12 United States Patent

Yu et al.

US010853257B1

(10) Patent No.:
45) Date of Patent:

US 10,853,257 B1
Dec. 1, 2020

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(1)

(52)

(58)

ZERO DETECTION WITHIN SUB-TRACK
COMPRESSION DOMAINS

Applicant: EMC Corporation, Hopkinton, MA
(US)

Rong Yu, West Roxbury, MA (US);
Jeremy J. O’Hare, Westborough, MA
(US); Anoop Raghunathan, Ashland,
MA (US); Ning Wu, Northborough,
MA (US)

Inventors:

EMC IP HOLDING COMPANY
LLC, Hopkinton, MA (US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 382 days.

Notice:

Appl. No.: 15/192,212

Filed: Jun. 24, 2016

Int. CL.

GOoF 12/0893 (2016.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GooF 12/0893 (2013.01); GO6F 3/0619

(2013.01); GO6F 3/0631 (2013.01); GO6F
3/0683 (2013.01); GO6F 2212/6042 (2013.01)

Field of Classification Search
CPC ... GO6F 3/0641; GO6F 11/1453; GO6F
17/3015; GO6F 17/30156; GO6F
1/00-3296; GO6F 3/00; GO6F 3/06-0689;
GO6F 5/00-16; GO6F 8/00-78; GO6F
9/00-548; GO6F 11/00-3696; GO6F
12/00-16; GO6F 13/00-4295; GO6F
15/00-825; GO6F 16/00-986; GO6F
17/00-40; GO6F 21/00-88;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS
6,310,563 B1* 10/2001 Har HO3M 7/3086
341/50
8,631,052 B1* 1/2014 Shilane GO6F 16/1748
707/825
(Continued)
FOREIGN PATENT DOCUMENTS

WO WO-2017096532 A1 * 6/2017 ... GO6F 12/00

OTHER PUBLICATTONS

M. M. Rahmani, A. Al-Mahmud, M. A. Hossen, M. Rahman, M. R.
Ahmed and M. F. Sohan, “A Comparative Analysis of Traditional

and Modern Data Compression Schemes for Large Multi-
Dimensional Extendible Array,” 2019 International Conference on

Electrical, Computer and Communication Engineering, pp. 1-5
(Year: 2019).*

(Continued)

Primary Examiner — Daniel C. Chappell
(74) Attorney, Agent, or Firm — Anderson Gorecki LLP

(57) ABSTRACT

Allocation of physical storage capacity within a storage
array may be managed in standard size allocation units, e.g.
128 kb tracks, and smaller sub-allocation units, e.g. 32 kb
quarter tracks. Data associated with sub-allocation units that
match a known pattern may be represented by a hint rather
than data in storage. The hint may be used to mitigate
overhead associated with accessing backend storage. The
hint may also mitigate the need for performing compression/
decompression of the corresponding sub-allocation unit 1f
the data 1s compressed. In response to a read or write request
associated with an allocation unit orgamized into sub-allo-
cation units, only those sub-allocation units that are required
to service the read or write request and fail to match a pattern
are accessed, decompressed or compressed.

20 Claims, 7 Drawing Sheets

Receive Read [0
Referencing AU
400

Locate data
on SRP

1D subAL(S)

420
V-

Usa Hint Fisld tc Find

CsubAU

N Pattern?
410 409

Copy CsubAl Pattern Value

211 414

Decompress Generate
C3ubAl SubAU in Cache
412 416

Return
Data To Host
406

US 10,853,257 B1
Page 2

(58) Field of Classification Search

CpPC ... GO6F 2003/0691-0698; GO6F 2009/3883;
GO6F 2009/45562—45595; GO6F
2015/761-768; GO6F 2201/00-885; GO6F
2206/00-20; GO6F 2209/00-549; GO6F
2211/00-902; GO6F 2212/00-7211; GO6F
2213/00-4004; GO6F 2216/00-17; GO6F
2221/00-2153

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,972,805 B2* 3/2015 Takefman GO6F 3/0619
714/701

9,256,610 B2* 2/2016 Tosaka GO6F 16/162
9,727,244 B2* §2017 Campccccoenn.... GOo6F 3/0631
9,959,049 B1* 5/2018 Armangau GOOF 3/067
10,146,436 B1* 12/2018 Natanzon GO6F 3/0608
10,459,642 B2* 10/2019 Wang GOo6F 3/0619
10,514,861 B1* 12/2019 Basov GO6F 3/0653

10,572,340 B2* 2/2020 Zhou GOO6F 11/1068
10,628,063 B2* 4/2020 Breslow GOo6F 12/023
2010/0077141 Al* 3/2010 Achler HO3M 7/30
711/108

2010/0299491 Al* 11/2010 Uedaccvvunn.. GO6F 3/0613
711/162

2013/0268496 Al* 10/2013 Baldwin GOO6F 17/30156
707/692

2016/0291877 Al* 10/2016 Higuchi GO6F 3/0641

OTHER PUBLICATTIONS

Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and Le1 Tian. 2014.
Read-Performance Optimization for Deduplication-Based Storage
Systems 1n the Cloud. ACM Trans. Storage> 10, 2, Article 6 (Mar.
2014), 22 pages. (Year: 2014).*

Saso Tomazic, Vesna Pavlovic, Jasna Milovanovic, Jaka Sodnik,
Anton Kos, Sara Stancin, and Veljko Milutinovic. 2011. Fast file

existence checking in archiving systems. ACM Trans. Storage 7, 1,
Article 2 (Jun. 2011), 21 pages. (Year: 2011).*

* cited by examiner

U.S. Patent Dec. 1, 2020 Sheet 1 of 7 US 10,853,257 B1

Metadata 130
2

Host 10

Production
Volume 134

qAlloc Unit 137

—1

SRP 136 Tiering Metadata
139 150

Storage Array 100

g CSub-AUs 200 J=

Figure 1

U.S. Patent Dec. 1, 2020 Sheet 2 of 7 US 10,853,257 B1

Allocation Unit 135

7-23(P2)-24(P1) BE Sub-AU
206 202
Sub-AU 7k
200,
32k 16K

32K

N
-
-

N

—
N\
N
S
-

141.
Sub-AU

r 0k 500,

32K

8K 204

i
|

Pattern ID Record 210

P1:00000000
P2:

Pn:

Figure 2

U.S. Patent Dec. 1, 2020 Sheet 3 of 7 US 10,853,257 B1

Allocation Unit 135

7-23(P2)-24(P1) BE Sub-AU
206 202
Sub-AU 7k
200,
2k 300
32k
16k 200,
32k
— 2k 304
Sub-AU ' —
Ok
200,
/ 2k 306
32k

P1:00000000
P2:

Pn:

Figure 3

U.S. Patent Dec. 1, 2020 Sheet 4 of 7 US 10,853,257 B1

Receive Read |O
Referencing AU
400

Locate data
on SRP
402

Copy AU
To Cache ID subAU(s)

404 220

Use Hint Field to Find N
CsubAU
410

Pattern?
409

Copy CsubAU Pattern Value

411 414

Decompress (Generate
CSubAU SubAU in Cache
412 416

Return
Data To Host

406

Figure 4

U.S. Patent Dec. 1, 2020 Sheet 5 of 7 US 10,853,257 B1

Recelve Write
Referencing AU

200 Locate Addr Space
on SRP
202

Update Hint Field

Pattern®
20/

218

N

Use Hint to Find
CsubAU
208

All Pattern?
222

CsubAU Size De-allocate BE
Increase? SubAU

510 224

Avallable
Pad Space?
214

Rewrite BE AU Write to
and Update Hints CsubAU(s)
216 212

U.S. Patent Dec. 1, 2020 Sheet 6 of 7 US 10,853,257 B1

AU 135 0r 137

(P1)-7-23-26
206 7-23(P2)-24 c1ore 202
— Write

7K

32k

32k

Figure 6

U.S. Patent Dec. 1, 2020 Sheet 7 of 7 US 10,853,257 B1

(P1)-0-16-17
AU 135 or 137

BE Sub-AU
(-23-24 Before
2006 | 202
Write)\

7K
200,
32K 16k
200, 32K
141, 1k 200

Figure 7

US 10,853,257 Bl

1

ZERO DETECTION WITHIN SUB-TRACK
COMPRESSION DOMAINS

BACKGROUND

The subject matter of this disclosure i1s generally related
to data storage systems that may be used to maintain large
data sets and support multiple host applications and concur-
rent users. A data storage system may include multiple
storage arrays. Each storage array may include multiple
computing nodes that manage access to tangible data storage
devices. Each storage array presents one or more logical
production volumes of storage to host applications running
on a host device. The host applications may access the
production volumes by sending 10s to the storage arrays.
The computing nodes maintain an abstraction layer between
the production volumes and the tangible data storage
devices.

SUMMARY

All examples, aspects and features mentioned 1n this
document can be combined 1n any technically possible way.

In accordance with an aspect an apparatus comprises: a
storage array comprising: a plurality of tangible data storage
devices; and a computing node comprising a processor and
a cache, wherein the computing node presents a production
volume to a host application, the production volume being
backed by the tangible data storage devices, and wherein the
computing node: causes an allocation unit of production
volume data to be stored on the tangible data storage
devices; reorganizes the allocation unit into a plurality of
sub-allocation units; determines that a first sub-allocation
unit of the plurality of sub-allocation units matches a known
pattern; represents the first sub-allocation unit with a first
pattern identifier; determines that a second sub-allocation
unit of the plurality of sub-allocation units does not match
the known pattern; and causes the second sub-allocation unit
to be stored on the tangible data storage devices. In some
implementations a hint field 1s associated with the allocation
unit, the hint field comprising a first location hint indicative
of location of the second sub-allocation unit on the tangible
storage devices. In some implementations the hint field
turther comprises the first pattern identifier. In some 1imple-
mentations the computing node, 1 response to a request to
read the first sub-allocation unit, uses the first pattern
identifier to generate the first sub-allocation unit in the
cache. In some 1implementations the first pattern identifier 1s
indicative of all O values. In some implementations the
apparatus comprises a record ol a plurality of known pat-
terns, the record being maintained in the cache. In some
implementations the computing node, 1 response to a
request to read the first sub-allocation unit, uses the first
pattern i1dentifier with the record of known patterns to
generate the first sub-allocation unit in the cache. In some
implementations the computing node, in response to a
request to write to the second sub-allocation unit, determines
that the second sub-allocation unit will match one of the
known patterns as a result of the write, and represents the
second sub-allocation unit with a second pattern 1dentifier.
In some implementations the computing node, 1n response to
a request to write to the second sub-allocation unit, deter-
mines that the second sub-allocation unit will match the
known pattern as a result of the write, and represents the
second sub-allocation umt with the first pattern identifier. In
some 1mplementations the computing node determines that

all of the sub-allocation units are represented by pattern

10

15

20

25

30

35

40

45

50

55

60

65

2

identifiers and, 1n response, de-allocates space on the tan-
gible storage devices allocated to the allocation unit.

In accordance with an aspect a method comprises: with a
storage array comprising a plurality of tangible data storage
devices and a computing node comprising a processor and a
cache: presenting a production volume to a host application,
the production volume being backed by the tangible data
storage devices; causing an allocation unit of production
volume data to be stored on the tangible data storage
devices; reorganizing the allocation unit into a plurality of
sub-allocation units; determining that a first sub-allocation
unit of the plurality of sub-allocation units matches a known
pattern; representing the first sub-allocation unit with a first
pattern 1dentifier; determining that a second sub-allocation
unmt of the plurality of sub-allocation units does not match
the known pattern; and causing the second sub-allocation
unit to be stored on the tangible data storage devices. In
some 1mplementations the method comprises associating a
hint field with the allocation unait, the hint field comprising
a first location hint indicative of location of the second
sub-allocation unit on the tangible storage devices. In some
implementations the method comprises adding the first
pattern 1dentifier to the hint field. In some 1mplementations
the method comprises the computing node, 1n response to a
request to read the first sub-allocation umt, using the first
pattern 1dentifier to generate the first sub-allocation unit in
the cache. In some implementations the method comprises
interpreting the first pattern identifier as indicative of all O
values. In some 1mplementations the method comprises
maintaining a record of a plurality of known patterns, the
record being maintained in the cache. In some 1mplemen-
tations the method comprises the computing node, in
response to a request to read the first sub-allocation unit,
using the first pattern idenftifier with the record of known
patterns to generate the first sub-allocation unit 1n the cache.
In some 1mplementations the method comprises the com-
puting node, 1n response to a request to write to the second
sub-allocation unit, determining that the second sub-alloca-
tion unit will match one of the known patterns as a result of
the write, and representing the second sub-allocation umit
with a second pattern identifier. In some 1mplementations
the method comprises the computing node, 1n response to a
request to write to the second sub-allocation unit, determin-
ing that the second sub-allocation unit will match the known
pattern as a result of the write, and representing the second
sub-allocation unit with the first pattern identifier. In some
implementations the method comprises the computing node
determining that all of the sub-allocation units are repre-
sented by pattern identifiers and, 1n response, de-allocating,

space on the tangible storage devices allocated to the allo-
cation unit.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1illustrates a storage array with pattern-aware
sub-allocation units.

FIG. 2 1llustrates an implementation of the pattern-aware
sub-allocation units.

FIG. 3 illustrates another implementation of the pattern-
aware sub-allocation units.

FIG. 4 illustrates a method for the storage array to
perform a read of data from pattern-aware sub-allocation
units.

FIG. 5 illustrates a method for the storage array to
perform a write to pattern-aware sub-allocation units.

US 10,853,257 Bl

3

FIG. 6 illustrates an implementation of a write to the
pattern-aware sub-allocation units where the size of the
compressed data increases.

FI1G. 7 illustrates another implementation of a write to the
pattern-aware sub-allocation units where the size of the
compressed data increases.

DETAILED DESCRIPTION

Some aspects, features and implementations described
herein may comprise computer devices, components and
computer-implemented steps or processes. It should be
apparent to those of ordinary skill in the art that the
computer-implemented steps or processes may be stored as
computer-executable instructions on a non-transitory com-
puter-readable medium. Furthermore, it should be under-
stood by those of ordinary skill 1n the art that the computer-
executable instructions may be executed on a variety of
tangible processor devices. For ease of exposition, not every
step, process or element 1s described herein as part of a
computer system. Those of ordinary skill 1in the art will
recognize steps, processes and elements that may have a
corresponding computer system or software component.
Such computer system and software components are there-
fore enabled by describing their corresponding steps, pro-
cesses or elements, and are within the scope of the disclo-
sure.

The terminology used 1n this description 1s intended to be
interpreted broadly within the limits of subject matter eli-
gibility. The terms “logical” and “virtual” are used to refer
to features that are abstractions of other features or tangible
devices. For example, multiple virtual computing devices
could operate simultaneously on one tangible computing
device. A “host application” 1s a computer program that
accesses a storage service. A “production volume” 1s a
logical unit of storage that i1s presented to the host applica-
tion. Tangible data storage devices are used to implement the
storage service and present the production volume.

FIG. 1 illustrates an exemplary data storage system with
a data storage array 100 and a host device 102. Any number
ol host devices and data storage arrays could be included 1n
the data storage system. The host device 102 1s connected to
the storage array 100 via a network 104. The network 104
may include various types of network nodes, e.g. switches,
routers, hubs, and other network devices, and may include
one or more of the Internet, a WAN (wide area network),
MAN (metropolitan area network), LAN (local area net-
work), and SAN (Storage Area Network).

The storage array 100 includes one or more intercon-
nected computing nodes 114,-114, and a storage bay 116
with groups of tangible storage devices 126, 128. The
computing nodes and storage devices may be, but are not
necessarily, located in the same geographic location and
within the same chassis. The computing nodes 114 ,-114,
may include “vanilla” storage server computers and special-
1zed computer hardware platforms including but not limited
to storage directors and storage engines that are specifically
designed for use in storage arrays. Each computing node
includes at least one multi-core processor 118 and a cache
120. The cache 120 may include, for example and without
limitation, volatile memory such as RAM (random access
memory) and high performance SSDs (solid state devices).
Each computing node may allocate a portion of 1ts respec-
tive cache 120 to a shared “global” cache that can be
accessed by other computing nodes, e.g. via DMA (direct
memory access) or RDMA (remote direct memory access).
Each computing node 1s connected to every other computing

10

15

20

25

30

35

40

45

50

55

60

65

4

node i the storage array via point-to-point links of an
interconnecting fabric. The computing nodes may include
FAs (front-end adapters) 122 for communicating with the
host 102, and DAs (disk adapters) 124 (which may also be
referred to as BE (back end) adapters) for communicating
with the storage bay 116. The storage bay 116 may include
groups ol tangible data storage devices of various different
technology types, for example and without limitation a
group 126 of SSD “flash” drives and a group 128 of HDDs
(hard disk drives). The computing nodes 114, , 114, maintain
at least one logical production volume 134 that 1s backed by
the tangible data storage devices. Without limitation, the
production volume may be referred to as a production LUN
or host LUN, where LUN (logical unit number) 1s a number
used to 1dentity the logical storage volume in accordance
with the SCSI (small computer system interface) protocol.

The host 102 may be a tangible server computer with
memory, storage and processors, or a virtual host associated
with a virtual machine or container running on a tangible
server computer. The host 102 operates a host application
132 that utilizes storage services provided by the storage
array 100. For example, the host application 132 utilizes the
production volume 134 which 1s presented to the host 102 by
the storage array 100. There may be any number of host
applications running on the host. Examples of host applica-
tions include but are not limited to a database, file server and
block server. Each host includes one or more ports P. The
host ports are connected to the network 104, and each host
port may be associated with a network path to a particular
storage array port associated with an FA 122. Any number of
ports may be included and the hosts do not necessarily have
access to all of the front end ports and FAs.

The production volume 134 represents an abstraction
layer between the tangible data storage devices of the
storage bay and the host. From the perspective of the host
102, data resides on the production volume 134, and the
production volume 1s a single device having a set of con-
tiguous LBAs (logical block addresses). However, the data
may actually be maintained at non-contiguous addresses on
various diflerent tangible storage devices. The storage array
maintains metadata 150 indicative of the location of data on
the tangible storage devices in the storage bay. In other
words, the computing nodes can use the metadata 150 to
determine the actual location of data 1n the storage bay based
on an IO reference to the production volume 134. The data
being read or written 1s temporarily placed in cache 120
while being copied between the host application and the
storage bay. More particularly, data that 1s being written 1s
temporarily held in cache and then destaged to storage, and
data that 1s being read i1s copied from storage to cache 1n
order to be provided to the host.

The tangible data storage devices 126, 128 that provide
data storage for the production volume 134 are organized as
a SRP (storage resource pool) 136. The SRP 136 includes
multiple data devices 138, 140. Diilerent data devices may
be associated with diflerent classes of data storage resources.
For example, data device 138 may represent an amount of
tier O storage on some or all SSD resources of the SSDs of
storage device group 126 1n the storage bay 116, and data
device 140 may represent an amount of tier 1 storage on
some or all of the HDDs of storage device group 128 1n the
storage bay. The production volume 134 (or a storage group
of multiple production volumes) may be associated with a
SLO (service level objective) that indicates demands for
quality of service measured by response time to 10 access to
that production volume. For example, the SLO for produc-
tion volume 134 may indicate an IO response time of no

US 10,853,257 Bl

S

greater than 5 ms 1n order to enable the host application 132
to provide a target level of performance or user experience.
Failing to satisty the SLO does not necessarily cause the host
application to become non-functional, but user experience
may fall below expectations. The performance tier compo-
sition of the SRP 136 may be selected to help satisiy the
SLO. Further, a storage tiering program 139 may be imple-
mented by the computing nodes to promote relatively active
data (recently accessed) to higher performance storage
media, e.g. to tier 0 SSD resources of data device 138, and
demote relatively inactive data (not recently accessed) to
lower performance storage media, e.g. to tier 1 HDDs of
data device 140. Further, some or all of the data on data
device 140 may be compressed. Promotion and demotion of
extents of data between data devices and tiers may occur
periodically or continuously as activity levels change.

The production volume 134 and the tangible data storage
devices 126, 128 1n the storage bay 116 each have a total
storage capacity that i1s organized into various fixed size
units of storage capacity for management purposes. A sector
may be the smallest unit of storage that a tangible storage
device processes, e.g. providing a sector 1n response to a
read or overwriting a sector in response to a write. On a
spinning disk HDD a track may correspond to a concentric
band on the disk and a sector may be a portion of such a
concentric band. 1 sector may be 512 bytes. 1 block may be
8 sectors. 1 track may be 32 sectors. 1 cylinder may be 15
tracks. The host 102 maintains metadata 130 indicating
which locations on the production volume 134 are available
and which data 1s already stored at particular locations. The
host application 132 requests 10s (input and output opera-
tions) with reference to the production volume 134 by
specilying locations using one or more of the fixed size units
of storage and addresses indicated by the metadata 130, e.g.,
specilying a track number, sector and address.

In order for the storage array metadata 150 to be man-
ageable, a fixed size “allocation umt” of storage capacity
may be used by the computing nodes as a basic unit for
processing 10s. For example and without limitation, the
computing nodes may read and write from and to the storage
bay in fixed size allocation units such as tracks. The size of
the allocation units 1s generally proportional to the manage-
ability of the metadata, but inversely proportional to
resource utilization efliciency when retrieving data from
persistent storage. While tracks may be referred to as the
tundamental allocation umits i1t should be understood that
allocation units may be any fixed size that 1s greater than the
smallest unit on a drive and less than the drive 1n its entirety.
Moreover, tracks are not necessarily 128 kb 1n size.

In certain circumstances 1t may be advantageous to pro-
cess 10s 1n units of a fixed size other than the allocation
units. More particularly, IOs may be selectively processed in
either allocation units or smaller sub-allocation units. The
extra processing overhead incurred by unnecessarily access-
ing, compressing or decompressing some data in full size
allocation units may oflset or negate the increase 1n metadata
manageability associated with use of the allocation units.
That overhead may be reduced by selectively using smaller
sub-allocation units when only part of the associated allo-
cation unit 1s required by using only those sub-allocation
units that contain required data, e.g. accessing, compressing,
or decompressing only the required sub-allocation units.
Data associated with sub-allocation units that match a
known pattern may be represented by a hint rather than data
(compressed or uncompressed) 1n storage. The hint may be
used to obtain the data from cache, thereby maitigating
overhead associated with accessing backend storage. It the

10

15

20

25

30

35

40

45

50

55

60

65

6

data 1s compressed or to be stored as compressed data then
using the hint may also mitigate the need for performing
compression/decompression of the corresponding sub-allo-
cation unit. In other words, pattern awareness may be used
to mitigate one or more of the amount of data accessed from
backend storage, the amount of data compressed/decom-
pressed, the need to access backend storage in order to
satisly 10s, and the need to perform compression/decom-
pression. Allocation units and sub-allocation units in SRP
136 in the 1llustrated example may include an indication that
certain sub-allocation units match a known pattern. In
response to a read 10 the data may then be generated in
cache 120 by processor 118 without accessing storage
devices 126, 128 and without decompression. In response to
a write 10 the data may be destaged from cache by setting
the pattern indicator, and without accessing storage devices
126, 128 and without compression. Although pattern aware-
ness will be described 1n detail below for sub-allocation unit
compression domains in tiered storage, 1t will be understood
that pattern awareness 1s not limited to use with storage
tiering and data compression.

Referring now to FIGS. 1 and 2, 1n some implementations
active data may be stored uncompressed and managed 1n
fixed size allocation units while other less active data may be
stored 1n a compressed state and managed 1n sub-allocation
umt compression domains. The sub-allocation units have
greater granularity (smaller size) than the allocation unaits,
¢.g. and without limitation 32 kb quarter-track sized units of
storage. In the 1llustrated example an allocation unit 135 (on
device 138) contains a 128 kb track of uncompressed data of
a corresponding 128 kb track in allocation unit 137 (on
production volume 134) when the data resides on device
138, ¢.g. when the data 1s active. However, the data may be
reorganized into multiple compressed sub-allocation units
(collectively 200 1n FIG. 1, and individually 200,-200, 1n
FIG. 2) when the data resides on device 140, e.g. when the
data activity level drops. In order to generate the correspond-
ing compressed sub-allocation units 200 the allocation unit
135 1s reorganized into multiple fixed size sub-allocation
units 141,-141_, each ot which 1s a 32 kb chunk of the 128
kb allocation unit 135. The sub-allocation units may be of a
uniform size that 1s a factor of the size of the allocation unait.
The uncompressed 32 kb sub-allocation units 141,-141,
may be individually reduced in size by a compression
algorithm to yield the respective compressed sub-allocation
units 200,-200,. The data may be reorganized and moved in
either direction between device 138 and device 140 by the
tiering program 139, for example and without limitation, as
the data becomes more or less active. Consequently, the data
may be reorganized into allocation units and sub-allocation
units.

Tangible data storage devices 128 may also be organized
and managed 1n terms of sub-allocation units. In the 1llus-
trated example a BE (back end) sub-allocation unit 202 has
a 32 kb si1ze. Compressed data size values are shown without
limitation and strictly to provide context. Sub-allocation unit
141, 1s compressed from 32 kb to 7 kb, yielding compressed
sub-allocation unit 200,. Sub-allocation unit 141, 1s com-
pressed from 32 kb to 16 kb, vielding compressed sub-
allocation unit 200,. Sub-allocation unit 141, 1s compressed
from 32 kb to 1 kb, yielding compressed sub-allocation unit
200,. Sub-allocation unit 141, occupies 0 kb of compressed
sub-allocation unit 200,. Because BE sub-allocation unit
202 1s 32 kb 1n size, an 8 kb pad 204 of available space
remains.

A hint field 206 1n allocation umit 135 includes location
hints, e.g. “7,” “23,” and “24,” that indicate where each

US 10,853,257 Bl

7

compressed sub-allocation unit associated with the sub-
allocation units of allocation umt 135 resides within the
corresponding BE sub-allocation unit 202. For example and
without limitation, the location hints could include offsets or
pointers nto the BE sub-allocation unit 202. In the illus-
trated example the location hints 7,7 “23,” and “24” are
oflsets into the BE sub-allocation unit indicating that com-
pressed sub-allocation unit 200, 1s offset 7 k ito BE
sub-allocation unit 202, compressed sub-allocation unit 200,
1s oflset 23 k (7+16=23) and compressed sub-allocation unit
200, 1s oflset 24 k (7+16+1=24). Compressed sub-allocation
unit 200, has no offset (1.¢. 0 offset) and thus no correspond-
ing location hint, although a 0 value could be implemented.
Each individual compressed sub-allocation unit may be
found on the basis of the corresponding location hint.
Consequently, individual compressed sub-allocation units
may be compressed or decompressed without necessarily
decompressing or compressing other compressed sub-allo-
cation units 1n the same BE sub-allocation unit. As will be
turther described below, this may provide resource savings
in terms of compression/decompression overhead. The loca-
tion hints may be maintained in various locations, of which
allocation units 1335, 137, compressed sub-allocation units
200, and BE sub-allocation unit 202 are examples.

The hint field 206 may also include pattern ID (*1denti-
fier”) hints, e.g. P1, P2 . . . Pn, that indicate whether
individual sub-allocation units of allocation unit 135 contain
a known data pattern. For example and without limitation,
the pattern ID hints could include references to any number
of commonly occurring bit patterns in the dataset maintained
by the storage array. In the 1llustrated example the pattern 1D
hint “P1” associated with location hint “24” indicates a
pattern of all O bit values 1n sub-allocation unit 141, and the
pattern ID hint “P2” associated with location hint “23”
indicates some other known pattern 1 sub-allocation unit
141,. A pattern ID hint may maitigate or obviate the need to
access storage devices ol the storage bay and perform
compression and decompression in order to access a com-
pressed sub-allocation unit to respond to a read 10 or a write
10. Further, the occurrence of a known pattern may mitigate
or obviate the need for the corresponding compressed sub-
allocation unit to require space on storage device 128. For
example, the pattern ID hint P1 associated with sub-alloca-
tion unit 141, may be used 1n place of the data in the
corresponding compressed sub-allocation unit 200, thereby
providing additional pad space for other data. However, as
shown for example by pattern hint P2, associated with
sub-allocation unit 141, and corresponding compressed sub-
allocation unit 200, the compressed sub-allocation unit may
contain data that may or may not be a compressed version
of the pattern on storage device 128.

A pattern ID record 210 may be maintained to bind
specific known patterns with specific pattern 1D hints. For
example, the pattern ID record could be in metadata 150 and
be present in cache 120. The likelihood of different patterns
occurring commonly within a dataset or array may be a
function of configuration settings, type of host applications
supported and various other factors. The pattern ID record
may be re-configurable and user-configurable so that the
most commonly occurring patterns can be entered in the
pattern record for a given system and updated.

FI1G. 3 illustrates another implementation of the compres-
sion domains. In this implementation the available pad space
that remains 1n the BE sub-allocation unit 202 1s distributed.
For example, multiple pads may be evenly or proportionally
distributed among the compressed sub-allocations. In the
illustrated example there are four 2 k pads 300, 302, 304,

10

15

20

25

30

35

40

45

50

55

60

65

8

306 rather than the single 8 k pad 204 shown in FIG. 2. A
wide variety of pad sizing and placement techniques could
be implemented.

An exemplary read will now be described with reference
to FIGS. 1, 2 and 4. In order to read data from the storage
array the host application 132 uses metadata 130 to create 10
133 as a read request. The read request may identily the
target data by referencing allocation unit 137 on the pro-
duction volume 134, e.g. by specitying one or more of the
address, sector, track number and cylinder. The storage array
receives the read request as indicated at block 400. In
response to receipt of the read request one of the computing
nodes 114, locates the corresponding data on SRP 136 as
shown 1n block 402. If the corresponding data 1s uncom-
pressed, e.g. resident 1n uncompressed allocation unit 135 on
storage device 138, then the computing node copies the
allocation unit 135 from the storage bay, e.g. from storage
device 126, to the cache 120 as shown i1n block 404. For
purposes of explanation 1t 1s assumed that the data being
accessed 1s not already resident 1n the cache when the read
request 1s recerved, 1.e. 1t 1s assumed that a “cache miss”™
occurs. The requested data, which may comprise only a
portion of allocation unit 135, 1s then returned to the host as
indicated 1n block 406. If the corresponding data 1s com-
pressed, e.g. resident in the group of sub-allocation units
141,-141, on device 140, then the computing node uses the
information in the read request to identily the specific
sub-allocation units required to service the read as shown 1n
block 408. For example, address and sector information may
be used to identify the specific sub-allocation units. A
procedure 420 1s implemented for each of the sub-allocation
units i1dentified in block 408. At block 409 it 1s determined
whether a pattern ID hint 1s associated with the sub-alloca-
tion unit. The presence of an associated pattern ID hint may
be detected by examining the hint field 206. I there 1s no
pattern ID hint associated with the sub-allocation unit then
the location hint in the hint field 206 i1s used to find the
corresponding compressed sub-allocation unit (or units) that
contain the requested data as indicated i1n block 410. For
example, the offset value 7 1 hint field 206 shows the
location of compressed sub-allocation unit 200, correspond-
ing to sub-allocation unit 141,. The 1dentified compressed
sub-allocation unit 1s copied to the cache as indicated 1n
block 411. The compressed copy in cache 1s decompressed
as 1indicated 1n block 412. If, in the alternative, 1t 1s deter-
mined at block 409 that a pattern ID 1s associated with the
sub-allocation unit then a procedure, ¢.g. and without limi-
tation a lookup, 1s performed to determine the pattern value
as mdicated in block 414. For example, the pattern 1D hint
P2 can be used as an index into pattern 1D record 210 1n
order to retrieve the corresponding data pattern. The data
pattern, 1.e. the apparent data contents of sub-allocation unit
141, 1s then generated in cache 120 by processor 118
without accessing the storage bay, e.g. without copying from
storage device 128 to cache, and without performing decom-
pression, as indicated i block 416. The requested data,
which may be less than the entire sub-allocation unit, 1s then
returned to the host as indicated 1n block 406.

Procedure 420 may, but 1s not required to, provide per-
formance improvement. The overhead associated with fetch-
ing compressed data from tangible storage device 128 and
then decompressing that compressed data may be avoided
for sub-allocation units for which a pattern ID hint 1s present
because the data pattern can be generated 1n the cache 120
by the processor 118. Thus, the response time for reading a
sub-allocation unit having a known pattern may be closer to
a cache hit than a cache miss even though the situation 1s

US 10,853,257 Bl

9

technically a cache miss with reference to compressed data
at a lower performance tier of storage. Furthermore, even a
partial read of less than the entire track from storage device
128 may provide savings of CPU and cache resources
because the non-required compressed sub-allocation units
are not necessarily copied to cache from storage and decom-
pressed. In context, a partial read of less than the entire track
may correspond to data that 1s enftirely available from
sub-allocation unit 141, so 1t may not be necessary to
retrieve sub-allocation units 141, 141,, 141, because the
required data can be obtained by copying the compressed
sub-allocation unit 200, to cache and decompressing only
that compressed sub-allocation unit in order to obtain the
corresponding sub-allocation unit. If the data 1s entirely
available from sub-allocation unit 141, or 141, then the
pattern ID hint can be used to avoid both reading the
compressed sub-allocation unit from storage device 128 and
decompression of the compressed sub-allocation unmit. Con-
sequently, from zero to three quarter tracks may be decom-
pressed rather than an entire track.

An exemplary write will now be described with reference
to FIGS. 1, 2 and 5. In order to write data to the storage array
the host application 132 uses the metadata 130 to create 10
133 as a write request. The write request may include data
and 1dentily the target allocation unit 137 on the production
volume 134, e.g. by specifving one or more of the address,
sector, and track number and cylinder. The storage array
receives the write request as indicated at 500. In response to
receipt of the write request one of the computing nodes 114,
locates or allocates corresponding address space on SRP 136
as shown 1n block 502. If the corresponding address space
1s uncompressed allocation unit 135 on device 138 then the
computing node writes the data to that allocation umt as
indicated 1n block 504. For example, the data may be written
to the cache and subsequently destaged to the storage bay. IT
the corresponding address space 1s the group of sub-alloca-
tion units 200 (141,-141,) on device 140 then the computing
node uses the information (e.g. address and sector) in the
write request to identily the specific sub-allocation units
required to service the write as shown in block 506. For
example, a partial write may correspond to data being
written only to sub-allocation unit 141, so 1t may not be
necessary to modily the other sub-allocation units 141,
141, 141,. A procedure 520 1s implemented for each of the
sub-allocation units 1dentified 1n block 506. At block 507 it
1s determined whether the sub-allocation unit 1s a known
pattern 1n the pattern ID record. If the data of the sub-
allocation unit to be written does not match a known pattern
then the location hint 1n the hint field 206 1s used to find the
corresponding compressed sub-allocation unit that contains
the address space as indicated in block 508. The data being,
written 1s then compressed and compared with the corre-
sponding compressed sub-allocation unit to determine
whether there 1s a si1ze increase as indicated 1n block 510. In
other words, 1t 1s determined whether the data being written
to the sub-allocation unit will fit (compressed) within the
currently allocated space. If there 1s no size increase then the
compressed data (1.e. the compressed version of the data
being written) 1s written to the corresponding compressed
sub-allocation unit as indicated in block 512. If there 1s an
increase 1n size then a determination 1s made as to whether
there 1s available contiguous pad space to accommodate the
s1ze increase as indicated in block 514. If there 1s enough
available contiguous pad space to accommodate the size
increase then the compressed data (1.e. the compressed
version of the data being written) 1s written to the corre-
sponding compressed sub-allocation unit as indicated 1n

10

15

20

25

30

35

40

45

50

55

60

65

10

block 512 and some or all of the pad space 1s utilized. It there
1s not enough available contiguous pad space to accommo-
date the size increase then the BE sub-allocation unit is
rewritten and the hints are updated as indicated 1n block 516
and explained 1n greater detail below. If a pattern match 1s
identified at block 507 then the hints are updated as indicated
at block 518. For example, the pattern ID hint associated
with the i1dentified pattern may be added to the hint field to
indicate that the sub-allocation unit contents are the ident-
fied pattern. However, the data 1s not compressed and
written to the storage bay. Rather, after the pattern 1D hint 1s
added to the hint field the data may be flushed from cache.
Optionally, the location hint for the sub-allocation unit may
be updated and other compressed sub-allocation units
moved 1n order to convert the corresponding compressed
sub-allocation unit space into available pad space. If all of
the sub-allocation units match known patterns as determined
in block 522, e.g. as indicated by the existence of a pattern
ID hint for each sub-allocation unit, then the storage space
occupied by the BE sub-allocation unit may be de-allocated
and made generally available as free space as indicated 1n
block 524.

FIG. 6 1llustrates an example of an allocation unit 135 or
137 and corresponding BE sub-allocation unit 202 before
and after a write. Initially, as indicated by hints 7-23(P2)-24,
sub-allocation unit 141, matches a known pattern with the
pattern ID P2. Writes are made to sub-allocation units 141,
and 141,. The write to sub-allocation unit 141, matches a
known pattern with the pattern ID P1. The write to sub-
allocation unit 141, does not match a known pattern. The
writes do not change data in the other sub-allocation units
141,, 141,. The write to sub-allocation unit 141, may be
implemented by updating the hint field 206 by adding the
pattern ID P1 1n the zero oflset position to indicate that the
apparent contents of sub-allocation unit 141, match the P1
pattern. The actual contents of corresponding compressed
sub-allocation unit 200, may be left intact 1n order to avoid
the overhead associated with data compression and a write
to storage. As a result of the write to sub-allocation unit 141,
the size of compressed sub-allocation unit 200, 1s increased
from 1 k to 3 k. Because the written data does not match a
known pattern, the pattern ID hint associated with oflset
location hint “23” in the hint field 206 1s updated by
removing the existing pattern ID hint P2. Because there 1s no
contiguous pad space to accommodate the size increase a
portion of the address space that was allocated to com-
pressed sub-allocation umit 200, 1s utilized. Compressed
sub-allocation unit 200, 1s rewritten using 2 k of the con-
tiguous pad space 204. The remaining pad space 204 1s 2 k
in size aiter the write. Consequently, the oflset to com-

pressed sub-allocation unit 200, 1s updated from 24 to 26.
The updated hints (P1)-7-23-26 replace existing hints 7-23

(P2)-24 1n the hint field 206.

FIG. 7 illustrates another example of the allocation unit
135 or 137 and BE sub-allocation unit 202 before and after
a write. A write 1s made to sub-allocation unit 141, . The data
being written matches a known pattern associated with
pattern ID P1. The wrte does not change data 1n the other
sub-allocation units 141,, 141,, 141,. The write to sub-
allocation unit 141, may be implemented by updating the
hint field by adding the pattern ID P1 in the zero oflset
position to indicate that the apparent contents ol sub-
allocation unit 141, match the pattern. Moreover, the cor-
responding 7 k of space that was allocated to compressed
sub-allocation unit 200, 1s converted to pad space 204 by
moving (rewriting) compressed sub-allocation units 200,,

2004, 200, so that 11 k of pad space 204 exists after the

US 10,853,257 Bl

11

write, 1.e. (4 k+7 k) exists at oflset 21 k. The location hints
and pattern hints 1n the hint field are updated accordingly
such that updated hints (P1)-0-16-17 replace existing hints
7-23-24. Even though both sub-allocation unit 141, and
sub-allocation unit 141, both have a zero oflset, the pattern
ID P1 in the hint field prevents compressed data from being
read from storage in response to a read of sub-allocation unit
141,, and prevents the compressed sub-allocation unit 200,
from being overwritten 1n response to a write ol non-pattern
data to sub-allocation unit 141,. The absence of a pattern 1D
hint associated with sub-allocation unit 141, prompts the
compressed data to be read from storage in response to a
read. In the case of a write of non-pattern data to sub-
allocation unit 141, the compressed sub-allocation units
200,, 2004, 200, are moved 1n order to provide available
space to write the compressed non-pattern data. Whether to
recover (as pad space) the space associated with compressed
data that was overwritten by a known pattern at the cost of
a write to storage 1s an implementation detail.

A number of features, aspects, embodiments and 1mple-
mentations have been described. Nevertheless, it will be
understood that a wide variety of modifications and combi-
nations may be made without departing from the scope of
the mventive concepts described herein. Accordingly, those
modifications and combinations are within the scope of the
following claims.

What 1s claimed 1s:

1. An apparatus comprising:

a block-based storage array that presents a logical volume
of storage to a host application, the logical volume of
storage having contiguous logical block addresses, the
storage array comprising:

a plurality of tangible data storage drives;
metadata that maps the contiguous logical block
addresses to a non-contiguous physical address set
on the tangible data storage drives; and
a computing node comprising a processor and a cache,
the computing node using only a single fixed-size
allocation unit of storage capacity in commands to
read and write uncompressed data from and to the
data storage drives, wherein the single fixed-size
allocation unit 1s larger than a smallest size unit of
storage capacity that the tangible data storage drives
can process, wherein the computing node 1s respon-
sive to commands from the host application to access
logical blocks of the production volume to use the
metadata to access corresponding physical addresses
of the tangible data storage drives, and wherein the
computing node:
causes a first fixed-size allocation unit of production
volume data to be stored on the tangible data
storage drives;
reorganizes the first fixed-size allocation unit into a
plurality of same-size sub-allocation units that are
smaller 1n size than the first fixed-size allocation
unit and larger than the smallest size unit of
storage capacity that the tangible data storage
drives can process, each sub-allocation unit being
a separate compression domain that defines which
data 1s mterdependently compressed and de-com-
pressed;
determines that a first sub-allocation unit of the
plurality of sub-allocation units matches a known
pattern;
represents the first sub-allocation unmit with a first
pattern identifier;

10

15

20

25

30

35

40

45

50

55

60

65

12

determines that a second sub-allocation unit of the
plurality of sub-allocation units does not match
the known pattern;

causes the second sub-allocation unit to be stored on
the tangible data storage drives; and

responsive to a read from the host application, gen-
crates the first sub-allocation unit in the cache
using the pattern identifier without accessing the
data storage drives and without decompressing the
first sub-allocation unat.

2. The apparatus of claim 1 comprising a hint field
assoclated with the first fixed-size allocation unit, the hint
field comprising a first location hint indicative of location of
the second sub-allocation unit on the tangible storage drives.

3. The apparatus of claim 2 wherein the hint field turther
comprises the first pattern i1dentifier.

4. The apparatus of claim 3 wherein the computing node,
in response to a request to read the first sub-allocation unit,
uses the first pattern identifier to generate the first sub-
allocation unit 1n the cache.

5. The apparatus of claim 4 wherein the first pattern
identifier 1s mdicative of all 0 values.

6. The apparatus of claim 1 further comprising a record of
a plurality of known patterns, the record being maintained 1n
the cache.

7. The apparatus of claim 6 wherein the computing node,
1in response to a request to read the first sub-allocation unit,
uses the first pattern identifier with the record of known
patterns to generate the first sub-allocation unit in the cache.

8. The apparatus of claim 6 wherein the computing node,
1n response to a request to write to the second sub-allocation
unit, determines that the second sub-allocation unit waill
match one of the known patterns as a result of the write, and
represents the second sub-allocation unmit with a second
pattern identifier.

9. The apparatus of claim 1 wherein the computing node,
in response to a request to write to the second sub-allocation
unit, determines that the second sub-allocation unit waill
match the known pattern as a result of the write, and
represents the second sub-allocation unit with the first
pattern identifier.

10. The apparatus of claim 9 wherein the computing node
determines that all of the sub-allocation units are represented
by pattern identifiers and, in response, de-allocates space on
the tangible storage drives allocated to the allocation unit.

11. A method comprising;:

with a block-based storage array comprising a plurality of

tangible data storage drives and a computing node
comprising a processor and a cache, wherein the com-
puting node uses only a single fixed-size allocation unit
of storage capacity in commands to read and write
uncompressed data from and to the data storage drives,
wherein the single fixed-size allocation unit 1s larger
than a smallest size unit of storage capacity that the
tangible data storage drives can process:
presenting a production volume to a host application,
the production volume having contiguous logical
block addresses mapped by metadata to a non-
contiguous physical address set on the tangible data
storage drives;
responsive to commands from a host application,
accessing blocks of the production volume by using
the metadata to access corresponding physical
addresses of the tangible data storage drives;
causing a first fixed-size allocation unit of production
volume data to be stored on the tangible data storage
drives:

US 10,853,257 Bl

13

reorganizing the first fixed-size allocation unit into a
plurality of same-size sub-allocation units that are
smaller 1n si1ze than the first fixed-size allocation unit
and larger than the smallest size unit of storage
capacity that the tangible data storage drives can
process, each sub-allocation unit being a separate
compression domain that defines which data 1s inter-
dependently compressed and de-compressed;
determining that a first sub-allocation unit of the
plurality of sub-allocation units matches a known
pattern;

representing the first sub-allocation unit with a first
pattern identifier;

determining that a second sub-allocation umt of the
plurality of sub-allocation units does not match
the known pattern;

causing the second sub-allocation unit to be stored
on the tangible data storage drives; and

responsive to a read, generating the first sub-alloca-
tion unit 1n the cache using the pattern identifier
without accessing the data storage drives and
without decompressing the {first sub-allocation
unit.

12. The method of claim 11 comprising associating a hint
field with the first fixed-size allocation unit, the hint field
comprising a {irst location hint indicative of location of the
second sub-allocation unmit on the tangible storage drives.

13. The method of claim 12 comprising adding the first
pattern identifier to the hint field.

14. The method of claim 13 comprising the computing
node, 1n response to a request to read the first sub-allocation

10

15

20

25

14

umt, using the first pattern identifier to generate the first
sub-allocation unit in the cache.

15. The method of claim 14 comprising interpreting the
first pattern 1dentifier as indicative of all 0 values.

16. The method of claim 11 further comprising maintain-
ing a record ol a plurality of known patterns, the record
being maintained 1n the cache.

17. The method of claim 16 comprising the computing
node, 1n response to a request to read the first sub-allocation
unit, using the first pattern identifier with the record of
known patterns to generate the first sub-allocation unit in the
cache.

18. The method of claim 16 comprising the computing
node, 1 response to a request to write to the second
sub-allocation unit, determining that the second sub-alloca-
tion unit will match one of the known patterns as a result of
the write, and representing the second sub-allocation unit
with a second pattern 1dentifier.

19. The method of claim 11 comprising the computing
node, 1n response to a request to write to the second
sub-allocation unit, determining that the second sub-alloca-
tion unit will match the known pattern as a result of the
write, and representing the second sub-allocation unit with
the first pattern identifier.

20. The method of claim 19 comprising the computing
node determining that all of the sub-allocation units are
represented by pattern identifiers and, 1 response, de-
allocating space on the tangible storage drives allocated to
the allocation unait.

	Front Page
	Drawings
	Specification
	Claims

