12 United States Patent

Tsal et al.

US010860528B2

(10) Patent No.:
45) Date of Patent:

US 10,860,528 B2
Dec. 8, 2020

(54)

(71)
(72)

DATA TRANSFORMATION AND PIPELINING
Applicant: Clover Health, Jersey City, NI (US)

Inventors: Jasmine Tsai, Jersey City, NJ (US);
Chris Hartfield, Jersey City, NJ (US);

George Leslie Waksman, Jersey City,

NI (US)
(73) Clover Health, Jersey City, NJ (US)

(%)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 170 days.

(21)
(22)

Appl. No.: 16/222,790

Filed: Dec. 17, 2018

(65) Prior Publication Data

US 2020/0192862 Al Jun. 18, 2020

Int. CI.
GO6F 16711
GO6F 16/16

U.S. CL
CPC

(51)
(2019.01)
(2019.01)
(52)
GO6F 16/116 (2019.01); GO6F 16/162

(2019.01)

(58) Field of Classification Search
CPC e GO6F 16/116; GO6F 16/162
USPC 707/692

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,111,075 B2* 9/2006 Pankovcin GO6F 16/258

2015/0186821 Al* 7/2015 Wangcccoenvnn, G06Q 10/10
705/2

2015/0187036 Al* 7/2015 Wangccccoevnvnn, G06Q 50/22
705/2

2016/0019299 Al* 1/2016 Boloorccc...... GO6F 16/36
705/3

2016/0292241 Al* 10/2016 Patterson Gl16H 10/60
2018/0210935 Al* 7/2018 Yazicioglu GO6F 40/186

FOREIGN PATENT DOCUMENTS
WO WO 2018/175435 A2 * 9/2018 GO6F 19/24

OTHER PUBLICATTONS

Meystre, S. M., et al., “Extracting Information from Textual Docu-
ments in the Electronic Health Record: A Review of Recent Research”,
IMIA Yearbook of Medical Informatics 2008, © 2008, pp. 128-

144 *

International Search Report for PCT/US2019/066640, dated Mar.
17, 2020, 3 pages.*

Written Opinion of the International Searching Authority for PCT/
US2019/066640, dated Mar. 17, 2020, 8 pages.*

* cited by examiner

Primary Examiner — Robert Stevens
(74) Attorney, Agent, or Firm — Lee & Hayes, P.C.

(57) ABSTRACT

Systems and methods for transforming and pipelimng data
are disclosed. For example, 1t may be desirable to parse out
usable data and to transform the usable data found in files
that may be received from diflerent sources and that may be
in different file types. Described herein are system and
methods that provide functionality to allow for determiming
a file type of a file, parsing out usable data from the file,
performing a series of transformations on the usable data,
and generating a pipeline that includes the series of trans-
formations. The pipeline may be monitored for error detec-
tion.

709/246
10,311,076 B1* 6/2019 Bruhn G16H 10/00
10,642,854 B2* 5/2020 Pattnaik GOO6F 9/38 20 Claims, 7 Drawing Sheets
600 \
Generate multiple parsers, gach of the multiple parsers associated with a file type of
multiple file types
Receive a flle from a device associated with a healthcare provider, wherein the file |
[includes healtheare information
|dentify a file type associated with the file
£06
Select a parser, from the multiple parsers, based on the file type
§08

Generate, utilizing the parser, grouping data indicating groups of related information
associated with the healthcare information

510

[|dentify a first type of information from the groups of related information

612

L

Determing that the first type of infarmation is associated with a second type of
information that has been previously stored

|

1

516

[Transform the first type of information from a first format to a second farmat

|

|

g18

[Store the first type of information in the second format

|

US 10,860,528 B2

Sheet 1 of 7

Dec. 8, 2020

U.S. Patent

T4 N L
'dwo)) auljadid - 1

el el
'dwio9) DULIOJIUOA] 'dwio?) uonewiosues |

0cl . 8Ll
‘dwon Jssied obel0ig Bje(]

NN

Ol I Alowsp

— _ _]
S0 llall S HI0SSa00]
71T (s)eoepaiul 2Ll () d . FEI_ 4/:8?

¢ Old

-~

. ™~
S Nj- + "SIA GO < Susied)

T ™
_+ 2102 < suoldiiosald J

US 10,860,528 B2

/r + "SIA g < sjuaned N

FARAEA A A AP R RTARA A RAT A TA R

ol

/ olewa _ N

r~ __+'sihgo<suoned ~ ebyomed
f)
M /'m 'SIA Gg < sluslled
- m\m_ms_ + 'SJA GO < SJUBed g . S,
> B uolydirosaid
=
7 \ - -~ ~
- e N /102 < suonduosald . Piod8y soueInsu \W
W/+ /102 < suonduosald -/ - -~ N
| Japusn waled
— S e i
= : N
= 150D + d9jewad + swielD S —
2.,, - ._ gleliad + SWIE|D)
R
> SWIB|D ¢0¢
= /7 olewad + SWie)
_+ /102 < suonduosald / 907
14074

L e e,

- u B
| > 9|eWa + SWie
\ £10¢ > ejeliad + SWIEID |

T T
W/\. LOC < 9l + SWIB|D

T~ 00¢

U.S. Patent

80¢

US 10,860,528 B2

Sheet 3 of 7

Dec. 8, 2020

U.S. Patent

2AX
POV

L0JJ
L1GE J1aig
sjualled
HEW D
10) swiels

S)STATNG

PJODEN
L4
1918] 40
2102 40)

ele(] e}

UCTIELIIOJSUE] |

LAX
PIOGEY

WG.)
sjuaned
a|ewo

10) ST

(SME[]

80¢

LAX
DIOOEN

Wo.ij
SIS
a|ewa

J0) SUKB|T)

jllm Sile

¢ Old

PJODSY WG
SHIDIRA BB
pug swig|o ablap

UOTIEWIOISUE]T |

ZAX
pI008 M
(LIOL)§
japuso
UDNE o

£ZAX
£JO08Y

(LI
SWIe|S

90¢

ZAX 010003
PI0TTe] LD
ol 18pussy
19PUID) uaned
Hshied 19}
(Srsinding | \Uohieuwlojsuel]
ZAX 01000
DI W)
LLIQl) st1e|s
SWIEID =S
SISInAdING | \UOCHEWIOJSUBS]

EAX
PIOOSH

SOUBINSU|

- {shnaug

14019

ZAX
RIS

aouRINSU|

- Eman

c0t

™~ 00€

US 10,860,528 B2

Sheet 4 of 7

Dec. 8, 2020

40]7

U.S. Patent

“swiep Aceuwueyd Allep 1ebie)
1d3aHvO\(Z86LNWIZoeMIA) \3 114y [824nos
luoiba.
luaup|iyo
lla1jIsse|o
[.SAD, ‘113 ANVdINOD,] l4epjnoy} soinos
|IAjsse|o

US 10,860,528 B2

Sheet 5 of 7

Dec. 8, 2020

U.S. Patent

40,°

Ayjus Buijiig
aU] pue Japiaold B Uusamlaqg sU0DsUUOD aUy) sjuasaldal Jey) a|de) 1o.) v
| :00p
saniua bullig Japiaoud oelpold ymp sweu
1NAdINO

slepinold Buissiw (p1 Jepiaoid se pt 1 D313S) NOHAH

|0=(,)1unod 1937138
‘AJanb

9J8y aJle sJispiAoid (e 1eu] oayo Ojul-
seljjus Bulg Buissiw (pi Ayius Buljjig se pl 19373S) WOYA
|0=(,)}unod 1937138
AJanb
aJay ale sajlllus bul|iqg |1e 1eul Yosuo .olul-
‘sallanb uoneplieA

DI J8pIAOId
prAjyus Buiig
'Snduy

Wo2 @oueinsui@ybnop -aue-

0cC
ol
8l
Ll
9l
Gl
Pl
el
Cl
L1
Ol

6

8
L
9
)
1%
€
4
’

U.S. Patent Dec. 8, 2020 Sheet 6 of 7 US 10.860,528 B2

600
N\

Generate multiple parsers, each of the multiple parsers associated with a file type of

multiple file types

Receive a file from a device associated with a healthcare provider, wherein the file
includes healthcare information

ldentify a file type associated with the file
606

Select a parser, from the multiple parsers, based on the file type

608

Generate, utilizing the parser, grouping data indicating groups of related information
associated with the healthcare information
610

identify a first type of information from the groups of related information

612

Determine that the first type of information is associated with a second type of

information that has been previously stored

614

Transform the first type of information from a first format to a second format
616

Store the first type of information in the second format

618

U.S. Patent Dec. 8, 2020 Sheet 7 of 7 US 10.860,528 B2

700
_\

Receive a file from a source

102

ldentify a file type associated with the file
/04

Select a parser based on the file type

706

Parse information stored in the file, using the parser, to create groups of related information

708

identify a first type of information from the groups of related information, wherein identifying
the first type of information includes determining that the first type of information is related to a

previously stored second type of information

10

o

Determine that a portion of the first type of information contains an error

12

Send a notification to a computing device that the first type of information contains the error

14

FIG. 7

US 10,860,528 B2

1
DATA TRANSFORMATION AND PIPELINING

BACKGROUND

The use of data for analytics has become ubiquitous. A
company may receive data for analytics 1n a variety of
different formats or file types. The variety of ways in which
this data may be received may cause meaningful analysis of
the data to be too complicated and too expensive. Described
herein are improvements in technology and solutions to
technical problems that can be used to, among other things,
generate data sets of suflicient quantity and quality to
increase the accuracy of data analytics.

BRIEF DESCRIPTION OF THE

DRAWINGS

The detailed description 1s set forth below with reference
to the accompanying figures. In the figures, the left-most
digit(s) of a reference number 1dentifies the figure 1n which
the reference number first appears. The use of the same
reference numbers 1n different figures indicates similar or
identical items. The systems depicted in the accompanying
figures are not to scale and components within the figures
may be depicted not to scale with each other.

FIG. 1 illustrates a schematic diagram ol an example
environment for transforming and pipelining data.

FIG. 2 illustrates a diagram of an example pipeline of
data.

FIG. 3 illustrates a conceptual diagram of an example
pipeline of data.

FIG. 4 illustrates an example user interface for parsing
data.

FI1G. 5 illustrates an example user interface for transform-
ing data.

FIG. 6 illustrates a flow diagram of an example process
for transforming data.

FIG. 7 illustrates a flow diagram of an example process
for monitoring data.

DETAILED DESCRIPTION

Systems and methods for transforming and pipelining
data are described herein. Take, for example, a data service
including a system that has stored thereon and/or has access
to one or more databases contaiming data, such as health-
related data, for example. Such data may be used by the
system for one or more purposes, such as predicting out-
comes and/or events, determining fraudulent insurance
claims, i1dentifying at-risk patients, and the like. However,
cach source that provides the health-related data may pro-
vide the data in a different format or file type. For example,
a pharmacy may send a list of filled prescriptions to the data
service 1n a comma separated value (CSV) file while an
insurance company may send a list of claims 1 an XML
spreadsheet. Additionally, the file that includes the health-
related information may include other types of information
that the data service may not be interested in, such as
non-health-related data. The data service may receive hun-
dreds, or even thousands, of these files every day. Tradi-
tionally, a user would have to manually download each file
and 1dentily the relevant and/or the desired data because the
immense volume of file types would not allow for the system
to be automated. Increasing the ability to modily data in
order to perform analyses may improve prediction accuracy
and/or allow for more robust analysis techniques to be
utilized.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

The presently-disclosed systems and methods may be
utilized to classily incoming files by file type, i1dentily
relevant information 1n a file, and provide functionality to
allow a user (e.g., data analyst) to modily the relevant
information i1n order to perform a desired analysis. For
example, the system may receive files from multiple
sources. Each source may provide their respective file 1n a
different format or as a diflerent file type. As each file 1s
received, the system may 1dentily a file type based at least
in part on the content located within the file or metadata
associated with the file and may determine a parser used to
parse the file based at least 1n part on the file type. By way
of example, each parser may be associated with a regular
expression (regex) and the system may perform a regex
search on each file that 1s received. When a sequence of
characters or a pattern 1s identified within the file that
matches the regex associated with a particular parser, then
that parser 1s determined to be used for parsing the file. The
parsers may have been previously generated by the system
and associated with specific file types and/or regex such that
when a file 1s received by the system, the system automati-
cally identifies a parser to be used for parsing the informa-
tion 1n the file. In some cases, a received file may be 1n a file
type 1 which the system does not have a corresponding
parser. In this case, the system may 1dentily a similar file
type to the file type of the received file and the system may
select a parser associated with the similar file type to parse
the received file. By way of example, parsing information
from a file may include identitying usable data within the file
at a certain location based at least 1n part on the type of file
and the corresponding type of parser. Once the usable data
within a file has been 1dentified, the system may receive
instructions to transform different sections of the data into a
different format and to record each instance of a transior-
mation 1n one or more tables associated with the respective
sections of data. By way of example, a transformation of
data may include an mmput and an output. Each mput and
output may include a file and/or a table that stores metadata,
such as a transformation history, of the transformed data. As
different sections of the file are transformed, the system may
create a pipeline structure that stores a record of each
transformation.

By i1dentifying the usable data within a file and transform-
ing the usable data as described above and elsewhere herein,
the system provides functionality to allow users (e.g., data
scientist, engineers, analysts, etc.) to manipulate different
types of data from different sources and create an accessible
pipeline that enables the user to follow a lineage of the
transiformed data.

For example, a system may receive multiple files of
different file types from multiple diflerent sources, such as a
CSV file from a pharmacy that includes prescription-filling
information and an XML, spreadsheet from a hospital that
includes information on prescriptions as written. A user may
wish to determine how many of the written prescriptions
from the hospital were actually filled at the pharmacy. The
system may determine an appropriate parser for each file
based at least in part on the file type and may extract the
usable data from each file. The system may then combine the
appropriate usable data from each file as an input thereby
transforming the data to create an output indicating the
desired analysis. The output may be in the form of a table
that correlates the data from both of the inputs. Each output
can be further used as an mput for further analysis, thereby
generating a pipeline of transformations. Each iput and
output may include a file or a table that stores information
associated with the transformed data.

US 10,860,528 B2

3

By generating the pipeline of transformations, the system
can also perform error monitoring for imncoming files. For
example, a series ol transformations for particular types of
data may be establish 1n order to obtain a desired analysis.
The series of transformations may create an interconnected
pipeline (e.g., a dependency graph or a directed acyclic
graph (DAG)) where an output of one transformation
depends on various outputs of previous transformations
feeding into it. The system may receive a new file that
includes an error, such as a zero value for a type of data used
in one of the transformations that form the pipeline. The zero
value may cause a cascading eflect of errors throughout the
interconnected pipeline. In this case, the system may moni-
tor certain values of the pipeline and generate a notification
to send to a device associated with a user indicating that a
value 1s above or below a predefined threshold and that the
target value (1.e., the desired value for the analysis) may be
compromised. Additionally, the notification may include an
indication of where 1n the pipeline the error has occurred, an
input associated with the error, an output associated with the
error, a parser associated with the error, a transformation
associated with the error and/or which file the error origi-
nated from. In some cases, the notification may be sent to the
device of the user and may cause an application on the
device to mitiate and to display the notification.

The present disclosure provides an overall understanding,
of the principles of the structure, function, manufacture, and
use of the systems and methods disclosed herein. One or
more examples of the present disclosure are illustrated 1n the
accompanying drawings. Those of ordinary skill in the art
will understand that the systems and methods specifically
described herein and illustrated 1n the accompanying draw-
ings are non-limiting embodiments. The features 1llustrated
or described 1n connection with one embodiment may be
combined with the features of other embodiments, including
as between systems and methods. Such modifications and
variations are intended to be included within the scope of the
appended claims.

Additional details are described below with reference to
several example embodiments.

FIG. 1 1illustrates a schematic diagram of an example
environment 100 for parsing, transforming, and pipelining
data. The environment 100 may include a first data source
102, a second data source 104, and a third data source 106,
for example. As shown 1n FIG. 1, each of the first data source
102, the second data source 104, and the third data source
106 represent a remote system that generates and/or acquires

data associated with one or more people and stores that data,
such as 1n a database associated with the first data source
102, the second data source 104, or the third data source 106.
By way of example, the first data source 102 may be a
hospital, clinic, and/or other type of healthcare provider. The
second data source 104 may be a pharmacy that recerves and
tulfills prescriptions. The third data source 106 may be an
insurance company that processes claims from the first data
source 102, the second data source 104, or any other
healthcare related entity.

It should be understood that while three data sources 102,
104, 106 are depicted 1n FIG. 1, the number of data sources
may be one, two, three, or more than three. In examples, the
number of data sources may be much more than three, such
as thousands of data sources. It should also be understood
that while the types of data sources have been depicted with
respect to FIG. 1 as remote systems such as a hospital, a
pharmacy, and an isurance company, the types of data
sources may be any device that may receirve input and
generate data associated with a person based at least in part

10

15

20

25

30

35

40

45

50

55

60

65

4

on that input. Further, while the examples provided herein
are described with respect to data associated with a person
or people, the data need not be specific to a person. For
example, the data may be data associated with a device, a
system, an entity that 1s not a person, an object, efc.

The first data source 102, the second data source 104,
and/or the third data source 106 may communicate with a
system 108 via one or more networks 110. The communi-
cation may 1include the sending and/or receiving of data
associated with a person and/or people associated with a
grven data source. The system 108 may include one or more
components, such as, for example, one or more processors
112, one or more network interfaces 114, and memory 116.
The memory 116 may include one or more components,
such as, for example, a data source 118, a parser component
120, a transformation component 122, a monitoring com-
ponent 124, and/or a pipeline component 126. Each of the
components of the memory 116 will be described below 1n
detail.

The data storage 118 may be configured to store data
received by the system 108. The data may by 1n any type of
text document, binary document (e.g., XLLSX), and may be
pluggable to support various other types of data formats. For
example, the data storage 118 may be configured to receive
data from one or more of the first data source 102, the second
data source 104, and/or the third data source 106. Fach data
source 102, 104, and 106 may send data in a different file
format or file type. For example, the different file formats
and file types may include, but are not limited to, a CSV file,
a plain-text document, an ACL document, an AMI docu-
ment, an ANS document, a DBK document, a DOC docu-
ment, a DOCX document, a DOT document, a DOTX
document, an EPUB document, a GDOC document, an
OMNI document, a PAGES document, a PDF document, a
RTF document, an XHTML document, an XML document,
or an XPS document. The data storage 118 may store these
files 1n the format that they are received 1n. Additionally, or
alternatively, while the data storage 118 has been described
as storing data, the data storage 118 may also, or alterna-
tively, be configured to request and/or access data from the
data sources 102, 104, 106 with or without storing that data
in the memory 116 of the system 108.

The parser component 120 may be configured to perform
the parsing process described herein. For example, the
parser component 120 may generate and store multiple
different types of parsers that are associated with a specific
file type. The file type may include any file type capable of
storing data, such as healthcare related data. The parser
component 120 may be configured to select a parser to parse
data 1n a file received from one of the first data source 102,
the second data source 104, and/or the third data source 106
and stored in the data storage 118. For example, a file
received from the first data source 102, the second data
source 104, and/or the third data source 106 may be 1n any
number of file types. Each file type may store data in a
different location of the file and/or 1n a different format. The
parser component 120 may determine a file type of the file
by, by way of example, performing a regex search on the file
in order to 1dentify a sequence of characters or a pattern that
matches a predetermined category. Each parser may be
associated with at least one of the predetermined categories
and/or a regex category and the parser component 120 may
then select the appropriate parser to be used to extract the
usable data in the file based on the category 1n which the file
1s associated with and the associated parser. Selecting the
appropriate parser, by the parser component 120, allows the
parser to automatically extract the usable data from the file

US 10,860,528 B2

S

without the need for a user to do so manually. The types of
information that the parser may extract may include pre-
scription data, msurance claims data, medical claim data,
pharmacy claim data, clinical data, financial data, data from
The Centers for Medicare and Medicaid Services (CMS),
patient data, etc.

The transformation component 122 may be configured to
transform data received from the first data source 102, the
second data source 104, and/or the third data source 106. A
transformation of data may include a manipulation of data,
such as merging data, filtering data, aggregating data, ana-
lytics of data, snapshotting data, and/or de-duplication of
pieces ol data. The transformation component 122 may
recetrve a selection from a user, such as a data scientist, of an
input or, multiple inputs, to be icorporated into a transior-
mation. Inputs may be 1n the form of a file or a table and may
include, but are not limited to, provider relationship data,
billing entities data, claims data, etc. The transformation
component 122 may then receive mnstructions from the user
specilying details of the transformation. For instance, the
user may provide query information that indicates a file to be
used and/or parameters of the transformation. Once the input
information and the query imformation have been received,
the transformation component 122 may provide an output
that includes a table and/or file that shows a result of the
transformation of the mputs. In some cases the transporta-
tion component 122 may be operated locally or imn some
cases the transportation component 122 may be operated on
another system, such as Airflow.

The monitoring component 124 may be configured to
monitor data received from the first data source 102, the
second data source 104, and/or the third data source 106. For
example, the files received from the data sources 102, 103,
and 104 may include values to be used by the parser
component 120 and/or to be used 1n a transformation via the
transformation component 122. If one of these values con-
tains an error, the end-result of the desired analysis may be
compromised. The monitoring component 124 may be con-
figured analyze values and/or data structures within the files
recetved from the first data source 102, the second data
source 104, and/or the third data source 106. For example,
the monitoring component 124 may be configured to analyze
column numbers and row numbers within a file received
from the first data source 102, the second data source 104,
and/or the third data source 106 and determine 11 a row or
column 1s missing or has been added. In some 1nstances, the
monitoring component 124 may be configured to determine
if a value located within a file received from the first data
source 102, the second data source 104, and/or the third data
source 106 1s above a predetermined threshold or below a
predetermined threshold. The momitoring component 124
may compare the row number, column number, and/or the
values of the files recerved from the first data source 102, the
second data source 104, and/or the third data source 106 to
previously received files containing the same or similar
types of information. In some cases, an error may include
determining that at least one input 1s not defined. For
example, the monitoring component 124 may determine that
at least one table used 1 a SQL query 1s not present 1n an
input and that the transformation will not function properly
with the missing table. If the monitoring component 124
determines that there 1s an error contained 1n the files, then
the monitoring component 124 may send a notification to a
user associated with the system 108 (e.g., a data scientist,
engineer, etc.) indicating that an error i1s present. The noti-
fication may also indicate identifying information related to
the file, such as a source identifier, file identifier, a location

10

15

20

25

30

35

40

45

50

55

60

65

6

in the file, and/or a type of error. In some examples, the
monitoring component 124 may automatically reverse a
transformation to a previous state 1 response to detecting an
error. This may prevent propagation of the error into later
transformations. In some examples, the monitoring compo-
nent 124 may 1nclude a platform for a user to test a particular
transiform. For example, the momitoring component 124 may
enable the user to enter mock mput and/or mock outputs
(e.g., SQL mock mputs/outputs) in order to test the func-
tionality of a transformation.

The pipelimng component 126 may be configured to
generate pipelines of 1nterconnected transformations. A
pipeline may include a dependency graph that includes
multiple transformations and information related to those
transformations. For example, the transformation compo-
nent 122 may receirve a selection from a user, such as a data
scientist, ol an 1nput or, multiple mputs, to be icorporated
into a transformation. Inputs may be in the form of a file or
a table and may include, but are not limited to, provider
relationship data, billing entities data, claims data, etc. Once
the input mformation and the parameters of the transforma-
tion have been recerved, the transformation component 122
may provide an output that includes a table and/or file that
shows a result of the transformation of the mputs. Each
output of a transformation may be used as an 1put for a
subsequent transformation. In some cases, the output may be
usable for testing 11 the transformation functioned properly.
For example, a user may wish to obtain a value that depends

L] [

on information from multiple different sources and that
requires the data provided from the multiple different
sources to be parsed and transformed multiple times. The
pipelining component 126 may generate a pipeline to orga-
nize the transformation of the multiple sets of data such that
a user can ecasily determine where individual sets of data
originated from and how they were transformed. In some
examples, the pipelining component 126 may store infor-
mation associated with each transformation of the pipeline
such that a user may determine values of the mputs of each
transformation, values of the outputs of each transformation,
an author of the transformation, etc.

Referring back to FIG. 1, the system 108 may receive a
file from one of the sources 102, 104, and/or 106 and may
store the file 1n the data storage 118. The file may be 1n any
one of multiple different file types and may include health-
care related information, such as insurance claims informa-
tion, patient data, medical claim data, pharmacy claim data,
clinical data, financial data, data from The Centers {for
Medicare and Medicaid Services (CMS), prescription data,
ctc. The parser component 120 may identily a file type
associated with the file based at least 1n part on a source of
the file and/or metadata associated with the file. For
example, the parser component 120 may determine a file
type of the file by, by way of example, performing a regex
search on the file 1n order to identily a sequence of charac-
ters or a pattern that matches a predetermined category. Each
parser may be associated with at least one of the predeter-
mined categories and/or a regex category and the parser
component 120 may then select the appropnate parser to be
used to extract the usable data in the file based on the
category 1n which the file 1s associated with and the asso-
ciated parser. Selecting the appropriate parser, by the parser
component 120, allows the parser to automatically extract
the usable data from the file without the need for a user to
do so manually. In some cases, the parser component 120
may determine that a certain type of data matches a type of
data that was previously extracted. For example, the parser

component 120 may determine that the data includes

US 10,860,528 B2

7

updated insurance claims data from a particular source and
that the updated insurance claims data matches previously
received msurance claims data from the same source. In this
case, the parser component 120 may update a value that
represents the mnsurance claims data associated with the
source to retlect the updated insurance claims data. In some
cases, the parsed data may be stored as tables and stored 1n
the data storage 118. Once the data from the file has been
parsed, the system 108 may receive instructions from a user
128 via a computing device 130 to perform a transformation
on the data. The transformation component 122 may store
multiple different types of transformations that can be per-
formed on the data, such as merging data, filtering data,
and/or de-duplication of pieces of data. The transformation
component 122 may receive a selection from the user 128
via the computing device 130 of inputs to be incorporated in
the transformation. The 1nputs may include a table repre-
sentative of the different data sets extracted from the file by
the parser component 120. The transformation component
122 may provide an output in the form of a table that
includes the result of the transformation of the mput. The
pipeline component 126 may generate a dependency graph
that links multiple transformations. For example, the input
of a transformation may depend on the output of a previous
transformation, forming a pipeline of dependent transior-
mations that originates from the file received by the sources
102, 104, and/or 106. Once a pipeline has been established,
the monitoring component 124 may compare the row num-
ber, column number, and/or the values of subsequently
received files to previously received files containing the
same or similar types of information. ITf the monitoring
component 124 determines that there 1s an error contained 1n
the files, then the monitoring component 124 may send a
notification to a user associated with the system 108 (e.g., a
data scientist, engineer, etc.) indicating that an error is
present.

As used herein, a processor, such as processor(s) 112, may
include multiple processors and/or a processor having mul-
tiple cores. Further, the processors may comprise one or
more cores of different types. For example, the processors
may include application processor units, graphic processing,
units, and so forth. In one 1mplementation, the processor
may comprise a microcontroller and/or a microprocessor.
The processor(s) 112 may include a graphics processing unit
(GPU), a microprocessor, a digital signal processor or other
processing units or components known 1n the art. Alterna-
tively, or 1n addition, the functionally described herein can
be performed, at least 1 part, by one or more hardware logic
components. For example, and without limitation, 1llustra-
tive types of hardware logic components that can be used
include field-programmable gate arrays (FPGAs), applica-
tion-specific integrated circuits (ASICs), application-spe-
cific standard products (ASSPs), system-on-a-chip systems
(SOCs), complex programmable logic devices (CPLDs), efc.
Additionally, each of the processor(s) 112 may possess its
own local memory, which also may store program compo-
nents, program data, and/or one or more operating systems.

The memory 116 may include volatile and nonvolatile
memory, removable and non-removable media implemented
in any method or technology for storage of information, such
as computer-readable nstructions, data structures, program
component, or other data. Such memory 116 includes, but 1s
not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, RAID storage systems, or any other medium which

10

15

20

25

30

35

40

45

50

55

60

65

8

can be used to store the desired information and which can
be accessed by a computing device. The memory 116 may
be 1mplemented as computer-readable storage media
(“CRSM”), which may be any available physical media
accessible by the processor(s) 112 to execute instructions
stored on the memory 116. In one basic implementation,
CRSM may 1include random access memory (“RAM”) and
Flash memory. In other implementations, CRSM may
include, but 1s not limited to, read-only memory (“ROM”),
clectrically erasable programmable read-only memory
(“EEPROM”), or any other tangible medium which can be
used to store the desired information and which can be
accessed by the processor(s).

Further, functional components may be stored i the
respective memories, or the same functionality may alter-
natively be implemented in hardware, firmware, application
specific integrated circuits, field programmable gate arrays,
or as a system on a chip (SoC). In addition, while not
illustrated, each respective memory, such as memory 116,
discussed herein may include at least one operating system
(OS) component that i1s configured to manage hardware
resource devices such as the network interface(s), the 1/O
devices of the respective apparatuses, and so forth, and
provide various services to applications or components
executing on the processors. Such OS component may
implement a variant of the FreeBSD operating system as
promulgated by the FreeBSD Project; other UNIX or UNIX-
like vanants; a variation of the Linux operating system as
promulgated by Linus Torvalds; the FireOS operating sys-
tem from Amazon.com Inc. of Seattle, Wash., USA; the
Windows operating system from Microsoit Corporation of
Redmond, Wash., USA; LynxOS as promulgated by Lynx
Software Technologies, Inc. of San Jose, Calif.; Operating
System Embedded (Enea OSE) as promulgated by ENEA
AB of Sweden; and so forth.

The network interface(s) 114 may enable communications
between the components and/or devices shown 1n environ-
ment 100 and/or with one or more other remote systems, as
well as other networked devices. Such network interface(s)
114 may include one or more network interface controllers
(NICs) or other types of transceiver devices to send and
receive communications over the network 110.

For instance, each of the network interface(s) 114 may
include a personal area network (PAN) component to enable
communications over one or more short-range wireless
communication channels. For instance, the PAN component
may enable communications compliant with at least one of
the following standards IEEE 802.15.4 (ZigBee), IEEE
802.15.1 (Bluetooth), IEEE 802.11 (WiF1), or any other
PAN communication protocol. Furthermore, each of the
network interface(s) 114 may include a wide area network
(WAN) component to enable communication over a wide
area network.

FIG. 2 illustrates an example pipeline 200 that may be
generated by the system 108. The pipeline 200 may include
a dependency graph that includes multiple transformations
of data receirved from a data source, such as the first data
source 102, the second data source 104, and/or the third data
source 106. For example, the transformation component 122
may receive a selection from a user, such as the user 128 via
the computing device 130, of an mput or, multiple mputs, to
be mcorporated 1nto a transformation. Inputs may be in the
form of a file or a table and may include, but are not limited
to, provider relationship data, billing entities data, claims
data, etc. Once the mput information and the parameters of
the transformation have been received, the transformation
component 122 may provide an output that includes a table

US 10,860,528 B2

9

and/or file that shows a result of the transformation of the
inputs. The pipelining component 126 may generate a pipe-
line to organize the transformation of the multiple sets of
data such that a user can easily determine where 1individual
sets of data originated from and how they were transformed.
In some cases, generating the pipeline may include auto-
generation of the pipeline by the pipelining component 126
based on the mputs and outputs of a transformation. FIG. 2
illustrates an example pipeline 200 of an insurance record
202 and various example transformations that may be
applied to the information 1n the insurance record 202. A first
set of transformations 204 may include a filter type of
transformation of the msurance record 202. The transforma-
tions 204 may include the msurance record 202 as an input
and the four subsequent pipelines, claims, patient gender,
prescription, and patient age, as outputs of the four different
transformations. A second set of transformations 206 may
include a merging transformation in which the claims output
and the patient gender output from the first set of transior-
mations 202 are used as inputs resulting 1n an output which
includes data detailing claims for female patients. The
second set of transformations 206 may also include a filter
transformation in which the prescription output from the first
set of transformations 204 1s used as an mnput and filtered to
provide prescriptions filled after the year 2017 and a filter
transformation 1n which the patient age output from the first
set of transformations 204 1s used as an input and filtered to
provide a list of patients over the age of 65 years. A third set
of transformations 208 may provide various types ol infor-
mation based at least in part on the mputs used from the
outputs of the second set of transformations 206 and the type
of transformations performed on the mnputs. The first set of
transformations 204, the second set of transformations 206,
and the third set of transformations 208 form the pipeline
200 enables a user, such as the user 128, to manipulate data
received from sources, such as the first data source 102, the
second data source 104, and/or the third data source 106, and
to have access to a lineage depicting the source and trans-
formation history of each piece of data. For example, each
piece ol data in the third set of transformations 208 may
include metadata indicating all of the previous transforma-
tions performed on the data and/or an author of the trans-
formations. A user may access any transformation in the
pipeline and determine a source of the inputs and a trans-
formation that was performed on the mputs. Although FIG.
2 1llustrates an example pipeline generated for various
transformations of the insurance record 202, it should be
understood that a pipeline may be generated for any file
received from a file source and that any number of combi-
nations of transformations may be performed on the file,
thereby generating a pipeline.

FIG. 3 illustrates an example pipeline pathway 300 and
various transiformations associated with the pathway 300.
The system 108 may receive instructions from a user, such
as the user 128 via the computing device 130, to perform
various transformations on data contained 1n a file recerved
from a source, such as the first data source 102, the second
data source 104, and/or the third data source 106. In one
example, the transformation component 122 may receive a
selection of an input to be mcorporated into a transforma-
tion. Inputs may be in the form of a file or a table and may
include, but are not limited to, provider relationship data,
billing entities data, claims data, etc. The transformation
component 122 may then receive instructions from the user
specilying details of the transformation. For instance, the
user may provide query information that indicates a file to be
used and/or parameters of the transformation. Once the input

10

15

20

25

30

35

40

45

50

55

60

65

10

information and the query mformation have been received,
the transformation component 122 may provide an output
that includes a table and/or file that shows a result of the
transformation of the mputs. In the illustrated example
pathway 300, a first transformation 302 may include an
“Insurance Record XYZ” as an iput and a filter transior-
mation in which the output includes a table of claims from
the “Insurance Record XYZ.” A second transformation 304
may include an “Insurance Record XY Z” as an input and a
filter transformation 1n which the output includes a table of
patient genders from the “Insurance Record XYZ.” A third
transformation 306 may include the outputs from the first
transformation 302 and the second transformation 304 as
inputs and a merge transformation in which the output
includes a table of claims for female patients from the
“Insurance Record XYZ.” A fourth transformation 308 may
include the output from the third transformation 306 as an
input and a filter transformation 1n which the output includes
a table of claims for female patients after 2017 “Insurance
Record XYZ.” By generating the pathway pipeline 300, the
system 108 may provide a lineage depicting the source and
transformation history of each piece of data contained at
cach of the transformations. For example, each piece of data
in the transformations 302, 304, 306, and 308 may include
metadata indicating all of the previous transformations per-
formed on the data and/or an author of the transformations.
A user may access any transiormation in the pipeline and
determine a source of the mputs and a transformation that
was performed on the inputs. Although FIG. 3 illustrates an
example pipeline generated for various transformations of
an “Insurance Record XY7Z,” 1t should be understood that a
pipeline pathway may be generated for any file recerved
from a file source and that any number of combinations of
transformations may be performed on the file, thereby
generating a pipeline.

FIG. 4 1llustrates an example interface 402 that may be
presented to a user via the computing device 130 to provide
functionality to allow the user to access and parse a file
recerved from a source, such as the data sources 102, 103,
and/or 104. The interface 402 may include multiple lines
with each line providing a different level of information or
an instruction. For example, line 1 of the interface 402 may
include a “classity” instruction which may cause the system
108 to determine a file type of a file received from the data
sources 102, 103, and/or 104. Line 2 of the interface 402
may include source folder information and, as shown 1n the
example interface 402, the source folder may be a “[*COM-
PANY_ETL’, ‘CVS’]” file. Line 3 of the interface may
include a classifier instruction that may delineate the file
based at least in part on the content 1n the file, such has by
children and by region as shown 1n lines 4 and 5. Lines 6 and
7 of the interface 402 may depict a target value, such as
“daily_pharmacy_claims” and a source of the target, such as
“"FILE\.(DIKI907IMNTI87 \.CAREPT.” The files accessed
and parsed via the interface 402 may be stored in the data
storage 118 and may be accessed by the parser component
120.

FIG. § illustrates an example interface 502 that may be
presented to a user via the computing device 130 to provide
functionality to allow a user to access and transform data
from a file received from a source, such as the data sources
102, 103, and/or 104. The interface 502 may include an
identification of a user at line 1. The mterface 502 may
request a credential, such as a username or a password, of
the user when accessing the interface 502 to determine an
identity of the user. The interface 502 may include multiple
inputs, such as “billing_entity_1d” and “provider_id.” The

US 10,860,528 B2

11

inputs may include links to files and/or tables containing
data stored in the data storage 118. The user interface 502
may include instructions from the user specifying details of
the transformation. For instance, the user may provide query
information that indicates a file to be used and/or parameters
of the transformation. In the example shown in FIG. 5, the
query may be a validation query searching for missing
billing entities and missing providers. Once the 1nput nfor-
mation and the query information have been receirved, the
transformation component 122, via the interface 502 may
provide an output that includes a table and/or file that shows
a result of the transformation of the mputs. In the example
shown 1n FIG. 5, the output may include a link to a file or
table that represents connections between a provider and a
billing entity.

FIGS. 6 and 7 illustrate various processes for transform-
ing and pipelining data. The processes described herein are
illustrated as collections of blocks 1n logical flow diagrams,
which represent a sequence of operations, some or all of
which may be implemented in hardware, software or a
combination thereof. In the context of software, the blocks
may represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processors, program the processors to
perform the recited operations. Generally, computer-execut-
able instructions include routines, programs, objects, com-
ponents, data structures and the like that perform particular
functions or implement particular data types. The order 1n
which the blocks are described should not be construed as a
limitation, unless specifically noted. Any number of the
described blocks may be combined 1n any order and/or 1n
parallel to implement the process, or alternative processes,
and not all of the blocks need be executed. For discussion
purposes, the processes are described with reference to the
environments, architectures and systems described in the
examples herein, such as, for example those described with
respect to FIGS. 1-5, although the processes may be imple-
mented 1 a wide variety of other environments, architec-
tures and systems.

FIG. 6 illustrates a flow diagram of an example process
600 for recerving files and transforming information in the
files. The order in which the operations or steps are
described 1s not intended to be construed as a limitation, and
any number of the described operations may be combined 1n
any order and/o 1n parallel to implement process 600.

At block 602, the process 600 may include generating
multiple parsers, each of the multiple parsers associated with
a file type of multiple file types. For example, the parser
component 120 may generate and store multiple different
types of parsers that are associated with a specific file type.
The file type may include any file type capable of storing
data, such as healthcare related data. The parser component
120 may be configured to select a parser to parse data 1n a
file received from one of the first data source 102, the second
data source 104, and/or the third data source 106 and stored
in the data storage 118.

At block 604, the process 600 may include receiving a file
from a device associated with a healthcare provider, wherein
the file includes healthcare information. For example, as
shown 1n FIG. 1, each of the first data source 102, the second
data source 104, and the third data source 106 represent a
remote system that generates and/or acquires data associated
with one or more people and stores that data, such as 1 a
database associated with the first data source 102, the second
data source 104, or the third data source 106. By way of
example, the first data source 102 may be a hospital, clinic,
and/or other type of healthcare provider. The second data

10

15

20

25

30

35

40

45

50

55

60

65

12

source 104 may be a pharmacy that receives and fulfills
prescriptions. The third data source 106 may be an insurance
company that processes claims from the first data source
102, the second data source 104, or any other healthcare
related entity. The first data source 102, the second data
source 104, and/or the third data source 106 may commu-
nicate with a system 108 via one or more networks 110. The
communication may include the sending and/or recerving of
data associated with a person and/or people associated with
a given data source. The data storage 118 may be configured
to store data received by the system 108. For example, the
data storage 118 may be configured to recerve data from one
or more of the first data source 102, the second data source
104, and/or the third data source 106.

At block 606, the process 600 may include identifying a
file type associated with the file. For example, the system
108 may 1dentify a file type based at least 1n part on metadata
associated with the file and/or a source of the file. In some
examples, parser component 120 may determine a file type
of the file by, by way of example, performing a regex search
on the file 1n order to 1dentily a sequence of characters or a
pattern that matches a predetermined category. Each parser
may be associated with at least one of the predetermined
categories and/or a regex category and the parser component
120 may then select the appropriate parser to be used to
extract the usable data in the file based on the category 1n
which the file 1s associated with and the associated parser.
Each data source 102, 104, and 106 may send data in a
different file format or file type. For example, the difierent
file formats and file types may include, but are not limited
to, a CSV file, a plain-text document, an ACL document, an
AMI document, an ANS document, a DBK document, a
DOC document, a DOCX document, a DOT document, a
DOTX document, an EPUB document, a GDOC document,
an OMNI document, a PAGES document, a PDF document,
a RTF document, an XHTML document, an XML document,
or an XPS document. The data storage 118 may store these
files 1n the format that they are received 1n. Additionally, or
alternatively, while the data storage 118 has been described
as storing data, the data storage 118 may also, or alterna-
tively, be configured to request and/or access data from the
data sources 102, 104, 106 with or without storing that data
in the memory 116 of the system 108.

At block 608, the process 600 may include selecting a
parser, from the multiple parsers, based at least 1n part on the
file type. For example, a file received from the first data
source 102, the second data source 104, and/or the third data
source 106 may be 1n any number of {ile types. Each file type
may store data 1n a diflerent location of the file and/or 1n a
different format. The parser component 120 may determine
a file type of the file by, by way of example, performing a
regex search on the file 1 order to 1dentily a sequence of
characters or a pattern that matches a predetermined cat-
cgory. Each parser may be associated with at least one of the
predetermined categories and/or a regex category and the
parser component 120 may then select the appropriate parser
to be used to extract the usable data 1n the file based on the
category 1n which the file 1s associated with and the asso-
ciated parser.

At block 610, the process 600 may include generating,
utilizing the parser, grouping data indicating groups of
related information associated with the healthcare informa-
tion. For example, the parser component 120 may generate
and store multiple diflerent types of parsers that are asso-
ciated with a specific file type. The file type may include any
file type capable of storing data, such as healthcare related
data. The parser component 120 may be configured to select

US 10,860,528 B2

13

a parser to parse data in a file received from one of the first
data source 102, the second data source 104, and/or the third
data source 106 and stored in the data storage 118. For
example, a file received from the first data source 102, the
second data source 104, and/or the third data source 106 may
be 1n any number of file types. Each file type may store data
in a different location of the file and/or 1 a different format.
The parser component 120 may determine a file type of the
file by, by way of example, performing a regex search on the
file 1n order to 1dentily a sequence of characters or a pattern
that matches a predetermined category. Each parser may be
associated with at least one of the predetermined categories
and/or a regex category and the parser component 120 may
then select the appropriate parser to be used to extract the
usable data 1n the file based on the category in which the file
1s associated with and the associated parser. Selecting the
appropriate parser, by the parser component 120, allows the
parser to automatically extract the usable data from the file
without the need for a user to do so manually. The types of
information that the parser may extract may include pre-
scription data, msurance claims data, patient data, efc.

At block 612, the process 600 may include identifying a
first type of mformation from the groups of related infor-
mation and at block 614, the process 600 may include
determining that the first type of information 1s associated
with a second type of information that has been previously
stored. For example, electing the appropnate parser, by the
parser component 120, allows the parser to automatically
extract the usable data from the file without the need for a
user to do so manually. In some cases, the parser component
120 may determine that a certain type of data matches a type
of data that was previously extracted. For example, the
parser component 120 may determine that the data includes
updated 1nsurance claims data from a particular source and
that the updated insurance claims data matches previously
received mnsurance claims data from the same source. In this
case, the parser component 120 may update a value that
represents the mmsurance claims data associated with the
source to reflect the updated mnsurance claims data.

At block 616, the process 600 may include transforming
the first type of information from a first format to a second
format. For example, the transformation component 122
may be configured to transform data received from the first
data source 102, the second data source 104, and/or the third
data source 106. A transformation of data may include a
manipulation of data, such as merging data, filtering data,
and/or de-duplication of pieces of data. The transformation
component 122 may receive a selection from a user, such as
a data scientist, of an mput or, multiple puts, to be
incorporated 1nto a transformation. Inputs may be 1n the
form of a file or a table and may include, but are not limited
to, provider relationship data, billing entities data, claims
data, etc. The transformation component 122 may then
receive 1nstructions from the user specitying details of the
transformation. For instance, the user may provide query
information that indicates a file to be used and/or parameters
of the transformation. Once the input information and the
query information have been received, the transformation
component 122 may provide an output that includes a table
and/or file that shows a result of the transformation of the
imnputs.

At block 618, the process 600 may include storing the first
type of information 1n the second format. For example, the
data storage 118 may be configured to store data received by
the system 108 and/or transformed by the system 108.

FI1G. 7 illustrates a tlow diagram of an example process
700 for receiving files from a source and monitoring the

10

15

20

25

30

35

40

45

50

55

60

65

14

values 1n the file. The order in which the operations or steps
are described 1s not intended to be construed as a limitation,
and any number of the described operations may be com-
bined 1n any order and/or in parallel to implement process
700.

At block 702, the process 700 may include receiving a file
from a source. For example, as shown in FIG. 1, each of the
first data source 102, the second data source 104, and the
third data source 106 represent a remote system that gener-
ates and/or acquires data associated with one or more people
and stores that data, such as 1n a database associated with the
first data source 102, the second data source 104, or the third
data source 106. By way ol example, the first data source
102 may be a hospital, clinic, and/or other type of healthcare
provider. The second data source 104 may be a pharmacy
that recerves and fulfills prescriptions. The third data source
106 may be an insurance company that processes claims
from the first data source 102, the second data source 104,
or any other healthcare related entity. The first data source
102, the second data source 104, and/or the third data source
106 may communicate with a system 108 via one or more
networks 110. The communication may include the sending
and/or recerving of data associated with a person and/or
people associated with a given data source. The data storage
118 may be configured to store data received by the system
108. For example, the data storage 118 may be configured to
recelve data from one or more of the first data source 102,
the second data source 104, and/or the third data source 106.

At block 704, the process 700 may include identifying a
file type associated with the file. For example, the system
108 may 1dentify a file type based at least 1n part on metadata
associated with the file and/or a source of the file. In some
instances, parser component 120 may determine a file type
of the file by, by way of example, performing a regex search
on the file 1n order to 1dentily a sequence of characters or a
pattern that matches a predetermined category. Each parser
may be associated with at least one of the predetermined
categories and/or a regex category and the parser component
120 may then select the appropriate parser to be used to
extract the usable data in the file based on the category 1n
which the file 1s associated with and the associated parser.
Each data source 102, 104, and 106 may send data in a
different file format or file type. For example, the difierent
file formats and file types may include, but are not limited
to, a CSV file, a plain-text document, an ACL document, an
AMI document, an ANS document, a DBK document, a
DOC document, a DOCX document, a DOT document, a
DOTX document, an EPUB document, a GDOC document,
an OMNI document, a PAGES document, a PDF document,
a RTF document, an XHTML document, an XML document,
or an XPS document. The data storage 118 may store these
files 1n the format that they are received 1n. Additionally, or
alternatively, while the data storage 118 has been described
as storing data, the data storage 118 may also, or alterna-
tively, be configured to request and/or access data from the
data sources 102, 104, 106 with or without storing that data
in the memory 116 of the system 108.

At block 706, the process 700 may include selecting a
parser based at least 1n part on the file type. For example, a
file received from the first data source 102, the second data
source 104, and/or the third data source 106 may be 1n any
number of file types. Fach file type may store data in a
different location of the file and/or 1n a different format. The
parser component 120 may determine a {ile type of the file
by, by way of example, performing a regex search on the file
in order to 1dentify a sequence of characters or a pattern that
matches a predetermined category. Each parser may be

US 10,860,528 B2

15

associated with at least one of the predetermined categories
and/or a regex category and the parser component 120 may
then select the appropniate parser to be used to extract the
usable data 1n the file based on the category in which the file
1s associated with and the associated parser. 5

At block 708, the process 700 may include parsing
information stored in the file, using the parser, to create
groups of related information. For example, the parser
component 120 may generate and store multiple different
types of parsers that are associated with a specific file type. 10
The file type may include any file type capable of storing
data, such as healthcare related data. The parser component
120 may be configured to select a parser to parse data 1n a
file received from one of the first data source 102, the second
data source 104, and/or the third data source 106 and stored 15
in the data storage 118. For example, a file received from the
first data source 102, the second data source 104, and/or the
third data source 106 may be in any number of file types.
Each file type may store data 1n a different location of the file
and/or 1n a diflerent format. The parser component 120 may 20
determine a file type of the file by, by way of example,
performing a regex search on the file 1n order to 1dentily a
sequence of characters or a pattern that matches a predeter-
mined category. Each parser may be associated with at least
one of the predetermined categories and/or a regex category 25
and the parser component 120 may then select the appro-
priate parser to be used to extract the usable data 1n the file
based on the category 1n which the file 1s associated with and
the associated parser. Selecting the appropriate parser, by the
parser component 120, allows the parser to automatically 30
extract the usable data from the file without the need for a
user to do so manually. The types of information that the
parser may extract may include prescription data, insurance
claims data, patient data, etc.

At block 710, the process 700 may include identifying a 35
first type of mformation from the groups of related infor-
mation, wherein identifying the first type of information
includes determining that the first type of information 1is
related to a previously stored second type of information.
For example, electing the appropriate parser, by the parser 40
component 120, allows the parser to automatically extract
the usable data from the file without the need for a user to
do so manually. In some cases, the parser component 120
may determine that a certain type of data matches a type of
data that was previously extracted. For example, the parser 45
component 120 may determine that the data includes
updated 1nsurance claims data from a particular source and
that the updated insurance claims data matches previously
received mnsurance claims data from the same source. In this
case, the parser component 120 may update a value that 50
represents the mnsurance claims data associated with the
source to reflect the updated mnsurance claims data.

At block 712, the process 700 may include determining
that a portion of the first type of information contains an
error. For example, the monitoring component 124 may be 55
configured to monitor data received from the first data
source 102, the second data source 104, and/or the third data
source 106. For example, the files received from the data
sources 102, 103, and 104 may include values to be used by
the parser component 120 and/or to be used 1n a transfor- 60
mation via the transformation component 122. If one of
these values contains an error, the end-result of the desired
analysis may be compromised. The monitoring component
124 may be configured analyze values and/or data structures
within the files received from the first data source 102, the 65
second data source 104, and/or the third data source 106. For
example, the monitoring component 124 may be configured

16

to analyze column numbers and row numbers within a file
recetved from the first data source 102, the second data
source 104, and/or the third data source 106 and determine
if a row or column 1s missing or has been added. In some
instances, the monitoring component 124 may be configured
to determine 11 a value located within a file received from the
first data source 102, the second data source 104, and/or the
third data source 106 1s above a predetermined threshold or
below a predetermined threshold. The monitoring compo-
nent 124 may compare the row number, column number,
and/or the values of the files received from the first data
source 102, the second data source 104, and/or the third data
source 106 to previously received files containing the same
or similar types of information.

At block 714, the process 700 may include sending a
notification to a computing device that the first type of
information contains the error. For example, 11 the monitor-
ing component 124 determines that there 1s an error con-
tained 1n the files, then the monitoring component 124 may
send a notification to a user associated with the system 108
(e.g., a data scientist, engineer, etc.) indicating that an error
1s present. The notification may also indicate i1dentifying
information related to the file, such as a source identifier, file
identifier, a location 1n the file, and/or a type of error.

While the foregoing invention 1s described with respect to
the specific examples, it 1s to be understood that the scope
of the invention 1s not limited to these specific examples.
Since other modifications and changes varied to {it particular
operating requirements and environments will be apparent to
those skilled 1n the art, the invention 1s not considered
limited to the example chosen for purposes of disclosure and
covers all changes and modifications which do not constitute
departures from the true spirit and scope of this invention.

Although the application describes embodiments having
specific structural features and/or methodological acts, it 1s
to be understood that the claims are not necessarily limited
to the specific features or acts described. Rather, the specific
features and acts are merely illustrative some embodiments
that fall within the scope of the claims of the application.

What 1s claimed 1s:
1. A system comprising:
one or more processors; and
computer-readable media storing computer-executable
istructions that, when executed by the one or more
processors, cause the one or more processors to per-
form operations comprising:
generating multiple parsers, each of the multiple pars-
ers associated with a file type of multiple file types;
receiving a lile from a device associated with a health-
care provider, wherein the file includes healthcare
information;
identifying a file type associated with the file, wherein
the file type corresponds to at least one of a binary
file-type, a CSV file, a plain-text document, an ACL
document, an AMI document, an ANS document, a
DBK document, a DOC document, a DOCX docu-
ment, a DOT document, a DOTX document, an
EPUB document, a GDOC document, an OMM
document, a PAGES document, a PDF document, a
RTF document, an XHTML document, an XML
document, or an XPS document;
selecting a parser, ifrom the multiple parsers, based at
least 1n part on the file type;
generating, utilizing the parser, grouping data indicat-
ing groups of related information associated with the
healthcare information;

US 10,860,528 B2

17

identifying a first type of information from the groups
of related information;

determining that the first type of information is asso-
clated with a second type of information that has
been previously stored;

transforming the first type of information from a first
format to a second format, wherein the second for-
mat includes at least one of merging the first type of
information with a third type of information, filtering
the first type of information, or de-duplicating the
first type of information; and

storing the first type of information in the second
format.

2. The system of claim 1, the operations further compris-
ng:

determining that the first type of information includes data

associated with a first database; and

wherein storing the first type of information comprises

storing the first type of information in association with
the database.

3. The system of claim 1, the operations further compris-
ng:

transforming the first type of information from the second

format to a third format; and

generating a table associated with the first type of infor-

mation, the table indicating a record of transformations
including transforming the first type of information
from the second format to the third format.
4. The system of claim 3, wherein the record indicates at
least one of the file type, an author i1dentifier of the file, a
source 1dentifier of the file, a date identifier for when the file
was updated, a time 1dentifier for when the file was updated,
or a list of previous transiformations associated with the first
type of mformation.
5. The system of claim 4, further comprising:
receiving a request to access the healthcare mformation
corresponding to the first type of information; and

based at least 1n part on receiving the request, causing
display of a representation of the healthcare informa-
tion and the table.

6. The system of claim 5, wherein the representation of
the healthcare information and the table include at least one
of:

an 1dentification of a data pipeline that the first type of

information was transmitted on;

an author of the first type of information;

an 1dentification of an entity associated with transforming

the first type of information; or

an 1dentification of a type of the parser.

7. A method comprising:

receiving a file from a source;

identifying at least one of a file type or a file version

associated with the file;

selecting a parser based at least 1n part on the at least one

of the file type or the file version;

generating, utilizing the parser, grouping data indicating,

groups of related information associated with the {ile;
identifying a first type of information from the groups of
related 1information;

determining that the first type of information 1s associated

with a second type of information that has been previ-
ously stored;

transforming the first type of information from a first

format to a second format; and

storing the first type of information in the second format.

10

15

20

25

30

35

40

45

50

55

60

65

18

8. The method of claim 7, further comprising;:

determiming that the first type of information includes data

assoclated with a first database; and

wherein storing the first type of information comprises

storing the first type of information in association with
the database.

9. The method of claim 8, wherein the source comprises
a first source and the database 1s associated with at least one
of:

at least one of the first source or a second source:

an internal database:; or

the parser.

10. The method of claim 9, wherein the database 1s a first
database and 1s associated with the internal database, the
internal database including at least a second database that
stores a third type of information.

11. The method of claim 10, wherein the file includes a
first file and at least one of:

the first type of information and the second type of

information originated from the first file; or

the first type of information originated from the first file

and the second type of information originated from a
second file that 1s different than the first file.

12. The method of claim 7, wherein identitying the at least
one of the file type or the file version includes scanning the
file and 1dentifying information that indicates at least one of
the file type or file version.

13. The method of claim 7, wherein generating the
grouping data includes:

determining a location in the file that includes relevant

content based at least 1n part on at least one of the file
type or the file version;

extracting the relevant content from the file; and

storing the relevant content in association with the parser

to create the groups of related data.

14. The method of claim 7, wherein transforming the first
type of information from the first format to the second
format includes at least one of:

merging the first type of information with a third type of

information;

filtering the first type of information; or

de-duplicating the first type of information.

15. A system comprising:

one or more processors; and

computer-readable media storing computer-executable

istructions that, when executed by the one or more

processors, cause the one or more processors to per-

form operations comprising:

receiving a file from a source;

identifying a file type associated with the file;

selecting a parser based at least in part on the {file type;

generating, utilizing the parser, grouping data indicat-
ing groups of related information associated with the
file;

identifying a first type of information from the groups
of related information;

determining that the first type of information 1s asso-
ciated with a second type of information that has
been previously stored;

determining that a portion of information correspond-
ing to the first type of information contains an error;
and

sending a noftification to a computing device that the
portion of information corresponding to the first type
ol information contains the error.

16. The system of claim 15, wherein the notification
includes at least one of:

US 10,860,528 B2

19

an indication that an incorrect number of rows and/or

columns 1s located 1n the file;

an indication that a value located 1n the file has not been

updated over a threshold number of days;

an indication that a value located 1n the file 1s above or 3

below an average value by a threshold amount;

an indication that a value located 1n the file 1s above or

below a median value by a threshold amount;

an indication that a value located 1n the file 1s above or

below a minimum value by a threshold amount;

an indication that a value located 1n the file 1s above or

below a maximum value by a threshold amount; or
an 1ndication that a value located 1n the file 1s zero.

17. The system of claim 13, further comprising receiving
monitoring settings wherein determining that the portion of 15
information corresponding to the first type of information
contains an error 1s based at least 1n part on the monitoring
settings.

10

20

18. The system of claim 17, wherein the monitoring
settings include at least one of:
determining that the portion of information corresponding,
to the first type of information contains an error 1n
response to a value located 1n the file being zero; or
determining that the portion of information corresponding,
to the first type of information contains an error in
response to a value located in the file being above or
below a percentage.
19. The system of claim 15, wherein the second comput-
ing device icludes a data monitoring service vendor.
20. The system of claim 15, wherein the notification
includes a first notification, the operations further compris-
ing sending a second notification to the source that that the

portion of information corresponding to the first type of
information contains the error.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

