12 United States Patent

Haila et al.

US010831921B2

US 10,831,921 B2
*Nov. 10, 2020

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHODS FOR PROVIDING (52) U.S. CL
QUERY-BASED PERMISSIONS TO DATA CPC GO6l 21/6227 (2013.01); GO6F 16/245
(2019.01); GO6F 2221/2113 (2013.01); GO6F
(71) Applicant: WORKIVA INC., Ames, IA (US) 2221/2137 (2013.01)
(358) Field of Classification Search
(72) Inventors: David Andrew Haila, Ames, 1A (US); None
Graham Cummins, Bozeman, M1 See application file for complete search history.
(US); Robert Ray Lamb, Bozeman,
MT (US); Jeroen Sebastian (56) References Cited
C donk, B MT (US .
ranendonk, Bozeman, M1 (US) U.S. PATENT DOCUMENTS
(73) Assignee: WORKIVA INC., Ames, IA (US) 5862325 A /1999 Reed of al
6,038,563 A 3/2000 Bapat et al.
(*) Notice: Subject to any disclaimer, the term of this 7.039.871 B2 59006 Cffl?ke
patent 1s extended or adjusted under 35 7,076,736 B2 7/2006 Hugh
U.S.C. 154(b) by 36 days. (Continued)
This patent 1s subject to a terminal dis-
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 16/357,866 Adaikkalavan et al., “Secure Shared Continuous Query Processing,”
R ’ ACM SAC’11, 2011, pp. 1000-1005.
(22) Filed: Mar. 19, 2019 (Continued)
(65) Prior Publication Data Primary Examiner — Scott A. Waldron
(74) Attorney, Agent, or Firm — Faegre Drinker Biddle &
US 2019/0213351 Al Jul. 11, 2019 Reath LLP
(37) ABSTRACT
Related U.S. Application Data A computing device 1s configured to carry out actions
(63) Continuation of application No. 16/046,373, filed on including: generating, in a graph database, an access role
Jul. 26, 2018, now Pat. No. 10,339,338, which is a vertex that defines an access role of a user, where the access
continuation-in-part of application No. 15/613,911 role vertex 1s connected to a user vertex representing the
filed on Jun. 5, 2017, now Pat. No. 10,095,881, which user; generating a query vertex including a traversal clause
is a continuation of application No. 15/159,340, filed that represents a query of the graph database; generating a
on May 19, 2016, now Pat. No. 9,692,764 permission edge between the access role vertex and the
query vertex, where the permission edge defines the access
(60) Provisional application No. 62/296,862, filed on Feb role’s permission to access the results of the query; recelving
12 2016 PP ' e ' a request to execute the query on behall of the user; 1n
’ ' response to the request, traversing the graph database
(51) Int.Cl according to the traversal clause to locate a set of vertices;
GOESF 2 1/62 (2013.01) and generating a set of results based on the set of vertices.
Gool’ 16245 (2019.01) 23 Claims, 21 Drawing Sheets
300 4 302 A
—\\' AT PERSON: user?
330 T INVOICE: 1001 fhame: George
?/ number: 1001 sname: Washington
O3\ __amount: $111 admin: true
FFPERs%Dr% 2“/60@55 332 (312) }\ GJ
i) | INVOICE: i002 35
kan:lnizeiériiilin Sﬂldfsmdey—]— number.: 11]02 o 44
\ amount: $222 l
\ Vi, o Own
4 =208 Y % QUERY: query’
PERSON: user3 PERSON(P)<SoldBy()INVOICE; :
fname: Tom {P).sname;
_shame: Jeﬁersugj {1).number;

AGpPIOS/NIoS.

: 316
il INVOICE: i004
number; 1004
amount: $444 Y.

\ (1}.amount: /

V

-

322
QUERY: query?2

334_'/’
— @me(P)<SoldBy(DINVOICE;
4 214 h 348’/ (FP}).sname;
INVOICE: 1003 \ (1}.number; /
number: 1003

_amount: $333

US 10,831,921 B2
Page 2

(56)

7,181,017
8,495,603
8,615,528
8,798,519
9,348,847
2003/0227487
2013/0117060
2014/0129511
2014/0373176
2016/0140205
2017/0091470
2018/0247073

Luo et al., “LAYER: A cost-ef

References Cited

U.S. PATENT DOCUMENTS

Ol

2/2007

7/201
12/201
8/201

5/20]

3
3
4
6

12/2003

5/201
5/201
12/201
5/201
3/201

8/201

OO ~1 O B W

Nagel et al.
Tien et al.
Shah

Dozier et al.
Stetson et al.
Hugh
Henriksen et al.
Bramel et al.
Aming et al.
Hsu et al.
Infante-Lopez
Kreutzer et al.

AER PUBLICATIONS

icient mechanism to support multi-

tenant database as a service in cloud,” The Journal of Systems and

Software, Dec. 2, 2014, vol. 101, pp. 86-96.
Microsoft Corporation, “Microsoft Project Server 2010 Adminis-

trator’s Guide,” retrieved from internet at <http://go.microsoit.com/
twlink/p/?LinkId=212382>, 2011, 302 pages.

U.S. Patent Nov. 10, 2020 Sheet 1 of 21 US 10,831,921 B2

07 0

1 1
SaaS Platform Productivity
Software Software
\
\
\ \

‘ 108
— >

104

102

FIG. 1

X i Z Ol

cle

US 10,831,921 B2

¢ T eeeeeeeeeeeeeeseesesmmmeeeeeeeeeee s801A8(]
| o . ndujuesn

OLC ~

ooeLl/lU]
_me_mo_r_o_m_O

Sheet 2 of 21

AIoWBs|\ - AJows|\
\Cm_ocoomw S— ... \CWC‘_Cﬁ_

Nov. 10, 2020

JOSS200J)4

U.S. Patent

14014

US 10,831,921 B2

Sheet 3 of 21

Nov. 10, 2020

U.S. Patent

¢ Ol
ceed Junowe
cO0 L Jequnu
Jsquinu'()) e €00! :3OI0ANI
‘aweus(d) e RS
.mo_o>z_:§.mo_owv§me© —_— —
cAenb AY3ND MIIA J PEE
cce g JUunowe s
00| Jaqunu nw
140101 .m_|o_o>z_ _ \@ 3
9l¢ “so O
@\\0\0 N
qunowe () S S,
Jaguinu(]) UOSJBLS[:BWBUS
‘aweus(d) A Wwo | :aweu)
JDIOANI(NAGPIOS>(d)NOSYH3d ,w@\ cJasn \NOSY3d

LAJanb AY3IND
0c¢<

90¢

UMQO

ZZ2% Junowe
7001 Jeqwnu
00! -34DI10ANI

43

Ulyueld :aweus
uag :aweuy
¢iesn \NOSH4dd

401

4 UMO

ove -~

anJ) :ulwpe
UOIDUIUSBAA :DWeUS
ablos9) :aweu)

L1 1S Junowe
LOO | Jagqunu

100! -FOIOANI

0133 »

~— 00¢

L19sSN .NOSddd
c0g

US 10,831,921 B2

Sheet 4 of 21

Nov. 10, 2020

U.S. Patent

A =

coeg junowe
00| Jeaqunu
€00!"4I10ANI
v1e

Jaqunu-(|)
‘aweus(d)

‘JDI0ANI(1)AGpPI0S>(d)ew®
zAJanb AY3IND
A4S

Pi7$ - Juhowe 7ee

001 Jequnu
700! -4OIOANI
1€

Sold/SoldBy

qunowe ()

Jaquinu(|) UOSJBLS[:BWBUS

‘auweus(d) o Wwo | :aweu)
IDIOANI()AGPIOS>(d)NOSHId @@ closn INOSYH3d

LAJanb (AY3IND 90¢

0ce

22238 ‘lJunowe
7001 Jeqwnu
¢00! -94J10ANI

43

uipueld :aweus
uag :eaweu)
¢iosn \NOSH4d

70C

L1 1S unowe

LOOL Jegwnu
00! -4DIOANI
oL€

~— 00V

av Ol

US 10,831,921 B2

ceeg junowe

001 Jequnu
Jaguinu () A €001:IDI0ANI
‘aweus(d) ~ vleg
~ 3DI0ANI()AgPI0S>(d)oW® — —
S chienb 1 A¥3ND MBIN i oo
—,_ﬁlu % ﬁuﬁ?mw Junoule w
D 00 Jegqunu e
7 v00! :FOIOANI |13, Z
9l¢€ A .wo\o O
@\b\o P
o e S
& UOSJIBUa[:DWEeUS
= WO | :aweu)
2 gJosn :NOSHId
z 90¢%

~— 20V

U.S. Patent

US 10,831,921 B2

Sheet 6 of 21

Nov. 10, 2020

U.S. Patent

G Ol
ceed Junowe
cO0 | Jegqunu
Jaquinu (1) . €00! :3OI0ANI
‘aweus(d) ~ RS
IOIOANI()AGPI0S>(d)oW® —_— —
Zf1onb AYMIND ojnoex 4 J Pee
cce Pir$ Junowe &d
00| Jegqunu nw
700! - JOIOANI A@ 3
9l¢ “so O
@\\0\0 %,
qunowe () - S S,
Jagquinu(}) /V(\ UOSJalo :awWeus
ﬁ . P AY .
aweus(d) \@o Wwo | :aweu)
JJI0OANI(DAGPIOS>(d)NOSHIAd <, £Jesn :NOSH3d
LAienb 1 A¥3ND LN 90¢

0ce
UMQ

22238 ‘Junowe
7001 Jagwnu
00! -3O10ANI

43

UlMueld :aweus
uag :aweuj
¢iosn \NOSH4d

401

4 UMQO

ove -~

anJ) :ulwpe
UOIDUIUSBAA :DWeUS

L1 1S Junowe
LOO | Jegqunu

ab.ioa9) :sweuy 00! :IDIOANI ~—0¢¢
| 18sn INOSYH3d o]%3 »
20S ~~— 00S

ZAsnb 1 AY3IND
A4S

90¢

) :
oo g9 Ol
—
2\ .
— m_mo_E:_.._ () 8%G UOSJBLSI :aWeus
& dueus (d) ~ Wo | sweu)
- w Agp|o awl f—-B)JN08X |
S 30I0ANI(DAGPIOS>(d)ewD INoex3 closn NOSHId
N
-

7(\ ¢09

Jaquinu(y)
aweus(d)

Y Junouie
m 3DI0ANKDAGPIOS>(d)eWwd) wmmmw _ngezc
e~ ma%wwmw_m_:o 00! :IOI0ANI
: 91E
e
9
qJunowe ()
_ Jaguinu(|) e = S
M | ‘auleus(d) b3 @..Nv V9 Ol
Q 'IOI0ANI(NAGPI0S>(d)INOSYI o
= | Aienb 1 A¥3ND e e o
m 0ZE V8x3
CCc$ Unowe uijyuesd :aWweus
COOL SQuinul | aipio usg sweuy)
200! “3OI0ANI [AEPIOS/PIOS o NOSH AL
21e CEE oS =ae

L1 1S unowe

LOO L Jequinu

L0O! :3DI0OANI /
o1e ~— 009

U.S. Patent

US 10,831,921 B2

Sheet 8 of 21

Nov. 10, 2020

U.S. Patent

05/

/Bm_> Junowe ()
‘aweus(d)

‘JDIOANI(1)AGpPIoS>(d)ow®
LAJanb AY3IND
el

Jagquinu())
auweus(d)

ADI0ANI(1)AGPI0S>(d)NOSHId

cAlanb AY3IND
0c/

L Ol

coeg junowe
00| Jeaqunu
€00!"9I10ANI
Ve

Pee

S Junowe
001 Jequnu

Sold/SoldBy

700! - 4O10OANI T,
ol¢ _ﬁ @o\o@\
/o,
geg 70
@?m/.V/@mm /V/A. UOSJIBLA[:BWEUS
Py S WO | :Baweu)
%9, | £°sn NOS¥3
) NV
A% /...V/\s ®

Z222$ Junowe
7001 Jegqwnu
¢00! -4D10ANIH
cle

ulpyueld :aweus
uag :aweu)
¢iesn \NOSH4d
#0¢

L1 LS unowe

LOOL Jegwnu
100! -4DIOANI
0LE

~— 00/

U.S. Patent Nov. 10, 2020 Sheet 9 of 21 US 10,831,921 B2

800
R

REPORT CONTAINS NO DATA

FIG. 8A

802 — /-81 0

View As: |All Users v

PERSON.sname | INVOICE.number

Jefferson

1003

FIG. 8B

T . -

| CiBen Franklin v
PERSON.sname |INVOICE.numbery,
1001
Frankiin 1002
1004

FIG. 8C

U.S. Patent Nov. 10, 2020 Sheet 10 of 21 US 10,831,921 B2

900 w

304
PERSON: user2
fname:Ben
sname:Franklin

hasPermission

~—904
902
ACCESS:acc123
own: false
view: true
edit; false
—9006

accessesReport /

320
QUERY: query"
PERSON(P)<SoldBy(I)INVOICE:

(P).shame;
(I).number;
(I).amount;

FIG. 9A

U.S. Patent Nov. 10, 2020 Sheet 11 of 21 US 10,831,921 B2

304
PERSON: user2
fname: Ben
sname: Franklin

9101

306
PERSON: user3
fname: Tom
sname: Jefferson

Edit

View
——916 014

912
TRIGGER: trig123
ExpiresOn: 15-Dec-2016

Execute

322
QUERY: query2
@me(P)<SoldBy()INVOICE;
(P).sname;
(l).number;

FIG. 9B

U.S. Patent Nov. 10, 2020 Sheet 12 of 21 US 10,831,921 B2

920 —~

922
USER 924
GROUP
y e
940 HasRole HasRole
042
- 926
048 EditsWith ACCESS ROLE

93> EDIT RULE 2

EDIT RULE 1 946 ——~

| CanAccess (View)
CanAccess (View)

Cankdit 944 CanEdit

95
N~954

228 930
QUERY QUERY 2

FIG. 9C

US 10,831,921 B2

Sheet 13 of 21

Nov. 10, 2020

U.S. Patent

VOl Old

‘8Jansod INPIYOS
¢ qor 03 sagsueyn o suoletado N
SNIUOYJ ‘SN309J winzald 3e18na) JUNN 10 [eno1ddy 91004V 191ndWo?) 1Y

assipuadsng
BUOZIJY JO BUBIUO|A Ul SNUJIXeW 112 JN12329SU0D 19|NPaYos
10 OPBJIO|OY) JO EMO] e ‘Inp ejjnu 11d1osns snjjeseyd qQOf O 55820V

suonessdo

ST 004V Jo3nduwion BUOZIIY

01 |enba SI UoIIEI0T 3IBYM
U013e207 :43}j14 UWn|o

SEHTERRIN

sInb 1edIN|OA WBJ0| 1sipiadull | 491Ua) Ble(] oyl O]
2 ‘snlaW sn||e1 Jodwa)l assipuadsng | SS90V PaZioyliny

suonesado
P1hdwor

11009V CUCJUOA

CIBINEREN
$1UNOJDY

INP SNSI IQUOIA 'S11AISES 1ENDasu0d S|0J3U0D

R\ OpEIOo|O
UgIiu N3 31Uk Na wnngiisap | SUliscd suijunoddy €UV HY PEJOIOD

SUWIN|OQ 9|qELPS PPY
1anbije assipuadsng 'snind |9 ae3IA UOREIIOUGI9Y CHa [TV EREN

g} |041u0) wienbije Jodwal 03] 2. 1w sinb 1n 1UNOIDY ¢ HV' oV SIUNODY
 sooud ° pas [Sno2Y AdnoG
L uommo e e | oy

je wniaJd ‘sidiny wenb juasaesd

JO M3INDY

EUBJUOIN

CIBINEREN
$1UN0Y

1 ¥V v 0pPeIo|0)

SUWIN|oN S|qeNpT m 'RAJDAIA WIUB XD IN18109SU0D - s|qeAeq
— SNIoNJ 1B wenb “‘wniaip |eAOJddy 20I0AU] £ dvV v S1UN0IDY OpeJojo) |
SINQ “INP CPOWILOD & IQJOIA
Juswageuew ‘snglane) ul siwd wnsd ajue SoUBUBILIE iaehe

EMO} O] Pa]Elal 5|041U00 wiN|NQIISaA ‘seisads epensajew 1o rw_\/_ 7' dV YV i r__mcuua eMO|

uonduasaqg a|ny WiNJUSWI3 U] ISI|IDE) B|INN PUDA _ } v _
wnijuasaeid
: .H Yole|N . 9|qeAeq
S|0JIUOD) ¥ BMO| :3WweN 9|nhy sliypue|q Inb sNWidNP SOWISSIUZIP 1 dvV dv EMOJ

Aepn 824y /om] S1UNO2Y

QIO QISN1) SNWIESNOOE 1 SO QIIA 1Y

|
|0JIUO0D

a|ny aulaQ

uonduasa SWEN [0JIU0) $$3204(Uo1e207

N

001 0001

U.S. Patent Nov. 10, 2020 Sheet 14 of 21 US 10,831,921 B2

/ 1050

ACCESS ROLES EDITING RULES
Document Owners Edit Rule 1
Document Editors Edit Rule 2

& Search for group 42 Search for rule

COLLABORATOR EDITING RULES
Cynthia Noon Edit Rule 2
Roger Ewing Edit Rule 2
Leonel Ahn Edit Rule 2
Dorian Ransom Edit Rule 1
Linda Stem Edit Rule 2

@C} Search for user *,,EJ Search for rule

FIG. 10B

U.S. Patent Nov. 10, 2020 Sheet 15 of 21 US 10,831,921 B2

1100
N

1102
GENERATE A DATABASE QUERY

RECEIVE A FIRST REQUEST TO EXECUTE THE DATABASE QUERY |~ 194

ON BEHALF OF AFIRST USER

IN RESPONSE TO THE FIRST REQUEST, EXECUTE THE DATABASE
QUERY TO GENERATE A FIRST SET OF RESULTS SUCH THAT THE | _4106
FIRST SET OF RESULTS IS LIMITED TO DATA WITH WHICH THERE

IS A SEMANTIC RELATIONSHIP IN THE DATABASE WITH A FIRST
DATUM REPRESENTING THE FIRST USER

DISPLAY, TO THE FIRST USER, THE FIRST SET OF RESULTS OF 1108
THE DATABASE QUERY EXECUTED IN RESPONSE TO THE FIRST
REQUEST

1110
RECEIVE A SECOND REQUEST TO EXECUTE THE DATABASE

IN RESPONSE TO THE SECOND REQUEST, EXECUTE THE
DATABASE QUERY TO GENERATE A SECOND SET OF RESULTS
SUCH THAT THE SECOND SET OF RESULTS IS LIMITED TO DATA

WITH WHICH THERE IS A SEMANTIC RELATIONSHIP IN THE
DATABASE TO A SECOND DATUM REPRESENTING THE SECOND
USER,

1112

WHERE THE FIRST SET OF RESULTS AND THE SECOND SET OF
RESULTS ARE AT LEAST PARTIALLY NON-OVERLAPPING

DISPLAY, TO THE SECOND USER, THE SECOND SET OF RESULTS 1114
OF THE DATABASE QUERY EXECUTED IN RESPONSE TO THE
SECOND REQUEST

FIG. 11

U.S. Patent Nov. 10, 2020 Sheet 16 of 21 US 10,831,921 B2

1200
N

GENERATE A DATABASE QUERY

RECEIVE, FROM A FIRST USER, AN INDICATION THAT THE
DATABASE QUERY IS TO BE SHARED WITH A SECOND USER

RECEIVE A REQUEST TO EXECUTE THE DATABASE QUERY ON
BEHALF OF THE SECOND USER

IN RESPONSE TO THE REQUEST TO EXECUTE THE DATABASE
QUERY ON BEHALF OF THE SECOND USER, EXECUTE THE
DATABASE QUERY TO GENERATE A SET OF RESULTS SUCH
THAT THE SET OF RESULTS IS LIMITED TO DATAIN THE
DATABASE THAT IS ACCESSIBLE TO THE FIRST USER,

WHERE THE SET OF RESULTS INCLUDES AT LEAST SOME DATA
IN THE DATABASE THAT WAS NOT ACCESSIBLE TO THE SECOND
USER BEFORE THE DATABASE QUERY IS EXECUTED IN
RESPONSE TO THE REQUEST

1210
DISPLAY, TO THE SECOND USER, THE SET OF RESULTS r

FIG. 12

U.S. Patent Nov. 10, 2020 Sheet 17 of 21 US 10,831,921 B2

1300
N

GENERATE A DATABASE QUERY IN A DATABASE

.......... 1304

GRANT, TO A USER, ACCESS TO THE DATABASE QUERY ”

IDENTIFY, FROM THE DATABASE, A DATA SUBSET SPECIFIC TO
THE USER

1302

1306

308

EXECUTE THE DATABASE QUERY ON BEHALF OF THE
USER USING DATA IN THE DATABASE TO GENERATE A SET

OF RESULTS

1310

GRANT, TO THE USER, ACCESS TO DATA INCLUDED IN THE
SET OF RESULTS

RECEIVE AREQUEST TO EXECUTE THE DATABASE QUERY ON 1312
BEHALF OF THE USER

IN RESPONSE TO THE REQUEST TO EXECUTE THE DATABASE
QUERY ON BEHALF OF THE USER, EXECUTE THE DATABASE
QUERY USING ONLY DATA IN THE DATA SUBSET TO GENERATE A
REPORT

1314

1316
DISPLAY THE REPORT TO THE USER

FIG. 13

U.S. Patent Nov. 10, 2020 Sheet 18 of 21 US 10,831,921 B2

1400
N

1402
GENERATE A FIRST DATABASE QUERY

GRANT, TO A USER, A FIRST TYPE OF PERMISSION TO EXECUTE |~ 4%

THE FIRST DATABASE QUERY

14006

GENERATE A SECOND DATABASE QUERY

GRANT, TO THE USER, A SECOND TYPE OF PERMISSION TO
EXECUTE THE SECOND DATABASE QUERY

EXECUTE THE FIRST DATABASE QUERY TO GENERATE A FIRST | 1410
SET OF RESULTS

EXECUTE THE SECOND DATABASE QUERY TO GENERATE A
SECOND SET OF RESULTS,
WHERE THE SECOND SET OF RESULTS AND THE FIRST SET OF
RESULTS SHARE ONE OR MORE OVERLAPPING DATA

1412

FOR THE OVERLAPPING DATA, COMPARE THE FIRST TYPE OF | 1414

BASED ON A RESULT OF THE COMPARISON. GRANTING. TO THE
USER. EITHER THE FIRST TYPE OF PERMISSION OR THE SECOND |/~1416
TYPE OF PERMISSION TO ACCESS THE OVERLAPPING DATA

FIG. 14

U.S. Patent Nov. 10, 2020 Sheet 19 of 21 US 10,831,921 B2

1500
A

GENERATE (IN A GRAPH DATABASE) AN ACCESS ROLE VERTEX THAT DEFINES

AN ACCESS ROLE OF A USER AND IS CONNECTED TO A USER VERTEX 1502

GENERATE A QUERY VERTEX COMPRISING A TRAVERSAL CLAUSE THAT 1504

REPRESENTS A QUERY OF THE GRAPH DATABASE

GENERATE A PERMISSION EDGE BETWEEN THE ACCESS ROLE VERTEX AND THE 1506
QUERY VERTEX, IN WHICH THE PERMISSION EDGE DEFINES THE ACCESS ROLE’S
PERMISSION TO ACCESS RESULTS OF THE QUERY

1508
RECEIVE A REQUEST TO EXECUTE THE QUERY ON BEHALF OF THE USER

1510
TRAVERSE THE GRAPH DATABASE ACCORDING TO THE TRAVERSAL CLAUSE TO

LOCATE A SET OF VERTICES

GENERATE A SET OF RESULTS BASED ON THE SET OF VERTICES

1512

FIG. 15

U.S. Patent Nov. 10, 2020 Sheet 20 of 21 US 10,831,921 B2

1600
Ny

GENERATE (IN A GRAPH DATABASE) AN ACCESS ROLE VERTEX THAT DEFINES
AN ACCESS ROLE OF A USER AND IS CONNECTED TO A USER VERTEX 1602
REPRESENTING THE USER

GENERATE A QUERY VERTEX COMPRISING A TRAVERSAL CLAUSE THAT 1604
REPRESENTS A QUERY OF THE GRAPH DATABASE
______________________________________ 60
GENERATE A PERMISSION EDGE BETWEEN THE ACCESS ROLE VERTEX AND THE
QUERY VERTEX, IN WHICH THE PERMISSION EDGE DEFINES THE ACCESS ROLE'S
PERMISSION TO ACCESS RESULTS OF THE QUERY AND THE RESULTS OF THE
QUERY COMPRISE A SET OF VERTICES THAT 1S SPECIFIC TO THE USER
1608
IDENTIFY THE SET OF VERTICES THAT IS SPECIFIC TO THE USER
1610
RECEIVE A REQUEST TO EXECUTE THE QUERY ON BEHALF OF THE USER
TRAVERSE ONLY THE IDENTIFIED SET OF VERTICES THAT IS SPECIFIC TO THE 1612

USER TO GENERATE A SUB-GRAPH SPECIFIC TO THE USER

FIG. 16

U.S. Patent Nov. 10, 2020 Sheet 21 of 21 US 10,831,921 B2

1700
\

GENERATE {IN A GRAPH DATABASE) A FIRST ACCESS ROLE VERTEX THAT
DEFINES AN ACCESS ROLE OF A FIRST USER AND IS CONNECTED TGO A FIRST 1702
USER VERTEX REPRESENTING THE FIRST USER

GENERATE (IN THE GRAPH DATABASE) A SECOND ACCESS ROLE VERTEX THAT 1704
DEFINES AN ACCESS ROLE OF A SECOND USER AND IS CONNECTED TO A
SECOND USER VERTEX REPRESENTING THE SECOND USER

— ey 1706
GENERATE A QUERY VERTEX COMPRISING A TRAVERSAL CLAUSE THAT
REPRESENTS A QUERY OF THE GRAPH DATABASE
GENERATE A éERMISSION EDGE BETWEEN THE 1708
FIRST ACCESS ROLE VERTEX AND THE QUERY VERTEX, WHICH DEFINES THE
FIRST ACCESS ROLE’S PERMISSION TO ACCESS THE RESULTS OF THE QUERY
1710
RECEIVE, FROM THE FIRST USER, AN INDICATION THAT THE DATABASE QUERY
1S TO BE SHARED WITH THE SECOND USER
IN RESPONSE TO THE RECEIVED INDICATION, GENERATE AN EDGE BETWEEN
THE SECOND ACCESS ROLE VERTEX AND THE QUERY VERTEX
...... - 1714

RECEIVE A REQUEST TO EXECUTE THE DATABASE QUERY
ON BEHALF OF THE SECOND USER

IN RESPONSE TO THE REQUEST, TRAVERSE THE GRAPH DATABASE ACCORDING
TO THE TRAVERSAL CLAUSE TO LOCATE ASET OF VERTICES INCLUDING AT 1716
LEAST ONE VERTEX THAT WAS NOT ACCESSIBLE TO THE SECOND USER BEFORE
THE EDGE WAS GENERATED

- i ” 1718
DISPLAY, TO THE SECOND USER, A SET OF RESULTS BASED ON THE LOCATED /-
VERTICES

FIG. 17

US 10,831,921 B2

1

SYSTEM AND METHODS FOR PROVIDING
QUERY-BASED PERMISSIONS TO DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/046,373, filed Jul. 26, 2018 (now U.S. Pat.

No. 10,339,338), which 1s a continuation-in-part of U.S.
patent application Ser. No. 15/613,911, filed on Jun. 5, 2017
(now U.S. Pat. No. 10,095,881), which 1s a continuation of
U.S. patent application Ser. No. 15/159,340, filed on May
19, 2016 (now U.S. Pat. No. 9,692.,764), which claims the
priority benefit of U.S. Provisional Patent Application No.
62/296,862, entitled “SYSTEM AND METHODS FOR
PROVIDING VIEW-BASED PERMISSIONS TO DATA,”
filed on Feb. 18, 2016. The disclosures of these applications
are 1ncorporated herein by reference in their entirety.

TECHNICAL FIELD

Embodiments disclosed herein generally relate to a sys-
tem and method for providing various levels of permissions
to data stored in a database, and more particularly, to a
system and method for providing view-based or query-based
permissions to the data.

BACKGROUND

In a typical database management system, a user’s per-
mission to access data 1s typically granted by a database
administrator at the level of data structures (e.g., specific
tables, fields, classes or data types). Specific nstances of
data 1n those structures typically inherit the permission of
their respective structures. Due to this approach, permission
to access data 1s granted at the coarse grain of the data
structures (e.g., access control 1s granted to all data of a
particular data type), without regard to the specific instances
of data stored in the structures, thus forcing the access
control provision to be an all-or-nothing approach. Further
problems arise for those creating reports that mix data from
a variety of structures. To ensure that a user who executes a
report sees what the report creator intends for the user to see,
the report creator must be aware ol the diflerent data
structures included 1n the report and 1s forced to provide the
user permission to access to the data structures one at a time.
When a report 1s created for multiple users, the report creator
must grant permission to each user for each data structure.
Thus, the burden on the report creator to provide permission
to access the data in the report greatly increases with the
increase in the number of users.

DRAWINGS

While the appended claims set forth the features of the
present techmques with particularnity, these techniques may
be best understood from the following detailed description
taken 1 conjunction with the accompanying drawings of
which:

FIG. 1 1s a block diagram illustrating an example net-
working environment in which various embodiments of the
disclosure may be employed.

FI1G. 2 1s a block diagram of a computing device, accord-
ing to an embodiment.

FI1G. 3 1s a diagram 1llustrating a database, according to an
embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4A 1s a diagram 1illustrating a data subset including
data from the database of FIG. 3 that are accessible to a user,

according to an embodiment.

FIG. 4B 1s a diagram 1illustrating another data subset
including data from the database of FIG. 3 that are acces-
sible to another user, according to an embodiment.

FIG. 5 1s a diagram 1illustrating a database, according to
another embodiment.

FIG. 6A 1s a diagram 1llustrating a data subset including,
data from the database of FIG. 5 that are accessible to a user,
according to an embodiment.

FIG. 6B 1s a diagram illustrating another data subset
including data from the database of FIG. 5§ that are acces-
sible to another user, according to an embodiment.

FIG. 7 1s a diagram 1llustrating a data subset including
data that are accessible to a user, according to another
embodiment.

FIG. 8A 1s a table illustrating an output report when a
user-centric query i1s executed by a user, according to an
embodiment.

FIG. 8B 1s a table illustrating an output report that
includes all data from the user-centric query, according to an
embodiment.

FIG. 8C 1s a table illustrating an output report that
includes some data from the user-centric query in a preview
mode, according to an embodiment.

FIG. 9A 1s a diagram 1illustrating a portion of a database,
according to an embodiment.

FIG. 9B 1s a diagram 1illustrating a portion of a database,
according to another embodiment.

FIG. 9C 1s a diagram 1illustrating a portion of a database,
according to another embodiment.

FIG. 10A illustrates a user interface that may be used to
establish and configure edit rules according to an embodi-
ment.

FIG. 10B 1illustrates a user interface that may be used to
assign collaborators to roles and assign edit rules to roles to
individual users according to an embodiment.

FIG. 11 1s a flowchart illustrating an example technique
for querying data in a database, according to an embodi-
ment.

FIG. 12 1s a flowchart 1llustrating another example tech-
nique for querying data in a database, according to an
embodiment.

FIG. 13 1s a flowchart illustrating yet another example
technique for querying data in a database, according to an
embodiment.

FIG. 14 1s a flowchart illustrating still another example
technique for querying data in a database, according to an
embodiment.

FIG. 15 1s a flowchart illustrating an example of how
access roles are used 1n an embodiment.

FIG. 16 1s a flowchart illustrating an example of how
access roles are used 1n another embodiment.

FIG. 17 1s a flowchart illustrating an example of how
access roles are used 1n still another embodiment.

DETAILED DESCRIPTION

Various embodiments of the disclosure provide a system
and methods where permission to access data 1s provided via
database queries. More specifically, when a query creator
grants a user or a group of users permission to access and/or
execute a query, the system and methods disclosed herein
automatically provide the user or the group of users the
appropriate permission to access the resultant data set of the
query. Furthermore, in an embodiment, the system and

US 10,831,921 B2

3

methods may generate a data view or data subset specific to
a user, where the user-specific data view or the user-specific
data subset includes only data from the database that is
accessible to the user. Further, the eflort demanded of the
query creator to provide users permission to access data 1s
relatively constant regardless of the number of data struc-
tures or data elements returned by the queries.

Various embodiments of the disclosure are implemented
in a computer networking environment. Turning to FIG. 1,
an example of such an environment 1s shown. A {irst
computing device 100 (e.g., a hardware server or a cluster of
hardware servers) 1s communicatively linked to a network
102. Possible implementations of the network 102 include a
local-area network, a wide-area network, a private network,
a public network (e.g., the Internet), or any combination of
these. The network 102 may include both wired and wireless
components. Also commumicatively linked to the network
102 are a second computing device 104 (e.g., a client device)
and a third computing device 106 (e.g., a hardware server or
a cluster of hardware servers). It 1s to be understood that the
various embodiments may be carried out on the first com-
puting device 100, the second computing device 104, or
other computing devices not depicted, with the second
computing device 104 accessing the first computing device
100 via a thin, web-based client. In an embodiment, the first
computing device 100 executes productivity soiftware 101
(e.g., a document editing application, a spreadsheet appli-
cation, etc.) and the third computing device 106 executes
soltware as a service (““SaaS”) platform software 107. The
first computing device 100 and the third computing device
106 are communicatively linked to a media storage device
108 (e.g., a memory or a redundant array of independent
disks). Although FIG. 1 depicts the media storage device
108 as a single device, 1n fact, the media storage device 108
may represent a cloud storage service including multiple
storage devices.

In another embodiment, the productivity software 101 and
the SaaS platform software 107 are executed on the same
computing device (e.g., the first computing device 100 or the
third computing device 106). For example, the productivity
software 101 resides on one partition of the first computing
device 100 while the SaaS platform software 107 resides on
another partition of the first computing device 100. In other
embodiments, portions of the productivity software 101 may
be executed on both the first computing device 100 and the
third computing device 106, and/or portions of the SaaS
platform software 107 may be executed on both the first
computing device 100 and the third computing device 106.
With such network configurations, the second computing
device 104 1s configured to access the computing device or
devices on which the productivity software 101 resides.

In one implementation, one or more of the computing
devices of FIG. 1 have the general architecture shown 1n
FIG. 2. The computing device includes processor hardware
202 (e.g., a microprocessor, controller, or application-spe-
cific integrated circuit) (heremnafter “processor 202”), a
primary memory 204 (e.g., volatile memory, random-access
memory), a secondary memory 206 (e.g., non-volatile
memory), user mput devices 208 (e.g., a keyboard, mouse,
or touchscreen), a display device 210 (e.g., an organic,
light-emitting diode display), and a network interface 212
(which may be wired or wireless). Each of the elements of
FIG. 2 1s communicatively linked to one or more other
clements via one or more data pathways 213. Possible
implementations of the data pathways 213 include wires,
conductive pathways on a microchip, and wireless connec-
tions. In an embodiment, the processor 202 1s one of

10

15

20

25

30

35

40

45

50

55

60

65

4

multiple processors in the computing device, each of which
1s capable of executing a separate thread. In an embodiment,
the processor 202 communicates with other processors
external to the computing device 1in order to initiate the
execution of different threads on those other processors.

The memories 204 and 206 store instructions executable
by the processor 202 and data. In some embodiments, the
secondary memory 206 1s implemented as, or supplemented
by an external memory 206 A. The media storage device 108
1s a possible implementation of the external memory 206A.
The processor 202 executes the instructions and uses the
data to carry out various procedures including, in some
embodiments, the methods described herein, including dis-
playing a graphical user interface 219. The graphical user
interface 219 1s, according to one embodiment, software that
the processor 202 executes to display a report on the display
device 210, and which permits a user to make mnputs into the
report via the user mput devices 208.

FIG. 3 1s a diagram 1llustrating a database 300, according,
to an embodiment. In FIG. 3, the database 300 1s shown as
a graph database. In other embodiments, however, the
database 300 can be implemented as another type of data-
base, e.g., a relational database. In an embodiment, the
database 300 1s stored 1n the media storage device 108 of
FI1G. 1. In other embodiments, the database 300 1s stored 1n
another suitable storage device, e.g., the secondary memory
206 or the external memory 206A of FIG. 2A.

Referring to FIG. 3, the database 300 1s a graph database
that includes data nodes or data vertices. As used herein, a
data node or a data vertex 1s a data point 1n a graph database
(a network or graph of data). A graph database may include
one or more data vertices. A graph database may also include
edges that connect or relate one data vertex to another data
vertex.,

In an embodiment, a data vertex or a data node may be
assigned a type. In FIG. 3, the database 300 include three
types of data vertices: PERSON vertices 302, 304, and 306;
INVOICE vertices 310, 312, 314, and 316; and QUERY
vertices 320 and 322. In other implementations, the database
300 may include fewer or more types of data vertices. In an
embodiment, each data vertex in the database 300 1s repre-
sented by a unique 1dentifier or ID. The form and syntax of
the vertex ID may be arbitrary as long as the vertex ID 1s
umque to the database or to the partitioned portion of the
database. In the database 300, the respective IDs for the
PERSON vertices 302, 304, and 3006 are “userl™, “user2”
and “user3”; the respective 1Ds for the INVOICE Vertlces
310, 312, 314, and 316 are “10017, “1002”, “1003”, and
“iOO4”; and the respective 1Ds for the QUERY vertices 320
and 322 are “queryl” and “query2”.

In the embodiment shown 1n FIG. 3, data vertices of the
database 300 have zero or more properties. As used herein,
a property 1s an attribute of a data vertex. For example, each
of the PERSON vertices 302, 304, and 306 has two prop-
erties: “Iname” for first name and “sname” for surname.
Furthermore, the PERSON vertex 302 also includes an
“admin” property with a “true” value, indicating that userl
1s an administrator of the database 300. As the administrator
of the database 300, userl of the PERSON vertex 302 may
be granted certain privileges that are unavailable to other
users. For example, userl of the PERSON vertex 302 has
access to all data vertices and edges in the database 300.

In some embodiments, the vertex properties may be
standardized across all instances of data vertices of the same
type. In FIG. 3, the INVOICE vertices 310, 312, 314, and
316 have the common properties ol “number” for mvoice
number and “amount” for mvoice amount. In other embodi-

US 10,831,921 B2

S

ments, the vertex properties may be unique to one data
vertex, or the vertex properties may be common among a
subset of data vertices of the same type.

Two data vertices are said to have a semantic relationship
if there 1s a meaningiul link defined between them within the
database. In a graph database, two data vertices are seman-
tically related 1f one data vertex can be reached by traversing,
the graph database starting at the other data vertex. For
example, in the database 300, the PERSON vertex 304 and
the INVOICE vertex 310 are semantically related, and the
semantic relationship is represented by a Sold/SoldBy edge
330 which connects the PERSON vertex 304 with the
INVOICE vertex 310. In other embodiments, two data
vertices may be semantically related even it they are not
directly connected via an edge (e.g., there are one or more
edges and/or data vertices between the two data vertices), as
long as one data vertex can be reached by traversing the
database from the other data vertex in accordance with a
query operation.

In an embodiment, the interpretation of an edge 1s depen-
dent upon the traversal direction between data vertices 1n a

database. For instance, when traversing from the PERSON
vertex 304 to the INVOICE vertex 310, the Sold/SoldBy

edge 330 1s interpreted as “Sold”, 1.e., userl of the PERSON
vertex 304 sold mvoice 1001 of the INVOICE vertex 310.
On the other hand, when traversing from the INVOICE
vertex 310 to the PERSON vertex 304, the Sold/SoldBy
edge 330 1s mterpreted as “SoldBy™, 1.e., invoice 1001 of the
INVOICE vertex 310 1s sold by userl ef PERSON vertex
304. In an embodiment, the traversal direction of the edge
may be specified 1 the query. In other embodiments, the
system 1s configured to automatically determine the traversal
direction based on the selected data vertices and edges.

In another embodiment, unlike the Sold/SoldBy edge 330
(which 1s a symmetrical or bidirectional edge), an edge may
be unidirectional. For instance, the Sold/SoldBy edge 330
may be represented by two unidirectional edges: a Sold edge
that begins at the PERSON vertex 304 and ends at the
INVOICE vertex 310, and a SoldBy edge that begins at the
INVOICE vertex 310 and ends at the PERSON vertex 304.
The use of a bidirectional edge or a unidirectional edge 1s
implementation dependent.

Referring to FIG. 3, the database 300 further includes
Sold/SoldBy edge 332, Sold/SoldBy edge 334, Sold/SoldBy
edge 336, and Sold/ SeldBy cedge 338. The Seld/ SoldBy edge
332 connects the PERSON vertex 304 and the INVOICE
vertex 312. The Sold/SoldBy edge 334 connects the PER-
SON vertex 306 and the INVOICE vertex 314. The Sold/
SoldBy edge 336 connects the PERSON vertex 304 with the
INVOICE vertex 316. The Sold/SoldBy edge 338 connects
the PERSON vertex 306 with the INVOICE vertex 316.
Since the additional Sold/SoldBy edges are interpreted in a
similar manner as the Sold/SoldBy edge 330, descriptions of
the interpretations of the additional Sold/SoldBy edges are
omitted for brevity.

The database 300 also includes two QUERY vertices 320
and 322. FIG. 3 shows the QUERY vertices 320 and 322 as
residing 1n the database 300. In other embodiments, how-
ever, the QUERY vertex 320 and/or the QUERY vertex 322
may reside 1n a separate portion of the database 300 or in a
database separate from the database 300. Each QUERY
vertex contains a query, which can be terpreted as a
property of the QUERY vertex. In various embodiments,
when a user 1s granted a certain type of permission to access
a query, upon execution of the query on behalf of the user,
the user 1s automatically granted the same type of permis-
s10n to access the resultant data of the query. In other words,

10

15

20

25

30

35

40

45

50

55

60

65

6

a query 1n a QUERY vertex serves as a data source in the
database 300. In some embodiments, a QUERY vertex is
also called a DataSource vertex. In various embodiments, a
query 1s a type of traversal and defines a specific traversal
pattern, and the resultant data of the query includes only data

that satisty the traversal pattern specified by the query. In
FIG. 3, queryl of the QUERY vertex 320 and query2 of the

QUERY vertex 322 1n the database 300 are shown as having
a particular syntax. However, another suitable query syntax
may be used in other embodiments.

In the database 300, a query includes a traversal clause or
a selection clause, which defines a traversal pattern and 1s
used to identify the specific data vertices for inclusion in the
resultant data set when the query 1s executed. Optionally, the
query may include property clauses, which are used to
identify properties of the specific vertices included in the
resultant data set. For example, the QUERY vertex 320
contains queryl, which 1s a query having a traversal or
selection clause of “PERSON(P)<SoldBy(H)INVOICE”. An

interpretation of queryl of the QUERY vertex 320 1s to
select all data in the database 300 that match the traversal

clause of queryl, e.g., all the PERSON vertices that are
1 to an INVOICE vertex via a Sold/SoldBy edge (or all

related
CE vertices that are related to an PERSON vertex via

INVOI
a Sold/SoldBy edge). Queryl also include three property
clauses: “(P).sname” for the “‘sname” property in each
selected PERSON vertex, “(I).number” for the “number”
property 1n each selected INVOICE vertex, and
“(I).amount™ for the “amount” property in each selected
INVOICE node.

Unlike queryl, query2 of the QUERY vertex 322 is a
user-centric query. As used herein, a user-centric query 1s a
query for data that 1s semantically related to and matches the
query-defined traversal pattern with respect to a particular
piece of data. In the embodiment shown in FIG. 3, the
particular piece of data 1s a PERSON vertex representing the
user executing the query, and thus the user-centric query
only requests data that 1s semantically related to and matches
the query-defined traversal pattern with respect to the par-
ticular user executing the query.

In more detail, query2 of the QUERY vertex 322 has a
traversal clause of “@me(P)<SoldBy()INVOICE”. An
interpretation of query2 of the QUERY vertex 322 1s to
select the specific PERSON vertex that corresponds to the
user executing query2, and to select all INVOICE vertices
that are related to the selected PERSON vertex via a SoldBy
edge. Query2 also 1ncludes two property clauses:
“(P).sname” for the “sname” property 1n the selected PER-
SON vertex, and “(I).number” for the “number” property in
cach selected INVOICE vertex. In query2, the user-centric
query 1s represented using the “(@me” syntax, which 1ndi-
cates the specific PERSON vertex corresponding to the user
who 1s executing the query. Advantageously, a single user-
centric query can provide customized results, e.g., the results
of query2 varies based on the user executing query?2.
Although “@me” 1s a syntax chosen in the embodiment
shown 1n FIG. 3, in other embodiments, another suitable
syntax may be used to the same eflect.

In the embodiment shown 1n FIG. 3, the type of permis-
sion to access a query (and thus the resultant data set) 1s
represented by an edge that connects or relates a PERSON
vertex with a QUERY vertex. A “View” edge grants a user
only permission to view the data in the resultant data set
when the query 1s executed. An “Edit” edge grants a user
permission to view and edit the data in the resultant data set
when the query 1s executed. In an embodiment, granting a
user “Edit” permission implicitly grants the user “View”

US 10,831,921 B2

7

permission as well. An “Own” edge not only grants a user
permission to view and edit the data in the resultant data set
when the query 1s executed but also grants the user permis-
s10n to create, view, and edit the query itself. Although three
different types of permissions or access controls are shown
in FIG. 3, in other embodiments, other types of permissions
and/or other interpretations of the permission types may be
implemented.

In the database 300, user] of the PERSON vertex 302 has
the permission type of “Own” with respect to queryl of the
QUERY vertex 320 and query2 of the QUERY vertex 322,
as indicated by the Own edge 340 and the Own edge 344
respectively. On the other hand, user2 of the PERSON
vertex 304 has the permission type of “View” with respect
to query] of the QUERY vertex 320 and the permission type
of “Edit” with respect to query2 of the QUERY vertex 322,
as indicated by the View edge 342 and the Edit edge 346
respectively. User3 of the PERSON vertex 306 has the
permission type of “View” with respect to query2 of the

QUERY vertex 322, as indicated by the View edge 348.

As discussed previously, userl of the PERSON vertex 302
1s the administrator of the database 300 and has access to all
data vertices and edges in the database 300. In addition,
when userl creates queryl and query2, the Own edges 340
and 344 connect the PERSON vertex 302 with the QUERY
vertices 320 and 322 respectively. As the owner of the
queries, userl can grant other users (e.g., user2 of PERSON
vertex 304 and user3 of PERSON vertex 306) permission or
access to the queries in the QUERY vertices 320 and 322 and
the corresponding resultant data sets. In other embodiments,
however, a user other than the database administrator may be
an owner or a creator of a query.

When queryl of the QUERY vertex 320 1s executed on
behalf of userl, an example of the resultant data set available
to userl 1s shown in TABLE 1 below. Although TABLE 1
displays the type of permission userl has with respect to the
resultant data set (“Own”), 1n another embodiment, the
permission type may be hidden.

TABLE 1

PERSON.sname INVOICE.number INVOICE.amount
(Own) (Own) (Own)
Franklin 1001 $111
Franklin 1002 $222
Franklin 1004 $444
Jefferson 1003 $333
Jefferson 1004 $444

When userl shares queryl with user2 with a “View”
permission, the View edge 342 1s created between the
PERSON vertex 304 (corresponding to user2) and the
QUERY vertex 320 (containing queryl). When queryl 1s
executed on behalf of user2, an example of the resultant data
set available to user2 1s shown 1 TABLE 2 below. The

resultant data set of a query i1s dependent on the data
accessible to the user who executes the query. Here, TABLE
2 dlsplays the same data as TABLE 1. However, the type of
permission shown in TABLE 2 (*View”) 1s diflerent from
that shown 1n TABLE 1 (*Own”), since user2 only has the
“View” permission with respect to the resultant data set of
queryl. In an embodiment, unlike userl, user2 can only
view the data shown in TABLE 2 but cannot modily any of
the data.

10

15

20

25

30

35

40

45

50

55

60

65

8

TABLE 2

PERSON.sname INVOICE.number INVOICE.amount
(View) (View) (View)
Franklin 1001 $111
Franklin 1002 $222
Franklin 1004 $444
Jefferson 1003 $333
Jefferson 1004 $444

Referring to FIG. 3, there 1s no edge connecting the
PERSON vertex 306 (corresponding to user3) and the
QUERY vertex 320, indicating that queryl was not shared
with user3. Thus, user3 cannot execute queryl and has no

permission or access to the resultant data set through queryl.

Unlike queryl, query2 of the QUERY vertex 322 1s a
user-centric query, which requests for data that has a seman-
tic relationship with and matches the query-defined traversal
pattern with respect to the data vertex corresponding to the
user executing the query. When query2 1s executed on behalf
of userl, no resultant data set would be returned, since no
INVOICE vertices and no Sold/SoldBy edges matches the
traversal pattern specified by query2 (i.e., no INVOICE
vertex 1s connected or related to the PERSON vertex 302
(corresponding to userl) via a Sold/SoldBy edge).

When userl shares query2 with user2 with an “Edit”
permission, the Edit edge 346 1s created between the PER-
SON vertex 304 (corresponding to user2) and the QUERY
vertex 322 (containing query2). When query2 1s executed on
behalf of user2, an example of the resultant data set available
to user2 1s shown in TABLE 3 below. Because query2 i1s a
user-centric query, when query2 i1s executed on behalf of
user2, the resultant data set includes only the PERSON
vertex 304 and the INVOICE vertices 310, 312, and 316.
The PERSON vertex 304 is returned because it 1s the
PERSON vertex that corresponds to user2, the query execu-
tor. The INVOICE vertices 310, 312, and 316 are returned
because they are the only INVOICE vertices that are con-
nected to the PERSON vertex 304 via a Sold/SoldBy edge.
In addition, TABLE 3 displays user2’s permission with
respect to the resultant data set as “E

Edit”, indicating that
userZ 1s permitted to modity, mn addition to view, the data
shown 1n TABLE 3.

TABLE 3
PERSON.sname INVOICE.number
(Edit) (Edit)
Franklin 1001
Franklin 1002
Franklin 1004

When userl shares query2 with user3 with a “View”
permission, the View edge 348 1s created between the
PERSON vertex 306 (corresponding to user3) and the
QUERY vertex 322 (containing query2). When query2 1is
executed on behalf of user3, an example of the resultant data
set available to user3 1s shown in TABLE 4 below. Because
query2 1s a user-centric query, when query2 1s executed on

behalf of user3, the resultant data set includes only the
PERSON vertex 306 and the INVOICE vertices 314 and

316. The PERSON vertex 306 1s returned because it 1s the
PERSON vertex that corresponds to user3, the query execu-
tor. The INVOICE vertices 314 and 316 are returned
because they are the only INVOICE vertices that are con-
nected to the PERSON vertex 306 via a Sold/SoldBy edge.

In addition, TABLE 4 displays user3’s permission with

US 10,831,921 B2

9

respect to the resultant data set as “View”, indicating that
user3 1s permitted to only view the data shown in TABLE 4
but cannot modify the data.

TABLE 4
PERSON.sname INVOICE.number
(View) (View)
Jeflerson 1003
Jefterson 1004

As TABLES 3 and 4 illustrate, the resultant data set of a
user-centric query 1s dependent upon the identity of the user
on behalf of whom the query 1s executed. In other words, via
the user-centric query, a user executing the query sees only
data that has a semantic relationship with and matches the
query-defined traversal pattern with respect to the datum
representing the user. The user-centric query enables a query
creator to create a single query that can be executed by
multiple users, yet when the query 1s executed, each user
sees only data that 1s accessible to that particular user. Thus,
there 1s no need for the query creator to create a unique query
for each user individually.

In another embodiment, a user-specific data subset can be
generated from the database to allow the user to interact with
the data accessible to the user independent from other users.
In an embodiment, a user-specific data subset 1s a copy of a
portion of the database and may be temporarily stored in
memory. The user-specific data subset 1s generated based on
queries shared with or accessible to the user, and the
user-specific data subset 1s populated with data from the
resultant data sets of the queries.

In an alternative implementation, the user-specific data
subset mcludes references to data in the database that are
accessible to the user. The user-specific data subset 1is
generated based on queries shared with or accessible to the
user, and the user-specific data subset 1s populated with
references to data from the resultant data sets of the queries.
For example, the user-specific data subset may contain
pointers to the data in the database that are accessible to the
user.

FIG. 4A 1s a diagram 1illustrating a user-specific data
subset 400 for user2, and the data subset 400 includes data
from the database 300 of FIG. 3 that are accessible to user?2,
according to an embodiment. In an embodiment, a server
(e.g., the first computing device 100 and/or the third com-
puting device 106 of FIG. 1) 1s configured to generate the
user-specific data subset 400 using the data in the database
300 when user2’s identity i1s authenticated by the server.
Then, the server 1s configured to 1dentify 1n the database 300
the data vertex that corresponds to user2, 1.e., the PERSON
vertex 304. The server 1s further configured to identify all
queries (or data sources) in the database 300 that are
accessible to user2, 1.e., all QUERY vertices that are related
to the PERSON vertex 304 via a permission edge. In this
case, the QUERY vertices include the QUERY vertex 320,
which 1s related to the PERSON vertex 304 via the View
edge 342, and the QUERY vertex 322, which 1s related to the
PERSON vertex 304 via the Edit edge 346. After identifying
the QUERY vertices, the server 1s configured to execute the
queries contained 1n the QUERY vertices to determine the
data 1n database 300 that are accessible to user2 (e.g., as 1f
user2 1s executing the queries 1n the database 300), and
populate the user-specific data subset 400 with the resultant
data sets of the queries. In an embodiment, the QUERY
vertices accessible to the user are also added to the user-

10

15

20

25

30

35

40

45

50

55

60

65

10

specific data subset 400. The server then stores the user-
specific data subset 400 1n memory (either temporarily or
permanently) for use by user?2.

In more detail, in FIG. 4A, when the server executes
queryl of the QUERY vertex 320 to determine data that are
accessible to user2, the resultant data set includes all the
PERSON vertices that are connected to an INVOICE vertex
via a Sold/SoldBy edge in the database 300. The resultant
data set of queryl includes the PERSON vertices 304 and
306, the INVOICE vertices 310, 312, 314, and 316, and the
Sold/SoldBy edges 330, 332, 336, and 338. When the server
executes query2 (the user-centric query) of the QUERY
vertex 322 to determine data that are accessible to user2, the
resultant data set includes the specific PERSON vertex that
corresponds to the user executing query2, and all INVOICE
vertices that are connected to the selected PERSON vertex
via a Sold/SoldBy edge. The resultant data set of query2
includes the PERSON vertex 304, the INVOICE vertices
310, 312, and 316, and the Sold/SoldBy edges 330, 332, and
336. The server 1s configured to combine the resultant data
sets of queryl and query2 to generate the user-specific data
subset 400 for user2, which includes the PERSON vertices
304 and 306, the INVOICE vertices 310, 312, 314, and 316,
and the Sold/SoldBy edges 330, 332, 336, and 338.

Furthermore, the user-specific data subset 400 includes
the QUERY vertices 320 and 322 as well as the View edge
342 and the Edit edge 346. The View edge 342 indicates that
userZ2 has permission to “View” the resultant data set of
queryl, and the Edit edge 346 indicates that user2 has the
permission to “F

Edit” the resultant data set of query2.
Because the resultant data sets of queryl and query2 over-
lap, as both data sets include the PERSON vertex 304, the
INVOICE vertices 310, 312, and 316, and the Sold/ SoldBy
odgos 330, 332, and 336, user2 1s grantod different types of
permission Wlth respect to these pieces of data (1.e., “View”
through queryl vs. “Edit” through query2). To resolve such
permission conflict, in an embodiment, user2 1s granted the
more permissive type ol permission with respect to these
pieces of data (1.e., “Edit”). In another embodiment, user2 1s
granted the less permissive or more restrictive type of
permission with respect to these data (1.e., “View”). In still
other embodiments, a user may be granted two or more
different types of permission or access to a particular piece
of data, and the combination of these types of permission
would be applied to the user’s interaction with that piece of
data.

In another embodiment, the user-specific data subset 400
contains references or pointers to the data from the database
300 that are accessible to user2. For example, mstead of
populating the data subset 400 with copies of data from the
database 300, the data subset 400 1s populated with refer-
ences or pointers to the data vertices and/or edges of the
resultant dataset of the queries. The data subset 400 may be
turther populated with references or pointers to the queries
shared with or accessible to user2.

FIG. 4B 1s a diagram illustrating a user-specific data
subset 402 for user3, where the user-specific data subset 402
includes data from the database 300 of FIG. 3 that are
accessible to user3, according to an embodiment. The server,
in an embodiment, 1s configured to generate the user-specific
data subset 402 using the data in the database 300 after
user3’s 1denftity 1s authenticated by the server. Referring to
FIG. 4B, the server 1s configured to 1dentily 1n the database
300 the data vertex that corresponds to user3, 1.e., the
PERSON vertex 306. The server 1s also conﬁgured to
identify all queries (or data sources) in the database 300 that
are accessible to user3, 1.e., all QUERY vertices that are

US 10,831,921 B2

11

related to the PERSON vertex 306 via a permission edge.
The only query accessible to user3 1s query2 of QUERY
vertex 322, which is related to the PERSON vertex 306 via

the View edge 348. Then, the server 1s configured to execute
the query2 1n the database 300 to determine data that are
accessible to user3 (e.g., as 1f user3 1s executing the query),
and populate the user-specific data subset 402 with the
resultant data set of query2. The resultant data set of query?2
as executed on behalf of user3 mcludes the PERSON vertex
306, the INVOICE vertices 314 and 316, and the Sold/
SoldBy edges 334 and 338. Thus, the user-specific data
subset 402 for user3 includes the PERSON vertex 306, the
INVOICE vertices 314 and 316, and the Sold/SoldBy edges
334 and 338. The user-speciific data subset 402 also includes
the QUERY vertex 306 and the View edge 348. The View
edge 348 indicates that user3 has permission to “View” the
resultant data set of query?2.

In another implementation, the user-specific data subset
402 1s populated with references or pointers to the data
vertices and/or edges of the resultant dataset of the queries
accessible to user3. The data subset 402 may be further
populated with references or pointers to the queries shared
with or accessible to user3.

In an embodiment, a user-specific data subset generated

for userl contains all the data 1n the database 300 of FIG. 3
or contains references to all the data in the database 300,
because userl 1s the administrator of the database 300 and
has access to all data (vertices and edges) as well as all data
sources (queries) 1n the database 300. In other embodiments,
however, the user-specific data subset of the database admin-
istrator may be only a portion or subset of the database.

Because a user-specific data subset 1s generated for each
authenticated user, each user may interact with the data 1n
his or her user-specific data subset independently from other
users. In some embodiments, a user can generate new
queries that select only data or references in that user’s
user-specific data subset. In an embodiment, the user can
share the generated new queries to other users. In another
embodiment, the user may grant other users various types of
permission to access the generated new queries and the
resultant data set of the new queries. Furthermore, 1n another
embodiment, the server 1s configured to generate any num-
ber of user-specific data subsets (e.g., generate the user-
specific data subset for all users having access to the
database) without 1dentifying or authenticating the identity
ol a user.

In another embodiment, it 1s desirable to allow a user to
view the resultant data set of a query without populating the
user’s user-specific data subset with the data 1n the resultant
data set or references to the data in the resultant data set.
FIG. § 1s a diagram illustrating a database 500, according to
another embodiment. The database 500 1 FIG. 5 1s dis-
cussed with reference to the database 300 of FIG. 3, and
description of elements having the same reference numbers
1s omitted for brevity.

Unlike the database 300 of FIG. 3, the database 500
includes an Execute edge 542 (not the View edge 342) that
connects the PERSON vertex 304 and the QUERY vertex
320, and an Execute edge 548 (not the View edge 348) that
connects the PERSON vertex 306 and the QUERY vertex
322. In an embodiment, the Execute edge 342 indicates that
user2 (corresponding to the PERSON vertex 304) 1s permit-
ted to execute queryl contained in the QUERY vertex 320
and view the resultant data set of queryl; however, the
Execute edge 542 does not allow the actual data (e.g., the
data vertices and edges) contained in the resultant data set

10

15

20

25

30

35

40

45

50

55

60

65

12

(or references thereto) to be populated 1n user2’s user-
specific data subset. Stmilarly, the Execute edge 548 1ndi-
cates that user3 (corresponding to the PERSON vertex 306)
1s permitted to execute query2 contained in the QUERY
vertex 322 and view the resultant dataset of query2; how-
ever, the Execute edge 548 does not allow the actual data
(e.g., the data vertices and edges) contained in the resultant
data set (or references thereto) to be populated 1n user3’s
user-specific data sub set.

In an embodiment, the Execute edge represents a “run-
as-query-creator” mode. The “run-as-query-creator” mode
allows a query creator to share a query with another user
without populating the other user’s user-specific data subset
with data in the resultant data set of the query. When a query
1s executed 1n the “run-as-query-creator” mode, the query 1s
executed using data that are accessible to the query creator
(e.g., the data 1n the query creator’s user-specific data
subset), but not using the data that are accessible to the user
who 1s executing the query (e.g., using the data in the user’s
user-specific data subset which may be different from the
data accessible to the query creator). This mode 1s useful
when a query creator wishes to provide the user a read-only
report of some of the data that 1s accessible to the query
creator. The “‘run-as-query-creator” mode 1s further dis-

cussed with respect to FIGS. 6 A and 6B.

FIG. 6A 1s a diagram 1illustrating a user-specific data
subset 600 for user2, and the user-specific data subset 600
includes data from the database 500 of FIG. 5 that are
accessible to user2, according to an embodiment. In another
embodiment, the data subset 600 includes references or
pointers to data from the database 500 that are accessible to
user2. The user-specific data subset 600 includes the PER-
SON vertex 304, which corresponds to user2. The user-
specific data subset 600 also includes the QUERY vertex
320, which 1s connected to the PERSON vertex 304 via the
Execute edge 542, and the QUERY vertex 322, which 1s
connected to the PERSON vertex 304 via the Edit edge 346.
When the server executes queryl of the QUERY vertex 320,
the server does not populate the user-specific data subset 600
with the data (or references thereofl) contained 1n the resul-
tant data set. When the server executes query2 of the
QUERY vertex 322 as user2, the server populates the
user-specific data subset 600 with the data contained in the
resultant data set. Thus, the user-specific data subset 600
further includes the PERSON vertex 304, the INVOICE
vertices 310, 312, and 316, and the Sold/SoldBy edges 330,
332, and 336, which compose the resultant data set of
query2.

In an embodiment, when a user executes a query 1n the
“run-as-the-query-creator” mode, the server executes the
query not 1n the data subset of the user but 1n the data subset
of the query creator. For instance, when user2 executes
queryl i1n the “run-as-query-creator” mode, the server
executes queryl in the user-specific data subset of userl,
who 1s the creator of query1, but not 1n user2’s user-specific
data subset 600. As the administrator of the database 500,
userl’s user-specific data subset contains the same data (or
references to the data) as the database 500. After executing
queryl in the data subset of userl, the server 1s configured
to generate a report of the resultant data set and to display
the generated report to user2. An example of the generated
report for user2 when queryl 1s executed in the “‘run-as-
query-creator” mode 1s shown in TABLE 5 below.

US 10,831,921 B2

13

TABLE 5
PERSON.sname INVOICE.number INVOICE.amount
Franklin 1001 $111
Franklin 1002 $222
Franklin 1004 $444
Jefferson 1003 $333
Jefferson 1004 $444

Furthermore, queryl of the QUERY vertex 320 includes
the “sname” property of PERSON vertices and the “num-
ber” and “amount” properties of INVOICE vertices, but
does not include the “thame” property of PERSON vertices.
In an embodiment, the generated report for user2 would
display only the properties that were explicitly 1dentified 1n
the query, such as the properties shown in TABLE 35 above.

FIG. 6B 1s a diagram illustrating a user-specific data
subset 602 for user3, and the user-specific data subset 602
includes data from the database 500 of FIG. 5 that are
accessible to user3, according to an embodiment. In another
embodiment, the data subset 602 includes references to data
from the database 500 that are accessible to user3. The
user-specific data subset 602 includes the PERSON vertex
306 (corresponding to user3) connected to the QUERY
vertex 322 via the Execute edge 548. When the server
executes query2 of the QUERY vertex 322, the data con-
tained 1n the resultant data set are not populated 1n user3’s
user-specific data subset 602. Thus, the user-specific data
subset 600 does not include any additional data (e.g., data
vertices or edges).

In an embodiment, when user3 executes query2 in the
“run-as-query-creator” mode, the server executes query2 1n
the data subset of userl because userl 1s the query creator,
and userl’s user-specific data subset includes the same data
as the database 500. After executing query2 1n userl’s data
subset, the server 1s configured to generate a report of the
resultant data set and to display the generated report to
user3.

However, in the embodiments shown in FIGS. 5 and 6B,
the generated report for user3 would display no data. This 1s
because query2 of QUERY vertex 322 1s a user-centric
query, the server 1s executing query2 in the “run-as-query-
creator’ mode (1.e., as userl), and userl’s corresponding
PERSON vertex 302 1s not semantically related to any
INVOICE vertices via any Sold/SoldBy edges in the data-
base 500 and thus the traversal pattern specified by query?2
1s not met. In contrast, in the embodiments shown 1n FIGS.
3 and 4B, user3 would be able to view the data as previously
shown 1n TABLE 4, as the View edge 348 allows the server
to execute query2 as userd in user3’s user-specific data
subset 402, not in the “run-as-query-creator” mode.

Furthermore, 1n the “run-as-query-creator” mode, a user
may delegate to another user the authonity to share a query
in the “run-as-query-creator” mode. For example, userl 1s
the owner and creator of a query. Userl shares the query
with user2 via the “run-as-query-creator” mode. Userl also
delegates to user2 the authonity to share the query with
user3, but only via the “run-as-query-creator” mode. When
user2 executes the query, the query 1s executed using userl’s
data subset and no change 1s made to user2’s data subset.
Likewise, when user3 executes the query, the query is
executed using userl’s data subset and no change 1s made to
user3’s data subset. This approach allows user2 and user3 to
view the report as userl would view 1t. Put 1n another way,
this approach enables userl to delegate to user2 the right to
distribute view-only reports (using data in userl’s data
subset) to other users, without populating the other user’s

10

15

20

25

30

35

40

45

50

55

60

65

14

data subsets with the underlying data. In a further embodi-
ment, userl may delegate to user2 the right to delegate to
user3 the right to share the query with user4.

In various embodiments, permission or access to data can
be granted at the property or edge level, 1n addition to being
granted at the data vertex level. FIG. 7 1s a diagram
illustrating a user-specific data subset 700 for user2, and the
user-specific data subset 700 includes data that are acces-
sible to user2, according to an embodiment. In another
embodiment, the data subset 700 includes references or
pointers to data that are accessible to user2. The user-specific
data subset 700 of FIG. 7 1s discussed with reference to the
user-specific data subset 400 of FIG. 4A, and description of
clements having the same reference numbers 1s omitted for
brevity.

The user-specific data subset 700 of user2 includes two
QUERY vertices 720 and 722. The QUERY vertex 720
includes query3, which 1s a query having a traversal clause
of “PERSON(P)<SoldBy(DHINVOICE”. An interpretation of
query3 1s to select all the PERSON vertices and INVOICE

vertices that are related to each other via a Sold/SoldBy
edge. Query3 also include two property clauses:
“(P).sname” for the “sname” property in each selected
PERSON vertex, and “(I).number” for the “number” prop-
erty 1 each selected INVOICE vertex. Furthermore, the

QUERY vertex 720 1s semantically related to the PERSON

vertex 304 (corresponding to user2) via the View edge 342.
When the server executes query3 of the QUERY vertex 720,
user?2 1s granted the “View” permission to the resultant data
set of query3.

Also 1n the user-specific data subset 700, the QUERY
vertex 722 includes query4, which 1s a user-centric query

having a traversal clause of “@me(P)<SoldBy(I)IN-
VOICE”. An interpretation of query4 1s to select the specific
PERSON vertex that corresponds to the user executing
query4, and to select all INVOICE vertices that are related
to the selected PERSON vertex via a Sold/SoldBy edge.
Query4 also includes two property clauses: “(P).sname” for
the “sname” property in the selected PERSON vertex, and
“(I).amount” for the “amount” property n each selected

INVOICE vertex. In addition, the QUERY vertex 722 1s
related to the PERSON vertex 304 via the Edit edge 346.
When the server executes query4 of the QUERY vertex 722,
user2 1s granted the “Edit” permission to the resultant data
set of query4.

However, query4 of the QUERY vertex 722 further
includes a property permission clause 750 of “view” fol-
lowing the property clause “(I).amount”. An interpretation
of the property permission clause 750 1s that a user can
“view” the value of the “amount” property 1n each selected
INVOICE vertex. The “view” permission {for the
“(I).amount™ property granted the property permission
clause 750 thus conflicts with the “Edit” permission granted
by the Edit edge 346. In an embodiment, the permission
granted to the specific property overrides the permission
granted to the query. In FIG. 7, when the server executes
query4 of the QUERY vertex 722, user2 i1s granted the
“view” permission to the “amount” property 1n each selected
INVOICE vertex and the “edit” permission to the remaining
data 1n the resultant data set of query4. An example of the
generated report for user2 when query4 1s executed 1s shown
in TABLE 6 below. In another embodiment, the permission
granted to the query (e.g., “Edit” through the Edit edge 346)
overrides the permission granted to the specific property
(e.g., “view” through the property permission clause 750).

US 10,831,921 B2

TABLE 6
PERSON.sname INVOICE.amount
(Edit) (View)
Franklin $111
Franklin $222
Franklin $444

In addition, when query3 and query4 are both executed
(e.g., to generate the user-specific data subset 700 for user2),

the resultant data sets of the two queries partially overlap, as
both data sets include the PERSON vertex 304, the

INVOICE vertices 310, 312, and 316, and the Sold/SoldBy
edges 330, 332, and 336 1n FIG. 7. User2 1s granted different
types of permission with respect to these pieces of data (1.e.,
“View” through the View edge 342 for query3 vs. “Edit”
through the Edit edge 346 for query4). Furthermore, as
discussed previously, within query4, there 1s a contlict
between the permission granted to the query (“Edit”) and the
permission granted to the property “(I).amount”. In an
embodiment, to resolve such permission conflict, the server
1s configured to first resolve the permission contlicts
between the different queries, and then resolve the permis-
sion conilict between query and property. For example, 1n
FIG. 7, as between the queries, user2 1s granted the more
permissive type ol permission with respect to the overlap-
ping data (1.e., “Edit”). As between query4 and the property
“(I).amount”, user2 1s granted the “view” permission for the
“amount” property of the selected INVOICE vertices 1n the
resultant data set of query4. An example of the generated
report for user2 when query3 and query4 are executed 1s

shown in TABLE 7 below.

TABLE 7

PERSON.sname INVOICE.number INVOICE.amount
Franklin (1001) $ (111)

Franklin (1002) $ (222)

Franklin (1004) $ (444)
(Jefferson) (1003)

(Jeflerson) (1004)

In TABLE 7, a “()” indicates that the data value 1s

view-only, while the data values without a “() are editable.
In the “PERSON.sname” column, user2 1s granted permis-
sion to “Edit” his own surname through the user-centric
query querv4 of the QUERY vertex 722 and the Edit edge
346. User2 1s granted permission to only “View” the sur-
name of user3 through the query3 of the QUERY vertex 720
and the View edge 346, since the surname of user3 is only
included in the resultant data set of query3 but not query4.
In the “INVOICE.number” column, user2 1s granted per-
mission to “View” the mvoice number through query3 of the
QUERY vertex 720 and the View edge 346. In the
“INVOICE.amount” column, user2 1s granted permission to
“view” the mnvoice amount through query4 of the QUERY
vertex 722 and the property permission clause 7350. In
TABLE 7, no data 1s displayed 1n the “INVOICE.amount™
for user3’s invoices, because neither query3 nor query4
includes the data corresponding to user3’s invoice amounts.
In another embodiment, however, user3’s invoice amounts
may be displayed as view-only because user2 1s granted
permission to “View” the INVOICE vertices related to the
PERSON node corresponding to user3 via query3.

In addition to granting permissions to specific properties
of data, the server 1s also configured to grant permission to
edges. For example, query3 can be modified to further

10

15

20

25

30

35

40

45

50

55

60

65

16

include an edge clause “(I)@edge: write”. An interpretation
of the edge clause 1s that a user 1s granted the permission to
“create” and/or “delete” Sold/SoldBy edges that relate the
selected PERSON vertices and the selected INVOICE ver-
tices included 1n the resultant data set of query3. For

example, the above edge clause grants user2 the permission
to create a Sold/SoldBy edge between the PERSON vertex
306 and the INVOICE vertex 310. Similarly, a user may be
granted permission to create and/or delete data vertices. In
an embodiment, user2 of the PERSON vertex 304 may be
granted the permission to create a new INVOICE vertex.
When user2 1s granted the permission to “write” a new edge
and the permission to “write” a new data vertex, 1n an
embodiment, user2 1s able to create a new INVOICE vertex
and the corresponding Sold/SoldBy edge to the newly
created INVOICE vertex.

In various embodiments, when a user modifies data (e.g.,
edits a piece of existing data or creating a piece of new data),
the server 1s configured to update the main database with the
modified data and then regenerate the user-specific data
subset of that user and any other user-specific data subset
that 1s allected by the modified data. In some embodiments,
only a portion of the user-specific data subset atlected by the
changed data 1s regenerated. In another embodiment, the
user-specific data subset 1s modified with the changed data
but not regenerated.

When a database administrator creates a user-centric
query, the query creator may wish to preview the data that
1s accessible to various users when the query 1s executed on
behalf of each user. FIGS. 8A-8C are tables illustrating
output reports when a query creator previews resultant data
ol a user-centric query, according to an embodiment. FIGS.
8A-8C are discussed with reference to the database 300 of
FIG. 3. In particular, the query creator 1in the embodiment of
FIGS. 8A-8C 1s userl of FIG. 3, and the user-centric query
1s query2 of the QUERY vertex 322 in the database 300.

FIG. 8A 1s a table illustrating an output report 800 when
the user-centric query query2 1s executed by userl i a
preview mode, according to an embodiment. When query?2
1s executed by userl, the server i1s configured to select the
specific PERSON vertex that corresponds to userl (1.e., the
PERSON vertex 302), and to select all INVOICE vertices
that are connected to the PERSON vertex 302 via a Sold/
SoldBy edge. However, as shown 1 FIG. 3, the PERSON
vertex 302 1s not connected to any INVOICE vertices and
thus the traversal pattern specified by query2 is not met.
Accordingly, when userl executes query2, there 1s no data in
the resultant dataset and no data 1s displayed 1n the output
report 800.

In the embodiments shown 1 FIGS. 8 A-8C, the output
report display includes a user-selection menu 810. The
user-selection menu 810 1ncludes a list of users, and a report
viewer (e.g., userl) can select a specific user, all users, or a
group of users from the list. Once the user or users of interest
are selected, the output report 1s updated to display data that
are accessible to the selected user or users. In FIG. 8A, when
the query 1s executed by userl, the user-selection menu 810
displays “Me (Detfault)” (1.e., the executor of the query),
indicating that the output report 810 1s displaying data that
1s accessible to userl. Although the user-selection menu 810
1s shown as a drop-down menu 1 FIGS. 8A-8C, other
suitable menus (e.g., a text mput bar) may be implemented
in other embodiments.

FIG. 8B 1s a table illustrating an output report 802 that
includes data from all users when the user-centric query
query2 1s executed mn a preview mode, according to an
embodiment. As previously discussed, userl 1s an adminis-

US 10,831,921 B2

17

trator of the database 300 and thus has access to all data
contained 1n the database 300. In FIG. 8B, user] selects {from
the user-selection menu 810 “All Users™. In response to the
selection, the server 1s configured to retrieve data in the
database 300 for all users that satisty the traversal or
selection clause of query2. The server 1s then configured to
display the data in the output report 802 for preview by
userl. As shown in FIG. 8B, the output report 802 displays
the surname of both user2 and user3, as well as the invoice
numbers of the invoices sold by user2 and user3.

FIG. 8C 1s a table illustrating an output report 804 that
includes data accessible to user2 from the user-centric query
query2 1s executed i1n a preview mode, according to an
embodiment. Here, user]l selects from the user-selection
menu 810 “Ben Franklin®, 1.e., user2’s name. In response to
the selection, the server 1s configured to execute query2 as
user?2, and to retrieve data in the database 300 that are
accessible to user2 and satisty the traversal clause of query?2.
The server 1s then configured to display the data 1n the output
report 804 for preview by userl. As shown 1n FIG. 8C, the
output report 804 displays the surname of user2 and the
invoice number of the invoices sold by user2.

FIG. 9A 1s a diagram 1illustrating a portion of a database
900, according to an embodiment. FIG. 9A 1s discussed 1n
retference to FIG. 3, and description of elements having the
same reference numbers 1s omitted for brevity. While FIG.
3 illustrates user permission information as edges, i FIG.
9A, user permission nformation (e.g., “own”, “edit”,
“view”, etc.) may be represented as a data vertex or data
vertices of type ACCESS. For example, ACCESS vertex 902
has a vertex ID of “accl23”. The ACCESS vertex 902 has
properties representing the permission type and state of
control, e.g., “view:true”. The ACCESS vertex 902 1is
semantically related to PERSON vertex 304 via a hasPer-
mission edge 904. Furthermore, the ACCESS vertex 902 1s
also semantically related to the QUERY vertex 320 via an
accessReport edge 906. An interpretation of the database
portion 900 1s that user2 (corresponding to the PERSON
vertex 304) has access to queryl of QUERY vertex 320 with
the permission designated in the ACCESS vertex 902. This
example 1s logically equivalent to the View edge 342 as
depicted 1n FIG. 3.

In another embodiment, the types of permissions or
access controls may include a permission expiration date or
a time period for which the permission 1s to remain valid.
For example, a user may be granted permission to view the
data in the results data set for a predefined time period (e.g.,
30 days). As another example, a user may be granted
permission to edit the data until the end of a quarter (e.g., on
or before December 31). When the predefined time period 1s
over or when the permission expiration date 1s reached, the
type of permission granted to the user may be rescinded
(e.g., the user can no longer view the data) or changed (e.g.,
the user can no longer edit the data but can still view the
data).

For example, FIG. 9B 1s a diagram 1llustrating a portion
of a database 910, according to an embodiment. FIG. 9B 1s
discussed in reference to FIG. 3, and description of elements
having the same reference numbers 1s omitted for brevity.
The database 910 includes a TRIGGER vertex 912. A
TRIGGER vertex contains information of events that trigger

a change 1n permission or access to data. In addition, the
TRIGGER vertex 912 1s connected to the PERSON vertex

304 via an Edit edge 914, to the PERSON vertex 306 via an
View edge 916, and to the QUERY vertex 322 via an
Execute edge 918. The TRIGGER vertex 912 has a vertex

ID of “trigl23” and an expiration date property “Expires

5

10

15

20

25

30

35

40

45

50

55

60

65

18

On”. The expiration data property indicates the date on
which the type of permission granted to a user may be
rescinded or changed. In the database 910, the expiration
date 1n the TRIGGER vertex 912 1s set as “15 Dec. 2016”.
Accordingly, traversing from the PERSON vertex 304 to the
QUERY vertex 322 indicates that user2 1s granted the
permission to “E

Edit” the resultant data of query2 when
query?2 1s executed before Dec. 15, 2016. Traversing from
the PERSON vertex 306 to the QUERY vertex 322 indicates
that user3 1s granted the pennissien to “View” the resultant
data of query2 when query2 1s executed before Dec. 15,
2016. In an embodiment, on Dec. 15, 2016, the TRIGGE
vertex 912 will be deleted autematleally, severing the rela-
tionship between the PERSON vertices and the Query vertex
322, and thereby terminating the permissions granted to
user2 and user3. The Edit edge 914, the View edge 916, and
the Execute edge 918 may also be deleted when the TRIG-
GER vertex 912 1s deleted.

In another embodiment, permission may be granted via
access roles and edit rules. An access role 1s an arbitrarily-
defined group of users. Examples include “All Employees,”
“All Users,” “All Accounting,” “Document Owners,” and
“Document Editors.” An edit rule 1s a rule that defines (a)
which of the results the user may see, and (b) what sort of
actions the user may take with respect to the results. The edit
rule may override any previously-existing rule.

Turning to FIG. 9C, which depicts a diagram 1llustrating,
a portion of a database 920, access roles and edit rules
implemented according to an embodiment will now be
described. The database 920 includes a USER vertex 922,
which represents a single user, and a GROUP vertex 924,
which represents a group of users. The USER vertex 922 and
the GROUP vertex 924 are senlantleally related to an
ACCESS ROLE vertex 926 via HasRole edge 940 and
HasRole edge 942, respectively. An ACCESS ROLE vertex
groups together the vertices representing individual user(s)
and/or group(s) of users who should be granted the same
type of permission to access certain query results. Here, the
ACCESS ROLE vertex 926 represents an access role that
has permission to access the resultant data of the queries in
the QUERY 1 vertex 928 and the QUERY 2 vertex 930.
Although the ACCESS ROLE vertex 926 1s connected to
one USER vertex and one GROUP vertex, 1in other embodi-
ments, any number (zero or more) of USER vertices or
GROUP vertices may be connected to an ACCESS ROLE
vertex.

In an implementation, 11 an access role 1s granted permis-
s1on to access a query’s results, then a default-permission
edge 1s generated between the ACCESS ROLE vertex
corresponding to the access role and the QUERY vertex
corresponding to the query. In FIG. 9C, the ACCESS ROLE
vertex 926 1s connected to the QUERY 1 vertex 928 and the
QUERY 2 vertex 930 via the CanAccess edges 944 and 946,
respectively. CanAccess edges 944 and 946 are assigned
permission type of “view”, which 1s the most restrictive type
of permission. In other embodiments, the CanAccess edges
nlay be assigned another type of permission, such as “edit”

or “own”’
The database 920 fturther includes EDIT RULE 1 vertex

932 and EDIT RULE 2 vertex 934. Each of EDIT RULE 1
vertex 932 and EDIT RULE 2 vertex 934 contains a per-
mission rule that may be different from the type of permis-
sion already granted by the CanAccess edges 944 and 946.
For exanlple EDIT RULE 1 vertex 932 may contain a

permission rule that allows the user(s) having the access role
of the ACCESS ROLE vertex 926 to edit the resultant data

of the query 1n the QUERY 1 vertex 928. Similarly, EDIT

US 10,831,921 B2

19

RULE vertex 934 may contain a permission rule that allows
the user(s) having the access role of the ACCESS ROLE
vertex 926 to edit the resultant data of the query in the
QUERY 2 vertex 930. The permission rule 1n an EDIT
RULE vertex may allow user(s) having a particular access
role to edit all or a portion of the data in the query result
(e.g., edit certain resultant data vertices, edit certain prop-
erties of some data vertices, edit certain edges, add or delete
data vertices and/or properties of data vertices).

Turning to FIG. 10A, an example of a user interface that
may be used (e.g., on the computing device 104) to establish
and configure edit rules according to an embodiment will
now be described. The user interface 1000 includes a rule
definition panel 1002 that allows a user to enter the name of
the rule, a description for the rule, which columns of a report
the rule applies to, and any filters that apply. The edit rule
established via the rule definition panel 1002 applies to
whichever collaborators (e.g., users) or roles with which the
edit rule 1s associated.

Turning to FIG. 10B, an example of a user interface that
may be used to assign collaborators to roles and assign edit
rules to roles and assign edit rules to individual users will
now be described. The user interface 1050 includes a list of
groups and a list of users as well as an indication of which
editing rule or rules apply to each role or to each user. Thus,
for example, to apply Edit Rule 1 to a collaborator, the user
locates and selects the collaborator (1.e., the user), then
locates and selects the edit rule.

Through interaction with the user interfaces 1000 and
1050, a user can create a new editing rule and specify which
column(s) are editable 1n a given report and specily any data
types for which new records can be created (e.g., new people
or controls). Either or both of the user interfaces 1000 and
1050 may include filters or conditions. In one implementa-
tion, users or groups have “Viewer” access by default when
added to a report, so editing rules should be explicitly
applied before anyone can edit data. An individual user’s
permission to edit data in the database 1s thus, 1n effect, an
agoregate ol all reports plus the editing rules they are
assigned. The productivity software 101 creates a “permis-
sions overlay” that reflects this aggregate, and ensures that
users can only edit data that 1s explicitly included their
assigned editing rules.

FIG. 11 1s a flowchart illustrating an example technique
for querying data in a database, according to an embodi-
ment. In this embodiment, the process 1100 of FIG. 11 1s
discussed with reference to the computing devices 1llustrated
i FIGS. 1 and 2. In other embodiments, other suitable
computing devices can be used to perform the process
illustrated in FIG. 11.

In more detail, the process 1100 1s an example technique
for executing a user-centric query. In an embodiment, at
1102, a computing device (e.g., a hardware server such as
the first computing device 100 or the third computing device
106, or a processor such as the processor 202) 1s configured
to generate a database query. In an embodiment, the com-
puting device 1s configured to generate the database query in
response to a request from a user or a query creator. Once the
query 1s generated, the computing device 1s configured to
store the query in the same database that stores the data, 1n
a separate partition of the database, or 1 a location that 1s
separate from the database.

At 1104, the computing device 1s configured to receive a
first request to execute the database query on behalf of a first
user. In an embodiment, the first request 1s a request sent by
the first user to execute the database query. In another
embodiment, the first request 1s a request generated by the

10

15

20

25

30

35

40

45

50

55

60

65

20

computing device after the first user’s log-in credential or
identity 1s authenticated. In still other embodiments, the first
request 1s a request generated by the computing device after
certain user information 1s recognized or verified.

In response to the first request, at 1106, the computing
device 1s configured to execute the database query to gen-
erate a first set of results such that the first set of results 1s
limited to data with which there 1s a semantic relationship 1n
the database to a first datum representing the first user. As
used herein, a datum 1s a piece of data included 1n a database.
Non-limiting examples of a datum include a data vertex or
a data node 1n a graph database, an edge 1n a graph database,
or a field or a record 1n a relational database. Referring to
FI1G. 3, each of the PERSON vertices 302, 304, and 306 1n
the database 300 serves as an example of a datum repre-
senting a user. At 1108, the computing device 1s configured
to display, to the first user, the first set of results of the
database query executed in response to the first request.

At 1110 of the process 1100, the computing device 1s
configured to receive a second request to execute the data-
base query on behalf of a second user. In an embodiment, the
second request 1s a request sent by the second user to execute
the database query. In another embodiment, the second
request 1s a request generated by the computing device after
the second user’s log-in credential or identity 1s authenti-
cated. In still other embodiments, the second request 1s a
request generated by the computing device after certain user
information 1s recognized or verified.

Then at 1112, in response to the second request, the
computing device 1s configured to execute the database
query to generate a second set of results such that the second
set of results 1s limited to data with which there 1s a semantic
relationship in the database to a second datum representing
the second user. As the database query 1n the process 1100
1s a user-centric query, the first set of results (i.e., results of
the query executed on behalf of the first user) and the second
set of results (1.e., results of the query executed on behalf of
the second user) are at least partially non-overlapping. At
1114, the computing device i1s configured to display, to the
second user, the second set of results of the database query
executed 1n response to the second request.

In an embodiment, the database query i1s generated and
executed using a graph database. Accordingly, the comput-
ing device 1s configured to execute the database query such
that the first set of results 1s limited to one or more data
nodes 1n the database that can be reached by traversing from
the first datum. The computing device 1s also configured to
execute the database query such that the second set of results
1s limited to one or more data nodes 1n the database that can
be reached by traversing from the second datum.

In another embodiment, to display the first set of the
results to the first user, the computing device 1s configured
to transmit a first report that includes the first set of results
to a first computing device for display to the first user. To
display the second set of results to the second user, the
computing device 1s configured to transmit a second report
that includes the second set of results to a second computing
device for display to the second user.

In still another embodiment, the computing device 1s
configured to grant, to the first user a first type of permission
(e.g., own) to access the database query. When the database
query 1s executed in response to the {first request, the
computing device 1s configured to grant, to the first user, the
first type of permission (e.g., own) to access data included
in the first set of the results. In other words, the computing

US 10,831,921 B2

21

device 1s configured to grant, to the first user, the same type
of permission to access the database query and the first set
ol results.

In yet another embodiment, the computing device 1s
configured to grant, to the second user, a second type of
permission (€.g., view or edit) to access the database query.
When the database query 1s executed 1n response to the
second request, the computing device 1s configured to grant,
to the second user, the second type of permission (e.g., view
or edit) to access data included in the second set of results.
In other words, the computing device 1s configured to grant,
to the second user, the same type of permission to access
both the database query and the second set of results.

FIG. 12 1s a flowchart illustrating another example tech-
nique for querying data in a database, according to an
embodiment. In this embodiment, the process 1200 of FIG.
12 1s discussed with reference to the computing devices
illustrated 1n FIGS. 1 and 2. In other embodiments, other
suitable computing devices can be used to perform the
process illustrated 1in FIG. 12.

The process 1200 1s an example technique that allows a
user to execute the query as another user (e.g., the “run-as-
query-creator” mode discussed previously). In an embodi-
ment, at 1202, a computing device (e.g., a hardware server
such as the first computing device 100 or the third comput-
ing device 106, or a processor such as the processor 202) 1s
configured to generate a database query. At 1204, the com-
puting device 1s configured to receive, from a first user, an
indication that the database query 1s to be shared with a
second user. For example, referring to FIG. 5, userl (rep-
resented by the PERSON vertex 302) can share queryl of
the QUERY vertex 320 with user2 (represented by the
PERSON vertex 304) via the Execute edge 542.

At 1206, the computing device 1s configured to receive a
request to execute the database query on behalf of the second
user. In response to the request, the computing device 1s
configured to execute the database query on behalf of the
second user to generate a set of results such that the set of
results 1s limited to data in the database that 1s accessible to
the first user. The set of results includes at least some data
in the database that was not accessible to the second user
before the database query 1s executed in response to the
request. Then at 1210, the computing device 1s configured to
display the set of results to the second user.

In an embodiment, to display the set of results to the
second user, the computing device 1s configured to transmait
a report that includes the set of results to a second computing
device for display to the second user.

In some embodiments, the set of results 1s limited to data
with which there 1s a semantic relationship 1n the database
to a first datum representing the first user.

In another embodiment, the computing device 1s config-
ured to grant, to the first user, a first type of permission (e.g.,
own) to access the database query. The computing device 1s
then configured to execute the database query on behalf of
the first user. After executing the database query on behalf
of the first user, the computing device 1s configured to grant,
to the first user, the first type of permission (e.g., own) to
access data included in the results of the database query.

In yet another embodiment, after receiving, from the first
user, the indication that the database query 1s to be shared
with the second user, the computing device 1s configured to
grant, to the second user, a second type of permission (e.g.,
view) to access the database query. After executing the
database query on behalf of the second user, the computing

5

10

15

20

25

30

35

40

45

50

55

60

65

22

device 1s configured to grant, to the second user, the second
type of permission (e.g., view) to access data included 1n the
set of results.

In still another embodiment, after receiving, from the first
user, the indication that the database query 1s to be shared
with the second user, the computing device 1s configured to
grant, to the second user, a second type of permission (e.g.,
execute) to access the database query. After executing the
database query on behalf of the second user, the computing
device 1s configured to grant, to the second user, permission
to execute the database query using data accessible to the
first user.

FIG. 13 1s a flowchart illustrating yet another example
technique for querying data in a database, according to an
embodiment. In this embodiment, the process 1300 of FIG.
13 1s discussed with reference to the computing devices
illustrated 1n FIGS. 1 and 2. In other embodiments, other
suitable computing devices can be used to perform the
process 1illustrated i FIG. 13.

The process 1300 illustrates an example technique for
generating a user-specific data subset (e.g., the user-specific
data subset 400 for user2 of FIG. 4). In an embodiment, a
computing device (e.g., a hardware server such as the first
computing device 100 or the third computing device 106, or
a processor such as the processor 202) 1s configured to
generate a database query 1n a database at 1302. At 1304, the
computing device 1s configured to grant, to the user, access
to the database query.

Then at 1306, the computing device i1s configured to
identily, from the database, a data subset specific to the user.
To 1dentity the data subset, the computing device 1s config-
ured to execute the database query on behall of the user
using data 1n the database to generate a set of results at 1308.
Then, at 1310, the computing device 1s configured to grant,
to the user, access to data included 1n the set of results. At
1312, the computing device 1s configured to receive a
request to execute the database query on behalf of the user.
In response to the request to execute the database query on
behalf of the user, at 1314, the computing device 1s config-
ured to execute the database query using only data in the
data subset to generate a report. Then at 1316, the computing
device 1s configured to display the report to the user. As
discussed previously, the data subset specific to the user
allows the user to interact with data that are accessible to the
user mndependent of other users.

In some embodiments, the computing device 1s config-
ured to i1dentify the data subset by including, in the data
subset, the data included 1n the set of results and the database
query. In other embodiments, the computing device 1s con-
figured to identify the data subset by including, 1n the data
subset, a reference to the data included 1n the set of results
and a reference to the database query. The computing device
may further store the data subset in memory.

In an embodiment, when executing the database query
using data in the database, the computing device 1s config-
ured to execute the database query such that the set of results
1s limited to data with which there 1s a semantic relationship
in the database to a datum representing the user.

In another embodiment, the computing device 1s config-
ured to grant, to the user, a first type of permission to access
to the database query. The computing device 1s further
configured to grant, to the user, the first type of permission
to access the data included 1n the set of results.

In still another embodiment, the computing device 1s
configured to receive a request to modily data. Then, the
computing device 1s configured to update the database to
include the modified data. The computing device 1s further

US 10,831,921 B2

23

configured to determine whether the request to modify data
aflects or modifies any data 1n the data subset. Based on a
determination that the request to modily data would modity
data 1n the data subset, the computing device 1s configured
to regenerate the data subset to include the modified data.

In yet another embodiment, the computing device 1s
configured to grant, to a second user, access to the database
query. The computing device 1s then configured to i1dentily,
from the database, a second data subset specific to the
second user. To identily the second data subset, the com-
puting device 1s configured to execute the database query, on
behalf of the second user, using data i1n the database to
generate a second set of results. The computing device 1s
also configured to grant, to the second user, access to data
included 1n the second set of results. Then, the computing
device 1s configured to receive a request to execute the
database query on behalf of the second user. In response to
the request to execute the database query on behalf of the
second user, the computing device 1s configured to execute
the database query using only data 1n the second data sub set.

In some embodiments, the computing device 1s config-
ured to 1dentify the second data subset by including, in the
second data subset, the data included in the second set of
results and the database query. In other embodiments, the
computing device 1s configured to 1dentity the second data
subset by including, in the second data subset, a reference to
the data included 1n the second set of results and a reference
to the database query. The computing device 1s configured to
store the second data subset in the memory to be separate
from the data subset.

In an embodiment, the computing device 1s configured to
receive, from the user, an indication that the database query
1s to be shared with the second user. ~

T'hen, the computing
device 1s configured to receive a request to execute the
database query on behalf of the second user. In response to
the request from the second user, the computing device 1s
configured to execute the database query such that it is
limited to data in the data subset specific to the user.

FIG. 14 1s a flowchart illustrating another example tech-
nique for querying data in a database, according to an
embodiment. In this embodiment, the process 1400 of FIG.
14 1s discussed with reference to the computing devices
illustrated 1n FIGS. 1 and 2. In other embodiments, other
suitable computing devices can be used to perform the
process 1illustrated in FIG. 14.

The process 1400 1s an example technique for resolving
permission contlicts between queries. At 1402, a computing,
device (e.g., a hardware server such as the first computing
device 100 or the third computing device 106, or a processor
such as the processor 202) 1s configured to generate a first
database query. At 1404, the computing device 1s configured
to grant, to a user, a first type of permission to execute the
first database query. At 1406, the computing device 1is
configured to generate a second database query. Then at
1408, the computing device i1s configured to grant, to the
user, a second type of permission to execute the second
database query.

At 1410, the computing device 1s configured to execute
the first database query to generate a first set of results. Then
at 1412, the computing device 1s configured to execute the
second database query to generate a second set of results,
where the second set of results and the first set of results
share one or more overlapping data. For the overlapping
data, the computing device 1s configured to compare the first
type of permission with the second type of permission, at
1414. At 1416, based on a result of the comparison, the
computing device 1s configured to grant, to the user, either

10

15

20

25

30

35

40

45

50

55

60

65

24

the first type of permission or the second type of permission
to access the overlapping data.

In various embodiments, the first type of permission 1s
different from the second type of permission. In an embodi-
ment, the first type of permission (e.g., edit) 1s more per-
missive than the second type of permission (e.g., view). In
another embodiment, the first type of permission 1s more
restrictive (e.g., edit) than the second type of permission
(e.g., own).

In an embodiment, the computing device 1s configured to
determine whether the first type of permission 1s more
permissive than the second type of permission. The com-
puting device 1s configured to grant, to the user, the first type
of permission to access the overlapping data 1t the first type
ol permission 1s more permissive. The computing device 1s
further configured to grant, to the user, the second type of
permission to access the overlapping data 11 the second type
ol permission 1s more permissive.

In another embodiment, the computing device 1s config-
ured to determine whether the first type of permission 1s
more restrictive than the second type of permission. If the
first type of permission 1s more restrictive, the computing
device 1s configured to grant, to the user, the first type of
permission to access the overlapping data. If the second type
of permission 1s more restrictive, the computing device 1s
configured to grant, to the user, the second type of permis-
s1on to access the overlapping data.

Furthermore, the computing device 1s configured to grant,
to the user, the first type of permission to access the
remaining data in the first set of results. The computing
device 1s also configured to grant, to the user, the second
type ol permission to access the remaining data in the second
set of results.

The computing device 1s further configured to generate a
data subset specific to the user. In an embodiment, the data
subset includes the overlapping data, the remaining data 1n
the first set of results, the remaining data in the second set
of results, the first database query, the second database
query, the first type of permission, and the second type of
permission. In another embodiment, the data subset includes
a reference to the overlapping data, a reference to the
remaining data in the first set of results, a reference to the
remaining data in the second set of results, a reference to the
first database query, a reference to the second database
query, a relerence to the first type of permission, and a
reference to the second type of permission.

Turning to FIG. 15, an example (process 1500) of how
access roles are used i an embodiment will now be
described. At 1502, a computing device (e.g., a hardware
server such as the first computing device 100 or the third
computing device 106, or a processor such as the processor
202) generates (in a graph database) an access role vertex
that defines an access role of a user (or a group of users) and
1s connected to a user vertex representing the user (or a
group vertex representing the group of users). At 1504, the
computing device generates a query vertex comprising a
traversal clause that represents a query of the graph data-
base. At 1506, the computing device generates a permission
edge between the access role vertex and the query vertex,
where the permission edge defines the access role’s permis-
s10n to access results of the query. At 1508, the computing
device recerves a request to execute the query on behalf of
the user. At 1510, i response to the computing device
traverses the graph database according to the traversal clause
to locate a set of vertices. At 1512, the computing device
generates a set of results based on the set of vertices.

US 10,831,921 B2

25

In another embodiment, the computing device generates
an edit rule vertex, where the edit rule vertex includes a rule
that defines the access role’s permission to access the results
of the query, and the permission defined by the rule 1is
different from the permission defined by the permission
edge. The computing device further generates an edge
between the query vertex and the edit rule vertex, and
generates an edge between the access role vertex and the edit
rule vertex.

In an embodiment, the permission defined by the rule
overrides the permission defined by the permission edge. In
some embodiments, the permission defined by the rule 1s
more permissive than the permission defined by the permis-
sion edge.

In various embodiments, the traversal clause 1dentifies a
data vertex, and the computing device traverses the graph
database to locate the set of vertices by starting from the data
vertex. In an embodiment, the data vertex 1s the user vertex,
and the computing device traverses the graph database by
starting from the user vertex. In another embodiment, the
data vertex 1s the access role vertex, and the computing
device traverses the graph database by starting from the
access role vertex.

In various embodiments, the computing device displays,
to the user, set of results based on the located set of vertices.

Turning to FIG. 16, another example (process 1600) of
how access roles are used 1n an embodiment will now be
described. At 1602, the computing device generates (in a
graph database) an access role vertex that defines and access
role of a user (or a group of users) and 1s connected to a user
vertex representing the user (or a group vertex representing,
the group of users). At 1604, the computing device generates
a query vertex comprising a traversal clause that represents
a query of the graph database. At 1606, the computing
device generates a permission edge between the access role
vertex and the query vertex, where the permission edge
defines the access role’s permission to access results of the
query, and the results of the query includes a set of vertices
that 1s specific to the user. At 1608, the computing device
identifies from the graph database the set of vertices that 1s
specific to the user. At 1610, the computing device receives
a request to execute the query on behalf of the user. At 1612,
in response to the request, the computing device traverses
only the identified set of vertices that 1s specific to the user
to generate a sub-graph specific to the user.

In an embodiment, the computing device generates a
report using data in the sub-graph, and displays the report to
the user.

In various embodiments, the sub-graph includes the set of
vertices that 1s specific to the user and the query. In other
embodiments, the sub-graph includes a reference to the set
of vertices that 1s specific to the user and a reference to the
query.

In another embodiment, the computing device receives a
request to modily data. The computing device updates the
graph database to include the modified data, and determines
whether the request to modily data modifies data 1n the
identified set of vertices. Based on a determination that the
request to modily data modifies data 1n the identified set of
vertices, the computing device regenerates the sub-graph to
include the modified data.

Turning to FI1G. 17, still another example (process 1700)
of how access roles are used 1n an embodiment will now be
described. At 1702, the computing device generates (in a
graph database) a first access role vertex that defines an
access role of a first user and 1s connected to a first user
vertex representing the first user. At 1704, the computing,

5

10

15

20

25

30

35

40

45

50

55

60

65

26

device generates (1n the graph database) a second access role
vertex that defines an access role of a second user and 1s
connected to a second user vertex representing the second
user. At 1706, the computing device generates a query vertex
comprising a traversal clause that represents a query of the
graph database. At 1708, the computing device generates a
permission edge between the first access role vertex and the
query vertex, i which the permission edge defines the first
access role’s permission to the access the results of the
query. At 1710, the computing device receives, from the first
user, an 1ndication that the database query 1s to be shared
with the second user. At 1712, 1n response to the recerved
indication, the computing device generates an edge between
the second access role vertex and the query vertex. At 1714,
the computing device receives a request to execute the
database query on behall of the second user. At 1716, 1n
response to the request, the computing device traverses the
graph database according to the traversal clause to locate a
set of vertices, and the set of vertices includes at least one
vertex that was not accessible to the second user before the
edge was generated between the second access role vertex
and the query vertex. At 1718, the computing device dis-
plays, to the second user, a set of results based on the located
vertices.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby incorporated by
reference to the same extent as 1f each reference were
individually and specifically indicated to be incorporated by
reference and were set forth 1n 1ts entirety herein.

For the purposes of promoting an understanding of the
principles of the invention, reference has been made to the
embodiments illustrated 1n the drawings, and specific lan-
guage has been used to describe these embodiments. How-
ever, no limitation of the scope of the invention 1s intended
by this specific language, and the invention should be
construed to encompass all embodiments that would nor-
mally occur to one of ordinary skill 1n the art. The termi-
nology used herein 1s for the purpose of describing the
particular embodiments and 1s not intended to be limiting of
exemplary embodiments of the invention. In the description
of the embodiments, certain detailed explanations of related
art are omitted when 1t 1s deemed that they may unneces-
sarily obscure the essence of the imvention.

The apparatus described herein may comprise a processor,
a memory for storing program data to be executed by the
processor, a permanent storage such as a disk drive, a
communications port for handling communications with
external devices, and user interface devices, including a
display, touch panel, keys, buttons, etc. When software
modules are involved, these software modules may be stored
as program 1nstructions or computer readable code execut-
able by the processor on a non-transitory computer-readable
media such as magnetic storage media (e.g., magnetic tapes,
hard disks, floppy disks), optical recording media (e.g.,
CD-ROMs, Digital Versatile Discs (DVDs), etc.), and solid
state memory (e.g., random-access memory (RAM), read-
only memory (ROM), static random-access memory
(SRAM), electrically erasable programmable read-only
memory (EEPROM), flash memory, thumb drives, etc.). The
computer readable recording media may also be distributed
over network coupled computer systems so that the com-
puter readable code 1s stored and executed 1n a distributed
fashion. This computer readable recording media may be
read by the computer, stored in the memory, and executed by
the processor.

Also, using the disclosure herein, programmers of ordi-
nary skill in the art to which the mnvention pertains may

US 10,831,921 B2

27

casily implement functional programs, codes, and code
segments for making and using the invention.

The mvention may be described in terms of functional
block components and various processing steps. Such func-
tional blocks may be realized by any number of hardware
and/or soltware components configured to perform the
specified functions. For example, the invention may employ
various 1ntegrated circuit components, €.g., memory e¢le-
ments, processing elements, logic elements, look-up tables,
and the like, which may carry out a variety of functions
under the control of one or more microprocessors or other
control devices. Similarly, where the elements of the inven-
tion are implemented using soitware programming or soit-
ware elements, the invention may be implemented with any
programming or scripting language such as C, C++, JAVA®,
assembler, or the like, with the various algorithms being
implemented with any combination of data structures,
objects, processes, routines or other programming elements.
Functional aspects may be implemented in algorithms that
execute on one or more processors. Furthermore, the inven-
tion may employ any number of conventional techniques for
clectronics configuration, signal processing and/or control,
data processing and the like. Finally, the steps of all methods
described herein may be performed 1n any suitable order
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

For the sake of brevity, conventional electronics, control
systems, software development and other functional aspects
of the systems (and components of the individual operating
components of the systems) may not be described 1n detail.
Furthermore, the connecting lines, or connectors shown 1n
the various figures presented are intended to represent
exemplary functional relationships and/or physical or logi-
cal couplings between the various elements. It should be
noted that many alternative or additional functional relation-
ships, physical connections or logical connections may be
present 1 a practical device. The words “mechanism”,
“element”, “unit”, “structure”, “means”, and “construction”
are used broadly and are not limited to mechanical or
physical embodiments, but may include software routines in
conjunction with processors, efc.

The use of any and all examples, or exemplary language
(e.g., “such as”) provided herein, 1s intended merely to better
1lluminate the invention and does not pose a limitation on the
scope of the imnvention unless otherwise claimed. Numerous
modifications and adaptations will be readily apparent to
those of ordinary skill 1 this art without departing from the
spirit and scope of the invention as defined by the following
claims. Therefore, the scope of the imnvention i1s defined not
by the detailed description of the invention but by the
tollowing claims, and all differences within the scope will be
construed as being included 1n the invention.

No 1tem or component 1s essential to the practice of the
invention unless the element 1s specifically described as
“essential” or “critical”. It will also be recognized that the
terms “‘comprises”’, “comprising’, “includes”, “including”,
“has”, and “having”, as used herein, are specifically intended
to be read as open-ended terms of art. The use of the terms
“a” and “an” and *“‘the” and similar referents in the context
of describing the invention (especially 1n the context of the
following claims) are to be construed to cover both the
singular and the plural, unless the context clearly indicates
otherwise. In addition, it should be understood that although
the terms “first”, “second”, etc. may be used herein to
describe various elements, these elements should not be
limited by these terms, which are only used to distinguish

one element from another. Furthermore, recitation of ranges

10

15

20

25

30

35

40

45

50

55

60

65

28

of values herein are merely intended to serve as a shorthand
method of referring individually to each separate value
falling within the range, unless otherwise indicated herein,
and each separate value 1s incorporated 1nto the specification
as 1f 1t were individually recited herein.

What 1s claimed 1s:

1. A computing device comprising processor hardware
that executes instructions to carry out actions comprising:

generating, in a graph database, an access role vertex that

defines an access role of a user, wherein the access role
vertex 1s connected to a user vertex representing the
user;
generating a query vertex comprising a traversal clause
that represents a query of the graph database;

generating a permission edge between the access role
vertex and the query vertex, wherein the permission
edge defines the access role’s default permission to
access results of the query;

generating an edit rule vertex, wherein the edit rule vertex

comprises a rule that defines a permission to edit the
results of the query;

generating an edge between the query vertex and the edit

rule vertex:
generating an edge between the access role vertex and the
edit rule vertex, wherein the permission to edit the
results of the query defined by the rule overrides the
default permission defined by the permission edge;

recerving a request to execute the query on behalf of the
user;

in response to the request, traversing the graph database

according to the traversal clause to locate a set of
vertices; and

generating a set of results based on the set of vertices.

2. The computing device of claim 1, wherein the default
permission defined by the permission edge 1s a view per-
mission.

3. The computing device of claim 1, wherein the permis-
sion defined by the rule 1s more permissive than the default
permission defined by the permission edge.

4. The computing device of claim 1, wherein the traversal
clause 1dentifies a data vertex, and traversing the graph
database according to the traversal clause comprises travers-
ing the graph database starting from the data vertex.

5. The computing device of claim 4, wherein the data
vertex 1dentified in the traversal clause 1s the user vertex.

6. The computing device of claim 4, wherein the data
vertex 1dentified in the traversal clause 1s the access role
vertex.

7. The computing device of claim 1, wherein the proces-
sor hardware executes instructions to carry out further
actions comprising displaying, to the user, the set of results.

8. A computing device comprising processor hardware
that executes 1nstructions to carry out actions comprising:

generating, 1n a graph database, an access role vertex that

defines an access role of a user, wherein the access role
vertex 1s connected to a user vertex representing the
user;
generating a query vertex comprising a traversal clause
that represents a query of the graph database;

generating a permission edge between the access role
vertex and the query vertex, wherein the permission
edge defines the access role’s default permission to
access results of the query, wherein the results of the
query comprise a set of vertices that 1s specific to the
user;

US 10,831,921 B2

29

generating an edit rule vertex, wherein the edit rule vertex
comprises a rule that defines a permission to edit the
results of the query;

generating an edge between the query vertex and the edit

rule vertex;
generating an edge between the access role vertex and the
edit rule vertex, wherein the permission to edit the
results of the query defined by the rule overrides the
default permission defined by the permission edge;

identifying, from the graph database, the set of vertices
that 1s specific to the user;

receiving a request to execute the query on behalf of the

user; and

in response to the request, traversing only the i1dentified

set of vertices that 1s specific to the user to generate a
sub-graph specific to the user.

9. The computing device of claim 8, wherein the default
permission defined by the permission edge 1s a view per-
mission.

10. The computing device of claim 8, wherein the per-
mission defined by the rule 1s more permissive than the
default permission defined by the permission edge.

11. The computing device of claim 8, wherein the tra-
versal clause 1dentifies a data vertex, and 1dentifying the set
of vertices that 1s specific to the user comprises traversing
the graph database starting from the data vertex.

12. The computing device of claim 11, wherein the data
vertex 1dentified in the traversal clause i1s the user vertex.

13. The computing device of claim 11, wherein the data
vertex 1dentified in the traversal clause 1s the access role
vertex.

14. The computing device of claam 8, wherein the pro-
cessor hardware executes instructions to carry out further
actions comprising;:

generating a report using data in the sub-graph; and

displaying the report to the user.

15. The computing device of claim 8, wherein the sub-
graph comprises the set of vertices that 1s specific to the user
and the query vertex.

16. The computing device of claim 8, wherein the sub-
graph comprises a reference to the set of vertices that is
specific to the user and a reference to the query vertex.

17. The computing device of claim 8, wherein the pro-
cessor hardware executes instructions to carry out further
actions comprising;:

receiving a request to modily data;

updating the graph database to include the modified data;

determining whether the request to modify data modifies

data 1n the i1dentified set of vertices; and

based on a determination that the request to modity data

modifies data in the 1dentified set of vertices, regener-
ating the sub-graph to include the modified data.

18. A computing device comprising processor hardware
that executes istructions to carry out actions comprising:

10

15

20

25

30

35

40

45

50

30

generating, i a graph database, a first access role vertex
that defines an access role of a first user, wherein the
first access role vertex 1s connected to a first user vertex
representing the first user;
generating, in the graph database, a second access role
vertex that defines an access role of a second user,
wherein the second access role vertex 1s connected to a
second user vertex representing the second user;

generating a query vertex comprising a traversal clause
that represents a query of the graph database;

generating a permission edge between the first access role
vertex and the query vertex, wherein the permission
edge defines the first access role’s default permission to
access the results of the query;

generating an edit rule vertex, wherein the edit rule vertex

comprises a rule that defines a permission to edit the
results of the query;

generating an edge between the query vertex and the edit

rule vertex:
generating an edge between the first access role vertex
and the edit rule vertex, wherein the permission to edit
the results of the query defined by the rule overrides the
default permission defined by the permission edge;

receiving, from the first user, an indication that the
database query 1s to be shared with the second user;

in response to the received indication, generating an edge
between the second access role vertex and the query
veriex;

recerving a request to execute the database query on

behalf of the second user;
in response to the request, traversing the graph database
according to the traversal clause to locate a set of
vertices, wherein the set of vertices includes at least one
vertex 1in the graph database that was not accessible to
the second user belore the edge was generated between
the second access role vertex and the query vertex; and

displaying, to the second user, a set of results based on the
located set of vertices.

19. The computing device of claim 18, wherein the default
permission defined by the permission edge 1s view permis-
S1011.

20. The computing device of claim 18, wherein the
permission defined by the rule 1s more permissive than the
default permission defined by the permission edge.

21. The computing device of claim 18, wherein the
traversal clause identifies a data vertex, and traversing the
graph database according to the traversal clause comprises
traversing the graph database starting from the data vertex.

22. The computing device of claim 21, wherein the data
vertex 1dentified in the traversal clause 1s the user vertex.

23. The computing device of claim 21, wherein the data
vertex 1dentified in the traversal clause 1s the access role
vertex.

	Front Page
	Drawings
	Specification
	Claims

