12 United States Patent

Artman et al.

US010853089B2

(10) Patent No.:
45) Date of Patent:

US 10,853,089 B2
Dec. 1, 2020

(54) DYNAMICALLY LOADING FIRMWARE
BASED ON GEOGRAPHIC LOCATION

(71) Applicant: LENOVO Enterprise Solutions
(Singapore) PTE. LTD., New Tech

Park (5G)

(72) Inventors: Paul Artman, Cary, NC (US); Gary D.

Cudak, Wake Forest, NC (US)

(73) Assignee: LENOVO Enterprise Solutions
(Singapore) PTE. LTD, New Tech

Park (SG)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 113 days.

Notice:

(%)

(21) 15/084,846

(22)

Appl. No.:

Filed: Mar. 30, 2016

(65) Prior Publication Data

US 2017/0286126 Al Oct. 5, 2017

Int. CI.
GO6F 9/44
GO6F 9/4401

U.S. CL
CPC

(51)
(2018.01)
(2018.01)

(52)
.......... GO6I 9/4411 (2013.01); GO6GF 9/4416
(2013.01)

(58) Field of Classification Search
CPC .. HO4L 41/0856; HO4L 41/085; GO6F 9/4411;
GO6F 9/44505

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,246,221 B1* 7/2007 Soltis GO6F 9/4416

tttttttttttttttttttt

2003/0212684 Al* 11/2003 Meyeroooeeeveee. HO4L 41/082
2006/0294199 Al1* 12/2006 Bertholf GO6F 16/972
709/217

2007/0169097 Al 7/2007 Al Saadi et al.
2007/0226477 Al1* 9/2007 Haban GOG6F 8/60
713/1
2007/0237096 Al1* 10/2007 Vengrofl HO04W 4/029
370/254
2008/0019317 Al1* 1/2008 Vellanki HO4M 1/72572
370/331

2008/0168463 Al 7/2008 Donohue et al.
2009/0036148 Al* 2/2009 Yach G06Q 10/109
455/457
2009/0129291 Al* 5/2009 Guptaceeeee. HO4W 8/26
370/254
2011/0138024 Al1* 6/2011 Chencoovvee.... G06Q 20/10
709/220

(Continued)

OTHER PUBLICATTONS

U.S. Appl. No. 15/084,861, filed Mar. 30, 2016, Oflice Action dated
May 4, 2017.

Primary Examiner — Phil K Nguyen

(74) Attorney, Agent, or Firm — Kunzler Bean &
Adamson; Bruce R. Needham

(57) ABSTRACT

Apparatuses, methods, systems, and program products are
disclosed for dynamically loading firmware based on geo-
graphic location. A location module determines a geographic
location associated with a system. A firmware module deter-
mines a firmware configuration associated with the geo-
graphic location. A loading module dynamically accesses
the firmware configuration associated with the geographic
location from a remote data store, and loads the firmware

configuration on the system.

709/219
7,506,366 B1* 3/2009 Szeo.cooiviiiiil. GO6F 21/35
726/5 19 Claims, 9 Drawing Sheets
100
™
1027
o
102 = Firmware
Mamt. Module
1 = — 108
L
CELEL=EN
/:::.:.-.: Firmware Firmware
Mgrt. Module Mgmt. Moduwle
164 Data Network 104
102
Fi 102 = \
Mgr:'nTrdilr-daule ’L
104 Firmware
— Mgmt. Module
1 104

102 ‘ lj"%"

104

Firmware
Mgmt. Module

=|

US 10,853,089 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2011/0225640 Al 9/2011 Ganapathy et al.
2012/0284322 Al* 11/2012 Laborczfalvi HO04W 4/021
709/202
2013/0019089 Al1* 1/2013 Guudottr GOG6F 9/5072
713/100
2013/0138783 Al 5/2013 Mallur et al.
2013/0185548 Al* 7/2013 Djabarov GO6F 21/602
713/2
2013/0328917 Al 12/2013 Zambett1 et al.
2013/0347058 Al1* 12/2013 Smuth GO6F 21/57
726/1
2014/0025878 Al* 1/2014 Pengcooovvvvvnnnen, GO6F 8/654
711/104
2014/0052974 Al1* 2/2014 Masters GO1S 5/0027
713/1
2016/0092261 Al 3/2016 L1 et al.
2016/0147996 Al1* 5/2016 Martinez GO6F 21/572
713/2
2016/0179265 Al* 6/2016 Zengoeeve, GO6F 3/0416
345/173
2016/0378990 Al* 12/2016 Goodman GO6F 21/572
726/19
2017/0109176 Al1* 4/2017 Shih GO6F 9/4416
2017/0249155 Al1* 8/2017 Sundrani GO6F 9/4401

* cited by examiner

U.S. Patent Dec. 1, 2020 Sheet 1 of 9 US 10,853,089 B2

100

Firmware
Mgmt. Module
104

102 L

1081 |

Firmware
Mgmt. Module

104

Firmware

Mgmt. Module
104

Data Network

106

102

Firmware
Mgmt. Module
104

Firmware
Mgmt. Module
104

102

Firmware
Mgmt. Module
104

FIG. 1

U.S. Patent Dec. 1, 2020 Sheet 2 of 9 US 10,853,089 B2

200

Firmware Mgmt. Module
104

Workload
Module
202

Firmware
Module
204

Loading Module
206

FIG. 2

U.S. Patent

300

Dec. 1, 2020 Sheet 3 of 9

Workload
Module
202

Association
Module
302

Firmware Mgmt. Module
104

Firmware
Module
204

Schedule
Module
304

FIG. 3

US 10,853,089 B2

Loading Module
206

Lifecycle
Module
306

U.S. Patent Dec. 1, 2020 Sheet 4 of 9 US 10,853,089 B2

400

Firmware Mgmt. Module
104

Location
Module
402

Firmware
Module
204

Loading Module
206

FIG. 4

U.S. Patent Dec. 1, 2020 Sheet 5 of 9 US 10,853,089 B2

500

Firmware Mgmt. Module
104

Location Firmware
Module Module
402 204

Association
Module
302

Loading Module
206

FIG. 5

U.S. Patent

Dec. 1, 2020 Sheet 6 of 9

602

604

606

608

Determine a Workload
Configured to Execute on a
System

Determine Firmware

Configuration Associated with
the Workload

Access Firmware Configuration
Assoclated with Workload from
Remote Data Store

Load Remotely Accessed
Firmware Configuration on
System

End

FIG. 6

US 10,853,089 B2

U.S. Patent Dec. 1, 2020 Sheet 7 of 9 US 10,853,089 B2

700
b

Associate Firmware
702 Configuration with Workload and
System

Determine a Workload

Configured to Execute on a
System From Workload
Schedule

704

Determine Firmware
Configuration Associated with
the Workload Based on System
Lifecycle State

706

Determined
Firmware Configuration
Currently Loaded?

708
Yes

No

Update Firmware Pointers on
710 | the System to Point to Remotely
Accessed Firmware

719 Reboot System

Access Firmware Configuration

714 Associated with Workload from
Rem ote __ Stre

| oad Remotely Accessed
Firmware on System

=
FIG. 7

716 '

U.S. Patent

Dec. 1, 2020 Sheet 8 of 9

800
R\

802

804

806

808

Determine a Geographic
Location Associated with a
System

Determine Firmware
Configuration Associated with
the Geographic Location

Access Firmware Configuration
Associated with Geographic
Location from Remote Data

Store

Load Remotely Accessed
Firmware on System

End

FIG. 8

US 10,853,089 B2

U.S. Patent

900
R}

Dec. 1, 2020 Sheet 9 of 9 US 10,853,089 B2

902

904

906

908

910

912

914

916

Associate Firmware
Configuration with Geographic
Location and System

Determine a Geographic

L ocation Associated with a
System

Determine Firmware
Configuration Associated with
the Geographic Location

Determined
Firmware Configuration
Currently Loaded?

Yes

Update Firmware Pointers on
the System to Point to Remotely
Accessed Firmware

Reboot System

Access Firmware Configuration
Associated with Geographic

Location from Remote Data
Store

Load Remotely Accessed
Firmware on System

End

FIG. 9

US 10,853,089 B2

1

DYNAMICALLY LOADING FIRMWARE
BASED ON GEOGRAPHIC LOCATION

FIELD OF THE INVENTION

The subject matter disclosed herein relates to loading
firmware on a device and more particularly relates to access-
ing firmware from a remote device based on a geographic
location.

BACKGROUND

Computer devices may include a number of different
component devices such as processors, memory, storage
drives, network cards, graphics cards, and/or the like. Many
of these component devices are controlled using firmware
that 1s conventionally stored 1n non-volatile memory devices
associated with the component devices. Because the firm-
ware 1s stored 1n a non-volatile memory device, the firmware
for a component device 1s rarely 1f ever changed. Even 1f
firmware 1s changed during the lifetime of the component
device, 1t can be dithicult and time consuming to “flash’ the
device with new firmware, which makes it impractical to
frequently change a device’s often based on diflerent factors
or conditions.

BRIEF SUMMARY

An apparatus for dynamically loading firmware based on
geographic location 1s disclosed. A method and computer
program product also perform the functions of the apparatus.
In one embodiment, an apparatus includes a location module
that determines a geographic location associated with a
system. In a further embodiment, an apparatus includes a
firmware module that determines a firmware configuration
associated with a geographic location. In some embodi-
ments, an apparatus includes a loading module that dynami-
cally accesses a firmware configuration associated with a
geographic location from a remote data store, and loads the
firmware configuration on a system.

In one embodiment, a remote data store 1s one of a
plurality of remote data stores where each remote data store
1s associated with a geographic location and stores firmware
configurations mntended for systems located at the geo-
graphic location. An apparatus, 1n some embodiments,
includes an association module that associates one or more
firmware configurations with a combination of a geographic
location and one or more systems.

In certain embodiments, a location module determines a
geographic location for a system after the system 1s booted,
but before a firmware configuration 1s loaded on the system.
In some embodiments, a firmware configuration determined
for a system located in a geographic location 1s different than
a firmware configuration determined for the system located
in a different geographic location.

In certain embodiments, a system 1s configured with a
system configuration corresponding to a geographic location
and the firmware module further determines a firmware
configuration for the system based on the system configu-
ration for the geographic location where the system 1s
located. In some embodiments, a system 1s configured
according to one or more regulations associated with a
geographic location such as network regulations, environ-
mental regulations, power regulations, data security regula-
tions, and user access regulations.

In certain embodiments, a firmware module further deter-
mines one or more characteristics of an infrastructure of a

10

15

20

25

30

35

40

45

50

55

60

65

2

geographic location and determines a firmware configura-
tion based on the one or more infrastructure characteristics.
In some embodiments, the geographic location associated
with a system 1s determined {from one or more of a system
setting, a location service, a time zone, an internet protocol
(“IP”) address, and a network latency between the system
and a remote data store.

In some embodiments, the loading module does not
access a firmware configuration associated with a geo-
graphic location from a remote data store 1n response to a
firmware module determining that the firmware configura-
tion associated with the geographic location i1s currently
loaded on a system.

In one embodiment, the loading module updates one or
more firmware pointers on a system that point to one or more
storage locations for the firmware configuration on a remote
data store. In some embodiments, a firmware configuration
comprises one or more files configured for a geographic
location. In some embodiments, one or more files of a
firmware configuration includes device drivers, system set-
tings, localization settings, access settings, and/or applica-
tion settings.

A method, 1n one embodiment, includes determining, by
use of a processor, a geographic location associated with a
system. In some embodiments, a method includes determin-
ing a firmware configuration associated with a geographic
location. In a further embodiment, a method includes
dynamically accessing a firmware configuration associated
with a geographic location from a remote data store, and
loading a firmware configuration on a system.

In one embodiment, a remote data store 1s one of a
plurality of remote data stores where each remote data store
1s associated with a geographic location and stores firmware
configurations ntended for systems located at the geo-
graphic location. In certain embodiments, a method 1includes
assoclating one or more firmware configurations with a
combination of a geographic location and one or more
systems.

In certain embodiments, a firmware configuration deter-
mined for a system located 1n a geographic location 1s
different than a firmware configuration determined for the
system located 1n a different geographic location. In a turther
embodiment, a system 1s configured with a system configu-
ration corresponding to a geographic location and a firm-
ware configuration for the system 1s determined based on the
system configuration for the geographic location where the
system 1s located.

In some embodiments, a system 1s configured according,
to one or more regulations associated with a geographic
location, which may include network regulations, environ-
mental regulations, power regulations, data security regula-
tions, and/or user access regulations. In various embodi-
ments, a method includes determining one or more
characteristics of an infrastructure of the geographic location
such that a firmware configuration 1s determined based on
the one or more inirastructure characteristics.

A program product, 1n one embodiment, includes a com-
puter readable storage medium that stores code executable
by a processor. In some embodiments, the executable code
includes code to perform determining a geographic location
assoclated with a system. In various embodiments, the
executable code includes code to perform determining a
firmware configuration associated with a geographic loca-
tion. In a further embodiment, the executable code includes
code to perform dynamically accessing a firmware configu-

US 10,853,089 B2

3

ration associated with a geographic location from a remote
data store, and loading the firmware configuration on a
system.

BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of the embodiments briefly
described above will be rendered by reference to specific
embodiments that are 1llustrated 1n the appended drawings.
Understanding that these drawings depict only some
embodiments and are not therefore to be considered to be
limiting of scope, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings, in which:

FIG. 1 1s a schematic block diagram illustrating one
embodiment of a system for dynamically loading firmware
based on geographic location;

FIG. 2 1s a schematic block diagram illustrating one
embodiment of an apparatus for dynamically loading firm-
ware based on workloads;

FIG. 3 1s a schematic block diagram illustrating one
embodiment of another apparatus for dynamically loading
firmware based on workloads:

FIG. 4 1s a schematic block diagram illustrating one
embodiment of an apparatus for dynamically loading firm-
ware based on geographic location;

FIG. 5 1s a schematic block diagram illustrating one
embodiment of another apparatus for dynamically loading
firmware based on geographic location;

FIG. 6 1s a schematic flow chart diagram illustrating one
embodiment of a method for dynamically loading firmware
based on workloads;

FIG. 7 1s a schematic flow chart diagram illustrating one
embodiment of another method for dynamically loading
firmware based on workloads:

FIG. 8 1s a schematic flow chart diagram illustrating one
embodiment of a method for dynamically loading firmware
based on geographic location;

FIG. 9 1s a schematic flow chart diagram 1llustrating one
embodiment of another method for dynamically loading
firmware based on geographic location.

DETAILED DESCRIPTION

As will be appreciated by one skilled 1n the art, aspects of
the embodiments may be embodied as a system, method or
program product. Accordingly, embodiments may take the
form of an entirely hardware embodiment, an entirely soit-
ware embodiment (including firmware, resident solftware,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, embodi-
ments may take the form of a program product embodied in
one or more computer readable storage devices storing
machine readable code, computer readable code, and/or
program code, referred hereafter as code. The storage
devices may be tangible, non-transitory, and/or non-trans-
mission. The storage devices may not embody signals. In a
certain embodiment, the storage devices only employ sig-
nals for accessing code.

Many of the functional units described 1n this specifica-
tion have been labeled as modules, 1n order to more par-
ticularly emphasize their implementation independence. For
example, a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays,
ofl-the-shelf semiconductors such as logic chips, transistors,
or other discrete components. A module may also be 1imple-

10

15

20

25

30

35

40

45

50

55

60

65

4

mented 1n programmable hardware devices such as field
programmable gate arrays, programmable array logic, pro-
grammable logic devices or the like.

Modules may also be implemented 1n code and/or soft-
ware lor execution by various types ol processors. An
identified module of code may, for instance, comprise one or
more physical or logical blocks of executable code which
may, for instance, be organized as an object, procedure, or
function. Nevertheless, the executables of an identified
module need not be physically located together, but may
comprise disparate instructions stored 1n different locations
which, when joined logically together, comprise the module
and achieve the stated purpose for the module.

Indeed, a module of code may be a single instruction, or
many instructions, and may even be distributed over several
different code segments, among different programs, and
across several memory devices. Similarly, operational data
may be 1dentified and illustrated herein within modules, and
may be embodied i any suitable form and organized within
any suitable type of data structure. The operational data may
be collected as a single data set, or may be distributed over
different locations including over different computer read-
able storage devices. Where a module or portions of a
module are implemented 1n software, the software portions
are stored on one or more computer readable storage
devices.

Any combination of one or more computer readable
medium may be utilized. The computer readable medium
may be a computer readable storage medium. The computer
readable storage medium may be a storage device storing the
code. The storage device may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
inirared, holographic, micromechanical, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing.

More specific examples (a non-exhaustive list) of the
storage device would include the following: an electrical
connection having one or more wires, a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combi-
nation of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an 1nstruction execution system, apparatus,
or device.

Code for carrying out operations for embodiments may be
written 1n any combination of one or more programming
languages including an object oriented programming lan-
guage such as Python, Ruby, Java, Smalltalk, C++, or the
like, and conventional procedural programming languages,
such as the “C” programming language, or the like, and/or
machine languages such as assembly languages. The code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly
on the user’s computer and partly on a remote computer or
entircly on the remote computer or server. In the latter
scenar1o, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” or similar language means that a

US 10,853,089 B2

S

particular feature, structure, or characteristic described in
connection with the embodiment 1s 1ncluded 1n at least one
embodiment. Thus, appearances of the phrases “in one
embodiment,” “in an embodiment,” and similar language
throughout this specification may, but do not necessarily, all
refer to the same embodiment, but mean “one or more but
not all embodiments™ unless expressly specified otherwise.
The terms “including,” “comprising,” “having,” and varia-
tions thereof mean “including but not limited to,” unless
expressly specified otherwise. An enumerated listing of
items does not imply that any or all of the 1tems are mutually
exclusive, unless expressly specified otherwise. The terms
“a,” “an,” and ‘“the” also refer to “one or more” unless
expressly specified otherwise.

Furthermore, the described features, structures, or char-
acteristics of the embodiments may be combined 1n any
suitable manner. In the following description, numerous
specific details are provided, such as examples of program-
ming, software modules, user selections, network transac-
tions, database queries, database structures, hardware mod-
ules, hardware circuits, hardware chips, etc., to provide a
thorough understanding of embodiments. One skilled 1n the
relevant art will recognize, however, that embodiments may
be practiced without one or more of the specific details, or
with other methods, components, materials, and so forth. In
other instances, well-known structures, materials, or opera-
tions are not shown or described in detail to avoid obscuring,
aspects ol an embodiment.

Aspects of the embodiments are described below with
reference to schematic flowchart diagrams and/or schematic
block diagrams of methods, apparatuses, systems, and pro-
gram products according to embodiments. It will be under-
stood that each block of the schematic flowchart diagrams
and/or schematic block diagrams, and combinations of
blocks 1n the schematic flowchart diagrams and/or schematic
block diagrams, can be implemented by code. These code
may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that
the mstructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the schematic flowchart diagrams and/or schematic block
diagrams block or blocks.

The code may also be stored 1n a storage device that can
direct a computer, other programmable data processing
apparatus, or other devices to function in a particular man-
ner, such that the mstructions stored in the storage device
produce an article of manufacture including instructions
which implement the function/act specified 1n the schematic
flowchart diagrams and/or schematic block diagrams block
or blocks.

The code may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to
cause a series ol operational steps to be performed on the
computer, other programmable apparatus or other devices to
produce a computer implemented process such that the code
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

The schematic flowchart diagrams and/or schematic block
diagrams 1n the Figures illustrate the architecture, function-
ality, and operation of possible implementations of appara-
tuses, systems, methods and program products according to
vartous embodiments. In this regard, each block in the

schematic tlowchart diagrams and/or schematic block dia-

10

15

20

25

30

35

40

45

50

55

60

65

6

grams may represent a module, segment, or portion of code,
which comprises one or more executable instructions of the
code for implementing the specified logical function(s).

It should also be noted that, 1n some alternative imple-
mentations, the functions noted 1n the block may occur out
of the order noted 1n the Figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed 1n
the reverse order, depending upon the functionality
involved. Other steps and methods may be conceived that
are equivalent 1n function, logic, or eflect to one or more
blocks, or portions thereot, of the illustrated Figures.

Although various arrow types and line types may be
employed 1n the tlowchart and/or block diagrams, they are
understood not to limit the scope of the corresponding
embodiments. Indeed, some arrows or other connectors may
be used to indicate only the logical tlow of the depicted
embodiment. For instance, an arrow may indicate a waiting
or monitoring period of unspecified duration between enu-
merated steps of the depicted embodiment. It will also be
noted that each block of the block diagrams and/or flowchart
diagrams, and combinations of blocks in the block diagrams
and/or tlowchart diagrams, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and code.

The description of elements in each figure may refer to
clements of proceeding figures. Like numbers refer to like
clements 1n all figures, including alternate embodiments of
like elements.

FIG. 1 depicts one embodiment of a system 100 for
dynamically loading firmware based on geographic location.
In one embodiment, the system 100 includes one or more
information handling devices 102, one or more firmware
management modules 104, one or more data networks 106,
and one or more servers 108. In certain embodiments, even
though a specific number of information handling devices
102, firmware management modules 104, data networks
106, and servers 108 are depicted in FIG. 1, one of skill 1n
the art will recognize, 1in light of this disclosure, that any
number of information handling devices 102, firmware
management modules 104, data networks 106, and servers
108 may be included 1n the system 100.

In one embodiment, the system 100 includes one or more
information handling devices 102. The information handling
devices 102 may include a desktop computer, a laptop
computer, a tablet computer, a smart phone, a set-top box, a
gaming console, a smart TV, a smart watch, a fitness band,
an optical head-mounted display (e.g., a virtual reality
headset, smart glasses, or the like), an HDMI or other
clectronic display dongle, a personal digital assistant, or
another computing device including a processor (e.g., a
central processing umt (“CPU”), a processor core, a field
programmable gate array (“FPGA™) or other programmable
logic, an application specific integrated circuit (“ASIC”), a
controller, a microcontroller, and/or another semiconductor
integrated circuit device), a volatile memory, and/or a non-
volatile storage medium. As used herein, an information
handling device 102 may also be known as a client device.

In certain embodiments, the information handling devices
102 are communicatively coupleable to one another and/or
one or more servers 108 over a data network 106, described
below. The information handling devices 102, 1n a further
embodiment, are capable of executing various firmware,
programs, program code, applications, instructions, func-
tions, and/or the like, and may access, store, download,
upload, and/or the like data located on one or more servers

US 10,853,089 B2

7

108. In some embodiments, the information handling
devices 102 are configured to locate, find, access, load,
install and/or the like firmware for one or more components
coupled to, integrated with, or otherwise operably connected
to an iformation handling device 102, as described 1n more
detail below.

In one embodiment, the firmware management module
104 15 configured to dynamaically access and load a firmware
configuration on a system based on a geographic location. In
some embodiments, the firmware management module 104
1s configured to determine a geographic location associated
with a system. In a further embodiment, the firmware
management module 104 1s configured to determine a firm-
ware configuration associated with the geographic location.
In various embodiments, the firmware management module
104 1s configured to dynamically access the firmware con-
figuration associated with the geographic location from a
remote data store. In some embodiments, the firmware
management module 104 1s configured to load the remotely
accessed firmware configuration on a system. In certain
embodiments, at least a portion of the firmware management
module 104 1s located on an iformation handling device
102, a server 108, another device connected to the network
106, and/or a combination of the foregoing. In this manner,
firmware configurations on a system may be dynamically
changed on-the-tly without storing different versions of
firmware locally and without flashing hardware with new
firmware.

In various embodiments, the firmware management mod-
ule 104 may be embodied as a hardware appliance that can
be 1nstalled or deployed on an imnformation handling device
102, on a server 108, or elsewhere on the data network 106.
In certain embodiments, a firmware management module
104 may include a hardware device such as a secure hard-
ware dongle or other hardware appliance device (e.g., a
set-top box, a network appliance, or the like) that attaches to
a device, a laptop computer, a server 108, a tablet computer,
a smart phone, or the like, either by a wired connection (e.g.,
a USB connection) or a wireless connection (e.g., Blu-
ctooth®, Wi-Fi®, near-field communication (“NFC”), or the
like); that attaches to an electronic display device (e.g., a
television or monitor using an HDMI port, a DisplayPort
port, a Mimi1 DisplayPort port, VGA port, DVI port, or the
like); and/or the like. A hardware appliance of the firmware
management module 104 may include a power interface, a
wired and/or wireless network interface, a graphical inter-
face that attaches to a display, and/or a semiconductor
integrated circuit device as described below, configured to
perform the functions described herein with regard to the
firmware management module 104.

The firmware management module 104, 1 such an
embodiment, may include a semiconductor integrated circuit
device (e.g., one or more chips, die, or other discrete logic
hardware), or the like, such as a field-programmable gate
array (“FPGA”) or other programmable logic, firmware for
an FPGA or other programmable logic, microcode for
execution on a microcontroller, an application-specific inte-
grated circuit (“ASIC”), a processor, a processor core, or the
like. In one embodiment, the firmware management module
104 may be mounted on a printed circuit board with one or
more e¢lectrical lines or connections (e.g., to volatile
memory, a non-volatile storage medium, a network inter-
tace, a peripheral device, a graphical/display interface, or the
like). The hardware appliance may include one or more pins,
pads, or other electrical connections configured to send and
receive data (e.g., 1n communication with one or more
clectrical lines of a printed circuit board or the like), and one

10

15

20

25

30

35

40

45

50

55

60

65

8

or more hardware circuits and/or other electrical circuits
configured to perform various functions of the firmware
management module 104.

The semiconductor integrated circuit device or other
hardware appliance of the firmware management module
104, 1n certain embodiments, includes and/or 1s communi-
catively coupled to one or more volatile memory media,
which may include but 1s not limited to: random access
memory (“RAM”), dynamic RAM (“DRAM?”), cache, or the
like. In one embodiment, the semiconductor integrated cir-
cuit device or other hardware appliance of the firmware
management module 104 includes and/or 1s communica-
tively coupled to one or more non-volatile memory media,
which may include but 1s not limited to: NAND flash
memory, NOR flash memory, nano random access memory
(nano RAM or “NRAM”), nanocrystal wire-based memory,
s1licon-oxide based sub-10 nanometer process memory, gra-
phene memory, Silicon-Oxide-Nitride-Oxide-Silicon (“SO-
NOS”), resistive RAM (“RRAM”), programmable metalli-
zation cell (“PMC”), conductive-bridging RAM
(“CBRAM”), magneto-resistive RAM (“MRAM”),
dynamic RAM (“DRAM”), phase change RAM (“PRAM”
or “PCM”), magnetic storage media (e.g., hard disk, tape),
optical storage media, or the like.

The data network 106, in one embodiment, includes a
digital communication network that transmits digital com-
munications. The data network 106 may include a wireless
network, such as a wireless cellular network, a local wireless
network, such as a Wi-F1 network, a Bluetooth® network, a
near-field communication (“NFC”) network, an ad hoc net-
work, and/or the like. The data network 106 may include a
wide area network (“WAN”), a storage area network
(“SAN™), a local area network (“LAN”), an optical fiber
network, the internet, or other digital communication net-
work. The data network 106 may include two or more
networks. The data network 106 may include one or more
servers, routers, switches, and/or other networking equip-
ment. The data network 106 may also include one or more
computer readable storage media, such as a hard disk drive,
an optical drive, non-volatile memory, RAM, or the like.

The one or more servers 108, 1n one embodiment, may be
embodied as blade servers, mainframe servers, tower serv-
ers, rack servers, and/or the like. The one or more servers
108 may be configured as a mail server, a web server, an
application server, an FTP server, a media server, a data
server, a web server, a file server, a virtual server, and/or the
like. In certain embodiments, the one or more servers 108
store files associated with different firmware configurations,
such as device drivers, configuration files, localization files,
and/or the like, which may be accessed and loaded by the
firmware management module 104. In some embodiments,
the one or more servers 108 may be located on an organi-
zation’s premises, 1n a data center, 1n the cloud, and/or the
like. The one or more servers 108 may be accessed remotely
over a data network 106 like the Internet, or locally over a
data network 106 like an intranet.

FIG. 2 depicts one embodiment of an apparatus 200 for
dynamically loading firmware based on workloads. The
apparatus 200 may include an embodiment of a firmware
management module 104. In one embodiment, the firmware
management module 104 includes a workload module 202,
a firmware module 204, and a loading module 206, which
are described 1n more detail below.

In one embodiment, the workload module 202 determines
a workload configured to be executed on a system. The
system, as used herein, may include an information handling
device 102, a server 108, a datacenter, a virtual machine,

US 10,853,089 B2

9

and/or the like. Furthermore, as used herein, a workload
configured to execute on the system may include an amount
of work or tasks to be performed by the system, e.g., by one
or more processors ol the system, at a given time. The
workload may include tasks associated with application
programs executing on the system, one or more users
connected to and interacting with the system, network
transmissions, graphics processing, database processing,
and/or the like.

The tasks of a workload may be configured beforehand so
that a workload, including the tasks, applications, devices,
and/or the like that are used to execute the workload, may be
identifiable, measurable, and schedulable. For example, a
workload may include a benchmarking workload where a
number ol predetermined computer programs, or other
operations, are executed to assess the relative performance
of the system to compare to previous test/benchmark results.
Another example of a workload may be a web server
workload that includes a number of network transmaissions,
database queries, data processing, and/or the like.

In one embodiment, the workload module 202 determines
a workload to be executed on the system according to a
predetermined schedule, described below with reference to
the schedule module 304. For example, a workload may be
scheduled to execute on a particular day/time, scheduled
relative to another workload (e.g., after a previous workload
1s done executing), and/or the like. In a further embodiment,
the workload module 202 determines a workload to be
executed on the system based on a lifecycle state of the
system, described below with reference to the lifecycle
module 306. For example, a workload may be preconfigured
for different lifecycle states of the system, such as a normal
operating state, a testing state, a repair state, a maintenance
state, and/or the like.

In one embodiment, the firmware module 204 1s config-
ured to determine a firmware configuration associated with
a workload to be executed on the system. As used herein, a
firmware configuration may include one or more firmware
files that include device drivers (e.g., drivers for various
devices, different versions of the same driver, and/or the
like) and other low-level instructions for a specific device,
system configuration settings, system localization settings,
user access settings, network settings, device specific set-
tings (e.g., network card settings, power supply settings,
hard drive settings, or the like), and/or the like.

In one embodiment, a firmware configuration includes
one or more firmware files configured for a system and/or a
workload. For example, a firmware configuration may
include device drivers for different devices/hardware used 1n
a system (e.g., a hard drive, a solid state drive, RAM, a
network interface card, a graphics card, a processor, and/or
the like) and configuration settings associated with the
devices/hardware, with one or more applications executing
on the system, and/or the like. In other words, a firmware
configuration may include a “best recipe” for a particular
system configuration, including drivers and settings for the
vartous hardware devices/components and software appli-
cations used in the system.

In one embodiment, a firmware configuration for a system
and/or a workload may be stored 1n a remote data store, such
as a cloud server 108 accessible over the Internet, a remote
server 108 on a local network, e.g., an organization’s
intranet, a remote server 108 accessible over a virtual private
network (“VPN”), a remote virtual server 108, and/or the
like.

In one embodiment, the remote data store contains a
plurality of preconfigured firmware configurations for vari-

10

15

20

25

30

35

40

45

50

55

60

65

10

ous system configurations, various workloads, and/or the
like. In one embodiment, instead of downloading and storing
a firmware configuration on a system, which may require
flashing hardware 1n the system to load the firmware con-
figuration, the firmware module 204 determines a firmware
configuration for the system and/or the workload that is
stored on a remote data store and can be dynamically linked
to, pointed to, referenced, or the like from the system and
loaded on the system from the remote data store. In such an
embodiment, the firmware module 204 may also determine
a location on the remote data store where the firmware
module 204 1s located such as one or more address locations
in volatile and/or nonvolatile memory.

In one embodiment, the firmware module 204 determines
an 1dentifier for a system and/or a workload, and uses the
identifier to determine a firmware configuration for the
system and/or workload. In one embodiment, an identifier
for a system may include a model number, e.g., a model/
serial number for the entire system, a model/serial number
for a hardware/software component of the system, and/or the
like. In some embodiments, a workload may have a work-
load 1dentifier assigned to 1t.

The firmware module 204, 1n one embodiment, uses the
system 1dentifier and/or the workload 1dentifier to determine
a firmware configuration for the system and/or the workload.
For example, the firmware module 204 may use a combi-
nation of a system identifier and a workload identifier as a
key 1nto a lookup table to determine a firmware configura-
tion, which may also be i1dentified by an 1dentifier, for the
system and/or the workload.

In one embodiment, the loading module 206 1s configured
to dynamically access a firmware configuration determined
by the firmware module 204 to be associated with a system
and/or a workload. The loading module 206 may access the
determined firmware configuration from a remote data store,
¢.g. a remote server that stores a plurality of firmware
configurations, as described above. The loading module 206
may access the remote data store over a network such as the
Internet, an intranet, or the like, and may securely access the
remote data store using a VPN or other data encryption
method.

In one embodiment, the loading module 206 receives
from the firmware module 204 an indicator, identifier, and/or
the like for the determined firmware configuration. The
firmware module 204 may also provide the loading module
206 with a parameter indicating the network location for the
remote data store that the determined firmware configuration
1s stored on, such as an IP address, a server name, and/or
other 1dentifier. In some embodiments, the firmware module
204 provides an address, such as a memory or storage
address, for the location of the determined firmware con-
figuration on the remote data store.

In some embodiments, the loading module 206 provides
login credentials, such as a username and password combi-
nation, a passphrase, an access code, or the like, to the
remote data store in order to gain access to the firmware
configuration. In some embodiments, the credentials provide
the loading module 206 access to an entire firmware con-
figuration library stored on the remote data store. In certain
embodiments, the credentials provide the loading module
206 access to only the firmware configuration determined by
the firmware module 204.

In one embodiment, the loading module 206 updates one
or more pointers, €.g., data objects that reference a location
of the firmware configuration (e.g., the locations of one or
more drivers, configuration files, settings files, and/or the
like) on the remote data store such as a memory address, to

US 10,853,089 B2

11

point to one or more locations on the remote data store
where the determined firmware configuration is stored. As
described herein, because firmware configuration files may
not be stored locally on the system, a firmware configuration
for the system may be dynamically switched by updating
which firmware configuration the pointers point to on the
remote data store. In such an embodiment, the firmware
configuration may be remotely executed on the remote data
store, or a different network device, instead of locally on the
system, similar to a network boot process, loading of shared
libraries, or the like.

In one embodiment, the loading module 206 downloads
and stores locally at least a portion of the firmware configu-
ration files. The loading module 206, for example, may
download one or more firmware configuration files and store
the firmware configuration files 1n volatile memory, e.g.,
RAM, so that when the system 1s rebooted, the downloaded
configuration {files are deleted. In this manner, no local
copies of different firmware configurations are persistently
stored on the system, which may prevent contlicts from
arising on the system between different firmware configu-
ration versions, settings, and/or the like being loaded at the
same time.

In one embodiment, an operating system, a local firmware
program, and/or the like may update the pointers as deter-
mined by the loading module 206. In some embodiments,
the loading module 206, after updating the pointers to point
to a firmware configuration on the remote data store, reboots
the system. Upon a reboot of the system, 1 one embodi-
ment, the loading module 206 checks the pointers to deter-
mine where the new firmware configuration 1s located on the
remote data store, accesses the new firmware configuration,
and loads the new firmware configuration on the system.

In such an embodiment, after a system 1s rebooted, for
example, a local firmware program may dynamically load
the firmware configuration files from the remote data store
using the address locations referenced by the pointers. If a
new workload 1s scheduled to execute on the system, and/or
if a configuration of the system 1s changed (e.g., a new hard
drive 1s installed in the system) the firmware module 204
may determine a new firmware configuration for the new
workload and/or the new system configuration, and the

loading module 206 may update the pointers to reference
one or more addresses for the new firmware location on the
remote data store such that when the system 1s rebooted, the
local firmware program will load the new firmware configu-
ration using the address locations referenced by the pointers.
In this manner, the firmware configuration of a system may
be changed on-the-fly without requiring re-tflashing hard-
ware with new firmware.

In some embodiments, the loading module 206 deter-
mines whether the determined firmware configuration 1s
currently loaded on the system, and, 11 so, does not update
the pointers, reboot the system, and/or connect to the data
store to re-access the firmware configuration.

FIG. 3 depicts one embodiment of an apparatus 300 for
dynamically loading firmware based on workloads. In one
embodiment, the apparatus 300 includes an embodiment of
a firmware management module 104. The firmware man-
agement module 104, 1n one embodiment, includes one or
more of a workload module 202, a firmware module 204,
and a loading module 206, which may be substantially
similar to the workload module 202, the firmware module
204, and the loading module 206 described above with
reference to FIG. 2. The firmware management module 104
may also iclude one or more of an association module 302,

10

15

20

25

30

35

40

45

50

55

60

65

12

a scheduling module 304, and a lifecycle module 306, which
are described 1n more detail below.

In one embodiment, the association module 302 1s con-
figured to associate one or more firmware configurations
with a system and/or a workload. The association module
302, for example, may assign a firmware configuration to a
system model number, or other system 1dentifier and/or a
workload identifier. As described above, a firmware con-
figuration may include one or more device drivers, configu-
ration files, settings files, and/or the like. Thus, the associa-
tion module 302 may associate a system and/or a workload
with one or more device drivers, configuration files, settings
files, and/or the like, that make up a predefined firmware
configuration and are stored on the remote data store or at a
location connected to the remote data store such as a cloud
server, network server, and/or the like.

In one embodiment, the association module 302 maintains
a table, a list, an 1ndex, and/or the like on the remote data
store that includes associations of firmware configurations to
systems and/or workloads. For example, the association
module 302 may maintain a table of key-value pairs, where
the key 1s a system i1dentifier, a workload identifier, a
combination of the foregoing, a hash value based on the
foregoing, or the like, and the value 1s an 1dentifier for the
firmware configuration.

In certain embodiments, the association module 302
receives mput from a user, such as a system administrator,
who manually defines the associations between a firmware
configuration and a system and/or a workload. In a further
embodiment, the association module 302 may determine one
or more characteristics of the system and/or the workload,
and select a firmware configuration that has one or more
characteristics corresponding to the one or more character-
istics of the system and/or the workload. For example, 11 a
workload includes operations for performing a plurality of
database queries and network transmissions, the association
module 302 may associate with the workload a firmware
configuration that 1s configured to optimize how a network
interface functions and how a database management system
performs.

In one embodiment, the schedule module 304 determines
a workload schedule for a workload that 1s configured to be
executed on the system. In some embodiments, as described
above, prior to executing a workload, the firmware module
204 determines whether the system’s currently loaded firm-
ware 1s configured for the workload. If not, the firmware
nodule 204 determines a firmware configuration on the
remote data store that 1s associated with the workload, and
the loading module 206 accesses and loads the firmware
configuration prior to the workload being executed. Thus,
the schedule module 304 may determine when the workload
will be executed or 1s scheduled to be executed so that the
correct firmware configuration for the workload can be
loaded.

The schedule module 304, in some embodiments, checks
a workload schedule maintained by an operating system, or
other program, to determine when a workload will be
executed. In one embodiment, the workload schedule speci-
fies a specific time for executing a workload. For example,
a workload that includes database maintenance tasks may be
scheduled to execute in the middle of the night when the
number of users connected to database, and, consequently,
the number of database queries, 1s low. In some embodi-
ments, the workload schedule indicates a workload execu-
tion order so that the schedule module 304 can determine
when a workload will execute relative to another workload.
The schedule module 304, in one embodiment, notifies the

US 10,853,089 B2

13

workload module 202 after determining which workload 1s
ready to execute on the system.

The lifecycle module 306, 1n one embodiment, 1s config-
ured to determine a lifecycle state for the system. The
lifecycle state, as used herein, 1s a description of where the
system 1s 1n 1ts lifecycle, e.g., how the system 1s currently
being used. Diflerent lifecycle states may include a normal
operating state, a testing state, a repair state, a maintenance
state, and/or the like. As described above, the firmware
module 204 may use the system’s lifecycle state to deter-
mine a firmware configuration for the system.

For example, 1f the lifecycle module 306 determines that
the system 1s 1n a testing state, the firmware module 204 may
determine a firmware configuration for the system that
includes device drivers 1n an alpha/beta development state,
new system configurations, and/or the like so that the
firmware configuration files, and/or other application pro-
grams, can be tested for bugs, usability, and/or other defects.
Similarly, 1f the lifecycle module 306 determines that the
system 15 1n a repair state, the firmware module 204 may
determine a firmware configuration for the system that
includes drivers, files, or the like that are configured to be
executed 1n a safe mode, a repair mode, or the like, which
may 1include disabling network devices, disabling certain
services, and/or the like. Thus, the firmware module 204
may select a firmware configuration to be loaded on the
system according to how the system 1s being used at a given
point 1n time.

FIG. 4 depicts one embodiment of an apparatus 400 for
dynamically loading firmware based on a geographic loca-
tion. The apparatus 400 may include an embodiment of a
firmware management module 104. In one embodiment, the
firmware management module 104 includes a location mod-
ule 402, a firmware module 204, and a loading module 206.
The firmware module 204 and the loading module 206
depicted 1n FIG. 4 may be substantially similar to the
firmware module 204 and the loading module 206 described
above with reference to FIGS. 2 and 3.

In one embodiment, the location module 402 1s config-
ured to determine a geographic location associated with a
system. A geographic location, in one embodiment, may
include a physical location where the system 1s located, a
location of an internet service provider (“ISP”) for the
system, a principle place of business for an orgamization
associated with the system, and/or the like. The geographic
location may be a local area, such as a city, a township, a
village, and/or the like; a regional area such as a county, a
state, a province, and/or the like; a larger geographic region
such as a country, a continent, a hemisphere, and/or the like;
or any other predefined geographic location.

In one embodiment, the location module 402 determines
a geographic location for a system based on one or more
tactors, parameters, settings, and/or the like. For example, a
system may have a location setting that indicates the geo-
graphic location of the system. In such an embodiment, the
location setting may be set and stored on the system by a
system administrator, a manufacturer, an installer, and/or the
like. In another example embodiment, the geographic loca-
tion may be determined from a location service associated
with the system. For example, the location module 402 may
receive location data from one or more location sensors
(e.g., global positioming system (“GPS”) sensors) operably
coupled to the system.

In one embodiment, the location module 402 determines
the geographic location of the system using Wi-F1 triangu-
lation (e.g., using a plurality of access points 1n communi-
cation with the system to locate the system), cell tower

10

15

20

25

30

35

40

45

50

55

60

65

14

triangulation (e.g., using a plurality of cellular towers i1n
communication with the system to locate the system), or any
other triangulation method. In a further embodiment, the
location module 402 determines the geographic location of
the system based on a time-zone setting for the system, one
or more localization settings for the system that may indicate
a particular region, country, or the like, and/or the like.

In a further embodiment, the location module 402 deter-
mines the geographic location of the system using an IP
address, or other network address, for the system that
indicates the location of the system. In one embodiment, the
location module 402 determines the geographic location of
the system by determining a network latency, a number of
hops between the system and a known device (e.g., anumber
ol devices between the system and a known server), and/or
the like. For example, the location module 402 may deter-
mine that the system 1s located 1n California because 1t 1s 150
hops away from a remote data store located in Colorado.

In one embodiment, the location module 402 determines
the geographic location for the system after the system 1s
booted, but before a firmware configuration 1s loaded on the
system. In one embodiment, the firmware module 204 may
determine, before a firmware configuration 1s loaded,
whether a current firmware configuration loaded on the
system 1s configured for the determined location, and i1 not,
may determine a diflerent firmware configuration configured
for the determined geographic location to load on the system
from a remote data store.

In certain embodiments, the firmware module 204 1s
further configured to determine a firmware configuration
associated with a geographic location of the system. In some
embodiments, a firmware configuration includes one or
more firmware {iles configured for a system and/or a geo-
graphic location. For example, as described above, a firm-
ware configuration may include device drivers for diflerent
devices/hardware used 1n a system (e.g., a hard drive, a solid
state drive, RAM, a network interface card, a graphics card,
a processor, and/or the like) and configuration settings, e.g.,
localization settings for the geographic location, associated
with the devices/hardware, with one or more applications
executing on the system, and/or the like.

As described above, a firmware configuration for a system
and/or a geographic location may be stored 1n a remote data
store. In one embodiment, the remote data store contains a
plurality of preconfigured firmware configurations for vari-
ous system configurations, various geographic locations,
and/or the like. In one embodiment, instead of downloading
and storing a firmware configuration on a system, which
may require flashing hardware in the system to load the
firmware configuration, the firmware module 204 deter-
mines a {irmware configuration for the system and/or the
geographic location that 1s stored on a remote data store and
can be dynamically linked to, pointed to, referenced, or the
like from the system and loaded on the system from the
remote data store. In such an embodiment, the firmware
module 204 may also determine a location on the remote
data store where the firmware module 204 1s located such as
one or more address locations in volatile and/or nonvolatile
memory.

As described above, a plurality of remote data stores that
store firmware configurations are maintained and located at
various geographic locations, and may be accessed accord-
ing to the geographic location of the system as determined
by the location module 402. In certain embodiments, a
remote data store located 1n a particular geographic location
stores firmware configurations configured for systems
located 1n the same geographic location as the remote data

US 10,853,089 B2

15

store. Thus, a remote data store may be selected according
to the geographic location of the system as determined by
the location module 402. For example, a remote data store
located 1n Denver, Colo. may provide firmware configura-
tions for systems located 1n the western United States region,
while a remote data store located in Atlanta, Ga. may
provide firmware configurations for systems located in the
southeastern United States region.

In some embodiments, a system 1s configured with one or
more default IP addresses for remote data stores that include
firmware configurations for the system. In some embodi-
ments, the firmware module 204 updates the IP addresses for
the remote data stores based on the geographic location
determined by the location module 402. For example, the
firmware module 204 may determine that a remote data store
1s located within a closer proximity to the system than a
current default remote data store, and will update the default
IP address to be the IP address for the remote data store that
1s closer to the system’s geographic location.

In some embodiments, a firmware configuration for a
system located 1n one geographic location 1s diflerent than a
firmware configuration for the same system located 1n a
different geographic location. For example, the firmware
module 204 may determine a firmware configuration for a
system 1nstalled 1n a data center 1 Tokyo, Japan. The
firmware configuration may include firmware files and set-
tings specifically intended for Tokyo. The same system,
however, may be installed 1n a data center in London,
England, and the firmware module 204 may determine a
different firmware configuration for the system that includes
firmware files and settings specifically configured for Lon-
don. In this manner, the same system can be configured
using different firmware configurations that are configured
for a particular geographic location without requiring rein-
stallation of firmware (e.g., tflashing hardware with new
firmware) by pointing to or referencing the firmware con-
figuration on the remote data store for a particular geo-
graphic region.

In one embodiment, the firmware module 204 determines
a firmware configuration for a system based on a configu-
ration of the system. In some embodiments, the system
configuration 1s based on one or more rules, laws, regula-
tions, or the like of a geographic location where the system
1s located. In certain embodiments, a system may be con-
figured according to network regulations, environmental
regulations, power regulations, data security regulations,
user access regulations, and/or the like of the geographic
area where the system 1s located. For example, the firmware
module 204 may determine a firmware configuration for a
system that 1s located 1n China such that the system complies
with network regulations (e.g., filtering Internet traflic at the
network interface to comply with censorship regulations)
established by the Chinese government. Accordingly, a
firmware configuration may be predefined to comply with
various regulations of different geographic regions.

In one embodiment, the firmware module 204 determines
one or more characteristics of an infrastructure of the
geographic location where the system 1s located to deter-
mine a firmware configuration for the system. The one or
more infrastructure characteristics may include power sta-
bility of the area, Internet connectivity and bandwidth of the
area, various costs and fees of operating the system in the
area (e.g., power costs, Internet communication costs, etc.),
and/or the like. The firmware module 204 may access a
government database, or other data source, to determine the
various infrastructure characteristics of an area, and deter-
mine an appropriate firmware configuration for the system.

10

15

20

25

30

35

40

45

50

55

60

65

16

For example, if the system 1s installed 1n a location that has
sporadic Internet connectivity and an inconsistent power
source, the firmware module 204 may determine a firmware
configuration that includes files and settings configured to
handle inconsistent network connectivity and power short-
ages.

As described above, the firmware module 204, 1n some
embodiments, uses an 1dentifier, such as a system 1dentifier,
to determine or locate a firmware configuration for the
system stored on a remote data store. In such an embodi-
ment, the firmware module 204 may use a system 1dentifier
and/or a location code for the geographic location (e.g., a
ZIP code, an area code, or the like) as nput into a hash
function to generate a hash value that identifies the firmware
configuration for the system and/or the geographic location.

In one embodiment, as described above, the loading
module 206 1s configured to dynamically access a firmware
configuration determined by the firmware module 204 to be
associated with a system and/or a geographic location. The
loading module 206 may access the determined firmware
confliguration from a remote data store, e.g. a remote server
that stores a plurality of firmware configurations, as
described above, based on the geographic location of the
system.

Furthermore, as discussed above, an operating system, a
local firmware program, and/or the like may update one or
more pointers to point to a firmware configuration on the
remote data store and reboots the system. Upon a reboot of
the system, 1n one embodiment, the loading module 206
checks the pointers to determine where the new firmware
configuration 1s located on the remote data store, accesses
the new firmware configuration, and loads the new firmware
configuration on the system.

In such an embodiment, aiter a system 1s rebooted, for
example, a local firmware program may dynamically load
the firmware configuration files from the remote data store
using the address locations referenced by the pointers. If the
system 1s moved to a new geographic location, for example,
and/or 11 a configuration of the system 1s changed (e.g., a
new hard drive 1s installed in the system) the firmware
module 204 may determine a new firmware configuration
for the new geographic location and/or the new system
configuration, and the loading module 206 may update the
pointers to reference one or more addresses for the new
firmware location on the remote data store such that when
the system 1s rebooted, the local firmware program will load
the new firmware configuration using the address locations
referenced by the pointers. In this manner, the firmware
configuration of a system may be changed on-the-fly without
requiring re-flashing hardware with new firmware.

FIG. 5 depicts one embodiment of an apparatus 500 for
dynamically loading firmware based on a geographic loca-
tion. In one embodiment, the apparatus 500 includes an
embodiment of a firmware management module 104. The
firmware management module 104, 1n one embodiment,
includes one or more of a location module 402, a firmware
module 204, and a loading module 206, which may be
substantially similar to the location module 402, the firm-
ware module 204, and the loading module 206 described
above with reference to FIGS. 2-4. The firmware manage-
ment module 104 may also include an association module
302, which may be substantially similar to the association
module 302 described above with reference to FIG. 3.

In one embodiment, the association module 302 1s con-
figured to associate one or more firmware configurations
with a system and/or a geographic location. The association
module 302, for example, may assign a firmware configu-

US 10,853,089 B2

17

ration to a system model number, or other system 1dentifier
and/or a geographic location identifier. As described above,
a firmware configuration may include one or more device
drivers, configuration files, settings files, and/or the like.
Thus, the association module 302 may associate a system
and/or a geographic location with one or more device
drivers, configuration files, settings files, and/or the like, that
make up a predefined firmware configuration and are stored
on the remote data store or at a location connected to the

remote data store such as a cloud server, network server,
and/or the like.

In one embodiment, as described above, the association

module 302 maintains a table, a list, an index, and/or the like
on the remote data store that includes associations of firm-
ware configurations to systems and/or geographic locations.
For example, the association module 302 may maintain a
table of key-value pairs, where the key 1s a system 1dentifier
a geographic location 1dentifier, a combination of the fore-
going, a hash value based on the foregoing, or the like, and
the value 1s an i1dentifier for the firmware configuration.

In certain embodiments, the association module 302
receives mput from a user, such as a system administrator,
who manually defines the associations between a firmware
configuration and a system and/or a geographic location. In
a further embodiment, the association module 302 may
determine one or more characteristics of the system and/or
the geographic location, and select a firmware configuration
that has one or more characteristics corresponding to the one
or more characteristics of the system and/or the geographic
location. For example, 11 a system 1s located in Germany, the
association module 302 may associate a firmware configu-
ration that includes localization settings specific for Ger-
many such as language settings.

FIG. 6 depicts one embodiment of a method 600 for
dynamically loading firmware based on workloads. In one
embodiment, the method 600 begins and determines 602 a
workload configured to execute on a system. In a further
embodiment, the method 600 determines 604 a firmware
configuration associated with the workload. In some
embodiments, the method 600 dynamically accesses 606 a
firmware configuration associated with the workload from a
remote data store. In one embodiment, the method 600 loads
608 the remotely accessed firmware configuration, and the
method 600 ends. In some embodiments, the workload
module 202, the firmware module 204, and the loading
module 206 perform one or more functions of the method
600.

FI1G. 7 depicts one embodiment of another method 700 for
dynamically loading firmware based on workloads. In one
embodiment, the method 700 begins and associates 702 a
firmware configuration with a workload and/or a system. In
a further embodiment, the method 700 determines 704 a
workload configured to execute on a system according to a
workload schedule for the system. In one embodiment, the
method 700 determines 706 a firmware configuration for the
workload according to a lifecycle state for the system.

In one embodiment, if the method 700 determines 708
that the firmware configuration associated with the workload
1s already loaded on the system, the method 700 ends.
Otherwise, 1n certain embodiments, the method 700 updates
710 one or more firmware pointers on the system to point to
one or more locations on a remote data store where the
firmware configuration files are located. The method 700, 1n
some embodiments, reboots 712 the system and accesses
714 the location of the firmware configuration on the remote
data store using the firmware pointers.

10

15

20

25

30

35

40

45

50

55

60

65

18

In various embodiments, the firmware configuration files
are downloaded from the remote data store to a memory
location on the system, such as RAM, a cache, or the like.
In a further embodiment, the firmware configuration files are
remotely executed over the network on the remote data
store, or another server. The method 700, 1n one embodi-
ment, loads 716 the remotely accessed firmware on the
system, and the method 700 ends. In some embodiments, the
workload module 202, the firmware module 204, the loading
module 206, the association module 302, the schedule
module 304, and the lifecycle module 306, perform one or
more functions of the method 700.

FIG. 8 depicts one embodiment of a method 800 for
dynamically loading firmware based on a geographic loca-
tion. In one embodiment, the method 800 begins and deter-
mines 802 a geographic location associated with a system.
In a further embodiment, the method 800 determines 804 a
firmware configuration associated with the geographic loca-
tion. In some embodiments, the method 800 dynamically
accesses 806 a firmware configuration associated with the
geographic location from a remote data store. In one
embodiment, the method 800 loads 808 the remotely
accessed firmware configuration, and the method 800 ends.
In some embodiments, the location module 402, the firm-
ware module 204, and the loading module 206 perform one
or more functions of the method 800.

FIG. 9 depicts one embodiment of another method 900 for
dynamically loading firmware based on a geographic loca-
tion. In one embodiment, the method 900 begins and asso-
ciates 902 a firmware configuration with a geographic
location and/or a system. In a further embodiment, the
method 900 determines 904 a geographic location associated
with a system. In one embodiment, the method 900 deter-
mines 906 a firmware configuration for the geographic
location.

In one embodiment, 1f the method 900 determines 980
that the firmware configuration associated with the geo-
graphic location 1s already loaded on the system, the method
900 ends. Otherwise, 1n certain embodiments, the method
900 updates 910 one or more firmware pointers on the
system to point to one or more locations on a remote data
store where the firmware configuration files are located. The
method 900, in some embodiments, reboots 912 the system
and accesses 914 the location of the firmware configuration
on the remote data store using the firmware pointers.

In various embodiments, the firmware configuration files
are downloaded from the remote data store to a memory
location on the system, such as RAM, a cache, or the like.
In a further embodiment, the firmware configuration files are
remotely executed over the network on the remote data
store, or another server. The method 900, in one embodi-
ment, loads 916 the remotely accessed firmware on the
system, and the method 900 ends. In some embodiments, the
location module 402, the firmware module 204, the loading
module 206, and the association module 302 perform one or
more functions of the method 900.

Embodiments may be practiced in other specific forms.
The described embodiments are to be considered 1n all
respects only as 1llustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What 1s claimed 1s:

1. An apparatus comprising:

a location module that determines a geographic location

of a computing device comprising a volatile memory

US 10,853,089 B2

19

device, the computing device not comprising a firm-

ware configuration that i1s persistently stored 1n a non-

volatile storage device, wherein the computing device
and volatile memory device are located at the deter-
mined geographic location;

a firmware module that determines a firmware configu-
ration associated with the determined geographic loca-
tion, wherein a local copy of a firmware configuration
associated with the determined geographic location is
not stored 1n persistent storage of the computing
device; and

a loading module that:
updates one or more firmware pointers on the comput-

ing device to point to one or more storage locations
for the firmware configuration on a remote data
store,

reboots the computing device 1 response to updating

the one or more firmware pointers;

in response to the reboot, dynamically accesses the

firmware configuration associated with the geo-
graphic location from a remote data store based on
the one or more firmware pointers to the one or more
storage locations;

loads the firmware configuration on the wvolatile

memory device of the computing device; and
automatically deletes the firmware configuration from
the volatile memory device in response to a reboot of
the computing device to prevent the computing
device from persistently storing a local copy of the

firmware configuration in non-volatile storage,
wherein said modules comprise hardware circuits, a pro-
grammable hardware device and/or executable code

executing on a processor.

2. The apparatus of claim 1, wherein the remote data store
1s one ol a plurality of remote data stores, each remote data
store being associated with a geographic location and storing
firmware configurations intended for computing devices
located at the geographic location.

3. The apparatus of claim 1, further comprising an asso-
ciation module that associates one or more firmware con-
figurations with a combination of a geographic location and
one or more computing devices.

4. The apparatus of claim 1, wherein the location module
determines the geographic location for the computing device
alter the computing device 1s booted, but before a firmware
configuration stored on the computing device 1s loaded.

5. The apparatus of claim 1, wherein a firmware configu-
ration determined for the computing device located in the
geographic location 1s different than a firmware configura-
tion determined for the computing device located 1n a
different geographic location.

6. The apparatus of claim 1, wherein the computing
device 1s configured with a computing device configuration
corresponding to the geographic location, the firmware
module further determining the firmware configuration for
the computing device based on the computing device con-
figuration for the geographic location where the computing
device 1s located.

7. The apparatus of claim 1, wherein the computing
device 1s configured according to one or more regulations
associated with the geographic location, the one or more
regulations comprising one or more of network regulations,
environmental regulations, power regulations, data security
regulations, and user access regulations.

8. The apparatus of claim 1, wherein the firmware module
turther determines one or more characteristics of an 1nfra-
structure of the geographic location, the firmware module

10

15

20

25

30

35

40

45

50

55

60

65

20

determining the firmware configuration based on the one or
more infrastructure characteristics.
9. The apparatus of claim 1, wherein the geographic
location associated with the computing device 1s determined
from one or more of a computing device setting, a location
service, a time zone, an internet protocol (“IP””) address, and
a network latency between the computing device and the
remote data store.
10. The apparatus of claim 1, wherein the loading module
does not access the firmware configuration associated with
the geographic location from the remote data store in
response to the firmware module determining that the firm-
ware configuration associated with the geographic location
1s currently loaded on the computing device.
11. The apparatus of claim 1, wherein the firmware
configuration comprises one or more files configured for the
geographic location, the one or more files comprising one or
more of device drivers, computing device settings, localiza-
tion settings, access settings, and application settings.
12. A method comprising:
determining, by use of a processor, a geographic location
of a computing device comprising a volatile memory
device, the computing device not comprising a firm-
ware configuration that 1s persistently stored in a non-
volatile storage device, the processor and volatile
memory device are located at the determined geo-
graphic location;
determiming a firmware configuration associated with the
determined geographic location, wherein a local copy
of a firmware configuration associated with the deter-
mined geographic location 1s not stored in persistent
storage of the computing device;
updating one or more firmware pointers on the computing
device to point to one or more storage locations for the
firmware configuration on a remote data store;

rebooting the computing device in response to updating
the one or more firmware pointers;
in response to the reboot, dynamically accessing the
firmware configuration associated with the geographic
location from a remote data store based on the one or
more firmware pointers to the one or more storage
locations:
loading the firmware configuration on the volatile
memory device of the computing device; and

automatically deleting the firmware configuration from
the volatile memory device 1n response to a reboot of
the computing device to prevent the computing device
from persistently storing a local copy of the firmware
configuration 1n non-volatile storage.

13. The method of claim 12, wherein the remote data store
1s one ol a plurality of remote data stores, each remote data
store being associated with a geographic location and storing
firmware configurations intended for computing devices
located at the geographic location.

14. The method of claim 12, further comprising associ-
ating one or more firmware configurations with a combina-
tion of a geographic location and one or more computing
devices.

15. The method of claim 12, wherein a firmware configu-
ration determined for the computing device located in the
geographic location 1s different than a firmware configura-
tion determined for the computing device located 1 a
different geographic location.

16. The method of claim 12, wheremn the computing
device 1s configured with a computing device configuration
corresponding to the geographic location, the firmware
configuration for the computing device being determined

US 10,853,089 B2

21

based on the computing device configuration for the geo-
graphic location where the computing device 1s located.

17. The method of claam 16, wherein the computing
device 1s configured according to one or more regulations
associated with the geographic location, the one or more
regulations comprising one or more of network regulations,
environmental regulations, power regulations, data security
regulations, and user access regulations.

18. The method of claim 12, further comprising deter-
mining one or more characteristics of an infrastructure of the
geographic location, the firmware configuration being deter-
mined based on the one or more inirastructure characteris-
tics.

19. A program product comprising a non-transitory coms-
puter readable storage medium that stores code executable
by a processor, the executable code comprising code to
perform:

determining a geographic location of a computing device

comprising a volatile memory device, the computing
device not comprising a firmware configuration that 1s
persistently stored 1n a non-volatile storage device,
volatile memory device are located at the determined
geographic location;

5

10

15

20

22

determiming a firmware configuration associated with the
determined geographic location, wherein a local copy
of a firmware configuration associated with the deter-
mined geographic location 1s not stored 1n persistent
storage of the computing device; and

updating one or more firmware pointers on the computing
device to point to one or more storage locations for the
firmware configuration on a remote data store;

rebooting the computing device in response to updating
the one or more firmware pointers;

in response to the reboot, dynamically accessing the
firmware configuration associated with the geographic
location from a remote data store based on the one or
more firmware pointers to the one or more storage
locations:

loading the firmware configuration on the volatile
memory device of the computing device; and

automatically deleting the firmware configuration from
the volatile memory device 1n response to a reboot of
the computing device to prevent the computing device
from persistently storing a local copy of the firmware
confliguration 1n non-volatile storage.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

