services application programming,
interface (API) that supports a variety of operations on
tables (or other data objects) that are maintained and man-
aged on behall of clients/users by the data storage service
system (and/or data stored in those tables). Examples of the
operations supported by such an API are described 1n more
detail herein.

In wvarious embodiments, the data storage service
described herein may provide an application programming

5

10

15

20

25

30

35

40

45

50

55

60

65

12

interface (API) that includes support for some or all of the
following operations on the data in a table maintained by the
service on behalf of a storage client: put (or store) an 1tem,
get (or retrieve) one or more items having a specified
primary key, delete an 1tem, update the attributes 1n a single
item, query for items using an index, and scan (e.g., list
items) over the whole table, optionally filtering the items
returned. The amount of work required to satisly service
requests that specily these operations may vary depending
on the particular operation specified and/or the amount of
data that 1s accessed and/or transierred between the storage
system and the client in order to satisty the request.

Update notifications for updates to a database data may be
propagated 1n various ways. FIG. 4 1s a block diagram
illustrating a logical data flow of database updates, accord-
ing to some embodiments. Update tracker(s) 440, update
listener(s) 440, and update consumers may be implemented
on various hardware and/or software systems or devices
(computing system 1000 described below with regard to
FIG. 9), either implemented as part of a same provider
network or system as storage nodes 410 and 420, or as part
ol a separate system (e.g., an external service to provider
network 200 1 FIG. 2, etther as part of a tracking-enabled
client, or a different system or device). As indicated at 450
update request(s) including tracking attributes may be sent
to one or more storage nodes 410 that maintain database
table 412. For example, the update requests may be sent to
a master storage node, which may then replicate the updates
to other storage nodes maintaining various replicas and/or
partitions ol database table 412 to be applied.

Secondary table index 422 may be maintained at separate
storage node(s) 420, 1n some embodiments. Replication of
attributes may be performed between storage node(s) 410
and storage node(s) 420 to update 452 secondary table index
422. Secondary table index 422 may maintain, in various
embodiments, an index table containing a selection of attri-
butes defined by database table 412. When an update 450 of
an 1tem whose attributes have been projected from database
table 412, the data may be automatically propagated to the
secondary table index 422. Updates 452 to replicate updates
at database table 412 may flow from database table 412 (e.g.,
from a master node 410) to secondary index table 422 (e.g.,
to a master node 420). Log records or other indications of the
updates at database table 412 may be sent via an asynchro-
nous message, in some embodiments. In at least some
embodiments, secondary table index 422 may project (or
include the same data as 1n database table 412) tracking
attributes, database table primary key, and/or other attributes
from database table 412, so that replication of updates to
these attributes may be performed when updates 450 are
received.

As 1llustrated at 454, query responses from update track-
ers 430 may be received at one or multiple update trackers
430. Different update trackers 430 may, in some embodi-
ments, be responsible for processing updates to different
portions of database table 412 (e.g., according to bucket
identifier and/or sequence number). In at least some embodi-
ments, update trackers may implement update filter(s) 432,
such as bloom filter(s) to 1dentily which update listener(s)
440, such as update listener 440a, 4405, 440¢, and 4404, to
provide update notifications 456 to (as discussed below with
regard to FIG. 7). The update listener(s) 440 may themselves
publish update notifications 438 to different update consum-
ers. Update listener(s) may perform the same or different
operations to aggregate, analyze, or otherwise publish
update noftifications received from update tracker(s) 430,
such as discussed below with regard to FIG. 8.

US 10,860,604 Bl

13

FIG. 5 1s a block diagram illustrating various interactions
among a tracking enabled client, non-relational database
service, update trackers, update listeners, and update con-
sumers, according to some embodiments. As discussed
above with regard to FIG. 4, update tracker(s) 530, update
listener(s) 540, and update consumer(s) 550 may be 1mple-
mented to handle update notifications (or data obtained as a
result of update notifications) mm many different ways.
Update tracker(s) 530 momitor update(s) 532 to a database
by polling non-relational database service 520 to access the
secondary index for the database. In at least some embodi-
ments, the queries to monitor the secondary index may be
formatted according to service interface 3522 (e.g., a pro-
grammatic itertace such as an Application Programming
Interface (API)) for non-relational database service 520.
Update tracker(s) may then notify update(s) 534 to update
listener(s), which 1 turn may publish update(s) 542 to
update consumer(s) 550.

A tracking-enabled client 510 may be configured to

perform various requests, commands, and other operations
to other resources, such as non-relational database service
520, update tracker(s) 530, update listener(s) 340, and/or
update consumer(s) 350, in various embodiments. For
example, 1n at least some embodiments, tracking-enabled
client 510 may be configured to send one or more requests
to create a new database table (or instantiate a new database)
and launch/provision/instantiate the respective tracking
resources 312. As illustrated 1n FIG. 5, launching resources
may simply be sending an indication to the resource to be
aware or ready for update notifications. Launching tracking
resources 512 may 1nvolve configuring the tracking
resources, such as establishing policies or settings for moni-
toring updates, registering diflerent update listeners(s) 540,
establishing notification publication policies, and or setting
up the update consumer(s) 35 (e.g., provisioning a storage
object or volume to store the update notifications). In some
embodiments, these various requests may be performed
according to respective interfaces for network-based ser-
vices, such as those offered by provider network 200 in FIG.
2, 1n order to provision the different tracking resources in
those respective network-based services. In at least some
embodiments, once provisioned, resources such as update
tracker(s) 530, update listener(s) 540, and/or update con-
sumer(s) 550 may persistently maintain, track, and/or con-
sume updates to the database 1n non-relational database
service 520, such as after tracking-enabled client 510 1s no
longer actively updating the database (e.g., client shutdown/
tailure/disabled), or when a different tracking-enabled client
performs updates to the database.

Tracking-enabled client 510 may also interact with non-
relation database service 520 to perform various requests
that 1mplement scalable tracking for database updates
according to a secondary index. For example, when creating
a new table 512, the request may include requests to create
a secondary index based upon certain tracking attributes
(c.g., a bucket i1dentifier as a hash key, and a sequence
number as a range key). Tracking-enabled client may per-
form various write/delete requests 514 (e.g., update, insert,
add, modifly, batch update, etc.) which may trigger the
isertion of tracking attributes (as discussed above with
regard to FIGS. 1 and 4, and below with regard to FIG. 6).
Tracking-enabled client 510 may also 1ssue read requests
516 (e.g., queries for particular data) and may parse
responses 518 in such a way as to hide tracking attributes (or
data maintained for tracking purposes) from an application
that issued the read request 516. For example, as discussed
below with regard to FIG. 7, in some embodiments, soft

10

15

20

25

30

35

40

45

50

55

60

65

14

deletes (or other updates that remove data) may be imple-
mented so that the update may be replicated to the secondary
index, update tracker(s) 530, and update listener(s) 540. The
deleted portion of data may be marked for deletion, and 1f
returned to tracking-enabled client 510 1n a read response
518, tracking-enabled client 510 may filter out the soft
deleted data before providing read results.

The examples of providing scalable tracking for database
updates according to a secondary index 1 FIGS. 2-5 have
been given in regard to a provider network implementing a
non-relational database service. However, various other
types of databases that may be implemented as separate or
standalone distributed databases may implement scalable
tracking for database updates according to a secondary index
whether relational or non-relational in scheme. FIG. 6 1s a
high-level flowchart illustrating various methods and tech-
niques for including tracking attributes in update requests to
update portions of a database, according to some embodi-
ments. These techniques may be implemented using data-
bases as described above with regard to FIGS. 2-5, as well
as other databases and/or different implementations of a
tracking-enabled database client, update tracker, and/or
update listener for providing scalable tracking for database
updates according to a secondary index, and thus the fol-
lowing discussion 1s not intended to be limiting as to the
other types or configurations of databases that may imple-
ment the described techniques. Similarly, although the term
database system or service 1s regularly used throughout the
description of FIGS. 6-8, a structured data store may also be
used to mmplement the various techniques and methods
described below, such as various types of caching storage
services, or other data stores that implement a structure for
data storage and may provide a secondary index so that
scalable tracking for database updates may be implemented.
Thus, the term database system 1s not intended to be limiting
as to other types of structured data stores performing the
various techniques discussed below.

As indicated at 610, an update to a portion of a database
may be mitiated. A portion of data 1n a database may depend
upon the structure or schema of the database (e.g., records,
items, objects, etc. . . .). For example, a tracking-enabled
database client may receive a request from another applica-
tion 1mplemented at the tracking-enabled database client to
perform one or more database operations, including one or
more updates. For those initiated update requests, tracking
attributes may be generated to be included in the update
request sent to the database. For instance, as indicated at
630, a tracking attribute for the update may be determined
that 1s a bucket identifier for the update, in at least some
embodiments. Buckets may be implemented for the database
to label, categorize, identily, organize, or otherwise group
updates together. Buckets may, for example, identily a
similar type of data updated (e.g., profile data changes) or a
similar type of action performed with respect to the data
(e.g., a number of “clicks” on a particular HI'TP link). A
bucket 1dentifier may be determined according to a bucket
identifier policy, or other heurnistic, for applying bucket
identifiers to group updates in particular (or predictable)
ways. For example, the portion of data updated by the
mitiated update may indicate the bucket identifier (e.g.,
“Update ‘click-count” For ‘webpagel” to =°27321"” may be
mapped to bucket identifier="page clicks” and “Update
‘click-count” For ‘webpage2’ to =°28446"" may also be
mapped to bucket identifier="page clicks”). In at least some
embodiments, bucket identifier mappings, heuristics, and/or
policies may be shared with update trackers and update
listeners 1 order to evaluate the data grouped within a

US 10,860,604 Bl

15

particular bucket identifier. In some embodiments, a single
bucket 1dentifier may be applied to an update.

As 1ndicated at 630, a tracking attribute may be assigned
to an update that 1s a sequence number for the update. For
example, 1n various embodiments, a timestamp (1ndicating
the time update requests are sent) may be included as a
tracking attribute. Similarly, a monotonically increasing
number may be utilized as a sequence number. The sequence
numbers for updates may be used to determine an order of
performance of the updates at the database (e.g., allowing a
reconstruction, replay, and/or log of updates to the database
to be generated). In at least some embodiments, a nonce may
be generated and 1included as a tracking attribute 1n an update
request. A nonce may be randomly unique number which
may be included to i1dentify/differentiate a specific update.
For instance, 1 a number of updates are sent, each of which
pertain to the same portion of the database, then 1t may be
difficult to distinguish one update from another. Comparing
nonce values may be able to distinguish different updates
that may be otherwise similar.

As idicated at 640, the tracking attributes (or single
tracking attribute) may be included with a request to perform
the update. For example, the update request may perform
one of various operations to add, modity, or delete data from
the portion of data. Inserting the tracking attributes may
include a request to isert or add the tracking attributes with
respect to the portion of data to be updated by the request
(e.g., add the tracking attributes as additional attributes to an
item 1n a non-relational database, or update values in cor-
responding fields for a record 1n a relational database). The
request may then be sent to the database to perform the
update to the portion of the data, as indicated at 650. The
secondary mdex maintained for the database may be even-
tually updated to include indications of the new updates
and/or the respective tracking attributes included in the
request, 1n various embodiments.

Update trackers, or other systems, components, or
devices, responsible for monitoring updates to the database
may access the secondary index 1n order to 1dentity updates
and provide update notifications. FIG. 7 1s a high-level
flowchart illustrating various methods and techniques for
providing notifications of database updates, according to
some embodiments. As indicated at 710, a secondary index
maintained for a database may be queried according to one
or more tracking attributes maintained in the secondary
index, in various embodiments. For instance, a query
requesting updates to portions of the database labeled
according to a particular bucket identifier may be sent. The
returned updates from the secondary index may all pertain to
portions of data (e.g., records, items, objects, etc.) in which
the same bucket 1dentifier was inserted (as discussed above
with regard to FIG. 6). In another example, updates may be
retrieved according to the tracking attribute, the sequence
number for the updates, in various embodiments. For
instance, a query may be sent to obtain a specified range of
updates according to updates with sequence numbers within
the specified range.

As indicated at 720, based, at least 1n part, on a response
to the query, update(s) performed to respective portion(s) of
the database may be 1dentified, 1n various embodiments. For
example, the query may return indications of updates per-
formed to the same portion of data (e.g., record, i1tem, or
object), or multiple diflerent portions of data. The query
response may include indications of the actual change (e.g.,
the 1nsert, update, write, delete, or modification of values) or
may simply indicate that a change occurred. Multiple track-
ing attributes (e.g., bucket identifiers, sequence numbers,

10

15

20

25

30

35

40

45

50

55

60

65

16

and/or nonces) may be returned, along with other attributes
projected from the database to the secondary index. In at
least some embodiments, the sequence numbers may be
utilized to determine an ordering for the i1dentified updates
(e.g., in order to log or replay the updates 1n a similar fashion
as part of providing noftification, discussed below with
regard to element 740). Please note that various querying
techniques, predicates, and/or other information may be
used to identily updates indicated in the secondary index
maintained for the database and thus the previous examples
are not intended to be limiting.

As indicated at 730, update listener(s) may be identified,
in some embodiments, to notify of the identified updates.
For example, update listeners may register or subscribe to
change notifications (e.g., certain types based on tracking or
other attributes). In at least some embodiments, only those
update listeners that have not received an update, and are
supposed to receive an update, may be identified. For
example, 1 at least some embodiments, a bloom filter (or
other probabilistic data structure) may be implemented,
which may indicate whether or not a particular update
notification has been sent to an update listener. In some
embodiments, nonce values, for instance may be included 1n
tracking attributes inserted as part of update requests to a
database. The nonce values may represent the update and, 1n
some embodiments, the nonce values for 1dentified updates
may be evaluated with respect to the bloom filter to deter-
mine whether or not to send an update notification to an
update listener. In some embodiments, caches, or other
components, mechanisms, or techmques to track which
update noftifications have been sent to which update listen-
ers, and thus the previous examples are not intended to be
limiting.

As 1ndicated at 740, a notification of the identified
update(s) to the identified listener(s) may be provided, in
vartous embodiments. For example, a message or other
communication may be sent including information describ-
ing or indicating the update to the database. As some update
listeners may only “listen” for certain kinds of updates, then
a notification may only be sent to those update listeners
registered for or capable of handling the identified updates.

As discussed above with regard to FIG. 5, in some
embodiments, deletes, or other requests to remove data from
a database may be performed soitly (e.g., the data 1s not
immediately deleted or removed from the database). Instead,
a marker or other indicator (e.g., such as a tombstone
marker) may be inserted as one of the tracking attributes to
indicate that the respective portion of data deleted/removed
by the update request 1s no longer visible to a tracking-
enabled database client. For instance, 1f a tracking-enabled
database client were to query for data that included the
marked portion, the marked portion may be returned (along
with other data portions), but the tracking-enabled client
may hide/remove the marked portion of data from any
results presented or utilized based the query response. In this
way, the update may have time to replicate, notify, and/or
publish to the secondary index, update tracker(s), and/or
update listener(s) before being removed. Thus, as indicated
at 750, 11 one of the identified updates 1s a delete request (or
other removal of database data), then as indicated by the
positive exit from 750, the respective portion marked for
deletion may be deleted from the database, as indicated at
760. In this way, the update may be tracked before being
removed from the database (and thus the secondary index).

Although update listeners are discussed as receiving
update notifications with regard to FIG. 7, 1n at least some
embodiments, update notifications may be provided without

US 10,860,604 Bl

17

passing the update notifications to an update listener. For
example, an update tracker, such as update tracker 430
discussed above with regard to FIG. 4, may directly send
update notifications to update consumers, 1 some embodi-
ments.

Multiple update trackers may be implemented, in various
embodiments, to scale the resources available to process
updates to the database (without creating a single update
processing bottleneck). For instance, in some embodiments,
different update trackers may identily updates for different
buckets (e.g., only sending queries for updates according to
a particular bucket 1dentifier). In this way, the processing of
updates for different types of data labeled or recognized
according to particular bucket identifiers may process inde-
pendently and/or 1n parallel. Multiple update trackers may
be used to process different ranges of updates according to
sequence numbers ol updates, 1n some embodiments. For
example, one update tracker may process and handle the first
10 updates, while a second update tracker may process and
handled the second 10 updates, and so on. A coordinator, or
other update tracker management component, may be con-
figured to assign particular ranges ol updates to process to
particular update trackers, 1n some embodiments.

The number and types of update consumers for a database
may vary. Moreover, update consumers may apply update
notifications in different ways. For example, some update
consumers may store update notifications in order to imple-
ment a log, archive, and/or database recovery service. In at
least some embodiments, the update notifications may be
provided to systems that are performing database replication
(e.g., to apply the updates to a database replica which may
be unable to directly communicate with the database). In
other examples, the update notifications may be used to
analyze, manage, or otherwise operate an application or
server (e.g., implemented among multiple network-based
services 1 a provider network, as discussed above with
regard to FIG. 2). In at least some embodiments, another
index or data structure for the database may be generated by
applying the updates, providing a means to generate mul-
tiple different index structures without slowing down the
performance of updates to the database.

For scenarios where multiple update consumers may wish
to be apprised of database updates, the burden on any one
system to supply update notifications may prove too great.
Moreover, interfacing with different systems and performing
different operations or analyses on the update notifications
may render the performance of a single system to be less
ciicient that if 1t were optimized for a particular update
consumer. Thus, in at least some embodiments, update
listeners, such as update listeners 440 and 3540 discussed
above with regard to FIGS. 4 and 5) may be implemented to
handle update notifications for a particular one (or multiple
ones) ol update consumers for update notifications to a
database. FIG. 8 1s a igh-level flowchart illustrating various
methods and techniques for publishing updates to a database
at an update listener, according to some embodiments.

As 1ndicated at 810, update notification(s) for respective
portions of a database may be received at an update listener,
in various embodiments. For example, an update listener
may register or establish an update feed/stream from an
update tracker (such as update trackers 430 and 530 dis-
cussed above 1 FIGS. 4 and 5). In at least some embodi-
ments, multiple update trackers may be implemented to
process and obtain updates to different buckets 1dentified for
the database. Thus, an update listener may register or
establish an update feed/stream with particular update track-
ers. For example, the update listener may publish certain

10

15

20

25

30

35

40

45

50

55

60

65

18

types of update notifications (e.g., updates which may indi-
cate errors or otherwise trigger certain actions) and thus may
receive only those update notifications relevant to publishing
the type of update notifications that trigger the actions.

As indicated at 820, the received update notification(s)
may be evaluated according publication polic(ies) for the
update listener, 1n some embodiments. For instance, a pub-
lication policy may specily the update consumer (e.g.,
storage, streaming service, event handler, cache, replicator,
etc. . . .) as well as the type of updates and or data to be
provided to the update consumers. For example, a publica-
tion policy may identily certain data projected into the
secondary index (which may be included in an update
notification or may need to be obtained from the secondary
index by the update listener). Publication polic(ies) may, 1n
some embodiments, describe/prescribe certain analysis,
modification, aggregation, or other manipulation of update
notifications prior to publication. For example, instead of
publishing a raw number of updates to a certain value (e.g.,
total number of thread comments), a publication policy may
describe summing or aggregating additions to a previously
published value, which the update listener may periodically
publish to a particular update consumer. Publication policies
may generally describe the various mput data concerning
database updates, operations on the data concerning data-
base updates, and output data to be published concerning the
database updates, 1n addition to the various systems, com-
ponents, and/or devices from which the data may be
obtained and to which the data may be provided.

As 1ndicated at 830, based, at least in part, on the
evaluation, publish the update notification(s) to update con-
sumer(s), 1n at least some embodiments. The evaluation of
the publication policy, as noted earlier, may describe the data
to be obtained, operations to be performed with the data, and
the destination of the data, the update consumer(s). Accord-
ingly, the change notification(s) published to the update
consumer(s) may be performed in various ways. For
example, for an update consumer that 1s implemented as part
of another network-based service, network messaging and
protocol may be utilized to send the change notifications to
the update consumer 1n the network-based service as may be
determined based on the evaluation of the publication policy
for the update listener. For local, or update consumers that
may reached differently, a corresponding protocol, commu-
nication technique, and/or other medium may be utilized to
publish the update notification(s) to update consumer(s).
Please note that the use of publication policies discussed
above 1s merely provided as an example of an implemen-
tation ol an update listener. Similar techniques may be
accomplished by hardcoding or hardwiring the various ele-
ments described above (1in addition to other steps and/or
transformations), and thus the previous example of handling
update notifications at an update listener 1s not intended to
be limiting.

The methods described herein may in various embodi-
ments be implemented by any combination of hardware and
software. For example, 1n one embodiment, the methods
may be implemented by a computer system (e.g., a computer
system as 1n FIG. 9) that includes one or more processors
executing program instructions stored on a computer-read-
able storage medium coupled to the processors. The program
instructions may be configured to implement the function-
ality described herein (e.g., the functionality of various
servers and other components that implement the structured
data store services/systems and/or delegation services/sys-
tems described herein). The various methods as 1llustrated in
the figures and described herein represent example embodi-

US 10,860,604 Bl

19

ments of methods. The order of any method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Embodiments of scalable tracking of database updates
according to a secondary index as described herein may be
executed on one or more computer systems, which may
interact with various other devices. FIG. 9 1s a block diagram
illustrating an example computer system, according to vari-
ous embodiments. For example, computer system 1000 may
be configured to implement nodes of a delegation service, a
structured data store, and/or a client, in different embodi-
ments. Computer system 1000 may be any of various types
of devices, including, but not limited to, a personal computer
system, desktop computer, laptop or notebook computer,
mainframe computer system, handheld computer, worksta-
tion, network computer, a consumer device, application
server, storage device, telephone, mobile telephone, or 1n
general any type of computing device.

Computer system 1000 includes one or more processors
1010 (any of which may include multiple cores, which may
be single or multi-threaded) coupled to a system memory
1020 via an mput/output (I/0) interface 1030. Computer
system 1000 further includes a network interface 1040
coupled to I/O interface 1030. In various embodiments,
computer system 1000 may be a uniprocessor system includ-
ing one processor 1010, or a multiprocessor system 1nclud-
ing several processors 1010 (e.g., two, four, eight, or another
suitable number). Processors 1010 may be any suitable
processors capable of executing instructions. For example,
in various embodiments, processors 1010 may be general-
purpose or embedded processors implementing any of a
variety of instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors 1010
may commonly, but not necessarily, implement the same
ISA. The computer system 1000 also includes one or more
network communication devices (e.g., network interface
1040) for communicating with other systems and/or com-
ponents over a communications network (e.g. Internet,
AN, etc.). For example, a client application executing on
system 1000 may use network intertace 1040 to communi-
cate with a server application executing on a single server or
on a cluster of servers that implement one or more of the
components of the systems described herein. In another
example, an 1nstance of a server application executing on
computer system 1000 may use network interface 1040 to
communicate with other instances of the server application
(or another server application) that may be implemented on
other computer systems (e.g., computer systems 1090).

In the illustrated embodiment, computer system 1000 also
includes one or more persistent storage devices 1060 and/or
one or more I/O devices 1080. In various embodiments,
persistent storage devices 1060 may correspond to disk
drives, tape drives, solid state memory, other mass storage
devices, or any other persistent storage device. Computer
system 1000 (or a distributed application or operating sys-
tem operating thereon) may store instructions and/or data in
persistent storage devices 1060, as desired, and may retrieve
the stored instruction and/or data as needed. For example, in
some embodiments, computer system 1000 may host a
storage system server node, and persistent storage 1060 may
include the SSDs attached to that server node.

Computer system 1000 includes one or more system
memories 1020 that are configured to store instructions and
data accessible by processor(s) 1010. In various embodi-
ments, system memories 1020 may be implemented using,
any suitable memory technology, (e.g., one or more of

10

15

20

25

30

35

40

45

50

55

60

65

20

cache, static random access memory (SRAM), DRAM,
RDRAM, EDO RAM, DDR 10 RAM, synchronous

dynamic RAM (SDRAM), Rambus RAM, EEPROM, non-
volatile/Flash-type memory, or any other type of memory).
System memory 1020 may contain program instructions
1025 that are executable by processor(s) 1010 to implement
the methods and techniques described herein. In various
embodiments, program instructions 1025 may be encoded 1n
platform native binary, any interpreted language such as
Java™ byte-code, or 1n any other language such as C/C++,
Java™, etc., or 1n any combination thereof. For example, 1n
the illustrated embodiment, program instructions 10235
include program instructions executable to implement the
functionality of a database service, tracking-enabled client,
update tracker, update listener, and/or update consumer in
different embodiments. In some embodiments, program
mstructions 1025 may implement multiple separate clients,
server nodes, and/or other components.

In some embodiments, program instructions 1025 may
include 1nstructions executable to implement an operating
system (not shown), which may be any of various operating
systems, such as UNIX, LINUX, Solaris™, MacOS™,
Windows™, etc. Any or all of program instructions 1025
may be provided as a computer program product, or soft-
ware, that may include a non-transitory computer-readable
storage medium having stored thereon instructions, which
may be used to program a computer system (or other
clectronic devices) to perform a process according to various
embodiments. A non-transitory computer-readable storage
medium may include any mechanism for storing information
in a form (e.g., software, processing application) readable by
a machine (e.g., a computer). Generally speaking, a non-
transitory computer-accessible medium may include com-
puter-readable storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM
coupled to computer system 1000 via I/O interface 1030. A
non-transitory computer-readable storage medium may also
include any volatile or non-volatile media such as RAM
(e.2. SDRAM, DDR SDRAM, RDRAM, SRAM, efc.),
ROM, etc., that may be included in some embodiments of
computer system 1000 as system memory 1020 or another
type of memory. In other embodiments, program instruc-
tions may be communicated using optical, acoustical or
other form of propagated signal (e.g., carrier waves, infrared
signals, digital signals, etc.) conveyed via a communication
medium such as a network and/or a wireless link, such as
may be implemented via network interface 1040.

In some embodiments, system memory 1020 may include
data store 1045, which may be configured as described
herein. In general, system memory 1020 (e.g., data store
1045 within system memory 1020), persistent storage 1060,
and/or remote storage 1070 may store data blocks, replicas
of data blocks, metadata associated with data blocks and/or
their state, configuration information, and/or any other infor-
mation usable 1n implementing the methods and techniques
described herein.

In one embodiment, I/O interface 1030 may be configured
to coordinate I/O trailic between processor 1010, system
memory 1020 and any peripheral devices in the system,
including through network intertace 1040 or other peripheral
interfaces. In some embodiments, I/O interface 1030 may
perform any necessary protocol, timing or other data trans-
formations to convert data signals from one component
(e.g., system memory 1020) into a format suitable for use by
another component (e.g., processor 1010). In some embodi-
ments, I/0O mterface 1030 may include support for devices
attached through various types of peripheral buses, such as

US 10,860,604 Bl

21

a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for

example. In some embodiments, the function of I/O 1nter-
face 1030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments, some or all of the functionality
of I/O mtertace 1030, such as an interface to system memory
1020, may be incorporated directly into processor 1010.

Network interface 1040 may be configured to allow data
to be exchanged between computer system 1000 and other
devices attached to a network, such as other computer
systems 1090 (which may implement one or more storage
system server nodes, database engine head nodes, and/or
clients of the database systems described herein), for
example. In addition, network interface 1040 may be con-
figured to allow communication between computer system
1000 and various I/O devices 1050 and/or remote storage
1070. Input/output devices 1050 may, mn some embodi-
ments, include one or more display terminals, keyboards,
keypads, touchpads, scanning devices, voice or optical rec-
ognition devices, or any other devices suitable for entering
or retrieving data by one or more computer systems 1000.
Multiple input/output devices 1050 may be present 1n com-
puter system 1000 or may be distributed on various nodes of
a distributed system that includes computer system 1000. In
some embodiments, similar mput/output devices may be
separate from computer system 1000 and may interact with
one or more nodes of a distributed system that includes
computer system 1000 through a wired or wireless connec-
tion, such as over network interface 1040. Network interface
1040 may commonly support one or more wireless network-
ing protocols (e.g., Wi-FVVIEEE 802.11, or another wireless
networking standard). However, 1n various embodiments,
network interface 1040 may support communication via any
suitable wired or wireless general data networks, such as
other types of Ethernet networks, for example. Additionally,
network interface 1040 may support communication via
telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks,
via storage area networks such as Fibre Channel SANs, or
via any other suitable type of network and/or protocol. In
various embodiments, computer system 1000 may include
more, fewer, or diflerent components than those 1llustrated
in FI1G. 9 (e.g., displays, video cards, audio cards, peripheral
devices, other network interfaces such as an ATM interface,
an Ethernet interface, a Frame Relay interface, etc.)

It 1s noted that any of the distributed system embodiments
described herein, or any of their components, may be
implemented as one or more network-based services. For
example, a compute cluster within a computing service may
present computing services and/or other types of services
that employ the distributed computing systems described
herein to clients as network-based services. In some embodi-
ments, a network-based service may be implemented by a
software and/or hardware system designed to support
interoperable machine-to-machine interaction over a net-
work. A network-based service may have an interface
described in a machine-processable format, such as the Web
Services Description Language (WSDL). Other systems
may interact with the network-based service 1n a manner
prescribed by the description of the network-based service’s
interface. For example, the network-based service may
define various operations that other systems may invoke,
and may define a particular application programming inter-
tace (API) to which other systems may be expected to
conform when requesting the various operations. though

10

15

20

25

30

35

40

45

50

55

60

65

22

In various embodiments, a network-based service may be
requested or invoked through the use of a message that
includes parameters and/or data associated with the net-
work-based services request. Such a message may be for-
matted according to a particular markup language such as
Extensible Markup Language (XML), and/or may be encap-
sulated using a protocol such as Simple Object Access
Protocol (SOAP). To perform a network-based services
request, a network-based services client may assemble a
message including the request and convey the message to an
addressable endpoint (e.g., a Uniform Resource Locator
(URL)) corresponding to the network-based service, using
an Internet-based application layer transier protocol such as
Hypertext Transier Protocol (HTTP).

In some embodiments, network-based services may be
implemented using Representational State Transter (“REST-
tul”) techniques rather than message-based techniques. For
example, a network-based service implemented according to

a REST1ul technique may be invoked through parameters

included within an HTTP method such as PUT, GET, or
DELETE, rather than encapsulated within a SOAP message.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications
may be made as would become apparent to those skilled in
the art once the above disclosure 1s fully appreciated. It 1s
intended that the following claims be interpreted to embrace
all such modifications and changes and, accordingly, the

above description to be regarded 1n an illustrative rather than
a restrictive sense.

What 1s claimed 1s:

1. A system, comprising;

One Or MOore Processors;

a memory, comprising program instructions that cause the
one or more processors to implement:

a tracking-enabled database client that provides an
application access to a database, the tracking-en-
abled database client configured to:
for individual ones of a plurality of requests that are

received from the application to update respective

portions of a table of the database:

generate a plurality of tracking attributes to
include 1n the individual ones of the plurality of
requests, wherein the plurality of tracking attri-
butes comprise a respective sequence number
for the individual ones of the plurality of
requests and a respective bucket identifier for
the respective portions of the database to be
updated;

modily the plurality of requests to update the
respective portions of the table of the database
to cause the database to insert the plurality of
tracking attributes into the respective portions
of the table of the database in addition to the
updates received from the application;

send to the database the plurality of modified
requests to update the respective portions of the
table of the database, wherein the plurality of
tracking attributes included in the individual
ones of the plurality of requests are inserted nto
the respective portions of the table of the data-
base as part of performing the plurality of
modified requests at the database to the update
the respective portions 1n order to be replicated
to a secondary index maintained for the data-
base, wherein the secondary index maintained

US 10,860,604 Bl

23

for the database indicates the respective por-
tions of the database updated according to the
plurality of requests;
one or more update trackers for the database, respec-
tively configured to:
query the secondary index maintained for the data-
base according to at least one of the one or more
tracking attributes to 1identily one or more updates
to one or more of the respective portions of the
table of the database performed as a part of the
plurality of requests, wherein an ordering of the
identified one or more updates to the one or more
respective portions of the database 1s determined
according to the respective sequence number for
the 1dentified one or more updates; and
provide one or more notifications for the one or more
identified updates.

2. The system of claim 1, wherein the at least one tracking
attribute for querying the secondary index includes the
respective bucket i1dentifier.

3. The system of claim 1, wherein the one or more update
trackers are a plurality of update trackers, and wherein the
respective bucket identifier for the query of the secondary
index 1s a different respective bucket identifier for individual
ones of the plurality of update trackers.

4. The system of claim 1, wherein the database 1s 1mple-
mented as part of a network-based database service, and
wherein the send of the plurality of requests and the query
of the secondary index 1s performed via a programmatic
interface for the network-based database service.

5. A method, comprising:

performing, by one or more computing devices:

for individual ones of a plurality of requests that are
recerved from an application to update respective
portions of a table of a database:
moditying the plurality of requests to update the
respective portions of the database to cause the
database to 1sert one or more tracking attributes
into the respective portions of the table of the
database 1n addition to the updates receirved from
the application, wherein the one or more tracking
attributes comprise a respective sequence number
for the individual ones of the plurality of requests;
sending to the database the plurality of modified
requests to update the respective portions of the
table of the database to be performed, wherein the
one or more tracking attributes included in the
individual ones of the plurality of requests are
inserted mto the respective portions of the data-
base as part of performing the plurality of modi-
fied requests at the database to the update the
respective portions 1 order to be replicated to a
secondary index maintained for the database,
wherein the secondary index maintained for the
database indicates the respective portions of the
database updated according to the plurality of
requests;
querying the secondary index maintained for the data-
base according to at least one of the one or more
tracking attributes to 1identity one or more updates to
one or more of the respective portions of the table of
the database performed as a part of the plurality of
requests, wherein an ordering of the 1dentified one or
more updates to the one or more respective portions
of the database 1s determined according to the
respective sequence number for the 1dentified one or
more updates; and

10

15

20

25

30

35

40

45

50

55

60

65

24

providing one or more notifications for the one or more
1dentified updates.

6. The method of claim 5, wherein modifying the plurality
of requests to update the respective portions of the database
to cause the database to insert one or more tracking attributes
into the respective portions of the database 1n addition to the
updates recerved from the application comprises determin-
ing a respective bucket identifier for the individual ones of
the plurality of requests to include as one of the one or more
tracking attributes, and wherein the at least one tracking
attribute for querying the secondary index includes the
respective bucket i1dentifier.

7. The method of claim 6, wherein the identified one or
more updates to the one or more respective portions of the
database include the same respective bucket identifier.

8. The method of claim 6, wherein modifying the plurality
of requests to update the respective portions of the database
to cause the database to insert the one or more tracking
attributes into the respective portions of the database 1n
addition to the updates received from the application and
sending the plurality of modified requests are performed by
a tracking-enabled client of the database, wherein querying
the secondary index and providing the one or more notifi-
cations are performed by a plurality of update trackers for
the database, and wherein the respective bucket identifier for
querying the secondary mdex 1s a different respective bucket
identifier for individual ones of the plurality of update
trackers.

9. The method of claim 5, wherein the one or more
notifications for the one or more identified updates are
provided to one or more different update listeners, and
wherein the method further comprises:

publishing, by the one or more different update listeners,

the one or more notifications to a respective one of one
or more different update consumers.

10. The method of claim 9, wherein modifying the plu-
rality of requests to update the respective portions of the
table of the database to cause the database to insert the one
or more tracking attributes into the respective portions of the
table of the database 1n addition to the updates received from
the application and sending the plurality of modified
requests are pertormed by a tracking-enabled client of the
database, wherein querying the secondary index and pro-
viding the one or more notifications are performed one or
more update trackers for the database, and wherein the
method further comprises:

launching the one or more update trackers and the one or

more different update listeners as part of a table cre-
ation request performed at the tracking-enabled client
of the database.

11. The method of claim 5, wherein at least one of the
plurality of requests 1s a delete request to delete the respec-
tive portion of the database, wherein the delete request 1s
formatted as a soit delete such that the respective portion of
the database 1s marked for deletion when the updated request
1s performed at the database, and wherein the method further
COmMprises:

in response to providing the one or more notifications for

the 1dentified one or more respective portions of the
database to be updated, sending a request to the data-
base to remove the respective portion of the database
marked for deletion, wherein the delete request 1s
included in the i1dentified one or more updates.

12. The method of claim 5, further comprising:

based, at least in part, on the one or more notifications of

the 1dentified one or more updates, triggering an event
at one or more update consumers.

US 10,860,604 Bl

25

13. The method of claim 5, wherein the database 1s a
non-relational database.
14. A non-transitory, computer-readable storage medium,
storing program instructions that when executed by one or
more computing devices cause the one or more computing,
devices to implement:
for individual ones of a plurality of requests that are
received from an application to update respective por-
tions of a table of a database:
generating a plurality of tracking attributes to include 1n
the individual ones of the plurality of requests,
wherein the plurality of tracking attributes comprise
a respective sequence number for the individual ones
of the plurality of requests and a respective bucket
identifier for the respective portions of the database
to be updated;
modifying the plurality of requests to update the
respective portions of the table of the database to
cause the database to insert the plurality of tracking
attributes 1nto the respective portions of the database
in addition to the updates received from the appli-
cation;
sending to the database the plurality of modified
requests to update the respective portions of the table
of the database to be performed, wherein the plural-
ity of tracking attributes included in the individual
ones of the plurality of requests are mserted into the
respective portions ol the database as part of per-
forming the plurality of modified requests at the
database in order to be replicated to a secondary
index maintained for the database, wherein the sec-
ondary index maintained for the database indicates
the respective portions of the database updated
according to the plurality of requests;
querying the secondary index maintained for the database
according to at least one of the one or more tracking
attributes to identily one or more updates to one or
more ol the respective portions of the database per-
formed as a part of the plurality of requests, wherein an
ordering of the identified one or more updates to the
one or more respective portions of the database 1is
determined according to the respective sequence num-
ber for the i1dentified one or more updates; and

providing one or more notifications for the one or more
identified updates.

15. The non-transitory, computer-readable storage
medium of claim 14, wherein the at least one tracking
attribute for querying the secondary index includes the
respective bucket identifier.

5

10

15

20

25

30

35

40

45

26

16. The non-transitory, computer-readable storage
medium of claim 14, wherein the one or more notifications
for the one or more 1dentified updates are provided to one or
more different update listeners, and wherein the program
instructions further cause the one or more computing

devices to implement:
publishing, by the one or more different update listeners,
the one or more notifications to a respective one of one
or more different update consumers.

17. The non-transitory, computer-readable storage
medium of claim 16, wheremn the plurality of tracking
attributes to include 1n the individual ones of the plurality of
requests further comprises a respective nonce, and wherein,
in providing the one or more notifications for the one or
more 1dentified updates, the program instructions cause the
one or more computing devices to implement:

evaluating the respective nonce for the identified one or

more updates according to a bloom filter to 1dentity the
one or more different update listeners to provide the one
or more notifications.

18. The non-transitory, computer-readable storage
medium of claim 14, wherein moditying the plurality of
requests to update the respective portions of the table of the
database to cause the database to insert the one or more
tracking attributes into the respective portions of the data-
base 1n addition to the updates received from the application
and sending the plurality of modified requests are performed
by a tracking-enabled client of the database, wherein que-
rying the secondary index and providing the one or more
notifications are performed by a plurality of update trackers
for the database, and wherein the respective bucket identifier
for querying the secondary index 1s a diflerent respective
bucket identifier for individual ones of the plurality of
update trackers.

19. The non-transitory, computer-readable storage
medium of claim 14, wherein the program 1nstructions cause
the one or more computing devices to further implement:

based, at least 1n part, on the one or more notifications of

the 1dentified one or more updates, applying the i1den-
tified one or more updates to update a replica of the
database.

20. The non-transitory, computer-readable storage
medium of claim 14, wherein the program instructions cause
the one or more computing devices to further implement:

based, at least in part, on the one or more notifications of

the 1dentified one or more updates, applying the i1den-

tified one or more updates to generate an index for the
database.

	Front Page
	Drawings
	Specification
	Claims

