US010846469B2

a2y United States Patent (10) Patent No.: US 10,846,469 B2

Sobhy Deraz et al. 45) Date of Patent: Nov. 24, 2020

(54) DYNAMICALLY REGISTERED FUNCTIONS 8,108,339 B2 1/2012 Bezar et al.
FOR CAIL.CULATIONS ENGINES 8,365,143 B2* 1/2013 Hagenlocher GOGF 9/4484
717/106
(71) Applicant: Microsoft Technology Licensing, LLC, 8,584,004 B2* 1172013 Rae ..., GOﬁ%’;‘?z/ (1)’;‘
Redmond, WA (US) 8.621.062 BL* 12/2013 Anderson ... GOG6F 11/30
709/223

(72) Inventors: Ehab Sobhy Deraz, Bellevue, WA 0 053.083 B 6/2015 Waldman et al
(US); Thomas Alexander Morrison, 9:075:737 B2 7/2015 SChOdl.‘:ﬂl -
Bellevue, WA (US) (Continued)

(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this “Custom Fux.lction.s in Google Shr.aets”, htt[?s://developers.google.
patent is extended or adjusted under 35 comy/apps-script/guides/sheets/functions, Published on: Feb. 22, 2016,

U.S.C. 154(b) by 388 days. > pages.

(Continued)
(21) Appl. No.: 15/451,904

Primary Examiner — Stephen S Hong

(22) Filed: Mar. 7, 2017 Assistant Examiner — Matthew] Ludwig

(65) Prior Publication Data (57) ABSTRACT

US 2018/0260373 Al Sep. 13, 2018 Systems, methods, and software for data calculation frame-
works for user applications are provided herein. An exem-
(51) Int. CL

plary method includes registering dynamic functions for use

GO6F 17700 (2019'0;“) by a calculation engine of the user application, coupling
GO6E 40715 (2020'0;‘) calls made by the calculation engine for the dynamic func-
GO6F 9/54 (2006.01) tions to services that host the dynamic functions, and moni-

(52) US. Cl toring availability status for the dynamic functions related to
CPC i, GO6F 40/18 (2020.01); GOoF 9/543 availability of the dynamic functions to process expressions
(2013.01) associated with the calculation engine. Based on the avail-

(58) FKield of Classification Search ability status indicating a first dynamic function is presently
CPC e, GO6F 17/246; GO6F 9/543 unavailable, the method includes responding to a function
USPC e 715/219, 220 call issued by the calculation engine for the first dynamic

See application file for complete search history. function with at least a predetermined result, and based on

the availability status indicating the first dynamic function 1s

(56) References Cited presently available, responding to the function call issued by

the calculation engine for the first dynamic function by

V.5 PALENT DOCUMENTS routing the function call for handling by the first dynamic

7,225,189 B1* 5/2007 McCormack GO6F 17/246 function.
7,945,914 B2* 5/2011 Haswk GO6F 9/52
718/107 20 Claims, 5 Drawing Sheets
o
' COUPLE CALLS
00 ! MADERY THE
“w [REGISTER BYNARMIC FUNCTIONS FOR USE BY A el ATion
| CALCULATION ENGINE OF THE USER e T e
APPLICATION AQ L FUNCTIONS T

| SERVICES THAY
CHQST THE DYNAMIC
3 : FUNCTIONS
MONITOR AVAILABIUTY STATUS FOR THE -
- DYNAMIC FUNGTIONS RELATED 70 3
I AVAILABILITY OF THE DYNAMIC FUNCTIONS TD
PROCESS SEXPRESSIONS ASSOCIATED WITH

THE CALCIHATION ENGINE

AVAILABILITY
PRESENTLY STATUS FOR DYNAMIG ' PRESENTLY
AVAILABLE FUNCTION { UNAVAILABLE

: ey
| RESPOND TO THE FUNCTION CALL 12
{ FOR THE DYNAMIC FUNCTION BY
| ROUTING THE FUNCTION CALL FOR
: HANDLING BY THE DYNAMIO
FUNGTION

.

211

RESPOND TO A FUONCTION CALL FOR
THE DYNAMIC FUMNCTION WITH A
PREDETERMINED RESULT

MONHTOR

215

PROVIDE EVALUATED RESULT TG |
CALCULATIONENGINE [,

US 10,846,469 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

9,389,891 B2 7/2016 Battagin et al.
9,465,787 B2 10/2016 Kjaer
2003/0009649 Al* 1/2003 Martin GO6F 17/246
712/1
2004/0236781 Al* 11/2004 Willilams GO6F 16/258
2011/0016379 Al 1/2011 McColl et al.
2011/0191665 Al 8/2011 Handsaker et al.
2012/0192055 Al 7/2012 Antebr et al.
2013/0159832 Al 6/2013 Ingargiola et al.
2013/0179764 Al* 7/2013 Battagin GOG6F 17/30896

715/209
2014/0136937 Al 5/2014 Patel et al.
2014/0149919 Al* 5/2014 Larsonc........ GO6F 3/0482
715/783

2014/0195466 Al 7/2014 Phillipps et al.
2014/0344838 Al* 11/2014 Balmorn Labra ... GO6F 9/44526
719/328

2015/0309980 Al 10/2015 Glass et al.

OTHER PUBLICATIONS

Shalom, et al., “High-Performance Excel-Based Applications in
Financial Services”, https://msdn.microsoftcom/en-us/library/

bb887539.aspx, Published on: Aug. 2007, 13 pages.

Wil Conway, “How to Create Custom Functions in Google Sheets”,
http://www.makeuseof.com/tag/create-custom-functions-google-
sheets/, Published on: Apr. 4, 2016, 10 pages.

“XLLoop Excel User-Defined Functions 1n Java, Javascript, Ruby,
Python, Erlang”, https://web.archive.org/web/20100909224326/http:/
xlloop.sourceforge.net/, Published on: Sep. 9, 2010, 6 pages.
“Get an Oflice Add-in for Excel”, https://support.office.com/en-us/
article/Get-an-Oflice-Add-in-for-Excel-d3d 15854-0ade-4169-9¢c3-
25177a288d3d, Retrieved on: Dec. 13, 2016, 6 pages.

“Work with external data in Excel Services (SharePoint Server)”,
https://support.oflice.com/en-us/article/Work-with-external-data-in-
Excel-Services-SharePoint-%20Server-a00e5a66-017e-4956-bd40-
49639ad1{1d0?CTT=1&Correlationld=92c¢34daf-9ed1-4583-9593-
5310b9d3a489&ui=en-US&rs=en-US&ad=US&ocmsassetI D=
HA102830785, Retrieved on: Dec. 13, 2016, 6 pages.

Hernandez, Luis, “4 Ways to Automagically Get Your Data Into
Spreadsheets™, https://www.geckoboard.com/blog/4-ways-to-
automagically-get-your-data-into-spreadsheets/, Published on: Feb.
23, 2016, 12 pages.

Arndt, Tamsen, “Using Google Sheets’ Importxml Function to
Display Data in Geckoboard™, https://support.geckoboard.com/hc/
en-us/articles/207238327-Using-the-Google-Sheets-Import XML -
function-to-display-data-in-Geckoboard? ga=1.134002126.
1792080127.1481626866, Published on: Sep. 21, 2016, 12 pages.
“Connect to (1mport) external data”, https://support.oflice.com/en-
us/article/Connect-to-import-external-data-1376a390-a8bd-4718-
acb5-dii2ae88¢92d, Retrieved on: Dec. 13, 2016, 4 pages.

Quinn, Thomas, “Super Powers for Excel—Oflloading Excel Cal-
culations to a Cluster or the Cloud™, https://blogs.technet.microsoft.
com/hpc_and_azure_observations_and_hints/2012/05/04/super-
powers-for-excel-offloading-excel-calculations-to-a-cluster-or-the-
cloud, Published on: May 4, 2012, 6 pages.

“Formula Evaluation”, https://poi.apache.org/spreadsheet/eval.
html, Published on: 2002, 4 pages.

Balson, et al., “User Defined Spreadsheet Functions in Excel”, In
Proceedings of European Spreadsheet Risks Interest Group Con-
ference, Nov. 28, 2012, pp. 1-11.

Treacy, Philip, “Creating a UDF (User Defined Function) in Excel”,
http://www.myonlinetraininghub.com/creating-a-udf-user-defined-
function-in-excel, Published on: Sep. 15, 2016, 20 pages.

“Excel Recalculation™, https://msdn.microsoft.com/en-us/library/
oflice/bb687891.aspx, Published on: Jul. 1, 2011, 6 pages.
Deskbright; “Excel nested functions;” Nov. 20, 2015; 2 pages.

* cited by examiner

L 4dNOId

US 10,846,469 B2

I siapuerd

o, 8L]
et &omim =D v....@mﬁozﬁ.ﬁ EQI_
SWHOLALY Id L1 NOISSFHdXT
NOILON \ﬁ g1 | ssepumried]
il W E%RUE:& NAG —
\r NOLLONNA | (s s com e ==y GLENQOISSIHdX T
nm =§Q g .m
— PIT MOOSHHOM
> A 1 T T 117
@ 06T SA0HAOS NOLLONN: AN B S 74
............. SUS— m m

7 S 3 ObI SNOLLONN _

VU - OWWWNAG ..

___ M G ISDT
~ simns3y | M Zi T 41 438N
= asHovo -~} v ___ _ H
S €21 YATaNVH ZZ1 YITONVH “
- I Nouwonnd || NOLONNS H
3 "1 | SNONOHHONASY || OWWNAG _| | | M
W _ “ L ST anoNg
— } ;t
[2T IDIAHIS NOLLONNA "NAG -~ _HOLVOIONI - | NouvIno Ivo [NOLLYOIddV

YAV

NJO41V 1d _n_m_ma

NHO4 1V 1d NOILLONMA O_S_,qZ\rD £

091

U.S. Patent

US 10,846,469 B2

Sheet 2 of §

Nov. 24, 2020

U.S. Patent

vic
N mm:w_m ANIDNZ NOLLVINOIVD
_______ OL 110544 Qa1VITIVAZ SAIAOEd
GlLe Ele _
m NOILLON{
1INS3IH A3ININEILIATH LO.LINOW DINVNAQ FHL AG ONITANVH
|V HLIMNOILONNA DINVNAG IHL | d04 TIVO NOILONMH 3HL DNILNOY
| HO4 TIvO NOILONAH4 ¥V OL ONOJdS3Y | AG NOLLONMA DINVNAQ 3K |d04
cle . L. TVO NOLLONAE SHL OL NOJSId
378V TIYAYNN N OLONAS 318V TIYAY
ATLNISIHd ~ | MAYNAG HO4 SNLYILS) S ATINISHHd
S ALTIEVIvAY
—._‘N ..
_ INIDONI NOLLY IO VO JHL

SNOLLONSA
OINYNAQG FHL LSOH
LVHL SFDINETS
OL SNOULINCS
OINWVNAC
FHL HOA INFONT
NOUYTIDTVO
AHL A AUVIN
STV FdN 100

I._.:SDm._.d_OOmw,quO_wwmmm_xmmmeOIn_

Ol_.mZO_._.OZDu_O_§¢Z>DMI._.H_O>._._|__m¢.=¢>¢

m Ol d4Lv13d SNOILONAH DINYNAG m
FHL JO4 SNLVLS ALMIEVIIVAY JdOLINOW

Oke NOILYOIMddV
~—— H3SN FHL 40 INIONI NOLLYTNO TV
|V AG 3SN HO4 SNOLLONNA DINYNAG HILSIDIH | K

US 10,846,469 B2

.« o (q Wwered)ey (e weredlV 4)44=
g1 ¥

Sheet 3 of 5

LINS3Y
d3Lvinoivo

FTHIVAY
SINOO3G NOLLONT S

Nov. 24, 2020

jnsad

TGV HVAY
NOLLON(A

U.S. Patent

k_zige

NOLLONN
— JAISHNOIY
A31SIN

(ONIMOOTIE-NON
Lins3y

GININYI L3034

RopLe

€ 3HNOIS

FI18VHVAVNI
NOLLONIN

®_1ig

|

|

B

B

| .

. | " |

| “ LOBSHIXE §] ¥
| yeologes .
m . _ .

‘ |

n

n

n

2

B

2

- ™ ™ - ™ ™ ™ ™ - ™ ™ - ™ - ™ ™ - ™ ™ - ™ ™ - ™ ™ - ™ ™ - ™ ™ - ™ ™ - . ™ - ™ - ™ ™ - ™ - ™ ™ - ™ ™

ﬁ- wered 9 weredy (G E@m& B Eﬁm& f fu; {UOISSRHIXT

hﬂ.._u._..._u._..ﬁﬂ._.nﬂ._.n._..ﬁﬂ._.nﬂ._.n._..ﬁﬂ._.nﬂ._.n._.hﬂ.ﬂﬂ.ﬁﬂhﬂ.ﬂﬂ.ﬁﬂhﬂhﬂ.ﬁﬂhﬂhﬂ.ﬁﬂhﬂhﬂhﬂhﬂ.ﬂﬂ.ﬁﬂhﬂ.ﬂﬂ.ﬁﬂhﬂhﬂ.ﬁﬂhﬂhﬂ.ﬁﬂ.ﬂﬁhﬂ.ﬁ.ﬁﬂ.ﬁﬂhﬂ.ﬁﬂhﬂhﬂ.ﬁﬂhﬂhﬂ.ﬁﬂhﬂhﬂhﬂhﬂhﬂhﬂﬂhﬂ.ﬁ._
oy e 8 G e

Ry L A T _
“"““.."““.."““.."““.."“““““.."““.."““.."“““““.."““.."““.."“““““.."““.."““.."“““““.."““.."““.."““.."““.."““.."““.."““.."“u.u.p.u.“.“.u..."“..n......ﬁ.“....“.."““%..u.“....m..“......"““.."“u.........““.."““_

Ty . e a A A . :
e 1) Ty 1 e ok s e ot el
. _
wu..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“u..u..“........“u..u..._.......u.....u..u..u..u.....u..u..“u...x...u..““u.....“u..u.,“u..u..“u..u..“.....u..“.....u..“.....u..“.....u..“.....u..“.....u..“.....u..“.....u..“.....u..“u..u..“u..u.ﬁu..u.ﬁu..u.ﬁu..u...

®_oLE

US 10,846,469 B2

Sheet 4 of 5

Nov. 24, 2020

U.S. Patent

G 3dNOId

LYis3Y LINSIH NdLIY

NOISSTHAXT
FIVINOTVD
D53 ST130 ALHIT
o Hhmwww | ASNg | HOLYOION
| | SNOLLONMS | ASNg
NSH‘EOU | ” ”
AS]
NOLLONN
INTFHYd 3LN03XT NOISSIHdX
| FLVINDTVO
OTVO3H STIFOALHIG
L 1ns3u | 110539 g, |
OV | UNINOD |
STIEI ALHIT
- 4MS3 | JINSTH Y, | 1SNg O YN
FOV | 2UNdW00 | SNOLLONN Asng
g NOLLONNH FLNO3XT
V¥ NOLLONN ALN03XT NOISS3HdXA
IVINOTVO

&1 HITONVH ccl HITANVH

NOLLONMNA | | NOLLONNS

| £1C aNIDNG
| NOLLYINDIVD

............. mv
-
mn™
...
-
.__..._.-.
‘.
F
-

1me3yt LTNSTH
FHOVO | NOLLIONA

NOLLONIAS 2LN103XT

£¢1 HIONVH
NOILLONIM

DTV IH ASIN0IH

v 3dNOI

LINS3Y

NHULTY
NOISSHEdXT

ALV INOTVO -3

LIISTH

(ANING LA
ddd

HOLVOIONI

NOISSIYdXT

¢el HITANVH

NOLLONIA
SINVNAC

UVINOTVO

SLL INIDONT

| SNONOHHONASY | | DINYNAG

| SNONOYHONASY |

| NOLLYINOTVO

9 3dNOIid

US 10,846,469 B2

SWHOLLV1d
ONILNGNOD
Q3LNJIHLSIC m m
v 809'SASdN | ZOSWALSAS | Z09°SAS
Y= HISN | ONISSI00Hd | H4/1"WIWOD
T m ”
Lm ”
L
=
2
- Yty 1 pB-—-———_—_——_—_—
-
—
a \
.4-.; i WMEMIOH.-QAH_@*D : T ..I..ll..ll...
) mm mm 109 INALSAS DNLLAGNOD |
M NOLLON{A)

OINVYNAC

228 SNOILYDIddY

U.S. Patent

US 10,846,469 B2

1

DYNAMICALLY REGISTERED FUNCTIONS
FOR CALCULATIONS ENGINES

BACKGROUND

Various user productivity applications allow for data entry
and analysis. These applications can provide for data cre-
ation, editing, and analysis using spreadsheets, presenta-
tions, documents, messaging, or other user activities. Users
can employ both user defined functions and predefined
functions to evaluate data entered into the user applications.
For example, a spreadsheet user might enter data into cells
tor which the user desires to evaluate using one or more
expressions. These expressions can include formulae,
parameters, data, or other elements that are used to return a
result to the user based on evaluation by one or more
functions.

However, the number of functions for data evaluation that
are available to a user might be limited by storage con-
straints or computing constraints associated with the devices
on which the user applications are deployed. Moreover, the
user might desire to employ functions that are located
remotely from the device or platiorm on which the user
application 1s deployed. In can be diflicult to incorporate
these additional or remote functions in user applications due
to the changing nature of the data and functions and possible
unavailability of the functions when the user platform 1s

disconnected or otherwise unable to receive immediate
expression evaluation for user data.

OVERVIEW

Systems, methods, and software for data calculation
frameworks for user applications are provided herein. An
exemplary method includes registering dynamic functions
for use by a calculation engine of the user application,
coupling calls made by the calculation engine for the
dynamic functions to services that host the dynamic func-
tions, and monitoring availability status for the dynamic
functions related to availability of the dynamic functions to
process expressions associated with the calculation engine.
Based on the availability status indicating a first dynamic
function 1s presently unavailable, the method includes
responding to a function call 1ssued by the calculation
engine for the first dynamic function with at least a prede-
termined result, and based on the availability status indicat-
ing the first dynamic function 1s presently available,
responding to the function call issued by the calculation
engine for the first dynamic function by routing the function
call for handling by the first dynamic function.

This Overview 1s provided to introduce a selection of
concepts 1 a simplified form that are further described
below 1n the Detailed Description. It may be understood that
this Overview 1s not intended to identify key features or
essential features of the claimed subject matter, nor 1s 1t
intended to be used to limait the scope of the claimed subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood
with reference to the following drawings. While several
implementations are described 1n connection with these
drawings, the disclosure 1s not limited to the implementa-
tions disclosed herein. On the contrary, the intent 1s to cover
all alternatives, modifications, and equivalents.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates a data calculation environment in an
example.

FIG. 2 1illustrates operations of data calculation environ-
ments 1 an example.

FIG. 3 illustrates a data calculation environment in an
example.

FIG. 4 illustrates operations of data calculation environ-
ments 1n an example.

FIG. § 1llustrates operations of data calculation environ-
ments 1n an example.

FIG. 6 illustrates a computing system suitable for imple-
menting any of the architectures, processes, and operational
scenarios disclosed herein.

DETAILED DESCRIPTION

User productivity applications provide for user data cre-
ation, editing, and analysis using spreadsheets, slides, docu-
ments, messaging, or other application data formats and
types. In many user applications, data analysis can include
various calculations or expression evaluation performed on
the data using various functions. These functions can be user
defined or application-provided, such as mathematical func-
tions, data alteration functions, data analysis functions, or
others. The functions might be provided locally on a device
on which the user application 1s executed. However, in the
examples herein, many functions can be provided that are
remotely handled from the user devices, and might be
included on distributed computing or ‘cloud’ computing
platforms. These platforms may or may not be available to
a user at any particular time, and thus the examples herein
provided several examples on how to provide non-local data
functions to users.

In one example application, such as a spreadsheet appli-
cation, data can be entered into cells that are arranged into
columns and rows. Each cell can contain user data and can
also include one or more expressions that are used to
perform calculations or other functions on the data, which
can reference user-entered data 1n one or more other cells.
Other user applications can also include expressions for
evaluation of user data, even 1l these other applications
include other data entry elements than cells and the like.

The examples herein discuss frameworks for at least
spreadsheet applications that provide eflicient addition,
modification, and removal of functions at runtime. Some
spreadsheet applications, such as Microsolt® Excel, can
include “XLL” files that comprise add-in files are similar to
a dynamic linked library (DLL) file except built specifically
for Microsoit Excel, and visual basic application (VBA)
extensions. However, these XL, and VBA add-ins still lack
dynamic loading, dynamic handling, and are typically lim-
ited to desktop application environments.

The examples herein include frameworks that allow appli-
cation developers and users to quickly implement new
functions 1n a standardized way. Some of these functions
include machine learning functions provided by distributed
computing platiorms which can be dynamically provided for
users to handle data calculation and expression evaluation
within user applications.

The frameworks discussed herein include dynamic user
defined functions, which are referred to herein as dynamic
functions or DynamicUDFs. These dynamic functions or
DynamicUDFs can be provided to users that interact with
applications through a user interface. A dynamic function
interface can be provided that interfaces a calculation engine
or platform of the user application with a dynamic function
handler plattorm. The dynamic function interface can

US 10,846,469 B2

3

include object-oriented programming ‘methods’ to access
information about the function(s), such as names, descrip-
tions, and arguments. Moreover, the dynamic function inter-
face can be employed to compute results without blocking
current operations of the user application or the calculation
engine associated therewith. For example, non-blocking
operations provided by the dynamic function interface can
be used to make web requests or out-of-process calls, which
might otherwise be I/O blocking. Rather than hang process-
ing threads associated with the user interface or calculation
engine, the examples herein allow a user to continue using
the application. Results from the DynamicUDFs can be
provided asynchronously. Synchronous operation can also
be provided in certain functions that are volatile, such as
random number generation. These might still be executed 1n
a synchronous manner to ensure consistency and maintain
state for nested operations that employ certain volatile
functions. A user or a function itsell can indicate if asyn-
chronously or synchronous operation 1s desired.

As a first example of a calculation framework for a user
application, FIG. 1 1s provided. FIG. 1 illustrates data
calculation environment 100 in an example. Environment
100 includes user platform 110, dynamic function platiorm
120, and function sources 130. The elements of FIG. 1 can
communicate over one or more physical or logical commu-
nication links. In FIG. 1, links 160-161 are shown. However,
it should be understood that these links are only exemplary
and one or more further links can be included, which might
include wireless, wired, optical, or logical portions.

In operation, user platform 110 provides an application
platform for a user to 1nteract with elements of user appli-
cation 111 via user interface 112. During user interaction
with application 111, data mampulation and data calculation
might be performed. Calculation engine 113 can provide
portions of the functionality for data calculation and expres-
sion evaluation within application 111. Calculation engine
113 might be separate from or integrated into application
111, and 1n some examples, can be shared among multiple
applications. Calculation engine 113 can provide for evalu-
ation of expressions using one or more functions that
provide results based on parameters and data provided by
users and application 111.

Dynamic functions are provided in FIG. 1 and provided
by dynamic function service 121 of dynamic function plat-
form 120. Dynamic functions comprise functions that can be
provided for use by calculation engine 113 in a dynamic
fashion. These dynamic functions can be registered for use
by calculation engine 113, but the dynamic functions might
not be always available and ‘local” for processing data or
evaluation of expressions by calculation engine 113. In some
examples, the dynamic functions can be handled asynchro-
nously, and nested or recursive dynamic functions can also
be handled appropriately by dynamic function service 121.
Function sources 130 can provide platiorms for one or more
dynamic functions. Function sources 130 can comprise
servers, services remote from user platform 110, distributed
computing platforms, distributed storage platforms, ‘cloud’
computing platforms, or other platforms and system which
are typically non-local to user platform 110. These platforms
can be coupled to dynamic function platform 120 over one
or more packet networks or packet links, such as link 161,
among others.

For a further discussion of the operation of environment
100, FIG. 2 1s presented. FIG. 2 1s a flow diagram illustrating
example operation of elements of environment 100. In
operation 210, dynamic function service 121 registers
dynamic functions for use by calculation engine 113 of user

10

15

20

25

30

35

40

45

50

55

60

65

4

application 111. In FIG. 1, dynamic function service 121
includes dynamic function handler 122 which can register
the dynamic functions for use by calculation engine 113. The
registration process can comprise making available the
dynamic functions in a data structure or list, or through
indications of available function calls. In FIG. 1, registered
dynamic functions 140 are shown as including functions
141-144. As a part of the registration of the dynamic
functions, dynamic function handler 122 couples calls made
by calculation engine 113 for the dynamic functions to
services that host the dynamic functions. These services
include function sources 130 that comprise function plat-
forms 132.

In operation 211, dynamic function service 121 monitors
availability status for the dynamic functions related to a
present capability of each of the dynamic functions to
process expressions associated with the calculation engine.
In FIG. 1, registered dynamic functions 140 are shown as
including functions 141-144, each with an associated avail-
ability indicator 145. This availability indicator can inform
calculation engine 113 when each of the functions are
presently available based in part on a status of function
sources 130 or function platforms 132 on which the dynamic
functions can reside. The availability status can be indicated
to users in application 111, such as using flags, color
indicators, messages, pop-up information, or other indica-
tors.

Calculation engine 113 can 1ssue one or more function
calls during evaluation processes for expressions included 1n
application 111. These function calls can be 1ssued respon-
sive to various triggers, such as completion of user data/
expression entry, a user interface element that can trigger
cvaluation of an expression, or other factors, including
refresh commands, 1nitial loading of user data or user data
files. In the spreadsheet example of FIG. 1, users can enter
data, formulae, parameters, mathematical expressions, logi-
cal expressions, function calls, and other mmformation into
individual cells. In other examples, the cells can be auto-
filled with expressions or other information that refers to one
or more functions. In this example, two cells include expres-
sions with functions, namely a first cell with expression 115,
and a second cell with expression 117.

I1 the availability status for the dynamic function indicates
the target function called by calculation engine 113 1s
presently available to handle evaluation of an associated
expression, then dynamic function service 121 responsively
routes or dispatches (213) the function call for handling by
the dynamic function. In FIG. 1, dynamic function handler
122 can dispatch function calls made initially by calculation
engine 113 for delivery to an appropriate function platform
among function sources 130. An evaluated result 1s respon-
sively received from the appropriate function platform, and
this result can be provided (214) to calculation engine 113.

As a specific example, function 141 might be called 1n
expression 1135 1n workbook 114. This function can be a part
of expression 115, along with user data, metadata, param-
eters 116, or other information that can be provided with the
function call. The availability status for function 141 1is
indicated as available. Thus, dynamic function handler 122
can 1ssue one or more function calls responsive to calcula-
tion engine 113 1ssuing one or more function calls that
employ function 141. Dynamic function handler 122 can
issue these one or more function calls to any of function
plattorms 132, such as a selected function platform that
provides for evaluation of function 141.

In some examples, the functions comprise multi-step
functions, recursive functions, or nested functions, among

US 10,846,469 B2

S

others. These functions might require more than one execus-
tion step or function call to complete and determine a result.
In these cases, asynchronous function handler 123 can
handle evaluation of the functions by 1ssuing a series of
function calls out to the appropriate Tunction platform. Fach
intermediate result recerved from the function platform can
be cached or otherwise stored by asynchronous function
handler. These intermediate results can be employed in
turther function calls to produce a final evaluated result
based on the intermediate results and one or more repeated
function calls. A further discussion on these multi-step
function calls 1s discussed below 1 FIGS. 3 and 4.

If the availability status for the dynamic function indicates
the target function called by calculation engine 113 1s not
presently available to handle evaluation of an associated
expression, then dynamic function service 121 responsively
(215) responds to the function call for the dynamic function
with a predetermined result. The predetermined result can be
provided to calculation engine 113 for use as a result 1n an
associated cell, such as 1n a cell for expression 117 1n FIG.
1. The predetermined result can include numerical results,
alphanumeric results, error indicators, function status indi-
cators, or other predetermined results that are unrelated to
evaluation of the expression associated with the function.
Asynchronous function handler 123 can cache the function
calls that are directed to unavailable functions for use once
those functions become available.

For example, in FIG. 1, function 142 can initially be
indicated as unavailable, and evaluation of expression 117
by dynamic function service 121 can return an error mes-
sage, busy indicator, or error tlag that indicates to the user or
calculation engine 113 that the result i1s not presently avail-
able. Asynchronous function handler 123 can cache the
tfunction call orniginally 1ssued by calculation engine 113 for
later use once function 142 becomes available. In some
examples, the function call 1s not cached, and instead a
change in availability status of the function can trigger
re-calculation by calculation engine 113 for that function.

Advantageously, the predetermined result can allow cal-
culation engine 113 to continue to evaluate other expressions
and process other data or cells, which might include further
function calls. In this manner, processing threads that com-
prise calculation engine 113 are not ‘hung up’ or stalled
while the unavailable function remains unavailable for
cvaluating expressions. Instead, calculation engine 113 can
continue to engage in various other functions, threads, and
processes. Moreover, the various dynamic functions can be
presented as ready or available to handle calculations inde-
pendent of the availably status of the dynamic functions.
Predetermined results can be presented to calculation engine
113 as if the dynamic functions were available, and once
calculated results are available these results can be indicated
to calculation engine 113.

Dynamic function handler 122 continues to monitor avail-
ability of the unavailable functions. This momitoring can
comprise detecting a busy status of the dynamic functions,
a connectivity status to a platform that provides the dynamic
functions, network connectivity status when dynamic func-
tion service 120 experiences connectivity problems, or other
monitored statuses. When the dynamic function 1s detected
as available, dynamic function handler 122 can be triggered
to 1ssue the function call originally 1ssued by calculation
engine 113. As a specific example, function 142 might be
called 1n expression 117 1n workbook 114. This function can
be a part of expression 117, along with user data, metadata,
parameters 118, or other information that can be provided
with the function call. If dynamic function 142 was unavail-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

able for a period of time, any function calls by calculation
engine 113 for function 142 can return a predetermined
result, as indicated above. Once function 142 1s detected as
being available for processing expressions or other data,
then dynamic function handler 122 can 1ssue to function
plattorms 132 any function calls that reference the now-
available dynamic function 142. Results can be provided to
calculation engine 113 for use 1 workbook 114. Once
individual results are completed, any associated predeter-
mined message can be replaced with the imdividual result.
Moreover, graphical or textual indicators can be presented 1n
application 111 for a user to be mnformed of the expression
evaluation completion.

Turning now to a discussion on how dynamic functions
might be registered with calculation engine 113, a user,
operator, developer, or other entity might want to add a
function or class of functions to user application 111. To
assist with this addition of functions, an interface can be
implemented. The interface contains object-oriented pro-
gramming ‘methods’ to access information about the func-
tions, such as a function name, description, and arguments.
One interface method includes the ‘execute’ method, which
has parameters that comprise an array of operations, a return
operation for the computed result, and the count of the
number of operations. In some examples, these operations
comprise native Microsoft® Excel XLSOPERs. The return
type can further include a ‘future’ return type. This frame-
work can be used to extend to make web requests or
out-of-proc calls, which might be 10 blocking. Rather than
hang a main thread, as other calculation operations do, this
framework allows the user to continue using the application
and user interface, such as a spreadsheet, and the functions
can publish results when ready 1n an asynchronous manner.

Synchronous execution 1s also possible in this framework,
such as when a user employs expressions that execute
non-blocking JO functions or have a complex execution
scenarios. In many of the asynchronous examples herein, a
quasi-asynchronous form of calculation 1s performed, as true
asynchronous calculation might require further changes to
the application and calculation engine. In the quasi-asyn-
chronous examples, a series of synchronous calculation
processes are performed, and intermediate results are main-
tained between each intermediate synchronous calculation.
This operation might warrant some restrictions on function
and expression types, such as nested functions must be
stateless (1.e. (for a set of given arguments, the result must
always be the same). Other functions, such as random
number generation typically produce a different value every
time the function 1s called. In these cases, an entire cell
formula/expression will be executed as volatile. While func-
tions that are internal to the application or calculation engine
can be specified as volatile in a predetermined fashion,
external functions, such as the dynamic functions discussed
herein, can be difficult to discern volatility. Thus, a new
method can be included to support the dynamic functions,
namely an IsSynchronous() method that informs the appli-
cation or calculation engine to execute the function 1n a
synchronous fashion.

Below 1s an example interface a client of the framework
can 1mplement to support dynamic functions.

class IDynamicUdf
1
public :
virtual Mso : : Async : : Future<XLSOPER*>Execute (
const XLSOPER*const *rgpoper , XLSOPERX

US 10,846,469 B2

7

-continued

poperRes , int coper) = 0 ;
virtual bool Is Synchronous () =0 ;
virtual long GetUUID () =0 ;

virtual XCHAR*GrctName () = 0;
3

3

virtual XCHAR* GetDescription () = 0;
virtual XCHAR* GetHelpUrl () = 0 ;
virutal DynamicUdfParameters GetParameters () = O ;

Where ‘parameters’ 1s a struct containing argument mformation, and
‘ArgumentType’ 1s simply an enum of types (e.g. integer, string).
struct DynamicUd{Parameters

f
virtual LXHolder<XCHAR> GetNames () ;
virtual LXHolder<ArgumentType> GetTypes () ;
virtual LXHolder<XCHAR> GetHelpUrl () ;

I3

The above description 1s one example mterface for adding
a new function for use by the application or calculation
engine. To actually register the function with the application
or calculation engine, such as to register the function for use
by a spreadsheet application in cell expression evaluation, a
turther process can indicate another method to the applica-
tion, such as the example °‘static’ method shown below.
Modification of an existing registered function can be
achieved by removal and registration. Functions can be
registered during startup of the application, or at other times.

One example ‘static’ method 1ncludes:
static void Register (XLSWORKBOOK* p*wbk,

IDynamicUDF& modernUDF);

static void Remove(XLSWORKBOOK?* pbk, long uuid);

Returming to the elements of FIG. 1, elements of each of
user platform 110 and dynamic function platform 120 can
include communication interfaces, network interfaces, pro-
cessing systems, computer systems, microprocessors, stor-
age systems, storage media, or some other processing
devices or soiftware systems, and can be distributed among
multiple devices or across multiple geographic locations.
Examples of elements of each of user platiorm 110 and
dynamic function platform 120 can include software such as
an operating system, applications, logs, interfaces, data-
bases, utilities, drivers, networking software, and other
soltware stored on a computer-readable medium. Elements
of each of user platform 110 and dynamic function platform
120 can comprise one or more platforms which are hosted by
a distributed computing system or cloud-computing service.
Elements of each of user platform 110 and dynamic function
plattorm 120 can comprise logical interface elements, such
as software defined interfaces and Application Programming
Interfaces (APIs).

Elements of user platform 110 include application 111,
user interface 112, and calculation engine 113. In this
example, application 111 comprises a spreadsheet applica-
tion It should be understood that user application 111 can
comprise any user application, such as productivity appli-
cations, communication applications, social media applica-
tions, gaming applications, mobile applications, or other
applications. User interface 112 comprises graphical user
interface elements that can produce output for display to a
user and receive mput from a user. User interface 112 can
comprise elements discussed below i FIG. 6 for user
interface system 608. Calculation engine 113 comprises one
or more software elements configured to process expressions
for evaluation, call functions included in the expressions,
process user data, perform mathematical evaluation of
expressions, reference other data elements, such as data

10

20

25

30

35

40

45

50

55

60

65

8

cells, and call the dynamic functions discussed herein,
among other operations. In some examples, calculation
engine 113 comprises elements of Microsoft® Excel calcu-
lation engine (e.g. ‘calc’) which can perform cell calcula-
tions and re-calculations, among other operations.

Elements of dynamic function platform 120 include
dynamic function service 121 that comprises dynamic func-
tion handler 122 and asynchronous function handler 123,
among other elements. Dynamic function handler 122 can
include one or more user interfaces, such as web interfaces,
APIs, terminal interfaces, console interfaces, command-line
shell interfaces, extensible markup language (XML) inter-
faces, among others. Dynamic function handler 122 can
dynamically register and interface one or more functions
hosted by function sources 130 for use by calculation engine
113. Dynamic function handler 122 comprises communica-
tion interfaces to communicate with function sources 130,
which can include communication equipment or software
that 1s specialized for particular data services or function
platforms. Asynchronous function handler 123 comprises
processing elements to handle nested or recursive calls to
functions provided by function sources 130. Asynchronous
function handler 123 can include cache elements to cache
intermediate results and provide these results for further
calculation by functions provided by function sources 130.

Function platforms 132 can each comprise application
servers, storage servers, web servers, email servers, and can
be deployed over distributed or cloud computing platforms
which provides data or communication services. Function
platforms 132 can store and operate functions or data for use
by user applications. In some examples, function platforms
132 comprise machine learning platforms, artificial intelli-
gence systems, or other machine intelligence platforms.

Links 160-161, along with other links not shown among
the elements of FIG. 1 for clarity, can each comprise one or
more communication links, such as one or more network
links comprising wireless or wired network links. The links
can comprise various logical, physical, or application pro-
gramming interfaces. Example communication links can use
metal, glass, optical, air, space, or some other matenal as the
transport media. The links can use various communication
protocols, such as Internet Protocol (IP), Ethernet, hybnd
fiber-coax (HFC), synchronous optical networking
(SONET), asynchronous transier mode (ATM), Time Divi-
sion Multiplex (TDM), circuit-switched, communication
signaling, wireless communications, or some other commu-
nication format, including combinations, improvements, or
variations thereol. The links can be direct links or may
include intermediate networks, systems, or devices, and can
include a logical network link transported over multiple
physical links.

As a further example of dynamic function handling
frameworks, FI1G. 3 1s provided. FIG. 3 includes spreadsheet
view 310, along with process steps 311-312 for executing
expression evaluation using one or more dynamic functions.
Nested/recursive function example 316 1s also shown to
provide further examples for dynamic function handling in
an asynchronous manner.

In FIG. 3, view 310 shows a grid of cells that form a
workbook 1n a spreadsheet application, such as that dis-
cussed 1 FIG. 1. A user can enter data or expressions 1nto
any of the cells, and these expressions can be employed to
evaluate or mampulate data within the expressions or ref-
erenced 1n other cells, among other data. In one example, a
user can enter an example expression nto a cell that refer-
ences one or more functions that are available for data
evaluation or other activities, such as the expression A, (A,

US 10,846,469 B2

9

B) that calls expression ‘A,” with parameters ‘A’ and ‘B’ for
evaluation/processing by the function. Although these
expressions can include nested or recursive functions, in this
first example a non-recursive/nested function will be dis-
cussed.

In the context of the elements of FIG. 1, dynamic function
service 121 registers one or more functions for use by
calculation engine 113. These functions can 1nclude regis-
tered functions 313 in FIG. 3, with each function having an
identifier {from which to call the function within a cell as well
as one or more parameters that are used to pass data or other
content to the function for processing/evaluation. Six reg-
1stered functions are shown in FIG. 3, and these functions
can be employed in any expression in the cells of the
spreadsheet or workbook. As with functions 140 1n FIG. 1,
availability indicators can optionally be associated there-
with.

Operation 311 1illustrates example functionality when a
dynamic function 1s not presently available for evaluation of
an expression, such as when a function registered by
dynamic function service 121 1s not available. A predeter-
mined message or result 1s presented as the result from the
dynamic function for use in the cell that references the
dynamic function. In operation 311, predetermined result
314 i1s an error message or error flag that indicates the
function 1n not available and the cell does not display a
calculated result. Moreover, predetermined result 314 frees
up calculation engine 113 and any associated processing
threads to work on other expressions or calculating results
for other cells of the workbook. Thus, a non-blocking
operation 1s advantageously achieved.

Operation 312 1illustrates example operation when a
dynamic function that was once unavailable become avail-
able for expression evaluation. In operation 312, calculated
result 315 1s presented to calculation engine 113 for presen-
tation to a user in the associated cell of the workbook. To
trigger calculation, predetermined results, and re-calculation
of the expressions based on the availably of the dynamic
functions, various processes are presented 1n the examples
below.

According to a trigger, such as entry of a formula or
expression by a user, loading/startup of the spreadsheet
application and/or workbook, or a user selecting a calcula-
tion user interface element, calculation engine 113 can
attempt to evaluate the formula or expression. Calculation
engine 113 can make one or more calls to the functions that
are included in the associated cells, and these calls are
handled over the interface presented by dynamic function
service 121. Dynamic function service 121 presents results
back to calculation engine 113 responsive to the calls made
by calculation engine 113. Since dynamic function service
121 monitors availability status for the dynamic functions
that are potentially called by calculation engine 113, then
dynamic function service 121 can provide calculated results
or predetermined results, depending upon factors such as the
availability of the functions.

In FIG. 3, an example ol nested/recursive functions 1s
provided by example operation 316. A nested function
includes expressions that have one or more function calls
within another function call, such as a parent function
calling a child function as a parameter within the parent
function. A recursive function includes expressions that are
self-reterential or call the same function more than one time,
with a parent function calling the same function according to
an 1iteration factor/count or other factors. The example
shown 1n FIG. 3 includes two child functions being called as
parameters within a parent function, and results from these

10

15

20

25

30

35

40

45

50

55

60

65

10

chuld functions are multiplied together to provide a parent
result. Specifically, child functions 317 and 318 are included
as parameters for an expression involving parent function
319. Each child tunction can also have one or more param-
cters, such as those shown in example 316, and these
parameters can comprise functions as well.

The execution or evaluation of the nested expression
shown 1n example 316 might require many steps and func-
tion calls to functions that may or may not be presently
available, and dynamic function service 121 can handle
these according to asynchronous or quasi-asynchronous
operations. During the asynchronous or quasi-asynchronous
operation, intermediate results might be cached for later use
in further calculations/evaluations, or for presentation to
calculation engine 113 once a calculated result 1s available.

A detailed discussion on one example implementation of
calling dynamic functions for evaluation 1s presented. First,
dynamic functions can be registered for use and for refer-
encing by a user application, such as a spreadsheet or other
user application. Names or labels for the functions can be
defined which are used by the application to call or employ
the functions. The labels can be pointers to the functions or
objects associated with the functions. One or more tlags can
be 1included 1n the function definitions that indicate that the
function 1s dynamic, and this flag can be used during calls
or during dispatch to indicated to the function handler, such
as dynamic function service 121, to handle the function
accordingly.

During user entry, a function can be referenced by enter-
ing a function label or name and typically a parenthetical
portion containing one or more parameters, such as Func-
tion_name(parameters). Several static functions can include
standard mathematical functions with parameters, or built-in
default functions. However, the examples herein employ
enhanced functions, namely the dynamic functions. To
handle the dynamic functions discussed herein, the functions
are referenced by pointers that are handled by dynamic
function service 121. To add a new dynamic function into
the application for use by a user, a new function label 1s
created and a pointer to the dynamic function 1s added which
indicates to dynamic function service 121 which function 1s
referenced.

Many of the examples herein are in the context of a
spreadsheet application, such as Microsoft® Excel, among
others. Belore proceeding, 1t 1s useful for a high-level
understanding of some spreadsheet components. These
include ‘parse’ and ‘evaluation’” components. Every non-
empty cell in Excel 1s typically not stored in the human-
readable format presented to the user, but rather as a
compiled expression. Whenever the expression/formula in a
cell 1s updated, parse 1s triggered to execute and respon-
sively converts contents of that cell to a compiled expres-
sion. Parse does this so evaluation by calculation engine 113
can perform computations on the cells (referred to as the
‘calc’ or ‘re-calc’ process).

The ‘evaluation” component (‘eval’) can be a stack
machine, with operands pushed or popped onto 1t depending
on the operations encountered. The operations could be
something like a multiplication (1.e. a binary operator with
two operands), which when encountered will pop two oper-
ands off the stack and push their computation as a new
operand to the stack. Evaluation takes a compiled expres-
s10n, evaluates the compiled expression, and returns a result
to the cell. One cell referencing another cell will push the
other cell value (as an evaluated compiled expression) as an
operand onto the stack.

US 10,846,469 B2

11

One specific example includes cell contents=1*2, and the
corresponding compiled expression might be 1e 01 00 1e 02
00 05. Upon an evaluation of this 7 byte, 3 token, compiled
expression, an integer (determined by 1e) of value 1 (01 00)
1s pushed onto the stack. Similarly, the next token (3 bytes)
cause another integer of value 2 to be pushed onto the stack.
When the last token (byte of value 03) 1s read, this corre-
sponds to multiplication, and this causes popping of the last
2 values of the stack (since multiplication 1s a binary
operator with two operands), and pushing of a new 1nteger
of value 2 (the result of multiplication 1x2).

With this specific multiplication example 1n mind, a
turther example can be discussed using dynamic functions.
As explained, one example implementation of calculation
engine 113 comprises ‘calc’ or ‘re-calc’ processes that use a
stack machine of operands. When an LBL binds to a
function the compiled expression consists of an additional
token, namely the LBL. So Function_name(1,2) would
produce 3 operands: a (pointer to) label “Function_name”
and two itegers 1, 2. The operation 1s a varnation on a
normal function which knows the first operand will contain
information regarding function dispatch. More specifically,
this operator causes a handler process to be invoked, which
knows how do dispatch various function types.

The operands on the stack can comprise primitive data
types that are used for internal representation of expressions
or portions thereol. These primitive data types can comprise
unions of data types such as date, time, number, or other
information, with a bit field identitying which type 1s
represented. When a compiled expression comes into evalu-
ation the calc process can decide based at least on the type
on what primitive data type to construct to push onto the
stack. When we have a pointer for a dynamic function 1n the
compiled expression, the corresponding decision causes us
to 1nvoke an associated function name, such as “Function-
_name” discussed above. It 1s 1n this function that the calc
process can make another decision to construct a new
primitive data type with a bit field indicating a pointer to the
dynamic function. In summary, one example implementa-
tion to add dynamic function handling into a stack machine-
based operation of a calc process includes adding new
primitive data types comprising pointers to reference an
associated dynamic function, and the primitive data types
can include new function types and bit fields to accommo-
date the dynamic functions.

To further illustrate example 1implementations of asyn-
chronous handling of dynamic functions, FIGS. 4 and § are
presented. FIGS. 4 and 5 are diagrams illustrating relative
timing during handling of dynamic functions. Some func-
tions might produce a behavior known as 10 blocking,
where further operation of processing threads that handle the
calculation engine or function-handling portions of the
application might be hung or ‘blocked” when a function 1s
processing and pending results. Examples below 1n FIGS. 4
and S provide for asynchronous operation, such as by
initially responding to dynamic function calls with prede-
termined results and then spawning one or more operations
that generate corresponding results that are cached and
prompt recalculation processes.

FIG. 4 shows a first example asynchronous function
handling process. In FIG. 4, calculation engine 113 can
make one or more calls to evaluate or calculate expressions
comprising dynamic functions. Calculation engine 113 can
reference the dynamic functions using the labels/names
indicated above as well as the pointers that reference the
dynamic functions i dynamic function handler 122.
Responsive to receiving a call for calculating an expression

10

15

20

25

30

35

40

45

50

55

60

65

12

with a dynamic function, dynamic function handler 122 can
execute the function using asynchronous function handler
123. Meanwhile, dynamic function handler 122 1ssues a
pre-determined result to calculation engine 113, which
might comprise an indicator or message. This indicator can
inform calculation engine 113 that a corresponding result 1s
not available, and thus the indicator might comprise an error
flag, an unavailability flag, a “getting data™ flag, or other
indicator. Calculation engine 113 1s then free to process
other expressions, among other operations, without waiting
or hanging on a result from the previously called dynamic
function.

To handle the dynamic function, asynchronous function
handler 123 communicates with any of the function sources,
such as one or more of function platforms 132 that host the
dynamic functions. This can comprise asynchronous func-
tion handler 123 communicating with APIs or other inter-
faces of the associated function platform to initiate process-
ing by that function platform. Asynchronous function
handler 123 can pass parameters, user data, function infor-
mation, or other information along with the call for process-
ing by the dynamic function by the function platform.

In some examples, the dynamic function might not be
presently available. In these cases, asynchronous function
handler 123 might withhold dispatch of the function call for
the dynamic function to the proper function platform until
the dynamic function 1s available again. Asynchronous
function handler 123 mlght also cache the function call
issued by calculation engine 113 for use once the dynamic
function becomes available. However, once the dynamic
function 1s available for calculation, then asynchronous
function handler 123 can dispatch one or more calls for
processing of the user data or user parameters by the
dynamic function.

Once the dynamic function has completed processing or
calculation, asynchronous function handler 123 receives the
associated result from the appropriate function platform.
This result 1s stored by asynchronous function handler 123
for later return to calculation engine 113. Asynchronous
function handler 123 can cache this result 1n an associated
data structure or data storage device. asynchronous function
handler 123 then requests recalculation of the expression by
calculation engine 113. Responsively, calculation engine
113 1ssues a re-calculation operation for re-evaluation of the
expression. Since the result 1s already cached by asynchro-
nous function handler 123, the result can be responsively
provided to calculation engine 113 without undue delay or
any additional processing delay. Once calculation engine
113 receives the cached result, this result can be presented
to the user or populated into an associated cell, among other
operations by the application.

However, some functions might be nested, might depend
upon other functions, or might depend upon itself (recur-
sively). Asynchronous function handler 123 can also handle
these situations, and one example 1s presented 1 FIG. 5. In
these examples, one or more repeated dispatches of for the
dynamic functions are performed by asynchronous function
handler 123, with intermediate results cached by asynchro-
nous function handler 123. Multiple re-calculation requests
might then be 1ssued to fully process the expression by
calculation engine 113.

Consider an example cell indexed by column B and row
2 (e.g. cell B2) 1n a workbook of a spreadsheet that includes
formula: =A,=A, (A, B), A,(C, D)+1). There are potentially
two separate dynamic functions 1n this example formula (A,
and A,), each with associated parameters, and one of the
functions (A;) 1s 1nvoked twice. Before the outermost (par-

US 10,846,469 B2

13

ent) call of A, can occur, the 2 mner (child) calls must
complete. A calculate expression process 1s called by cal-
culation engine 113 for a first time, and both A,(A.B) and
A-(C,D) can be mitially called. If these functions happen to
be 10 blocking, or presently unavailable, then calculation
engine 113 might have to wait for completion before con-
tinuing with other tasks, threads, or other expressions for
other cells. However, 1n the examples herein, an asynchro-

nous operation 1s provided by asynchronous function han-
dler 123. Asynchronous function handler 123 can return
pre-determined results for the call for the expression 1n cell
B2, and calculation engine 113 can continue to process other
items. The pre-determined result 1n this example 1s a busy
indicator that informs calculation engine 113 to not wait for
a result from the expression—which might entail calculation
engine 113 moving on to work on another processing thread.
Once the associated dynamic functions A, and A, are
available to process/calculate expressions with the associ-
ated parameters, then asynchronous function handler 123
can dispatch function calls to the appropriate function plat-
torms. Results for each of the functions A, and A, can be
collected by asynchronous function handler 123 and cached.
As intermediate results for the mnner functions are recerved
by asynchronous function handler 123, the cells from which
the function calls originate can be indicated as invalid, out
of date, or ‘dirty” and thus might require re-calculation by
calculation engine 113. Moreover, once all inner/intermedi-
ate results have been collected and calculations completed
by asynchronous function handler 123, a recalculation 1ndi-
cation can be 1ssued by asynchronous function handler 123.
A data structure, such as a table, can be employed by
asynchronous function handler 123 to track intermediate
results and completion status. For example upon initial call
by calculation engine 113 for the mnner functions, asynchro-
nous function handler 123 can track status as follows:

Cell Function Arguments Result
B2 Ay (A, B) 1
B2 Ao (C, D) 1

This table indicates that the results of the two function
calls are still yet to be completed (as indicate by the L
symbol). When A, completes the table 1s updated with the
result of A, with arguments (A, B). After updating the table,
asynchronous function handler 123 checks 11 all results for
the target cell (B2) are resolved, which in this case they are
not, and so asynchronous function handler 123 waits for
turther results. When A, completes, the table 1s updated with
the results of A2 with arguments (C,D). Again, after updating,
the table, asynchronous function handler 123 checks to see
if all results for cell B2 have been recerved, and now they
have been. Responsively, asynchronous function handler
123 1ssues a recalculation indication to calculation engine
113.

Calculation engine 113 then i1ssues a calculation call again
tor the expression indicated in cell B2, which 1s indicated by
formula “=A, (A, (A, B), A.(C, D)+1).” Asynchronous func-
tion handler 123 checks to see 1f any results are cached for
this formula/expression, and according to the table indicated
above there are intermediate results cached for the inner
expressions. Dispatches by asynchronous function handler
123 for the inner functions are no longer needed, due to
results having been cached. Thus, a function call for the
parent/outer function A, (X, Y) can be dispatched using the
previously cached intermediated results from the child/inner

10

15

20

25

30

35

40

45

50

55

60

65

14

functions A, A, indicated by ‘X’ and ‘Y’ respectively. The
table indicated above can be updated for the parent function,
so that asynchronous function handler 123 can track when
results are available. Specifically, the table can be updated as
follows:

Cell Function Arguments Result
B2 Ay (A, B) X
B2 Ao (C, D) Y
B2 Ay (X, Y) 1

As with the mitial dispatching of the inner functions, if the
parent function happens to be 10 blocking, or presently
unavailable, then calculation engine 113 might have to wait
for completion before continuing with other tasks or expres-
sions. However, 1n the examples herein, an asynchronous
operation 1s provided by asynchronous function handler 123.
Asynchronous function handler 123 can return pre-deter-
mined results for the expression call for cell B2, and
calculation engine 113 can continue to process other items,
threads, or expressions in other cells. The pre-determined
result 1n this example can be a further busy indicator that
informs calculation engine 113 to not wait for a result from
the expression—which might entail calculation engine 113
moving to work on another processing thread.

When results are recerved for the parent function upon
completion of that function by the associated function

platiorm, the table can be updated by asynchronous function
handler 123 as follows:

Cell Function Arguments Result
B2 Ay (A, B) X
B2 Ao (C, D) Y
B2 Ay (X, Y) Z

Again, after updating the table, asynchronous function
handler 123 checks to see 11 all results for cell B2 have been
received, and now they have been. Responsively, asynchro-
nous function handler 123 issues a recalculation indication
to calculation engine 113. Calculation engine 113 then 1ssues
a calculation call again for the expression indicated 1n cell
B2, which 1s indicated by formula “=A,(A,(A, B), A,(C,
D)+1).” Asynchronous function handler 123 checks to see 1f
any results are cached for this formula/expression, and
according to the table indicated above there are intermediate
and final results cached for the mner and outer expressions.
A final calculated result can be indicated by asynchronous
function handler 123 to calculation engine 113 for presen-
tation to the user i1n cell B2. After presenting the final
calculated result, asynchronous function handler 123 can
clear out any table related to evaluation of cell B2.

Additional handling features for asynchronous calculation
and evaluation includes changes to the cells and the posi-
tioning ol the cells 1n the mternm during intermediate
calculations. For example, a user can modity the grid for
which the target cell 1s a member, such as mserting a row
above the current cell that 1s presently performing an asyn-
chronous calculation. Changes to cell positioning can
prompt new calculation processes. Old intermediate results
from an 1ncomplete calculation can remain 1n the table until
the new calculation 1s finished.

Notice the table indicated above maps a cell to (A, args)
Result). Therefore, there are eflectively two maps 1n the
table, one indicating the cell and another indicating the

US 10,846,469 B2

15

function-argument pair. In the example function above, there
were three possible invocations, because the result of A (A,
B) may be the same as value A, and the result of A,(C,D)
may be the same as value B. In which case, as our functions
are stateless, there 1s no need to perform another computa-
tion for A, as we already have the result for A, (A,B). Thus,
in this example, the maximum number of times a calculation
needs to be called 1s the depth of the function.

Asynchronous re-calculation 1s not approprate for all
functions and calculations. For example, 11 the target cell
includes volatile functions, such as random number genera-
tion, or depends upon an mtermediate volatile function then
the calculation process might run synchronously instead of
asynchronously. Volatile behavior can be detected by deter-
mimng 1f the function name indicates a volatile function, or
by using a flag or other indicator that signals a volatile
function.

Turning now to further features of dynamic function
service 120, a function auto-complete process can be imple-
mented. The function auto-complete can be provided within
cells or other portions of the user application. When a user
beings typing the name of a function, the user can be
presented with a listing of available dynamic functions that
align with the already-typed content. However, dynamic
function service 120 can ensure that the list of available
dynamic function 1s current, such as when new functions
have been registered or de-registration of dynamic func-
tions. Various triggers or events can be established that
refreshes the list of the dynamic functions, such as during
idle times of the application, or responsive to function
registration, among other events.

Turning now to FIG. 6, computing system 601 is pre-
sented. Computing system 601 that 1s representative of any
system or collection of systems 1n which the various opera-
tional architectures, scenarios, and processes disclosed
herein may be implemented. For example, computing sys-
tem 601 can be used to implement any of user platform 110
or dynamic function platform 120 of FIG. 1. Examples of
computing system 601 include, but are not limited to, server
computers, cloud computing systems, distributed computing
systems, software-defined networking systems, computers,
desktop computers, hybrid computers, rack servers, web
servers, cloud computing platforms, and data center equip-
ment, as well as any other type of physical or virtual server
machine, and other computing systems and devices, as well
as any variation or combination thereof. When portions of
computing system 601 are implemented on user devices,
example devices include smartphones, laptop computers,
tablet computers, desktop computers, gaming systems,
entertainment systems, and the like.

Computing system 601 may be implemented as a single
apparatus, system, or device or may be implemented 1n a
distributed manner as multiple apparatuses, systems, or
devices. Computing system 601 includes, but 1s not limited
to, processing system 602, storage system 603, software
605, communication intertace system 607, and user interface
system 608. Processing system 602 1s operatively coupled
with storage system 603, communication mterface system
607, and user interface system 608.

Processing system 602 loads and executes software 605
from storage system 603. Soiftware 605 includes dynamic
function environment 606 and/or application environment
609, which 1s representative of the processes discussed with
respect to the preceding Figures. When executed by pro-
cessing system 602 to enhance data calculation frameworks
and calculation engines, soitware 603 directs processing
system 602 to operate as described herein for at least the

10

15

20

25

30

35

40

45

50

55

60

65

16

various processes, operational scenarios, and environments
discussed in the foregoing implementations. Computing
system 601 may optionally include additional devices, fea-
tures, or functionality not discussed for purposes of brevity.

Retferring still to FIG. 6, processing system 602 may
comprise a microprocessor and processing circuitry that
retrieves and executes software 605 from storage system
603. Processing system 602 may be implemented within a
single processing device, but may also be distributed across
multiple processing devices or sub-systems that cooperate in
executing program instructions. Examples of processing
system 602 include general purpose central processing units,
application specific processors, and logic devices, as well as
any other type of processing device, combinations, or varia-
tions thereof.

Storage system 603 may comprise any computer readable
storage media readable by processing system 602 and
capable of storing soiftware 605. Storage system 603 may
include volatile and nonvolatile, removable and non-remov-
able media implemented 1n any method or technology for
storage of information, such as computer readable instruc-
tions, data structures, program modules, or other data.
Examples of storage media include random access memory,
read only memory, magnetic disks, resistive memory, optical
disks, flash memory, virtual memory and non-virtual
memory, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
suitable storage media. In no case 1s the computer readable
storage media a propagated signal.

In addition to computer readable storage media, in some
implementations storage system 603 may also include com-
puter readable communication media over which at least
some ol software 605 may be communicated internally or
externally. Storage system 603 may be implemented as a
single storage device, but may also be implemented across
multiple storage devices or sub-systems co-located or dis-
tributed relative to each other. Storage system 603 may
comprise additional elements, such as a controller, capable
of communicating with processing system 602 or possibly
other systems.

Software 605 may be implemented in program instruc-
tions and among other functions may, when executed by
processing system 602, direct processing system 602 to
operate as described with respect to the various operational
scenarios, sequences, and processes illustrated herein. For
example, software 603 may include program instructions for
implementing the data calculation frameworks and dynamic
function platforms discussed herein.

In particular, the program 1instructions may include vari-
ous components or modules that cooperate or otherwise
interact to carry out the various processes and operational
scenar1os described herein. The various components or
modules may be embodied i compiled or interpreted
istructions, or in some other variation or combination of
instructions. The various components or modules may be
executed 1n a synchronous or asynchronous manner, serially
or 1n parallel, in a single threaded environment or multi-
threaded, or 1n accordance with any other suitable execution
paradigm, variation, or combination thereof. Software 6035
may include additional processes, programs, or components,
such as operating system software or other application
software, 1n addition to or that include dynamic function
environment 606 or application environment 609. Software
605 may also comprise firmware or some other form of
machine-readable processing instructions executable by pro-
cessing system 602.

US 10,846,469 B2

17

In general, software 605 may, when loaded 1nto process-
ing system 602 and executed, transform a suitable apparatus,
system, or device (of which computing system 601 1s
representative) overall from a general-purpose computing
system 1nto a special-purpose computing system customized
to facilitate enhanced data calculation frameworks and
dynamic function platforms. Indeed, encoding soitware 603
on storage system 603 may transiform the physical structure
of storage system 603. The specific transformation of the
physical structure may depend on various factors in diflerent
implementations of this description. Examples of such fac-
tors may include, but are not limited to, the technology used
to implement the storage media of storage system 603 and
whether the computer-storage media are characterized as
primary or secondary storage, as well as other factors.

For example, 11 the computer readable storage media are
implemented as semiconductor-based memory, software 6035
may transform the physical state of the semiconductor
memory when the program instructions are encoded therein,
such as by transforming the state of transistors, capacitors,
or other discrete circuit elements constituting the semicon-
ductor memory. A similar transformation may occur with
respect to magnetic or optical media. Other transformations
of physical media are possible without departing from the
scope ol the present description, with the foregoing
examples provided only to facilitate the present discussion.

Dynamic function environment 606 or application envi-
ronment 609 each includes one or more software elements,
such as OS 621 and applications 622. These elements can
describe various portions of computing system 601 with
which users, calculation engines, applications, dynamic
function services, or other elements, interact. For example,
OS 621 can provide a software platform on which applica-
tion 622 1s executed and allows for processing expressions
and data with one or more dynamic functions, and dynami-
cally handling functions, among other functions.

In one example, dynamic function service 623 includes
function registration 624 and function dispatch 625. Func-
tion registration 624 dynamically registers one or more
functions for use by a calculation engine, and monitors
availability status for the functions. Function registration
624 also can indicate availability status to a calculation
engine, and indicate predetermined results responsive to
function calls to the dynamic functions. Function dispatch
625 handles dispatching of function calls to one or more
dynamically-provided functions that can be provided by one
or more external platforms, such as distributed computing
platforms 650 1n FIG. 6. Function dispatch 625 can cache
results or temporary results, handle asynchronous or quasi-
asynchronous dispatching of function calls, and handle
nested or recursive function calls for functions registered for
use by function registration 624.

Communication interface system 607 may include com-
munication connections and devices that allow for commu-
nication with other computing systems (not shown) over
communication networks (not shown). Examples of connec-
tions and devices that together allow for inter-system com-
munication may include network interface cards, antennas,
power amplifiers, RF circuitry, transceivers, and other com-
munication circuitry. The connections and devices may
communicate over communication media to exchange com-
munications with other computing systems or networks of
systems, such as metal, glass, air, or any other suitable
communication media. Physical or logical elements of com-
munication nterface system 607 can receive datasets from
telemetry sources, transfer datasets and control imnformation
between one or more distributed data storage elements, and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

interface with a user to recerve data selections and provide
visualized datasets, among other features.

User imterface system 608 1s optional and may include a
keyboard, a mouse, a voice mput device, a touch input
device for receiving input from a user. Output devices such
as a display, speakers, web interfaces, terminal interfaces,
and other types of output devices may also be included 1n
user interface system 608. User interface system 608 can
provide output and receive mput over a network interface,
such as communication interface system 607. In network
examples, user interface system 608 might packetize display
or graphics data for remote display by a display system or
computing system coupled over one or more network inter-
taces. Physical or logical elements of user interface system
608 can recerve user input from users or other operators, and
provide outputs of processed expressions and functions, or
other information to users or other operators. User interface
system 608 may also include associated user interface
soltware executable by processing system 602 in support of
the various user input and output devices discussed above.
Separately or in conjunction with each other and other
hardware and software elements, the user interface software
and user interface devices may support a graphical user
interface, a natural user interface, or any other type of user
interface.

Communication between computing system 601 and
other computing systems (not shown), may occur over a
communication network or networks and 1n accordance with
various communication protocols, combinations of proto-
cols, or vaniations thereof. Examples include intranets, inter-
nets, the Internet, local area networks, wide area networks,
wireless networks, wired networks, virtual networks, soft-
ware defined networks, data center buses, computing back-
planes, or any other type of network, combination of net-
work, or wvanation thereof. The aforementioned
communication networks and protocols are well known and
need not be discussed at length here. However, some com-
munication protocols that may be used include, but are not
limited to, the Internet protocol (IP, IPv4, IPv6, etc.), the
transmission control protocol (T'CP), and the user datagram
protocol (UDP), as well as any other suitable communica-
tion protocol, variation, or combination thereof.

Certain mventive aspects may be appreciated from the
foregoing disclosure, of which the following are various
examples.

Example 1

A method of providing a data calculation framework for
a user application, the method comprising registering
dynamic functions for use by a calculation engine of the user
application using at least a function handler service that
couples calls made by the calculation engine for the dynamic
functions to one or more services that host the dynamic
functions. In the function handler service, the method
includes monitoring availability status for the dynamic func-
tions related to availability of the dynamic functions to
process expressions associated with the calculation engine.
In the function handler service, the method includes based at
least on the availability status indicating a first dynamic
function 1s presently unavailable, responding to a function
call 1ssued by the calculation engine for the first dynamic
function with at least a predetermined result. In the function
handler service, the method includes based at least on the
availability status indicating the first dynamic function 1is
presently available, responding to the function call 1ssued by

US 10,846,469 B2

19

the calculation engine for the first dynamic function by
routing the function call for handling by the first dynamic
function.

Example 2

The method of Example 1, further comprising registering,
the dynamic functions by at least establishing entries 1n a
data structure of the function handler service that correspond
to each of the dynamic functions and reference locations of
the dynamic functions hosted on the one or more services,
where the entries present the dynamic functions as registered
for use by the calculation engine for expression evaluation
regardless of the availability status of the dynamic functions.

Example 3

The method of Examples 1-2, turther comprising estab-

lishing representations of the dynamic functions 1n at least
the data structure that provide response behaviors for calls to
the dynamic functions when the dynamic functions are
unavailable.

Example 4

The method of Examples 1-3, where the response behav-
10rs comprise returning predetermined results to the calcu-
lation engine.

Example 5

The method of Examples 1-4, further comprising present-
ing the dynamic functions as registered for expression
evaluation to the calculation engine independent of the
availability status.

Example 6

The method of Examples 1-5, where monitoring the
availability status for the dynamic functions comprises
monitoring connectivity to a platform comprising the one or
more services that host the dynamic functions.

Example 7

The method of Examples 1-6, where momnitoring the
availability status for the dynamic functions comprises
detecting the availability status for the dynamic functions
when associated ones of the dynamic functions become
available or unavailable and maintaining indicators of the
availability status in the function handler service.

Example 8

The method of Examples 1-7, further comprising, 1n the
function handler service, based at least on the availability
status for the first dynamic function changing from unavail-
able to presently available, routing the function call for
handling by the first dynamic function asynchronously to the
function call by the calculation engine and presenting a
delayed result from the first dynamic function for use by the
calculation engine.

Example 9

The method of Examples 1-8, further comprising present-
ing an indication of availability of the delayed result to the

10

15

20

25

30

35

40

45

50

55

60

65

20

user application responsive to receiving the delayed result
from the first dynamic function.

Example 10

A data calculation framework for a user application,
comprising one or more computer readable storage media, a
processing system operatively coupled with the one or more
computer readable storage media, and program instructions
stored on the one or more computer readable storage media.
Based on being read and executed by the processing system,
the program 1nstructions direct the processing system to at
least register dynamic functions for use by a calculation
engine of the user application using at least a function
handler service that couples calls made by the calculation
engine for the dynamic functions to one or more services
that host the dynamic functions, and momtor availability
status for the dynamic functions related to availability of the
dynamic functions to process expressions associated with
the calculation engine. Based at least on the availability
status 1ndicating a first dynamic function 1s presently
unavailable, the program instructions direct the processing
system to at least respond to a function call 1ssued by the
calculation engine for the first dynamic function with at least
a predetermined result. Based at least on the availability
status 1ndicating the first dynamic function i1s presently
available, the program instructions direct the processing
system to at least respond to the function call issued by the
calculation engine for the first dynamic function by routing
the function call for handling by the first dynamic function.

Example 11

The data calculation framework of Examples 10, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least register the dynamic functions by at least
establishing entries 1 a data structure of the function
handler service that correspond to each of the dynamic
functions and reference locations of the dynamic functions
hosted on the one or more services, where the entries present
the dynamic functions as registered for use by the calcula-
tion engine for expression evaluation regardless of the
availability status of the dynamic functions.

Example 12

The data calculation framework of Examples 11, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least establish representations of the dynamic
functions 1n at least the data structure that provide response
behaviors for calls to the dynamic functions when the
dynamic functions are unavailable.

Example 13

The data calculation framework of Examples 12, where
the response behaviors comprise returning predetermined

results to the calculation engine.

Example 14

The data calculation framework of Examples 10, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least present the dynamic functions as registered

US 10,846,469 B2

21

for expression evaluation to the calculation engine indepen-
dent of the availability status.

Example 15

The data calculation framework of Examples 10, com-
prising further program 1nstructions, based on being
executed by the processing system, direct the processing
system to at least monitor the availability status for the
dynamic functions by at least monitoring connectivity to a
platform comprising the one or more services that host the
dynamic functions.

Example 16

The data calculation framework of Examples 10, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least monitor the availability status for the
dynamic functions by at least detecting the availability status
for the dynamic functions when associated ones of the
dynamic functions become available or unavailable and
maintaining indicators of the availability status in the func-
tion handler service.

Example 17

The data calculation framework of Examples 10, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least based at least on the availability status for
the first dynamic function changing from unavailable to
presently available, dispatch the function call for handling
by the first dynamic function asynchronously to the function
call by the calculation engine and present a delayed result
from the first dynamic function for use by the calculation
engine.

Example 18

The data calculation framework of Examples 17, com-
prising further program instructions, based on being
executed by the processing system, direct the processing
system to at least present an indication of availability of the
delayed result to the user application responsive to recerving
the delayed result from the first dynamic function.

Example 19

A Tunction evaluation framework for a spreadsheet appli-
cation, comprising one or more computer readable storage
media, a processing system operatively coupled with the one
or more computer readable storage media, and program
instructions stored on the one or more computer readable
storage media. Based on being read and executed by the
processing system, the program instructions direct the pro-
cessing system to at least present a plurality of functions as
registered for expression evaluation to a calculation service
of the spreadsheet application, the calculation service con-
figured to present results of expression evaluation within
associated cells of the spreadsheet application, and deter-
mine present availability of the plurality of functions for
expression evaluation by the calculation service, where one
or more of the functions reside 1n one or more distributed
computing services external to the spreadsheet application.
The program instructions direct the processing system to at
least respond to function calls by the calculation service for

10

15

20

25

30

35

40

45

50

55

60

65

22

expression evaluation by ones of the functions according to
at least a present availability of the ones of the functions,
where when the present availability indicates the ones of the
functions are unavailable for expression evaluation, the
program instructions direct the processing system to at least
return predetermined results to the calculation service, and
where when the present availability indicates the ones of the
functions are available for expression evaluation, the pro-
gram 1nstructions direct the processing system to at least
dispatch the function calls for handling by the ones of the
functions and responsively present evaluated results to the
calculation service that result from processing by the ones of
the functions 1n associated ones of the distributed computing
SErvices.

Example 20

The function evaluation framework of Examples 19,
comprising further program instructions, based on being

executed by the processing system, direct the processing
system to at least respond with a first predetermined result
to a first function call 1ssued by the calculation service for a
first expression evaluation by a first function based at least
on the first function determined to be presently unavailable
for expression evaluation, and monitor availability of the
first function after receipt of the first function call, and
responsive to the availability of the first function changing
from unavailable to presently available, dispatch the first
function call for handling by the first function and present a
first evaluated result from the first function for use by the
calculation service.

The functional block diagrams, operational scenarios and
sequences, and tlow diagrams provided in the Figures are
representative of exemplary systems, environments, and
methodologies for performing novel aspects of the disclo-
sure. While, for purposes of simplicity of explanation,
methods included herein may be in the form of a functional
diagram, operational scenario or sequence, or flow diagram,
and may be described as a series of acts, it 15 to be
understood and appreciated that the methods are not limited
by the order of acts, as some acts may, 1n accordance
therewith, occur 1n a different order and/or concurrently with
other acts from that shown and described herein. For
example, those skilled 1n the art will understand and appre-
ciate that a method could alternatively be represented as a
series of interrelated states or events, such as in a state
diagram. Moreover, not all acts illustrated in a methodology
may be required for a novel implementation.

The descriptions and figures included herein depict spe-
cific implementations to teach those skilled 1n the art how to
make and use the best option. For the purpose of teaching
inventive principles, some conventional aspects have been
simplified or omitted. Those skilled in the art will appreciate
variations from these implementations that fall within the
scope of the disclosure. Those skilled 1 the art will also
appreciate that the features described above can be com-
bined in various ways to form multiple implementations. As
a result, the mvention i1s not limited to the specific imple-
mentations described above, but only by the claims and their
equivalents.

What 1s claimed 1s:
1. A method of providing a data calculation framework for
a user application, the method comprising:
registering a function for use by a calculation engine of
the user application using at least a function handler

US 10,846,469 B2

23

service that couples function calls made by the calcu-
lation engine for the function to a service that hosts the
function;

in the function handler service, monitoring an availability

status indicating availability of the function from the
service to process expressions for the calculation
engine;

in the function handler service, based at least on a first

availability status indicating the function 1s presently
unavailable from the service, accepting a first function
call comprising a first expression including the func-
tion, withholding dispatch of the first function call to
the service, and responding to the first function call
with at least a predetermined result mstead of a first
result from the service for the first expression, wherein
the predetermined result indicates to the calculation
engine that the first result 1s unavailable from the
function and prompts the calculation engine to process
further expressions in the user application without
obtaining the first result from the function; and

in the function handler service, based at least on a second

availability status indicating the function 1s presently
available from the service, routing a second function
call to the service comprising a second expression for
handling by the function which produces a second
result based on processing the second expression that 1s
returned by the function handler service to the calcu-
lation engine.

2. The method of claim 1, further comprising;:

registering the function by at least establishing an entry in

a data structure of the function handler service that
corresponds to the function and references a location of
the function hosted on the service, wherein the entry
presents the function as registered for use by the
calculation engine for expression evaluation regardless
of the availability status of the function.

3. The method of claim 2, further comprising;:

establishing a representation of the function 1n at least the

data structure that provides a response behavior for
calls to the function when the function 1s unavailable.

4. The method of claim 3, wherein the response behavior
comprises returning at least the predetermined result to the
calculation engine.

5. The method of claim 1, further comprising;:

presenting the function as registered for expression evalu-

ation to the calculation engine independent of the
availability status.

6. The method of claim 1, wherein monitoring the avail-
ability status for the function comprises monitoring connec-
tivity to a platform comprising the service that hosts the
function.

7. The method of claim 1, wherein monitoring the avail-
ability status for the function comprises detecting the avail-
ability status for the function when the function becomes
available or unavailable and maintaining an indicator of the
availability status in the function handler service.

8. The method of claim 1, further comprising;:

in the function handler service, based at least on the first

availability status for the function changing from
unavailable to presently available, routing the first

function call for handling by the function asynchro-
nously to the function call by the calculation engine and
presenting a delayed result from the function for use by
the calculation engine as the first result.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

9. The method of claim 8, further comprising;:
presenting an indication of availability of the delayed

result to the user application responsive to recerving the
delayed result from the function.

10. A data calculation framework for a user application,

comprising;

one or more non-transitory computer readable storage
media;

a computer processing system including a computer pro-
cessor operatively coupled with the one or more non-
transitory computer readable storage media that,

based on being read and executed by the computer process-

ing system, direct the computer processing system to at
least:
register a function for use by a calculation engine of the
user application using at least a function handler ser-
vice that couples calls made by the calculation engine
for the function to a service that hosts the function;

monitor an availability status for the function, wherein the
availability status indicates availability of the function

from the service to the calculation engine for process-
ing of expressions with the function;

based at least on a first availability status indicating the

function 1s presently unavailable from the service,
accept a first function call comprising a first expression
made for the function, withhold dispatch of the first
function call to the service, and respond to the first
function call with at least a predetermined result instead
of a first result from the service for the first expression,
wherein the predetermined result indicates to the cal-
culation engine that the first result 1s unavailable from
the function and prompts the calculation engine to
process further expressions without obtaiming the first
result from the function; and

based at least on a second availability status indicating the

function 1s presently available from the service, routing
a second function call to the service comprising a
second expression for handling by the function which
produces a second result based on processing the
second expression that 1s returned by the function
handler service to the calculation engine.

11. The data calculation framework of claim 10, compris-
ing further program instructions, based on being executed by
the processing system, direct the computer processing sys-
tem to at least:

register the function by at least establishing an entry 1n a

data structure of the function handler service that
corresponds to the function and references a location of
the function hosted on the service, wherein the entry
presents the function as registered for use by the
calculation engine for expression evaluation regardless
of the availability status of the function.

12. The data calculation framework of claim 11, compris-
ing further program instructions, based on being executed by
the computer processing system, direct the computer pro-
cessing system to at least:

establish a representation of the function in at least the

data structure that provides a response behavior for
calls to the function when the function 1s unavailable.

13. The data calculation framework of claim 12, wherein
the response behavior comprises returning at least the pre-
determined results to the calculation engine.

14. The data calculation framework of claim 10, com-
prising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

US 10,846,469 B2

25

present the function as registered for expression evalua-
tion to the calculation engine independent of the avail-
ability status.

15. The data calculation framework of claim 10, com-
prising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

monitor the availability status for the function by at least
monitoring connectivity to a platform comprising the
one or more services that host the function.

16. The data calculation framework of claim 10, com-
prising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

monitor the availability status for the function by at least
detecting the availability status for the function when
the function becomes available or unavailable and
maintaining an indicator of the availability status in the
function handler service.

17. The data calculation framework of claam 10, com-
prising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

based at least on the first availability status for the
function changing from unavailable to presently avail-
able, dispatch the first function call for handling by the
function asynchronously to issuance of the first func-
tion call by the calculation engine and cache at least a
result from the function for use by the calculation
engine as the first result.

18. The data calculation framework of claam 17, com-
prising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

present an indication of availability of the result to the
user application responsive to receiving at least the
result from the function.

19. A function evaluation framework for a spreadsheet

application, comprising:

one or more non-transitory computer readable storage
media;

a computer processing system including a computer pro-
cessor operatively coupled with the one or more non-
transitory computer readable storage media that,

based on being read and executed by the computer process-
ing system, direct the computer processing system to at
least:

10

15

20

25

30

35

40

45

26

present a function as registered for expression evaluation
to a calculation service of the spreadsheet application,
the calculation service configured to present results of
the expression evaluation by the function within asso-
ciated cells of the spreadsheet application wherein the
function 1s hosted by a distributed computing service
external to the spreadsheet application;

determine an availability status of the function, wherein
the availability status indicates availability of the func-
tion for processing of expressions with the function

wherein based on a first availability status indicating the
function 1s unavailable from the distributed computing
service for expression evaluation, accept a first function
call comprising a first expression made for the function,
withhold dispatch of the first function call to the
distributed computing service, and return a predeter-
mined result instead of a first result from distributed
computing service for the first expression, wherein the
predetermined result indicates to the calculation service
that the first result 1s unavailable from the function and
prompts the calculation service to process further
expressions 1n the spreadsheet application without

waiting on the obtaining the first result from the func-
tion; and

wherein based on a second availability status indicating
the function 1s available from the distributed computing
service for expression evaluation, dispatch a second
function call to the distributed computing service com-
prising a second expression for handling by the func-
tion and responsively present a second result to the
calculation service resultant from processing the sec-
ond expression by the function 1n the distributed com-
puting service.

20. The function evaluation framework of claim 19,
comprising further program instructions, based on being
executed by the computer processing system, direct the
computer processing system to at least:

monitor availability of the function after receipt of the
first function call, and responsive to the availability of
the function changing from unavailable to presently
available, dispatch the first function call for handling
by the function and present a result from the function
for use by the calculation service as the first result.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

