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SYSTEMS AND METHODS FOR IMAGE
PROCESSING

RELATED APPLICATION

This application claims priority to, and the benefit of, U.S.
Provisional Patent Application No. 62/509,676, entitled
“Systems and Methods for Image Processing”, filed on May
22, 2017, the contents of which are hereby incorporated by
reference in their entirety.

BACKGROUND

Imaging technologies including x-ray computed tomog-
raphy, magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), and many others have found wide-
spread use 1n applications as diverse as medical imaging and
cargo mspection. Images of cargo are manually evaluated by
security personnel for threat detection.

SUMMARY

In one embodiment, a computing-device implemented
method for identifying an item 1n an X-ray image using at
least one computing device equipped with a processor 1s
provided. The method includes training, using the at least
one computing device, a machine learning algorithm with at
least one training data set of x-ray images to generate at least
one machine-learned model. The at least one training data
set icludes a first set of x-ray 1mages of items containing
threats and a second set of x-ray i1mages of items not
contaiming threats. The machine learning algorithm i1s a
convolutional neural network (CNN). The method further
includes recerving, with the at least one computing device,
at least one rendered x-ray image that includes an 1item. The
method also includes identifying, with the at least one
computing device, the 1tem using the at least one model. The
method further includes generating, with the at least one
computing device, an automated detection indication asso-
ciated with the item.

In another embodiment, a system for identifying an item
in an X-ray image 1s provided. The system includes a scanner
configured to render at least one X-ray image and a com-
puting device equipped with a processor 1n communication
with the scanner. The computing device 1s configured to
train a machine learning algorithm with at least one training
data set of x-ray images to generate at least one machine-
learned model. The at least one training data set includes a
first set of x-ray images of items containing threats and a
second set of x-ray 1mages of items not contaiming threats.
The machine learning algorithm 1s a convolutional neural
network (CNN). The computing device 1s also configured to
receive the at least one rendered x-ray image from the
scanner. The at least one rendered x-ray image includes an
item and the computing device 1s further configured to
identify the item using the at least one model. The comput-
ing device 1s also configured to generate an automated
detection indication associated with the item.

In still another embodiment, a non-transitory computer
readable medium storing instructions executable by a pro-
cessor 1s provided. Execution of the instructions causes the
processor to implement a method for 1dentifying an 1tem in
an X-ray image. The method includes training a machine
learning algorithm with at least one training data set of x-ray
images to generate at least one machine-learned model. The
at least one training data set includes a first set of x-ray
images of items containing threats and a second set of x-ray
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images of items not containing threats. The machine leamn-
ing algorithm 1s a convolutional neural network (CNN). The
method also mncludes receiving at least one rendered x-ray
image that includes an item. The method further includes
identifving the item using the at least one model and
generating an automated detection indication associated
with the item.

BRIEF DESCRIPTION OF THE DRAWINGS

The skilled artisan will understand that the drawings are
primarily for illustrative purposes and are not mtended to
limit the scope of the subject matter described herein. The
drawings are not necessarily to scale; 1n some 1nstances,
various aspects of the subject matter disclosed herein may be
shown exaggerated or enlarged in the drawings to facilitate
an understanding of different features. In the drawings, like
reference characters generally refer to like features (e.g.,
functionally similar or structurally similar elements).

The foregoing and other features and advantages provided
by the present disclosure will be more fully understood from
the following description of exemplary embodiments when
read together with the accompanying drawings, in which:

FIG. 1 1s a block diagram showing an 1mage processing,
system 1n terms of modules according to an example
embodiment;

FIG. 2 1s a flowchart illustrating an exemplary method
employed by the 1image processing system, according to an
example embodiment;

FIG. 3 illustrates an exemplary convolutional neural
network employed by the image processing system, accord-
ing to an example embodiment;

FIG. 4A shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 4B shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 4C shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 4D shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 5A shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 5B shows an output image provided by the image
processing system, according to an example embodiment;

FIG. 6 1s a graph illustrating a false positives and true
positives error rate of the image processing system, accord-
ing to an example embodiment;

FIG. 7 schematically depicts an exemplary system for
training the machine learning algorithm, according to an
example embodiment;

FIG. 8 1llustrates a network diagram depicting a system
for implementing the 1mage processing system, according to
an example embodiment; and

FIG. 9 1s a block diagram of an exemplary computing
device that can be used to perform one or more steps of the
methods provided by exemplary embodiments.

DETAILED DESCRIPTION

Described herein are systems, methods and computer
readable media for processing images to 1dentily an 1tem or
items in the images. Exemplary embodiments provide an
image processing system that includes a machine learning
framework to automatically analyze images. In some
embodiments, the 1images consist of x-ray images that may
be obtained via a scanner or screeming device at a security
checkpoint. The machine learning algorithm implemented 1n
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the described framework 1dentifies a specific object type in
the 1mages (e.g., laptops, shoes, bottles, weapons, etc.) and
perform a task specific to that item type. For example, the
task can include threat detection in a laptop within a pas-
senger bag or security belt bin. In an example embodiment,
the systems and methods described herein may be used to
make an automated decision on whether a specific 1tem 1s
present 1 the luggage or package of interest (by analyzing
the x-ray image of the luggage or package), and whether the
specific item, 1f present, includes a threat (e.g., explosive
devices). In some embodiments, a label 1s included in an
output 1mage generated by the image processing system
identifving the specific item 1n the analyzed image. In some
embodiments, the location of the specific 1tem 1s 1indicated or
highlighted 1n an output image of the image processing
system. In another embodiment, the systems and methods
described herein may be used to visually or audibly indicate
to security personnel that the luggage or package includes a
specific 1tem that includes a threat. In one embodiment, the
machine learning framework employs a deep learming con-
volutional neural network (CNN) framework to analyze
X-ray 1mages ol items, luggage, and packages.

The systems and methods described herein may be used
in various security applications, such as but not limited to,
where security personnel are evaluating images of items,
luggage, packages or containers for threat. For example, the
image processing system described herein can be used by
the Transportation Security Administration (TSA) at airports
for checking passengers’ luggage at a security checkpoint.
The 1mage processing system may also be used by the TSA
to scan passengers’ checked-in luggage. The 1image process-
ing system may also be used to check cargo on transport or
delivery vehicles. The image processing system may also be
used to check packages mailed via the postal system. In an
example embodiment, the systems and methods described
herein may also be used to process images produced during,
body x-ray scans of a passenger to identily 1tems concealed
by the passenger on or in his or her body.

In exemplary embodiments, a machine learning algorithm
1s executed on a machine learning framework or platiorm.
The machine learming algorithm 1s trained using a training
data set to analyze a specific format or type of images, for
example, x-ray volumetric or projection 1mages. A projec-
tion 1mage of the volume may be formed directly by the rays
of an X-ray system’s 1maging sensors, or synthetically by a
mathematical summation operation on a volumetric 1image
volume. The trained machine learning algorithm generates
one or more models based on the training data set. The
generated models are stored, and used to analyze one or
more mput 1mages. The mput images are 1mages of items,
luggage or packages obtained via an x-ray machine. As used
herein, a projection 1image represents a superposition of all
overlapping objects traversed by an incoming ray until 1t
reaches a detector.

Based on the training data set used to train the machine
learning algorithm, the 1image processing system 1s capable
of 1dentifying a specified item. For example, the training
data set can include a set of 1images that contain a laptop and
a corresponding set of 1mages that do not contain a laptop.
Such a data set 1s used to train the 1mage processing system
to 1dentily, via a machine learned model, whether a laptop 1s
in an input 1mage. In an example embodiment, the systems
and methods described herein can be used to identily
whether the specified 1tem contains an item of interest, such
as a threat, an explosive, a liquid, a solid, a gas, a gel, a
pressurized liquid or gas, and the like. For example, the
training data set can include a set of images that include a
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container with a liquid and a set of 1mages that include a
container with a solid. Such a data set 1s used to train the
image processing system to identily, via a machine learned
model, whether an input 1mage includes a container with a
liguid or a container with a solid.

FIG. 1 1s a block diagram showing an image processing
system 100 1n terms of modules according to an example
embodiment. One or more of the modules may be 1mple-
mented using device 710, scanning device 720, server 730
and/or database 740 as shown in FIG. 7. The modules
include a machine learning algorithm module 110, a training
data set module 120, an mput data module 130, and an
output data module 140. The modules may include various
circuits, circuitry and one or more software components,
programs, applications, or other units of code base or
instructions configured to be executed by one or more
processors. In some embodiments, one or more of modules
110, 120, 130, 140 may be included 1n server 730, while
other of the modules 110, 120, 130, 140 are provided 1n
device 710 or scanning device 720. Although modules 110,
120, 130, and 140 are shown as distinct modules 1n FIG. 1,
1t should be understood that modules 110, 120, 130, and 140
may be implemented as fewer or more modules than illus-
trated. It should be understood that any of modules 110, 120,
130, and 140 may communicate with one or more compo-
nents included 1n system 700 (FIG. 7), such as device 710,
scanning device 720, server 730, or database(s) 740.

The machine learming algorithm module 110 may be a
hardware-implemented module configured to execute or run
a machine learning algorithm, and may store and manage
parameters, variables, data and other components needed to
execute the machine learning algorithm. In an example
embodiment, the machine learning algorithm 1s a deep
learning convolution neural network (here aifter referred to
as “deep learning CNN™).

The traiming data set module 120 may be a hardware-
implemented module configured to manage and store a
training data set for the machine learning algorithm
employed by the image processing system 100. In an
example embodiment, the training data set includes multiple
images obtained using an x-ray screening machine or device
of items, luggage or packages. The items may include a
laptop, bottle, shoe, or other specified object. The luggage or
packages may contain one or more of a laptop, bottle, shoe,
or other specified i1tems. In an example embodiment, the
training data set includes multiple colorized x-ray images.

The mput data module 130 may be a hardware-imple-
mented module configured to manage and store mput 1images
that are analyzed by the image processing system 100 to
identily presence of a specified object within the 1image.

The output data module 140 may be a hardware-imple-
mented module configured to manage and store the output of
the machine learning algorithm. In some embodiments, the
output 1s an indication whether the input 1image includes a
specified object, and whether the specified object includes a
threat. In an example embodiment, the output 1s an output
image indicating the presence of the specified object by
visually highlighting or emphasizing the specified object in
the input 1mage. In one embodiment, the output 1mage may
include a label i1dentifying the specified object. In another
example embodiment, the output 1s an alarm or alert gen-
erated at a security screening machine or device to indicate
to an operator or security personnel that the items, luggage
or packages include a threat based on analysis of the images
of respective 1items, luggage or packages.

FIG. 2 1s a flowchart illustrating an exemplary method
200 employed by the 1image processing system, according to
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an example embodiment. The method 200 may be per-
formed using or one or more modules of system 100
described above.

At block 202, the machine learning algorithm employed
in the 1mage processing system 100 1s trained for analyzing
a specific format or type of 1image using a training data set.
The machine learning algorithm module 110 may be con-
figured to execute the machine learning algorithm. The
training data module 120 may be configured to provide the
training data set to the machine learning algorithm module
110 for training.

In an example embodiment, the training data set includes
multiple x-ray images of items, luggage and packages. In an
example embodiment, the training data set includes a first set
ol x-ray 1images of 1tems containing a threat and a second set
of x-ray images of items not containing a threat. This
training data set can be used to train the machine learming
algorithm determine whether an x-ray image of an item
contains a threat or does not contain a threat. In another
embodiment, the training data set includes a first set of x-ray
images containing a specified item (e.g., a personal elec-
tronic device, a laptop, a container, a shoe, etc.) and a second
set of x-ray 1images not containing the specified item. Thas
training data set can be used to train the machine learnming
algorithm to i1dentity a specified item in an x-ray image.

In an example embodiment, the machine learning algo-
rithm 1s trained using a training data set that 1s based on the
results or outputs of an existing explosive detection system.
The existing explosive detection system may automatically
determine if an mput x-ray 1image includes an explosive or
other weapon 1tems. The results or outputs of the existing
explosive detection system may include output images with
indications that the image includes an explosive or other
weapon 1tems.

In an example embodiment, the 1mages 1n the traiming
data set are manually identified or labeled as including a
specified item or not including a specified item. In an
alternative embodiment, the images 1n the traiming data are
automatically identified or labeled, using an automated
system, as including a specified 1tem or not including a
speciflied 1item. An automated labeling system can perform
the same function as a human 1n annotating or classifying the
training data.

The images may be TRI-MAT 1mages obtained via x-ray
screening machines or devices, where the TRI-MAT 1mages
identily 1tems 1n the 1mages as organic, 1norganic, or metal-
lic objects. Each type of object 1s depicted as a different
color 1n the TRI-MAT 1mage. In a non-limiting example, the
images for the training data set are obtained from a scanning
device 1nstalled at a security checkpoint 1n a facility, such as
an airport, a bus terminal, a train station, a government
facility, a port or border control, a secure commercial
tacility, and the like.

In an example embodiment, the training data set may
include 2D 1mages. In another example, the training data set
may include multiple 2D 1mages representing diflerent lay-
ers of an object. The 2D i1mages may be cross-sectional
images or slices of an object. In yet another example, the
training data set may include multiple 1mages each repre-
senting a diflerent perspective of an object.

In an example embodiment, the training data set includes
images to train the machine learning algorithm to analyze
x-ray 1mages and i1dentily the presence of a specified object.
The specified object may be, for example, an electronic
device, a mobile computing device, a personal computing
device, a laptop, a tablet, a smartphone, a cellular phone, a
smartwatch, a bottle, container, a particular type of container
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(e.g., aerosol, liguid container, solid container, etc.) a shoe or
pair of shoes, weapons, guns, or knives. The specified object
may be an 1tem or object that may be used to house an
explosive device. In an example embodiment, the training
data set includes images to train the machine learning
algorithm to analyze x-ray images and 1dentily the presence
of a threat (e.g., explosive device). To train the machine
learning algorithm for this objective, the training data set
may include a first training data set that includes 1mages
depicting the items, luggage or packages that include the
specified object. The traiming data set may include a second
training data set that includes 1mages depicting items, lug-
gage or packages that do not include the specified object.
The training data set may include a third training data set
that includes 1images depicting items, luggage or packages
that include a threat (e.g., explosive device). The training
data set may include a fourth traiming data set that includes
images depicting items, luggage or packages that include the
specified object and a threat included 1n the specified object.

In an example embodiment, the machine learming algo-
rithm employed by the image processing system 100 1s a
deep learning CNN. In machine learning, a convolutional
neural network (CNN) 1s a type of feed-forward artificial
neural network i which the connectivity pattern between its
neurons 1s mspired by the organization of the animal visual
cortex. Individual cortical neurons respond to stimuli 1n a
restricted region of space known as the receptive field. The
receptive fields of different neurons partially overlap such
that they tile the visual field. The response of an 1ndividual
neuron to stimuli within its receptive field can be approxi-
mated mathematically by a convolution operation.

In an example implementation, the algorithm architecture
for a deep learming CNN employed by the image processing
system 100 1s an algorithm architecture provided or devel-
oped by Google Inc. and 1s called Google Inception™. In an
example embodiment, the deep learning CNN algorithm
architecture 1s AlexNet™ or GooglLeNet™,

In an example embodiment, an artificial neural network 1s
trained by showing 1t millions of training examples and
gradually adjusting the network parameters until it provides
the desired classifications. The network, in one example,
consists of 10 to 30 stacked layers of artificial neurons. Each
image 1s fed mto the mput layer, which then communicates
to the next layer, until eventually the “‘output” layer 1s
reached. The network’s “answer” or analysis 1s provided by
this final output layer.

Each layer of the neural network progressively extracts
higher and higher-level features of the image, until the final
layer makes a decision on what the image shows. For
example, the first layer may identily edges or corners.
Intermediate layers may interpret the basic features to look
for overall shapes or components, like a door or a leaf. The
final few layers assemble those into complete interpreta-
tions.

In an example embodiment, the machine learning algo-
rithm 1s trained and executed using a suitable framework or
platform. In an example implementation, the Google Incep-
tion algorithm architecture i1s executed using the Cafle
framework provided by University of California, Berkeley.
The anatomy of the Cafle framework includes nets, layers,
and blobs. The Cafle framework includes forward and
backward computations of the layered compositional mod-
¢ls. The task that has to be learned by the Cafle framework
1s referred to as “loss.” The Catle framework also includes
the solver to coordinate model optimization.

Deep networks are compositional models that are natu-
rally represented as a collection of inter-connected layers




US 10,832,391 B2

7

that work on chunks of data. The Calle framework defines
a net layer-by-layer in 1ts own model schema. The network
defines the entire model bottom-to-top from input data to
loss. As data and derivatives tlow through the network 1n the
forward and backward passes, Cafle stores, communicates,
and manipulates the information as blobs. A blob, as used
with respect to Catle, 1s a standard array and unified memory
interface for the framework. The layer comes next as the
foundation of both model and computation. The net follows
as the collection and connection of layers. The details of
blob describe how information 1s stored and communicated
in and across layers and nets.

A blob, as used herein, 1s a wrapper over the actual data
being processed and passed along by Catle, and also under
the hood provides synchronization capability between the
CPU and the GPU. Mathematically, a blob 1s an N-dimen-
sional array stored 1in a C-contiguous fashion. Cafle stores
and communicates data using blobs. Blobs provide a unified
memory interface holding data; e.g., batches of 1mages,
model parameters, and derivatives for optimization. Blobs
conceal the computational and mental overhead of mixed
CPU/GPU operation by synchronizing from the CPU host to
the GPU device as needed. Memory on the host and device
1s allocated on demand (lazily) for eflicient memory usage.

The conventional blob dimensions for batches of 1image
data are number Nxchannel Kxheight Hxwidth W. Blob
memory 1s row-major in layout, so the last/rightmost dimen-
sion changes fastest. For example, 1n a 4D blob, the value at
index (n, k, h, w) 1s physically located at index ((n*K+k)
*H+h)*W+w, where number/N 1s the batch size of the data.
Batch processing achieves better throughput for communi-
cation and device processing. For a training batch of 256
images N=256. Channel/K is the feature dimension, e.g., for
RGB 1mages K=3.

Parameter blob dimensions vary according to the type and
configuration of the layer. For a convolution layer with 96
filters of 11x11 spatial dimension and 3 nputs the blob is
96x3x11x11. For an iner product/fully-connected layer

with 1000 output channels and 1024 input channels the
parameter blob 1s 1000x1024.

A blob synchronizes values between the CPU and GPU 1n
order to hide the synchronization details and to minimize
data transier. In practice when GPUs are present, one loads
data from the disk to a blob 1n CPU code, calls a device
kernel to do GPU computation, and ferries the blob off to the
next layer, 1ignoring low-level details while maintaining a
high level of performance. As long as all layers have GPU
implementations, all the intermediate data and gradients will
remain in the GPU.

The layer 1s the essence of a model and the fundamental
unit of computation. Layers convolve filters, pool, take inner
products, apply nonlinearities like rectified-linear and sig-
moid and other elementwise transformations, normalize,
load data, and compute losses like softmax and hinge.

A layer takes input through bottom connections and
makes output through top connections. Each layer type
defines three critical computations: setup, forward, and
backward. During setup, Cafle initializes the layer and its
connections once at model mitialization. During forward,
Catle given mput from bottom computes the output and send
to the top. During backward, Catfle given the gradient with
respect to the top output computes the gradient with respect
to the input and sends to the bottom. A layer with parameters
computes the gradient with respect to its parameters and
stores 1t internally.

More specifically, there are two Forward and Backward
tfunctions implemented, one for CPU and one for GPU. If a
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GPU version 1s not implemented, the layer falls back to the
CPU functions as a backup option. This 1s usetul for quick
experiments, although i1t may come with additional data
transier cost (its mputs will be copied from GPU to CPU,
and 1ts outputs are copied back from CPU to GPU).

Layers have two key responsibilities for the operation of
the network as a whole: a forward pass that takes the mnputs
and produces the outputs, and a backward pass that takes the
gradient with respect to the output, and computes the gra-
dients with respect to the parameters and to the inputs, which
are 1n turn back-propagated to earlier layers. These passes
are simply the composition of each layer’s forward and
backward.

Developing custom layers requires minimal effort by the
compositionality of the network and modularity of the code.
Define the setup, forward, and backward for the layer and 1t
1s ready for inclusion in a net.

The net jointly defines a function and its gradient by
composition and auto-differentiation. The composition of
every layer’s output computes the function to do a given
task, and the composition of every layer’s backward com-
putes the gradient from the loss to learn the task. Cafle
models are end-to-end machine learning engines. The net 1s
a set of layers connected in a computation graph—a directed
acyclic graph (DAG) to be exact. Cafle does all the book-
keeping for any DAG of layers to ensure correctness of the
forward and backward passes. A typical net begins with a
data layer that loads from disk and ends with a loss layer that
computes the objective for a task such as classification or
reconstruction.

The net 1s defined as a set of layers and their connections
in a plaintext modeling language. The construction of the
network 1s device agnostic—blobs and layers hide imple-
mentation details from the model definition. After construc-
tion, the network 1s run on either CPU or GPU. Layers come
with corresponding CPU and GPU routines that produce
identical results (up to numerical errors).

The models are defined in plaintext protocol builer
schema (prototxt) while the learned models are serialized as
binary protocol builer (binaryproto) .catfemodel files.

Calle speaks Google Protocol Bufler for the following
strengths: minimal-size binary strings when serialized, efli-
cient serialization, a human-readable text format compatible
with the binary version, and eflicient interface implementa-
tions 1n multiple languages, most notably C++ and Python.
This all contributes to the flexibility and extensibility of
modeling 1n Cafle.

The forward and backward passes are the computations of
a Net. The forward pass computes the output given the mput
for inference. In forward Calle composes the computation of
cach layer to compute the “function” represented by the
model. This pass goes from bottom to top. The backward
pass computes the gradient given the loss for learning. In
backward Catle reverse-composes the gradient of each layer
to compute the gradient of the whole model by automatic
differentiation. This 1s back-propagation. This pass goes
from top to bottom.

The backward pass begins with the loss and computes the
gradient with respect to the output. The gradient with respect
to the rest of the model 1s computed layer-by-layer through
the chain rule. Layers with parameters compute the gradient
with respect to their parameters during the backward step.
These computations follow immediately from defining the
model. Catle plans and carries out the forward and backward
passes.

The Solver optimizes a model by first calling forward to
yield the output and loss, then calling backward to generate
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the gradient of the model, and then incorporating the gra-
dient into a weight update that attempts to minimize the loss.
Division of labor between the Solver, Net, and Layer keep
Cafle modular and open to development.

Solving 1s configured separately to decouple modeling
and optimization. The solver orchestrates model optimiza-
tion by coordinating the network’s forward inference and
backward gradients to form parameter updates that attempt
to 1mprove the loss. The responsibilities of learning are
divided between the Solver for overseeing the optimization
and generating parameter updates and the Net for yielding
loss and gradients.

In Catle, learning 1s driven by a loss function (also known
as an error, cost, or objective function). A loss function
specifies the goal of learning by mapping parameter settings
(1.e., the current network weights) to a scalar value speci-
tying the “badness™ of these parameter settings. Hence, the
goal of learning 1s to find a setting of the weights that
minimizes the loss function.

The loss 1n Catle 1s computed by the Forward pass of the
network. Each layer takes a set of input (bottom) blobs and
produces a set of output (top) blobs. In one embodiment,
some of these layers’ outputs may be used in the loss
function.

To create a Cafte model, the model architecture 1s defined
in a protocol bufler definition file (prototxt). Data enters
Cafle through data layers: they lie at the bottom of nets. Data
can come from eflicient databases (LevelDB or LMDB),
directly from memory, or, when efliciency 1s not critical,
from files on disk in HDF3S or common 1image formats.

There are four steps in training a CNN using Cafle. The
first step includes data preparation. In this step, the images
are cleaned and stored 1n a format that can be used by Catle.
In an example embodiment, a Python script executed by the
input data module 130 may handle image pre-processing and
storage, selection of suitable images for a training set, and
application of any preprocessing steps, such as colorization.

The second step includes model definition. In this step, a
CNN architecture 1s chosen, 1ts parameters are defined 1n a
configuration file. For example, the CNN architecture cho-
sen for the 1image processing system described herein may
be Google Inception version 1. One schooled 1n the art will
understand that many multilayer CNN model architectures
are available and enable the performance of the detection
task.

In the third step, the solver parameters are defined 1n a
configuration file. The solver 1s responsible for model opti-
mization.

In the fourth step, the model is trained using the training
data set described herein. After training the model, Catle
generates the trained model 1n a file.

After the training phase, the generated trained models can
be used to 1dentily the presence of a specified object within
an 1nput 1mage, and, 1f the specified object exists in the
image, determine 1 the specified object includes a threat.

In other embodiments, other machine learning frame-
works may be used to implement the deep learning CNN
algorithm. Other frameworks may include Torch™, The-
ano™, and TensorFlow™,

The 1mage processing system 100 stores the one or more
models generated by the trained machine learning algorithm.
In an example embodiment, models generated by the deep
learning CNN consists of an mput layer, at least two hidden
layers, and an output layer as depicted in FIG. 3. As
described above, a machine-learned model includes
machine-learned weights, coethlicients, and forms that are
inherent in traimng a CNN algorithm.
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Continuing with the discussion of FIG. 2, at block 204,
the mput data module 130 receives at least one rendered
x-ray 1mage that includes an item. In a non-limiting
example, the input x-ray image 1s obtained from a scanning
device 1nstalled at a security checkpoint 1n a facility, such as
an airport, a bus terminal, a train station, a government
tacility, a port or border control, a secure commercial facility
and the like.

The 1image processing system 100 executes one or more
machine-learned models generated by training the machine
learning algorithm using the training data set to analyze the
input 1mage and 1dentify presence of a specified object.

At block 206, the machine learning algorithm module 110
1s configured to, using the generated models, analyze the
input 1image received at block 204, and automatically deter-
mine 1f the input 1mage includes a specified object. After
determining that the specified object 1s present or included
in the 1mage, the 1mage processing device, 1 an example
embodiment, determines whether the specified object
includes a threat. For example, the image processing system
100 determines that the image includes a laptop (specified
object). Then the 1mage processing system 100 determines
whether the laptop includes a threat, for example, an explo-
sive device.

At block 208, the output data module 140 generates an
automated detection indication associated with the item
identified in the input image. In an example embodiment, the
automated detection indication 1s a text label or other
graphical indication that identifies a specified item in the
input 1mage. The automated detection indication may be
displayed on or included 1n an output image provided at a
display of a user device. The output image may be the mput
image (e.g., a rendered x-ray image) with an indication of
the presence of a specified item. As described herein, the
user device where the output or the automated detection
indication 1s provided to the user may include a display
device coupled to security scanning device, a computing
device, or a server. In another embodiment, the automated
detection indication may be a visual indication indicating the
location of the specified item 1n the mput 1mage. Such visual
indication may be a colored box shape enclosing the speci-
fled item. In another embodiment, the automated detection
indication may be a graphical indication and/or an audible
indication alerting a user that an 1tem containing a threat 1s
detected 1n the mput 1mage.

The automated detection indication 1s based at least in
part on machine-learned features of the item 1n the input
image, where the machined-learned features of the 1tem are
based on the traiming data set of x-ray 1mages.

The automated detection indication may be transmaitted to
a user device or a computing device coupled to a security
scanning device 1n a facility. In some embodiments, the
security scanning device may be an x-ray screening machine
in an airport or other secure facility. The automated detec-
tion indication may be generated and transmitted 1n real-
time or near real-time with respect to when the mput 1image
1s recerved at the 1mage processing system 100.

The machine learning algorithm employed in the image
processing system requires time for training and set up. After
training, the machine learning algorithm 1s able to analyze
an mput 1mage and generate an output 1n real-time or near
real-time. Once trained, the 1mage processing system may be
used as a pre-screening system at security checkpoints. In
one embodiment, a first abbreviated portion of the machine
learning algorithm may be used to perform pre-screening. In
some embodiments, the output of the image processing
system may be an alert that the luggage corresponding to the




US 10,832,391 B2

11

image requires further processing. In an embodiment, fol-
lowing the generation of the alert, a second more time
intensive portion of the machine learning algorithm may be
executed on the image or luggage. In contrast, 1f the mitial
pre-screening generates an all-clear indication, then the 5
luggage may not be further analyzed. Thus, the image
processing system described herein may be employed to
increase elliciency in image processing and speed up the
security scanning process at a facility.

In an example embodiment, the 1mage processing system 10
100 determines that the identified item at block 206 is a
common false-alarm object for explosive detection systems.

In an example embodiment, a list of common false-alarm
objects 1s stored 1n a database. False-alarm objects identified

by the i1mage processing system are dependent on the 15
machine learming algorithm employed by the system. In an
example embodiment, objects that may be i1dentified by the
image processing system but are common false-alarms
objects 1n terms of threat or explosives may be aggregated

to generate a list of common false-alarm objects to enable a 20
particular machine learning algorithm to account for the
false alarm objects.

FIGS. 4A and 4B show output images 400 and 410
respectively provided by the image processing system
described herein. The output images 400 and 410 1llustrate 25
that the 1image processing system successiully 1identified the
presence ol a specified object, 1n this case a laptop, within
the 1mage.

FIGS. 4C and 4D show output images 400 and 410
respectively provided by the image processing system 30
described herein. The output images 420 and 430 1llustrate
that the 1image processing system successiully identified the
presence of a specified object, 1n this case a laptop, within
the 1mage.

FIG. 5A shows an output image 500 of the image pro- 35
cessing system 100. The output image 500 includes a front
perspective view and a side perspective view of the luggage
depicted 1n the image of FIG. 4A. FIG. 5B shows an output
image 510 of the image processing system 100. The output
image 510 includes a front perspective view and a side 40
perspective view ol the luggage depicted 1n the image of
FIG. 4B. As described herein, the output 1mages are based
on the mput images and include an automated detection
indication. As shown 1n 1mages 500 and 510, the location of
a specified item (e.g., laptop) 1s shown using a colored shape 45
502 and 512 respectively. In example embodiments, the
input rendered x-ray images include perspective views of the
item, luggage or package scanned for security purposes.

Testing of an exemplary trained machine learning algo-
rithm employed by the image processing system described 50
herein, presented a 95.6% probability of detection (PD) of
threats 1n 1mages. In an additional application 1dentifying a
specific type of threat, based on the results of testing the
system, the graph 600 (Relative Operating Characteristic)
illustrated 1n FIG. 6 1s provided. As shown in the graph, the 55
x-ax1s shows the probability of a false alarm (PFA), and the
y-axis shows the PD. The area under the curve (AUC) 1s
calculated to be 0.917.

In this manner, the 1mage processing system described
herein enables analysis of images and automatic identifica- 60
tion of specified i1tems and threats. The 1mage processing
system employs a machine learning algorithm, such as deep
learning CNN, to analyze the images. Past attempts by
others to train a deep learning CNN algorithm to analyze
x-ray 1images to detect threats in items, luggage and pack- 65
ages were unsuccessiul because the size of the training data
set needed to train such a machine learming algorithm was
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unknown. Conventionally 1t was assumed that the training
data set had to be very large, and that such a large data set
for training the machine learning algorithm was unobtain-
able. However, embodiments of the image processing sys-
tem described herein may be trained with a smaller traiming
data set (e.g., approximately 5,000 to 10,000 images may be
used to train a deep learning CNN algorithm) to analyze
x-ray 1mages to identily specified objects and threats in
items, luggage and packages. Additionally, as described
herein, embodiments use a specific type of training data set
to train a deep learning CNN algorithm to analyze x-ray
images to identily specified objects and threats in 1tems,
luggage and packages.

Conventionally, one skilled in the art has been able to use
existing deep learning CNN algorithms to analyze optical
images or 2D 1mages. However, attempts to use existing
deep learning CNN algorithms to analyze x-ray images or
colorized x-ray images result 1n an output that 1s nonsensi-
cal. In contrast, embodiments of the present invention retrain
a deep learming CNN algorithm using a training data set
consisting of x-ray images or colorized x-ray images to
cnable the 1image processing system described herein to
perform the functionalities described herein that result in an
accurate analysis of x-ray images and/or colorized x-ray
1mages.

Conventionally, one skilled in the art may employ a
trained deep learning CNN algorithm to perform analysis on
his or her input data and may retrain a deep learning CNN
algorithm to perform his or her desired analysis. Conven-
tionally this retraining has been done by retraiming only a
certain percentage of layers, for example 50-80% of the
layers, based on the transferred learning technique for CNN.
However, 1n some embodiments of the present invention, 1n,
100% of the layers of the deep learning CNN algorithm are
retrained to be able to analyze x-ray images or colorized
x-ray 1mages to identify a specified object and threat. In one
embodiment, greater than 95% of the layers of the layers of
the deep learning CNN algorithm are retrained to be able to
analyze x-ray images or colorized x-ray images to identily
a specified object and threat.

The use of a deep multi-layer CNN approach traditionally
requires large amounts of training data 1n order to facilitate
construction of a complex complete end-to-end feature
extraction, representation, and classification process. Mod-
ern CNN approach typically include varying number of
layers (3-22) within their structure. Presently, such CNNs
are designed manually with the resulting parametrization of
the networks performing training using a stochastic gradient
descent approach with varying parameters such as batch
s1ze, welght decay, momentum and learning rate over a huge
data set (typically 10° in size). However, the limited appli-
cability of such training and parameter optimization tech-
niques to problems where such large datasets are not avail-
able gives rise to the concept of transier learning.

Within the context of x-ray security screeming, limited
availability of training for particular items of interest can
thus pose a problem. To overcome this 1ssue, embodiments
employ a transfer learning paradigm such that a pre-trained
CNN, primarily trained for generalized image classification
tasks where suflicient training data exists, can be specifically
optimized as a later secondary process that targets a specific
application domain. Each hidden layer 1n a CNN has distinct
feature representation related characteristics among which
the lower layers provide general features extraction capa-
bilities, whilst higher layers carry information that 1s
increasingly more specific to the original classification task.
This finding facilitates the verbatim re-use of the generalized
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feature extraction and representation of the lower layers 1n
a CNN, whilst higher layers are fine-tuned towards second-
ary problem domains with related characteristics to the
original. Using this paradigm, embodiments leverage the
prior1 CNN parametrization of an existing fully tramned
network, on a generic 1000+ object class problem, as a
starting point for optimization towards the specific problem
domain of limited object class detection within x-ray
images. Instead of designing a new CNN with random
parameter 1nitialization, embodiments adopt a pretrained
CNN and fine tune 1ts parameterization towards a specific
classification domain. One embodiment uses Google Incep-
tion version 1 with 6 million parameters. In an embodiment,
zero or more layers may not be retrained.

FIG. 7 schematically depicts an exemplary system for
training the CNN. As described herein, training of the CNN
algorithm starts with a sequence of layers 710, a set of
iitialized parameters 720 and a set of training data 730. In
an example embodiment, the training data 730 1s stored as
tolders of multiple images, where each folder corresponds to
one class of data. That 1s, a first folder may contain images
with laptops, a second folder may contain 1mages without
laptops, a third folder may contain 1mages with bottles, a
tourth folder may contain images without bottles, and so on.
During training, each layer’s parameters 720 may be
updated or frozen as indicated by the lock 1cons 715. After
training, the CNN model with the updated parameters and
the sequence of layers 1s used to analyze input 1mages to
identily specified items and threats therewithin.

Some conventional systems, freeze certain layers of a
pre-trained CNN algorithm to use certain existing machine-
learned features of the pre-trained CNN. In an example
embodiment, the systems and methods described herein
retrain all the layers of an existing CNN algorithm to enable
the CNN algorithm to generate new machine-learned fea-
tures, weights and coeflicients based on the training data set.
Some conventional systems also train a machine learning
algorithm on particular portions or sections of an image that
contain a specified item. However, the systems and methods
described herein train the machine learning algorithm on
whole or entire 1mages that contain specified i1tems, rather
than 1solating a portion of the image that contains the item.
In an example embodiment, the 1mage processing system
described herein 1s trained on multiple views or dimensions
of an i1mage, as illustrated 1n FIGS. 5A and 5B. In an
example embodiment, the 1mage processing system
described herein 1s trained using the same number of 1images
for a particular class of items. That 1s, the training data set
includes the same number of 1mages that have a specified
item and the same number of 1mages that do not have the
specified 1tem. Similarly, the training data set includes the
same number of images that include an 1tem containing a
threat and the same number of 1mages that include an item
without a threat. In contrast, conventional systems use
training data sets that have an unequal number of 1mages for
particular classes of items.

To implement the 1mage processing system described
herein, an exemplary embodiment employs a computing
device running LINUX, one or more graphics processing
cards or units (GPUs), thousands of images for training, and
a deep learning CNN framework (e.g., Catle).

Appendix A submitted with the present disclosure 1llus-
trates steps of an example CNN algorithm trained according,
to the present disclosure to analyze an example x-ray input
image that includes a container (e.g., bottle). The example
CNN of Appendix A 1s generated by training a Google
Inception™ CNN algorithm. Appendix A illustrates an
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exemplary network architecture and the output of the net-
work at each stage for the machine learning algorithm
employed by the image processing system described herein.

Appendix B submitted with the present disclosure 1llus-
trates steps ol an example CNN algorithm that 1s not traimned
according to the present disclosure, and rather 1s trained
using conventional methods where certain layers of the
CNN are frozen. As seen 1n Appendix B, the classification
output which correctly indicated a bottle after training does
not do so with the existing pre-trained machine learming
algorithm.

FIG. 8 illustrates a network diagram depicting a system
800 for implementing the 1mage processing system, accord-
ing to an example embodiment. The system 800 can include
a network 805, multiple devices, for example, device 810,
scanning device 820, server 830, and a database(s) 840.
Each of the devices 810, 820, server 830, and database(s)
840 1s in communication with the network 803.

In an example embodiment, one or more portions of
network 805 may be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area
network (WAN), a wireless wide area network (WWAN), a
metropolitan area network (MAN), a portion of the Internet,
a portion ol the Public Switched Telephone Network
(PSTN), a cellular telephone network, a wireless network, a
WiF1 network, a WiMax network, any other type of network,
or a combination of two or more such networks.

The device 810 may include, but are not limited to, work
stations, computers, general purpose computers, Internet
appliances, hand-held devices, wireless devices, portable
devices, wearable computers, cellular or mobile phones,
portable digital assistants (PDAs), smart phones, tablets,
ultrabooks, netbooks, laptops, desktops, multi-processor
systems, microprocessor-based or programmable consumer
clectronics, network PCs, mini-computers, and the like.
Device 810 may connect to network 805 via a wired or
wireless connection.

The scanning device 820 may include an x-ray machine or
system to scan items, such as luggage, packages, containers,
and other items, and produce rendered x-ray images of
scanned 1tems on a display device coupled to the scanning
device 820. In an example embodiment, the scanning device
820 1s a security screening system at a checkpoint at an
airport. The scanning device 820 may be used to scan
passengers’ luggage and carry-on items for security pur-
poses. In an example embodiment, the images produced by
the scanmng device 820 are used as the dataset to train the
machine learning algorithm as described herein. In other
embodiments, the scanning device 820 produces the mput
image for the image processing system 100. After the mput
image 1s processed, the output image may be displayed at the
display device coupled to the scanning device 820, where
the output 1image may include a label for the 1dentified 1tem,
an indication of the location of the item within the 1mage,
and an indication of a threat status of the item. In an example
embodiment, the scanning device 820 1s a commercially
available ClearScan® device.

As an add-on module, the image processing system
described herein can be loaded as a software module onto an
existing security checkpoint device or existing server net-
worked to one or more devices. The i1mage processing
system generates an alarm and alerts the operator of the
security checkpoint device to detected threats, 1n addition to
any other detection technology that may be installed on
those devices or servers. In this way, the 1mage processing
system adds detection capability, without clearing 1tems that
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would generate an alarm wvia other channels or programs
implemented on those devices or servers.

While one schooled in the art can appreciate that the
add-on capability may be added to any x-ray imaging
device, 1n one embodiment it may be added to a ClearScan® 5
checkpoint scanner that has previously passed a general
detection requirement with a separate algorithm. In this way,
the alerts generated by the image processing system add-on
described herein may be displayed on the screen along with
alarms generated by other detection software. 10

In an example embodiment, the devices 810, 820 may
perform one or more of the functionalities of the image
processing system 100 described herein. The device 810,
820 can include one or more components of computing
device 800 of FIG. 8. The device 810, 820 may be used to 15
train the machine learning algorithm, and then use the
trained algorithm on mmput images to 1dentify presence of a
specified object and threat.

In an example embodiment, the 1mage processing system
100 may be included on the server 830, and the server 830 20
performs one or more ol the functionalities of the image
processing system 100 described herein. In some embodi-
ments, the devices 810, 820 may perform some of the
functionalities, and the server 830 performs the other func-
tionalities described herein. 25

Each of the database(s) 840, and server 830 i1s connected
to the network 805 via a wired or wireless connection.
Server 830 includes one or more computers or processors
configured to communicate with devices 810, 820 via net-
work 805. The server 830 can include one or more compo- 30
nents of device 900 of FIG. 9. Server 830 hosts one or more
applications or websites, including the image processing
system described herein, accessed by devices 810, 820
and/or facilitates access to the content of database(s) 840.
Database(s) 840 include one or more storage devices for 35
storing data and/or instructions (or code) for use by server
830, and/or devices 810, 820. Database(s) 840 and server
830 may be located at one or more geographically distrib-
uted locations from each other or from devices 810, 820.
Alternatively, database(s) 840 may be included within server 40
830.

FIG. 9 1s a block diagram of an exemplary computing
device 900 that can be used to perform one or more steps of
the methods provided by exemplary embodiments. For
example, computing device 900 may be, but 1s not limited to 45
device 810, 820 and server 830 as described 1n FIG. 8. The
computing device 900 includes one or more non-transitory
computer-readable media for storing one or more computer-
executable 1nstructions or software for implementing exem-
plary embodiments. The non-transitory computer-readable 50
media can 1include, but are not limited to, one or more types
of hardware memory, non-transitory tangible media (for
example, one or more magnetic storage disks, one or more
optical disks, one or more USB flashdrives), and the like.
For example, memory 906 included in the computing device 55
900 can store computer-readable and computer-executable
instructions or software for implementing exemplary
embodiments. The computing device 900 also includes
processor 902 and associated core 904, and optionally, one
or more additional processor(s) 902' and associated core(s) 60
904' (for example, 1n the case of computer systems having
multiple processors/cores), for executing computer-readable
and computer-executable instructions or software stored 1n
the memory 906 and other programs for controlling system
hardware. Processor 902 and processor(s) 902' can each be 65
a single core processor or multiple core (904 and 904')
processor. The computing device 900 also 1includes a graph-
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ics processing unit (GPU) 905. In some embodiments, the
computing device 900 includes multiple GPUs.

Virtualization can be employed in the computing device
900 so that mfrastructure and resources in the computing
device can be shared dynamically. A virtual machine 914 can
be provided to handle a process running on multiple pro-
cessors so that the process appears to be using only one
computing resource rather than multiple computing
resources. Multiple virtual machines can also be used with
One Processor.

Memory 906 can include a computer system memory or

random access memory, such as DRAM, SRAM, EDO
RAM, and the like. Memory 906 can include other types of
memory as well, or combinations thereof. A user can interact
with the computing device 900 through a visual display
device 918, such as a touch screen display or computer
monitor, which can display one or more user iterfaces 919.
The visual display device 918 can also display other aspects,
clements and/or information or data associated with exem-
plary embodiments. The computing device 900 can include
other I/O devices for receiving input from a user, for
example, a keyboard or any suitable multi-point touch
interface 908, a pomnting device 910 (e.g., a pen, stylus,
mouse, or trackpad). The keyboard 908 and the pointing
device 910 can be coupled to the visual display device 918.
The computing device 900 can include other suitable con-
ventional I/O peripherals.

The computing device 900 can also include one or more
storage devices 924, such as a hard-drive, CD-ROM, or
other computer readable media, for storing data and com-
puter-readable mstructions and/or software, such as one or
more modules of the system 100 shown i FIG. 1 that
implements exemplary embodiments of the notification sys-
tem as described herein, or portions thereof, which can be
executed to generate user interface 919 on display 918.
Exemplary storage device 924 can also store one or more
databases for storing any suitable information required to
implement exemplary embodiments. The databases can be
updated by a user or automatically at any suitable time to
add, delete or update one or more items in the databases.
Exemplary storage device 924 can store one or more data-
bases 926 for storing provisioned data, and other data/
information used to implement exemplary embodiments of
the systems and methods described herein.

The computing device 900 can include a network inter-
face 912 configured to interface via one or more network
devices 922 with one or more networks, for example, Local
Area Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 36 kb, X.25), broadband connec-
tions (for example, ISDN, Frame Relay, ATM), wireless
connections, controller area network (CAN), or some com-
bination of any or all of the above. The network interface
912 can include a built-in network adapter, network inter-
tace card, PCMCIA network card, card bus network adapter,
wireless network adapter, USB network adapter, modem or
any other device suitable for interfacing the computing
device 900 to any type of network capable of communica-
tion and performing the operations described herein. More-
over, the computing device 900 can be any computer system,
such as a workstation, desktop computer, server, laptop,
handheld computer, tablet computer (e.g., the 1Pad® tablet
computer), mobile computing or communication device
(e.g., the 1Phone® communication device), or other form of
computing or telecommunications device that 1s capable of
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communication and that has sutlicient processor power and
memory capacity to perform the operations described
herein.

The computing device 900 can run any operating system
916, such as any of the versions of the Microsoft® Win-
dows® operating systems, the different releases of the Unmix
and Linux operating systems, any version of the MacOS®
for Macintosh computers, any embedded operating system,
any real-time operating system, any open source operating
system, any proprietary operating system, any operating
systems for mobile computing devices, or any other oper-
ating system capable of running on the computing device
and performing the operations described herein. In exem-
plary embodiments, the operating system 916 can be run in
native mode or emulated mode. In an exemplary embodi-
ment, the operating system 916 can be run on one or more
cloud machine istances.

In describing exemplary embodiments, specific terminol-
ogy 1s used for the sake of clarity. For purposes of descrip-
tion, each specific term 1s intended to at least include all
technical and functional equivalents that operate 1n a similar
manner to accomplish a similar purpose. Additionally, in
some 1nstances where a particular exemplary embodiment
includes multiple system elements, device components or
method steps, those elements, components or steps may be
replaced with a single element, component or step. Like-
wise, a single element, component or step may be replaced
with multiple elements, components or steps that serve the
same purpose. Moreover, while exemplary embodiments
have been shown and described with references to particular
embodiments thereol, those of ordinary skill in the art will
understand that various substitutions and alterations 1n form
and detail may be made therein without departing from the
scope of the present disclosure. Further still, other embodi-
ments, functions and advantages are also within the scope of
the present disclosure.

What 1s claimed 1s:
1. A computing-device implemented method for i1denti-
fying an item in an X-ray image using at least one computing
device equipped with a processor, the method comprising;:
executing, using the at least one computing device, at
least one machine-learned model, the at least one
machine-learned model trained with at least one train-
ing data set of x-ray images, the at least one training
data set including a first set of x-ray 1mages of items
containing threats and a second set of x-ray images of
items not containing threats, the at least one machine-
learned model 1s a convolutional neural network (CNN)
and the first set of x-ray images or the second set of
x-ray 1mages include one or more volumetric x-ray
1mages or one or more projection x-ray images;

receiving, with the at least one computing device, at least
one rendered x-ray image that includes an item, the
x-ray 1mage having a 2-D TRI-MAT format that 1den-
tifies 1items 1n the 1mage as organic, 1norganic or metal-
lic;

identifying, with the at least one computing device, the

item using the at least one model; and

generating, with the at least one computing device, an

automated detection indication associated with the
item.

2. The method of claim 1, wherein the at least one training,
data set includes a first set of x-ray images containing a
specified item and second set of x-ray images not containing
the specified 1tem.
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3. The method of claim 1, wherein the automated detec-
tion 1ndication 1s based at least 1n part on machine-learned
features of the 1tem that are based on the at least one training
data set.

4. The method of claim 1, wherein the machine-learned
model includes weights, coeflicients, and forms learned by
analysis of the at least one training data set.

5. The method of claim 1, wherein the automated detec-
tion 1ndication 1includes a visual indication of a location of
the 1tem within the at least one rendered x-ray image.

6. The method of claim 1, wherein the automated detec-
tion indication includes a label within the at least one
rendered x-ray image identifying the item.

7. The method of claim 1, further comprising:

determiming, with the at least one computing device,

whether the 1tem contains a threat or does not contain
a threat based on the at least one machine-learned
model; and

generating, with the at least one computing device, the

automated detection indication when the 1tem contains
a threat.
8. The method of claim 7, wherein the automated detec-
tion mndication includes at least one of a visual indication and
an auditory alert when the 1tem contains a threat.
9. The method of claim 1, further comprising:
determiming, with the at least one computing device,
whether the 1tem contains a threat or does not contain
a threat based on the at least one model; and

generating, with the at least one computing device, the
automated detection indication when the item does not
contain a threat.

10. The method of claim 1, further comprising:

transmitting, with the at least one computing device, the

automated detection indication to at least one of a
baggage handling system or an operator in real-time or
near real-time.

11. The method of claim 1, wherein the at least one
training data set includes x-ray images of items obtained
using an X-ray screenmng machine.

12. The method of claim 1, wherein the at least one
rendered x-ray 1mage 1s based on scanning at least one object
at a security checkpoint 1n a facility.

13. The method of claim 1, wherein the at least one
rendered x-ray image 1s at least one 2-D projection image.

14. The method of claim 1, wherein the at least one
rendered x-ray image 1s at least one 3-D 1mage of density,
stopping power, or atomic composition.

15. The method of claim 1, wherein the item 1s a laptop,
a bottle, a shoe, or a personal electronic device.

16. The method of claim 1, further comprising:

determining, with the at least one computing device, that

the 1tem 1s a common false-alarm object for explosive
detection systems.

17. The method of claim 1, further comprising;:

training, with the at least one computing device, the

machine learning algorithm using a result of a previ-
ously-executed explosive detection system.

18. A system for identifying an item 1n an X-ray image, the
system comprising:

a scanner configured to render at least one x-ray 1image;

a computing device equipped with a processor in com-

munication with the scanner, the computing device

configured to:

execute at least one machine-learned model, the at least
one machine-learned model trained with at least one
training data set of x-ray images, the at least one
training data set including a first set of x-ray images
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of 1items containing threats and a second set of x-ray
images of items not containing threats, the at least
one machine-learned model being 1s a convolutional
neural network (CNN), and the first set of x-ray
images or the second set of x-ray images include one
or more volumetric x-ray images or one or more
projection x-ray 1mages;

receive the at least one rendered x-ray image from the

scanner, the at least one rendered x-ray 1image includes
an 1tem, the x-ray image having a 2-D TRI-MAT format
that 1dentifies 1tems 1n the 1image as organic, inorganic
or metallic;

identify the item using the at least one model; and

generate an automated detection indication associated

with the item.

19. The system of claim 18, wherein the at least one
training data set includes a first set of x-ray 1images contain-
ing a specified item and second set of x-ray images not
containing the specified item.

20. The system of claim 18, wherein the automated
detection indication 1s based at least 1 part on machine-
learned features of the item that are based on the at least one
training data set.

21. The system of claim 18, wherein the machine-learned
model includes weights, coeflicients, and forms learned by
analysis of the at least one training data set.

22. The system of claim 18, wherein the automated
detection indication includes a visual indication of a location
of the item within the at least one rendered x-ray image.

23. The system of claim 18, wherein the automated
detection 1ndication includes a label within the at least one
rendered x-ray image identifying the item.

24. The system of claim 18, the computing device further
configured to:

determine whether the 1item contains a threat or does not

contain a threat based on the at least one machine-
learned model; and

generate the automated detection indication when the item

contains a threat.

25. The system of claim 24, wherein the automated
detection indication 1includes at least one of a visual 1ndica-
tion and an auditory alert when the item contains a threat.

26. The system of claim 18, the computing device further
configured to:

determine whether the 1item contains a threat or does not

contain a threat based on the at least one model; and
generate the automated detection indication when the 1item
does not contain a threat.

27. The system of claim 18, the computing device further
configured to transmit the automated detection 1indication to
at least one of a baggage handling system or an operator 1n
real-time or near real-time.

28. The system of claim 18, wherein the at least one
training data set includes x-ray images of items obtained
using an xX-ray screening machine.

29. The system of 19, wherein the at least one rendered
Xx-ray 1mage 1s based on scanning at least one object at a
security checkpoint 1n a facility.

30. The system of claim 18, wherein the at least one
rendered x-ray image 1s at least one 2-D projection image.

31. The system of claim 18, wherein the at least one
rendered x-ray 1mage 1s at least one 3-D i1mage of density,
stopping power, or atomic composition.

32. The system of claim 18, wherein the item 1s a laptop,
a bottle, a shoe, or a personal electronic device.
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33. The system of claim 18, the computing device turther
configured to determine that the item 1s a common false-
alarm object for explosive detection systems.

34. The system of claim 18, the computing device turther
configured to train the machine learning algorithm using a
result of a previously-executed explosive detection system.

35. A non-transitory computer readable medium storing
instructions executable by a processor, wherein execution of
the 1nstructions causes the processor to implement a method
for identifying an 1tem 1n an X-ray image, the method
comprising;

executing at least one machine-learned model, the at least

one machine-learned model trained with at least one
training data set of x-ray images, the at least one
training data set including a first set of x-ray 1mages of
items containing threats and a second set of x-ray
images of 1items not containing threats, the at least one
machine-learned model 1s a convolutional neural net-
work (CNN) and the first set of x-ray images or the
second set of x-ray 1images include one or more volu-
metric X-ray 1mages or one or more projection x-ray
images;

recerving at least one rendered x-ray image that includes

an 1tem, the x-ray image having a 2-D TRI-MAT format
that 1dentifies 1items 1n the 1image as organic, 1norganic
or metallic;

identifying the 1item using the at least one model; and

generating an automated detection indication associated

with the item.

36. The non-transitory computer readable medium of 35,
wherein the at least one traiming data set includes a first set
of x-ray images contaiming a specified item and second set
of x-ray 1images not containing the specified item.

3’7. The non-transitory computer readable medium of 35,
wherein the automated detection indication 1s based at least
in part on machine-learned features of the item that are based
on the at least one training data set.

38. The non-transitory computer readable medium of 35,
wherein the machine-learned model includes weights, coet-
ficients, and forms learned by analysis of the at least one
training data set.

39. The non-transitory computer readable medium of
claim 35, wherein the automated detection i1ndication
includes a visual indication of a location of the item within
the at least one rendered x-ray image.

40. The non-transitory computer readable medium of
claim 35, wherein the automated detection indication
includes a label within the at least one rendered x-ray image
identifying the item.

41. The non-transitory computer readable medium of
claim 35, the execution of the instructions further causes the
processor to:

determine whether the item contains a threat or does not

contain a threat based on the at least one machine-
learned model; and

generate the automated detection indication when the item

contains a threat.

42. The non-transitory computer readable medium of
claim 41, wherein the automated detection indication
includes at least one of a visual indication and an auditory
alert when the 1tem contains a threat.

43. The non-transitory computer readable medium of
claim 35, the execution of the instructions further causes the
processor to:

determine whether the item contains a threat or does not

contain a threat based on the at least one model; and
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generate the automated detection indication when the 1item

does not contain a threat.

44. The non-transitory computer readable medium of
claim 35, wherein the execution of the instructions further
causes the processor to transmit the automated detection
indication to at least one of a baggage handling system or an
operator 1n real time or near real time.

45. The non-transitory computer readable medium of
claim 35, wherein the at least one training data set includes

x-ray 1mages of items obtained using an x-ray screening 1

machine.

46. The non-transitory computer readable medium of
claim 35, wherein the at least one rendered x-ray 1image 1s
based on scanning at least one object at a security checkpoint
in a facility.

47. The non-transitory computer readable medium of
claim 35, wherein the at least one rendered x-ray 1image 1s at
least one 2-D projection image.
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48. The non-transitory computer readable medium of
claim 35, wherein the at least one rendered x-ray image 1s at
least one 3-D 1mage of density, stopping power, or atomic
composition.

49. The non-transitory computer readable medium of
claim 35, wherein the 1tem 1s a laptop, a bottle, a shoe, or a
personal electronic device.

50. The non-transitory computer readable medium of
claim 35, wherein the execution of the instructions further
causes the processor to determine that the 1tem 1s a common
false-alarm object for explosive detection systems.

51. The non-transitory computer readable medium of
claim 35, wherein the execution of the instructions further
causes the processor to train the machine learning algorithm

using a result of a previously-executed explosive detection
system.
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