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1

WORK ALLOCATION FOR JPEG
ACCELERATOR

TECHNICAL FIELD

The disclosure relates to processing packets of informa-
tion, for example, in the fields of networking and storage.

BACKGROUND

In a typical computer network, a large collection of
interconnected servers provides computing and/or storage
capacity for execution of various applications. A data center
1s one example ol a large-scale computer network and
typically hosts applications and services for subscribers, 1.¢.,
customers ol the data center. The data center may, for
example, host all of the infrastructure equipment, such as
compute nodes, networking and storage systems, power
systems, and environmental control systems. In most data
centers, clusters of storage systems and application servers
are interconnected via a high-speed switch fabric provided
by one or more tiers of physical network switches and
routers. Data centers vary greatly 1n size, with some public
data centers contaiming hundreds of thousands of servers,
and are usually distributed across multiple geographies for
redundancy.

Many devices within a computer network, e.g., storage/
compute servers, lirewalls, intrusion detection devices,
switches, routers or other network attached devices, often
use general purpose processors, mcluding multi-core pro-
cessing systems, to process data, such as network or storage
data. However, general purpose processing cores and multi-
processing systems are normally not designed for high-
capacity network and storage workloads of modern net-
works and can be relatively poor at performing packet
stream processing.

SUMMARY

In general, this disclosure describes a highly program-
mable device, referred to generally as a data processing unit,
having multiple processing units for processing streams of
information, such as network packets or storage packets. In
some examples, the processing units may be processing
cores, and 1n other examples, the processing units may be
virtual processors, hardware threads, hardware blocks, or
other sub-processing core units. As described herein, the
data processing unmit includes one or more specialized hard-
ware-based accelerators configured to perform acceleration
for various data-processing functions, thereby offloading
tasks from the processing units.

In various examples, this disclosure describes a program-
mable, hardware-based accelerator configured to store and
retrieve 1images, such as Joint Picture Experts Group (JPEG)
images. The accelerator may, for example, be a hardware
implementation of a JPEG accelerator as a component of the
data processing umt (DPU) integrated circuit. The JPEG
accelerator may be configured to code a first block and, 1n
parallel, context-based code a second block using context of
the first block. For example, the JPEG accelerator may
decode a syntax element for a first block of 1image data. In
this example, the JPEG accelerator may context-based
C
C

ecode a syntax element of the second block of the image
ata and, in parallel, decode another syntax element of a

second block of the image data.
In an example, a device includes a memory configured to
store 1mage data and an 1image coding unit implemented 1n
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circuitry. The 1image coding unit 1s configured to code a first
value of a first instance of a first syntax element of a first
block of 1mage data and determine a first context for coding
a second value of a second instance of the first syntax
clement of a second block of the image data. The 1mage
coding unit 1s further configured to context-based code the
second value of the second instance of the first syntax
clement of the second block of the image data after coding
the first value of the first instance of the first syntax element
using the first context and code a third value of a first
istance of a second syntax element of the first block 1n
parallel with coding the second value or after coding the
second value.

In another example, a method includes coding, by an
image coding unit implemented in circuitry of a device, a
first value of a first instance of a first syntax element of a first
block of 1mage data, determining, by the image coding unat,
a first context for coding a second value of a second 1nstance

il

of the first syntax element of a second block of the image
data, context-based coding, by the image coding unit, the
second value of the second instance of the first syntax
clement of the second block of the image data after coding
the first value of the first instance of the first syntax element
using the first context, and coding, by the image coding unit,
a third value of a first instance of a second syntax element
of the first block 1n parallel with coding the second value or
alter coding the second value.

In another example, a computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor to code a first value of a first instance of a first syntax
clement of a first block of image data, determine a first
context for coding a second value of a second 1nstance of the
first syntax element of a second block of the image data,
context-based code the second value of the second 1nstance
of the first syntax element of the second block of the image
data after coding the first value of the first instance of the
first syntax element using the first context, and code a third
value of a first instance of a second syntax element of the
first block 1n parallel with coding the second value or after
coding the second value.

In another example, a method includes storing, by an
image coding unit implemented in circuitry of a device, a
first portion of a set of context information 1n memory of the
image coding unit as an array representing a direct access
table, storing, by the image coding unit, a second portion of
the set of context mformation in a hash table, determining,
by the image coding unit, whether a context value for
context-based coding of a value of an instance of a syntax
clement for a block of image data is stored in the array or 1n
the hash table, retrieving, by the image coding unit, the
context value from either the array or the hash table accord-
ing to the determination, and context-based coding the value
ol the instance of the syntax element using the context value.

In another example, a device includes a memory config-
ured to store 1image data and an 1mage coding unit 1mple-
mented 1n circuitry. The 1image coding unit 1s configured to
store a first portion of a set of context imformation in
memory of the image coding unit as an array representing a
direct access table, store a second portion of the set of
context information 1n a hash table, determine whether a
context value for context-based coding of a value of an
instance of a syntax element for a block of image data is
stored 1n the array or in the hash table, retrieve the context
value from either the array or the hash table according to the
determination, and context-based code the wvalue of the
instance of the syntax element using the context value.
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In another example, a computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor to store a first portion of a set of context information
in memory of the image coding unit as an array representing
a direct access table, store a second portion of the set of
context information 1n a hash table, determine whether a
context value for context-based coding of a value of an
instance of a syntax element for a block of image data is
stored in the array or in the hash table, retrieve the context
value from either the array or the hash table according to the
determination, and context-based code the value of the
instance of the syntax element using the context value.

In another example, a method includes decoding, by an
image coding unit implemented 1n circuitry of a device, a
first set of one or more bits of a first value of a first instance
of a first syntax element of a block of 1image data, deter-
mimng, by the image coding unait, that the first set of one or
more bits have values indicating that one or more values of
respective mstances ol one or more other syntax elements of
the block of 1image data are to be decoded, and 1n response
to the determination, decoding, by the image coding unit,
one or more bits of the one or more values of the respective
instances of the one or more other syntax elements of the
block prior to decoding a second set of one or more bits of
the first value of the first mnstance of the first syntax element.

In another example, a device includes a memory config-
ured to store image data and an 1image coding unit 1imple-
mented 1n circuitry. The image coding unit 1s configured to
decode a first set of one or more bits of a first value of a first
instance of a first syntax element of a block of 1image data,
determine that the first set of one or more bits have values
indicating that one or more values of respective mstances of
one or more other syntax elements of the block of image data
are to be decoded, and 1n response to the determination,
decode one or more bits of the one or more values of the
respective instances of the one or more other syntax ele-
ments of the block prior to decoding a second set of one or
more bits of the first value of the first instance of the first
syntax element.

In another example, a computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor to decode a first set of one or more bits of a first value
of a first instance of a first syntax element of a block of
image data, determine that the first set of one or more bits
have values indicating that one or more values of respective
instances of one or more other syntax elements of the block
of 1mage data are to be decoded, and 1n response to the
determination, decode one or more bits of the one or more
values of the respective mnstances of the one or more other
syntax elements of the block prior to decoding a second set
of one or more bits of the first value of the first instance of
the first syntax element.

In another example, a method includes determining, by an
image coding unit implemented 1n circuitry of a device, an
indication of a last-non-zero (LNZ) syntax element for a
block of image data and determining, by the image coding
unit, contexts for coding coeflicient map values for each
coellicient of a plurality of coetlicients of the block using the
[LNZ syntax element. The method further includes context-
based coding, by the image coding unit, the coeflicient map
values for each of the plurality of coeflicients 1n parallel
using the respective contexts.

In another example, a device includes a memory config-
ured to store 1mage data and an 1mage coding unit 1mple-
mented 1n circuitry. The image coding unit 1s configured to
determine an indication of a last-non-zero (LNZ) syntax
clement for a block of image data and determine contexts for

5

10

15

20

25

30

35

40

45

50

55

60

65

4

coding coeflicient map values for each coeflicient of a
plurality of coeflicients of the block using the LNZ syntax

clement. The 1mage coding unit i1s further configured to
context-based code the coetlicient map values for each of the
plurality of coeflicients in parallel using the respective
contexts.

In another example, a computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor to determine an indication of a last-non-zero (LNZ)
syntax element for a block of 1image data, determine contexts
for coding coeflicient map values for each coeflicient of a
plurality of coeflicients of the block using the LNZ syntax
clement, and context-based code the coeflicient map values
for each of the plurality of coeflicients 1n parallel using the
respective contexts.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and {from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram 1llustrating an example system
including one or more network devices configured to ethi-
ciently process a series ol work units 1n a multiple core
processor system.

FIG. 2 1s a block diagram illustrating an example data
processing unit (DPU) including two or more processing
cores, 1n accordance with the techniques of this disclosure.

FIG. 3 1s a block diagram illustrating another example
data processing unit including two or more processing
clusters, in accordance with the techniques of this disclo-
sure.

FIG. 4 1s a block diagram illustrating an example pro-
cessing cluster including a plurality of programmable pro-
cessing cores, 1 accordance with the techniques of this
disclosure.

FIG. 5 1s a block diagram 1illustrating an example Joint
Picture Experts Group (JPEG) accelerator, in accordance
with the techniques of this disclosure.

FIG. 6 1s a conceptual diagram 1llustrating a logical layout
of coetlicient blocks of a 3 component image with 2x2, 1x1,
1x1 Minimum Coded Unit (MCU) size, 1n accordance with
the techniques of this disclosure.

FIG. 7 1s a conceptual diagram illustrating Huilman
encoded blocks with scan encode order, 1n accordance with
the techniques of this disclosure.

FIG. 8 1s a conceptual diagram illustrating examples of
context block storage for MCUSs, 1n accordance with the
techniques of this disclosure.

FIG. 9 15 a conceptual diagram 1llustrating a zig-zag scan
order, a direct current (DC) coetlicient, alternating current
(AC) low coetlicients, and AC high coeflicients, 1n accor-
dance with the techniques of this disclosure.

FIG. 10 1s a conceptual diagram illustrating a dependency
graph for context determinations for inter and intra block
coellicients, 1n accordance with the techmques of this dis-
closure.

FIG. 11 1s a flowchart 1llustrating example techniques for
encoding an 1mage, in accordance with the techniques of this
disclosure.

FIG. 12 1s a flowchart illustrating example details for
encoding MCUSs, in accordance with the techniques of this
disclosure.

FIG. 13 15 a flowchart illustrating example techniques for
decoding an 1mage, in accordance with the techniques of this
disclosure.
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FIG. 14 1s a flowchart illustrating example details for
decoding MCUSs, 1n accordance with the techniques of this

disclosure.

FIG. 15 1s a tlowchart 1llustrating example techniques for
storing context information, 1 accordance with the tech-
niques of this disclosure.

FIG. 16 1s a flowchart 1llustrating example techniques for
executing a hash function, 1n accordance with the techniques
of this disclosure.

FIG. 17 1s a conceptual illustrating example speculative
decode tree for a last non-zero (LNZ) syntax element, 1n
accordance with the techniques of this disclosure.

FIG. 18 1s a conceptual illustrating example speculative
decode tree for a coetflicient, 1n accordance with the tech-
niques of this disclosure.

FI1G. 19 1s a flowchart 1llustrating example techniques for
decoding to help to maximize performance, in accordance
with the techniques of this disclosure.

FIG. 20 1s a conceptual diagram illustrating a scan order
of coeflicients of a block to be decoded, 1n accordance with
the techmiques of this disclosure.

FIG. 21 1s a conceptual diagram illustrating an example
table of coeflicient map values and a number of non-zero
coellicients (NNZ) values for the block of FIG. 20, in
accordance with the techniques of this disclosure.

FI1G. 22 1s a flowchart 1llustrating example techniques for
decoding using a LNZ syntax element, in accordance with
the techmiques of this disclosure.

DETAILED DESCRIPTION

FIG. 1 1s a block diagram 1illustrating an example system
108 including one or more network devices configured to
clliciently process a series of work units 1n a multiple core
processor system. As described herein, techniques for par-
allel coding of syntax elements for an 1image may provide
technical benefits that include improving the efliciency and
utilization of processing cores within access nodes 117 in
FIG. 1. Access nodes may also be referred to as data
processing units (DPUs), or devices including DPUSs, 1n this
disclosure. In the example of FIG. 1, various data structures
and processing techmques are described with respect to
access nodes 117 within a data center 110. Other devices
within a network, such as routers, switches, servers, fire-
walls, gateways and the like, having multiple core processor
systems may readily be configured to utilize the data pro-
cessing techniques described herein.

Data center 110 represents an example of a system in
which various techniques described herein may be imple-
mented. In general, data center 110 provides an operating,
environment for applications and services for customers 111
coupled to the data center by service provider network 107
and gateway device 120. Data center 110 may, for example,
host infrastructure equipment, such as compute nodes, net-
working and storage systems, redundant power supplies, and
environmental controls. Service provider network 107 may
be coupled to one or more networks administered by other
providers, and may thus form part of a large-scale public
network infrastructure, e.g., the Internet. In other examples,
content/service provider network 107 may be a data center
wide-area network (DC WAN), private network or other
type of network.

In some examples, data center 110 may represent one of
many geographically distributed network data centers. In the
example of FIG. 1, data center 110 1s a facility that provides
information services for customers 111. Customers 111 may
be collective entities such as enterprises and governments or
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individuals. For example, a network data center may host
web services for several enterprises and end users. Other
exemplary services may include data storage, virtual private
networks, file storage services, data mining services, scien-
tific- or super-computing services, and so on.

In the 1llustrated example, data center 110 includes a set
of storage systems and application servers 112 intercon-
nected via a high-speed switch fabric 114. In some
examples, servers 112 are arranged into multiple different
server groups, each including any number of servers up to,
for example, n servers 112,-112 . Servers 112 provide
computation and storage facilities for applications and data
associated with customers 111 and may be physical (bare-
metal) servers, virtual machines running on physical servers,
virtualized containers running on physical servers, or com-
binations thereof.

In the example of FIG. 1, each of servers 112 1s coupled
to switch fabric 114 by an access node 117 for processing
streams of information, such as network packets or storage
packets. In example implementations, access nodes 117 may
be configurable to operate 1n a standalone network appliance
having one or more access nodes. For example, access nodes
117 may be arranged mto multiple different access node
groups 119, each including any number of access nodes up
to, for example, x access nodes 117,-117_. In other
examples, each access node may be implemented as a
component (e.g., electronic chip) within a device, such as a
compute node, application server, storage server, and may be
deployved on a motherboard of the device or within a
removable card, such as a storage and/or network interface
card.

In general, each access node group 119 may be configured
to operate as a high-performance I/O hub designed to
aggregate and process network and/or storage 1/O for mul-
tiple servers 112. As described above, the set of access nodes
117 within each of the access node groups 19 provide
highly-programmable, specialized 1/O processing circuits
for handling networking and communications operations on
behalf of servers 112. In addition, 1n some examples, each of
access node groups 19 may include storage devices 127,
such as solid state drives (SSDs) and/or hard disk drives
(HDDs), configured to provide network accessible storage
for use by applications executing on the servers 112. In some
examples, one or more of the SSDs may comprise non-
volatile memory (INVM) or tlash memory. Each access node
group 119, including 1ts set of access nodes 117 and storage
devices 127, and the set of servers 112 supported by the
access nodes 117 of that access node group 119 may be
referred to herein as a network storage compute unit.

As further described herein, in one example, each access
node 117 1s a highly programmable 1/O processor (referred
to as a DPU) specially designed for offloading certain
functions from servers 112. In one example, each access
node 117 includes a number of mternal processor clusters,
cach including two or more processing cores and equipped
with hardware engines that offload cryptographic, compres-
sion and decompression, and regular expression (RegEx)
processing, data storage functions, and networking opera-
tions. In this way, each access node 117 includes compo-
nents for fully implementing and processing network and
storage stacks on behallf of one or more servers 112. In
addition, access nodes 117 may be programmatically con-
figured to serve as a security gateway for its respective
servers 112, freeing up the processors of the servers to
dedicate resources to application workloads. In some
example 1mplementations, each access node 117 may be
viewed as a network interface subsystem that implements
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tull offload of the handling of data packets (with zero copy
in server memory) and storage acceleration for the attached
server systems. In one example, each access node 117 may
be implemented as one or more application-specific inte-
grated circuit (ASIC) or other hardware and software com-
ponents, each supporting a subset of the servers. Additional
example details of various example DPUs are described 1n

U.S. Provisional Patent Application No. 62/559,021, filed
Sep. 15, 2017, entitled “Access Node for Data Centers,” and
U.S. Provisional Patent Application No. 62/530,691, filed
Jul. 10, 2017, entitled “Data Processing Unit for Computing
Devices,” the entire contents of both being incorporated
herein by reference.

In accordance with the techniques of this disclosure, any
or all of access nodes 117 may include an 1mage compres-
sion and decompression accelerator unit, e.g., according to
JPEG. That 1s, one or more computing devices may include
an access node including one or more JPEG accelerator
units, according to the techniques of this disclosure.

The JPEG accelerator unit of the access node, according
to the techmques of this disclosure, may be configured to
process payloads of packets for storage and retrieval ser-
vices of image data in the packets as the packets are
exchanged by access nodes 22, e.g., between access nodes
117 via switch fabric 114, storage devices 127, and/or
servers 112. That 1s, when packets include data for an 1mage
file to be stored to or retrieved from servers 112 and/or
storage devices 127, the JPEG accelerator unit applies the
techniques of this disclosure to further compress or decom-
press the image data. In particular, when data of packets for
an 1mage lile are stored to servers 112 or storage devices
127, the JPEG accelerator unit of one of access nodes 117
decodes and reencodes the image data to further improve
storage capabilities of storage devices, e.g., storage devices
within servers 112 and/or storage devices 127. Likewise,
when data of packets for an image {file are retrieved from
servers 112 or storage devices 127, the JPEG accelerator unit
removes the extra compression applied to the image file by
decoding and reencoding the image file, to restore the image
file to its original compressed state.

In general, the additional compression added to an 1image
file includes rearranging data for blocks of image data within
mimmum coded units (MCUSs) of the image file. That 1s, a

JPEG encoded image includes blocks representing pixels of

the 1mage, where a collection of one or more blocks 1s
referred to as an MCU. The syntax elements of the blocks
represent quantized transform coethicients, which represent a
transiformed version of the pixel data 1n a transform domain.
The transform coeflicients generally concentrate energy for
the pixel data 1in an upper-left corner of a two-dimensional
block including the transform coeflicients, where an upper-
left transform coeflicient 1s referred to as a direct current
(DC) coethicient, and the remaining coetlicients are referred
to as alternating current (AC) coelflicients.

The block includes coeflicients having values of zero and
non-zero, with many coetlicients at a bottom-right of the
block being zero valued. The coellicients are typically stored
in a one-dimensional array produced by zig-zag scanning the
two-dimensional block. In this manner, there may be a
sequence of zero-valued coeflicients at the end of the one-
dimensional array, corresponding to coeflicients at the
lower-right corner of the block. Rather than storing values
for each of these zero-valued coetlicients, the MCU may
include one or more syntax elements representing a position
of a last non-zero (LNZ) value for the coellicients in the scan
order, such that the values for the training zero-valued
coellicients need not be stored.
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In some examples, an MCU for a JPEG image may be
coded based on one or more other MCUSs. For example, the
JPEG accelerator unit may code a current MCU based on
data of one or more MCUSs used for context. Such MCUSs
may be referred to as “context MCUs.” Examples of a

context MCU may 1include, but are not limited to, for
example, a MCU to the left of the current MCU, a MCU

above the current MCU, a MCU diagonally to the left and
above the current MCU, or another MCU. In some
examples, the JPEG accelerator unit may use a current
pointer to specily a current MCU and a trailing pointer to
specily a context MCU. In this way, the JPEG accelerator
unit may be configured to code an MCU based on one or
more context MCUs without relying solely on storing
decoded context MCU .

In general, anthmetic coding refers to determining a value
within a range of possible values, where the determined
value represents actual data to be coded. A processing unit
may partition the range ol possible values according to
probabilities of symbols, e.g., ‘0’ and ‘1°, occurring. The
processing unit may determine different probabailities for the
symbols based on context information, that 1s, the context in
which a symbol occurs. For example, the probability of a ‘0’
occurring following a series of multiple ‘0’ valued symbols
may be greater than the probability of a ‘0’ occurring
following a series of multiple ‘1’ valued symbols. Thus,
references to “‘context coding” or “coding according to
context” generally refer to determining a probability of a
symbol to be coded occurring according to previously coded
information, 1.¢., the context in which the symbol occurs. A
context model may define probabilities for symbols given a
sequence of previous symbols or other context information.

In the example of FIG. 1, each access node 117 provides
connectivity to switch fabric 114 for a different group of
servers 112 and may be assigned respective IP addresses and
provide routing operations for the servers 112 coupled
thereto. Access nodes 117 may interface with and utilize
switch fabric 114 so as to provide full mesh (any-to-any)
interconnectivity such that any of servers 112 may commu-
nicate packet data for a given packet tlow to any other of the
servers using any of a number of parallel data paths within
the data center 110. In addition, access nodes 117 described
herein may provide additional services, such as storage (e.g.,
integration of solid-state storage devices), security (e.g.,
encryption), acceleration (e.g., compression), I/O oflloading,
and the like. In some examples, one or more of access nodes
117 may include storage devices, such as high-speed solid-
state drives or rotating hard drives, configured to provide
network accessible storage for use by applications executing
on the servers. More details on the example data center
network architecture and interconnected access nodes illus-
trated 1n FIG. 1 are available in U.S. patent application Ser.
No. 15/939,227, filed Mar. 28, 2018, entitled “Non-Blocking
Any-to-Any Data Center Network with Packet Spraying
Over Multiple Alternate Data Paths,” the entire content of
which 1s incorporated herein by reference.

Two example architectures of access nodes 117 are
described below with respect to FIGS. 2, 3, and 4. With
respect to either example, the architecture of each access
node 117 comprises a multiple core processor system that
represents a high performance, hyper-converged network,
storage, and data processor and input/output hub. The archi-
tecture ol each access node 117 1s optimized for high
performance and high efliciency stream processing.

In general, a stream, also referred to as a data stream, may
be viewed as an ordered, unidirectional sequence of com-
putational objects that can be of unbounded or undetermined
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length. In a simple example, a stream originates 1 a pro-
ducer and terminates at a consumer, 1s operated on sequen-
tially, and 1s tlow-controlled. In some examples, a stream
can be defined as a sequence of stream fragments, each
representing a portion of data communicated by a stream. In
one example, a stream Ifragment may include a memory
block contiguously addressable 1n physical address space, an
oflset 1nto that block, and a valid length. Streams can be
discrete, such as a sequence of packets received from a
network, or continuous, such as a stream of blocks, words or
bytes read from a storage device. A stream of one type may
be transformed into another type as a result of processing.
Independent of the stream type, stream mampulation
requires ellicient fragment manipulation. An application
executing on one of access nodes 117 may operate on a
stream 1n three broad ways: the first 1s protocol processing,
which consists of operating on control information or head-
ers within the stream; the second 1s payload processing,
which mvolves significant accessing of the data within the
stream; and third 1s some combination of both control and
data access.

Stream processing 1s a specialized type of conventional
general-purpose processing supporting specialized limita-
tions with regard to both access and directionality. Process-
ing typically only accesses a limited portion of the stream at
any time, called a “window,” within which it may access
random addresses. Objects outside of the window are not
accessible through a streaming interface. In contrast, general
purpose processing views the whole memory as randomly
accessible at any time. In addition, stream processing gen-
crally progresses 1n one direction, called the forward direc-
tion. These characteristics make stream processing ame-
nable to pipelining, as diflerent processors within one of
access nodes 117 can safely access diflerent windows within
the stream.

As described herein, data processing units ol access nodes
117 may process stream information by managing “work
units.” In general, a Work Unit (WU) 1s a container that 1s
associated with a stream state and used to describe (i.e. point
to) data within a stream (stored in memory) along with any
associated meta-data and operations to be performed on the
data. In the example of FIG. 1, streams of data units may
dynamically originate within a peripheral unit of one of
access nodes 117 (e.g. injected by a networking unit, a host
unit, or a solid state drive interface), or within a processor of
the one of access nodes 117, 1n association with one or more
streams of data, and terminate at another peripheral unit or
another processor of the one of access nodes 117. Each work
unit maintained by a data processing unit 1s associated with
an amount of work that 1s relevant to the entity executing the
work unit for processing a respective portion ol a stream.

Stream processing 1s typically initiated as a result of
receiving one or more data umits associated with respective
portions of the stream and constructing and managing work
units for processing respective portions of the data stream.
In protocol processing, a portion would be a single buller
(e.g. packet), for example. Within access nodes 117, work
units may be executed by processor cores, hardware blocks,
I/0O 1terfaces, or other computational processing units. For
instance, a processor core of an access node 117 executes a
work unit by accessing the respective portion of the stream
from memory and performing one or more computations 1n
accordance with the work unit. A component of the one of
access nodes 117 may receive, execute or generate work
units. A succession of work units may define how the access
node processes a tlow, and smaller tlows may be stitched
together to form larger flows.
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For purposes of example, DPUs of or within each access
node 117 may execute an operating system, such as a
general-purpose operating system (e.g., Linux or other fla-
vor of Unix) and/or a special-purpose operating system, that
provides an execution environment for data plane software
for data processing. Moreover, each DPU may be configured
to utilize a work unit (WU) stack data structure (referred to
as a ‘WU stack’ 1n a multiple core processor system. As
described herein, the WU stack data structure may provide
certain technical benefits, such as helping manage an event
driven, run-to-completion programming model of an oper-
ating system executed by the multiple core processor sys-
tem. The WU stack, in a basic form, may be viewed as a
stack of continuation WUs used in addition to (not instead
ol) a program stack maintained by the operating system as
an eflicient means of enabling program execution to dynami-
cally move between cores of the access node while perform-
ing high-rate stream processing. As described below, a WU
data structure 1s a building block 1n the WU stack and can
readily be used to compose a processing pipeline and
services execution i a multiple core processor system. The
WU stack structure carries state, memory, and other infor-
mation in auxiliary variables external to the program stack
for any given processor core. In some implementations, the
WU stack may also provide an exception model for handling
abnormal events and a ‘success bypass’ to shortcut a long
series of operations. Further, the WU stack may be used as
an arbitrary flow execution model for any combination of
pipelined or parallel processing.

As described herein, access nodes 117 may process WUs
through a plurality of processor cores arranged as processing
pipelines within access nodes 117, and such processing
cores may employ techniques to encourage eflicient pro-
cessing ol such work units and high utilization of processing
resources. For instance, a processing core (or a processing
umit within a core) may, in connection with processing a
series of work units, access data and cache the data into a
plurality of segments of a level 1 cache associated with the
processing core. In some examples, a processing core may
process a work unit and cache data from non-coherent
memory 1n a segment of the level 1 cache. The processing
core may also concurrently prefetch data associated with a
work unit expected to be processed 1n the future 1nto another
segment of the level 1 cache associated with the processing
core. By prefetching the data associated with the future work
unit in advance of the work unit being dequeued from a work
unit queue for execution by the core, the processing core
may be able to efliciently and quickly process a work umit
once the work unit 1s dequeued and execution of the work
unit 1s to commence by the processing core. More details on
work units and stream processing by data processing units of
access nodes are available 1n U.S. Provisional Patent Appli-
cation No. 62/589.,427, filed Nov. 21, 2017, entitled “Work
Unit Stack Data Structures in Multiple Core Processor

System,” and U.S. Provisional Patent Application No.
62/625,518, entitled “EFFICIENT WORK UNIT PRO-

CESSING IN A MULTICORE SYSTEM?”, filed Feb. 2,
2018, the entire contents of both being incorporated herein
by reference.

As described herein, the data processing units for access
nodes 117 includes one or more specialized hardware-based
accelerators configured to perform acceleration for various
data-processing functions, thereby oflloading tasks from the
processing units when processing work units. That 1s, each
accelerator 1s programmable by the processing cores, and
one or more accelerators may be logically chained together
to operate on stream data umts, such as by providing
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cryptographic functions, compression and regular expres-
sion (RegEx) processing, data storage functions and net-
working operations. This disclosure describes a program-
mable, hardware-based accelerator unit configured to code
JPEG 1mages. The accelerator umit may include a hardware
implementation of a image coding unit. In particular, the
JPEG accelerator unit may be configured to context-based
code different blocks of 1image data in parallel with other
blocks of the image data.

FIG. 2 1s a block diagram illustrating an example data
processing unit (DPU) 130 including two or more process-
ing cores, 1n accordance with the techniques of this disclo-
sure. DPU 130 generally represents a hardware chip imple-
mented 1n digital logic circuitry and may be used 1n any
computing or network device. DPU 130 may operate sub-
stantially similar to and generally represent any of access
nodes 117 of FIG. 1. Thus, DPU 130 may be communica-
tively coupled to one or more network devices, server
devices (e.g., servers 112), random access memory, storage
media (e.g., solid state drives (SSDs)), a data center fabric
(e.g., switch fabric 114), or the like, e.g., via PCI-e, Ethernet
(wired or wireless), or other such communication media.
Moreover, DPU 130 may be implemented as one or more
application-specific mtegrated circuit (ASIC), may be con-
figurable to operate as a component of a network appliance
or may be integrated with other DPUs within a device.

In the 1illustrated example of FIG. 2, DPU 130 includes a
multi-core processor 132 having a plurality of program-
mable processing cores 140A-140N (“cores 140”") coupled
to an on-chip memory unit 134. Fach of cores 140 includes
a level 1 cache 141 (level 1 caches 141a, 14156, and 141# are
associated with cores 140a, 1405, and 140n, respectively).

Memory umt 134 may include two types of memory or
memory devices, namely coherent cache memory 136 and
non-coherent bufler memory 138. Processor 132 also
includes a networking unit 142, work unit (WU) queues 143,
a memory controller 144, and accelerators 146. As 1llus-
trated 1n FI1G. 2, each of cores 140, networking unit 142, WU
queues 143, memory controller 144, memory unit 134, and
accelerators 146 are communicatively coupled to each other.
In some examples, processor 132 of DPU 130 further
includes one or more accelerators (not shown) configured to
perform acceleration for various data-processing functions,
such as look-ups, matrix multiplication, cryptography, com-
pression, regular expressions, or the like.

In this example, DPU 130 represents a high performance,
hyper-converged network, storage, and data processor and
input/output hub. For example, networking unit 142 may be
configured to receive one or more data packets from and
transmit one or more data packets to one or more external
devices, e.g., network devices. Networking unit 142 may
perform network interface card functionality, packet switch-
ing, and the like, and may use large forwarding tables and
offer programmability. Networking unit 142 may expose
Ethernet ports for connectivity to a network, such as switch
tabric 114 of FIG. 1. DPU 130 may also include one or more
interfaces for connectivity to host devices (e.g., servers) and
data storage devices, e.g., solid state drives (SSDs) via PCle
lanes. DPU 130 may further include one or more high
bandwidth interfaces for connectivity to off-chip external
memory.

Processor 132 further includes accelerators 146 config-
ured to perform acceleration for various data-processing
functions, such as look-ups, matrix multiplication, cryptog-
raphy, compression, regular expressions, or the like. For
example, accelerators 146 may comprise hardware imple-
mentations of look-up engines, matrix multipliers, crypto-
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graphic engines, compression engines, or the like. The
functionality of different hardware accelerators 1s described
1s more detail below with respect to FIG. 4. In accordance
with the techmiques of this disclosure, at least one of
accelerators 146 represents a hardware implementation of a
JPEG accelerator. In particular, according to the techniques
of this disclosure, accelerators 146 include at least one JPEG
accelerator configured to further compress 1image files for
storage or decompress the image files for retrieval, as
discussed in greater detail below.

Memory controller 144 may control access to on-chip
memory unit 134 by cores 140, networking unit 142, and any
number of external devices, e.g., network devices, servers,
external storage devices, or the like. Memory controller 144
may be configured to perform a number of operations to
perform memory management in accordance with the pres-
ent disclosure. For example, memory controller 144 may be
capable of mapping accesses from one of the cores 140 to
either of coherent cache memory 136 or non-coherent butler

memory 138. More details on the bifurcated memory system
included in the DPU are available 1n U.S. Provisional Patent
Application No. 62/483,844, filed Apr. 10, 2017, and U.S.
patent application Ser. No. 15/949,892, filed Apr. 10, 2018,
and titled “Relay Consistent Memory Management 1mn a
Multiple Processor System,” the entire content of each of
which 1s incorporated herein by reference.

Cores 140 may comprise one or more miCroprocessors
without interlocked pipeline stages (MIPS) cores, advanced
reduced nstruction set computing (RISC) machine (ARM)
cores, performance optimization with enhanced RISC—
performance computing (PowerPC) cores, RISC Five
(RISC-V) cores, or complex instruction set computing
(CISC or x86) cores. Each of cores 140 may be programmed
to process one or more events or activities related to a given
data packet such as, for example, a networking packet or a
storage packet. Each of cores 140 may be programmable
using a high-level programming language, e.g., C, C++, or
the like.

Each of level 1 caches 141 may include a plurality of
cache lines logically or physically divided into cache seg-
ments. Each of level 1 caches 141 may be controlled by a
load/store unit also included within the core. The load/store
umt may include logic for loading data into cache segments
and/or cache lines from non-coherent buffer memory 138
and/or memory external to DPU 130. The load/store unit
may also include logic for flushing cache segments and/or
cache lines to non-coherent bufler memory 138 and/or
memory external to DPU 130. In some examples, the
load/store unit may be configured to prefetch data from main
memory during or aiter a cache segment or cache line 1s
flushed.

As described herein, processor cores 140 may be arranged
as processing pipelines, and such processing cores may
employ techmques to encourage eflicient processing of such
work units and high utilization of processing resources. For
instance, any of processing cores 140 (or a processing unit
within a core) may, in connection with processing a series of
work units retrieved from WU queues 143, access data and
cache the data 1into a plurality of segments of level 1 cache
141 associated with the processing core. In some examples,
a processing core 140 may process a work unit and cache
data from non-coherent bufler memory 138 1n a segment of
the level 1 cache 141. As described herein, concurrent with
execution of work units by cores 140, a load store unit of
memory controller 144 may be configured to prefetch, from
non-coherent bufler memory 138, data associated with work
units within WU queues 143 that are expected to be pro-
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cessed 1n the future, e.g., the WUs now at the top of the WU
queues and next 1n line to be processed. For each core 140,
the load store unit of memory controller 144 may store the
prefetched data associated with the WU to be processed by
the core into a standby segment of the level 1 cache 141
associated with the processing core 140.

In some examples, the plurality of cores 140 executes
instructions for processing a plurality of events related to
cach data packet of one or more data packets, recerved by
networking unit 142, 1n a sequential manner in accordance
with one or more work units associated with the data
packets. As described above, work units are sets of data
exchanged between cores 140 and networking umt 142
where each work unit may represent one or more of the
events related to a given data packet.

As one example use case, stream processing may be
divided into work units executed at a number of intermediate
processors between source and destination. Depending on
the amount ol work to be performed at each stage, the
number and type of intermediate processors that are
involved may vary. In processing a plurality of events
related to each data packet, a first one of the plurality of
cores 140, e.g., core 140A may process a first event of the
plurality of events. Moreover, first core 140A may provide
to a second one of plurality of cores 140, e.g., core 140B a
first work unit of the one or more work units. Furthermore,
second core 140B may process a second event of the
plurality of events in response to receiving the first work unit
from first core 140B.

As another example use case, transier of ownership of a
memory buller between processing cores may be mediated
by a work unit message delivered to one or more of
processing cores 140. For example, the work unit message
may be a four-word message including a pointer to a
memory bufler. The first word may be a header containing,
information necessary for message delivery and information
used for work unit execution, such as a pointer to a function
for execution by a specified one of processing cores 140.
Other words 1n the work unit message may contain param-
cters to be passed to the function call, such as pointers to
data 1n memory, parameter values, or other information used
in executing the work unat.

In one example, receiving a work unit 1s signaled by
receiving a message in a work unit receive queue (e.g., one
of WU queues 143). The one of WU queues 143 1s associ-
ated with a processing element, such as one of cores 140,
and 1s addressable 1n the header of the work unit message.
One of cores 140 may generate a work unit message by
executing stored instructions to addresses mapped to a work
unit transmit queue (e.g., another one of WU queues 143).
The stored instructions write the contents of the message to
the queue. The release of a work unit message may be
interlocked with (gated by) tlushing of the core’s dirty cache
data and 1n some examples, prefetching into the cache of
data associated with another work unit for future processing.

FIG. 3 1s a block diagram illustrating one example of a
DPU 150 including a networking unit, at least one host unit,
and two or more processing clusters. DPU 150 may operate
substantially similar to any of the access nodes 117 of FIG.
1. Thus, DPU 150 may be commumnicatively coupled to a
data center fabric (e.g., switch fabric 114), one or more
server devices (e.g., servers 112), storage media (e.g.,
SSDs), one or more network devices, random access
memory, or the like, e.g., via PCl-e, Ethernet (wired or
wireless), or other such communication media 1n order to
interconnect each of these various elements. DPU 150
generally represents a hardware chip implemented 1n digital
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logic circuitry. As various examples, DPU 150 may be
provided as an integrated circuit mounted on a motherboard
of a computing, networking and/or storage device or
installed on a card connected to the motherboard of the
device.

In general, DPU 1350 represents a high performance,
hyper-converged network, storage, and data processor and
input/output hub. As illustrated 1n FIG. 3, DPU 150 includes
networking unit 152, processing clusters 156 A-1 to 156N-M
(processing clusters 156), host units 154A-1 to 154B-M
(host units 154), and central cluster 138, and 1s coupled to
external memory 170. Each of host units 154, processing
clusters 156, central cluster 158, and networking unit 152
may include a plurality of processing cores, e.g., MIPS
cores, ARM cores, PowerPC cores, RISC-V cores, or CISC
or x86 cores. External memory 170 may comprise random
access memory (RAM) or dynamic random access memory
(DRAM).

As shown 1 FIG. 3, host units 154, processing clusters
156, central cluster 158, networking unit 152, and external
memory 170 are communicatively interconnected via one or
more specialized network-on-chip fabrics. A set of direct
links 162 (represented as dashed lines in FIG. 3) forms a
signaling network fabric that directly connects central clus-
ter 158 to each of the other components of DPU 150, that 1s,
host units 154, processing clusters 156, networking unit 152,
and external memory 170. A set of grid links 160 (repre-
sented as solid lines 1n FIG. 3) forms a data network fabric
that connects neighboring components (including host units
154, processing clusters 156, networking umit 152, and
external memory 170) to each other in a two-dimensional
orid.

Networking unit 152 has Ethernet interfaces 164 to con-
nect to the switch fabric, and interfaces to the data network
formed by grid links 160 and the signaling network formed
by direct links 162. Networking unit 152 provides a Layer
3 (1.e., OSI networking model Layer 3) switch forwarding
path, as well as network interface card (NIC) assistance. One
or more hardware direct memory access (DMA) engine
instances (not shown) may be attached to the data network
ports of networking unit 152, which are coupled to respec-
tive grid links 160. The DMA engines of networking unit
152 are configured to fetch packet data for transmission. The
packet data may be in on-chip or ofi-chip bufler memory
(e.g., within buller memory of one of processing clusters
156 or external memory 170), or 1n host memory.

Host units 154 each have PCI-¢ interfaces 166 to connect
to servers and/or storage devices, such as SSD devices. This
allows DPU 150 to operate as an endpoint or as a root. For
example, DPU 150 may connect to a host system (e.g., a
server) as an endpoint device, and DPU 150 may connect as
a root to endpoint devices (e.g., SSD devices). Each of host
units 154 may also include a respective hardware DMA
engine (not shown). Each DM A engine 1s configured to fetch
data and builer descriptors from host memory, and to deliver
data and completions to host memory.

DPU 150 provides optimizations for stream processing.
DPU 150 executes an operating system that facilitates
run-to-completion processing, which may eliminate inter-
rupts, thread scheduling, cache thrashing, and associated
costs. For example, an operating system may run on one or
more of processing clusters 156. Central cluster 158 may be
configured differently from processing clusters 156, which
may be referred to as stream processing clusters. In one
example, central cluster 158 executes the operating system
kernel (e.g., Linux kernel) as a control plane. Processing
clusters 156 may function 1n run-to-completion thread mode
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ol a data plane software stack of the operating system. That
1s, processing clusters 156 may operate 1n a tight loop fed by
work unit queues associated with each processing core 1n a
cooperative multi-tasking fashion.

DPU 150 operates on work units (WUSs) that associate a
bufler with an instruction stream to reduce dispatching
overhead and allow processing by reference to minimize
data movement and copy. The stream-processing model may
structure access by multiple processors (e.g., processing
clusters 156) to the same data and resources, avoid simul-
taneous sharing, and therefore, reduce contention. A proces-
sor may relinquish control of data referenced by a work unait
as the work unit 1s passed to the next processor i line.
Central cluster 158 may include a central dispatch unit
responsible for work unit queuing and flow control, work
unit and completion notification dispatch, and load balanc-
ing and processor selection from among processing cores of
processing clusters 156 and/or central cluster 158.

As described above, work units are sets of data exchanged
between processing clusters 156, networking unit 152, host
units 154, central cluster 158, and external memory 170.
Each work umit may be represented by a fixed length data
structure, or message, icluding an action value and one or
more arguments. In one example, a work unit message
includes four words, a first word having a value representing
an action value and three additional words each representing
an argument. The action value may be considered a work
unit message header containing information necessary for
message delivery and information used for work unit execu-
tion, such as a work unit handler identifier, and source and
destination 1dentifiers of the work unit. The other arguments
of the work unit data structure may include a frame argu-
ment having a value acting as a pointer to a continuation
work unit to mvoke a subsequent work unit handler, a flow
argument having a value acting as a pointer to state that 1s
relevant to the work unit handler, and a packet argument
having a value acting as a packet pointer for packet and/or
block processing handlers.

In some examples, one or more processing cores of
processing clusters 180 may be configured to execute pro-
gram 1nstructions using a work unit (WU) stack. In general,
a work unit (WU) stack 1s a data structure to help manage
event driven, run-to-completion programming model of an

operating system typically executed by processing clusters
156 of DPU 150, as further described 1n U.S. Patent Appli-

cation Ser. No. 62/589,427, filed Nov. 21, 2017, the entire
content of which 1s incorporated herein by reference.

As described herein, 1n some example implementations,
load store units within processing clusters 156 may, concur-
rent with execution of work units by cores within the
processing clusters, identily work units that are enqueued in
WU queues for future processing by the cores. In some
examples, WU queues storing work units enqueued for
processing by the cores within processing clusters 156 may
be maintained as hardware queues centrally managed by
central cluster 158. In such examples, load store units may
interact with central cluster 158 to 1identily future work units
to be executed by the cores within the processing clusters.
The load store umits prefetch, from the non-coherent
memory portion of external memory 170, data associated
with the future work units. For each core within processing,
clusters 156, the load store units of the core may store the
prefetched data associated with the WU to be processed by
the core mnto a standby segment of the level 1 cache
associated with the processing core.

FIG. 4 1s a block diagram 1llustrating another example
processing cluster 180 including a plurality of program-
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mable processing cores 182A-182N. Fach of processing
clusters 156 of DPU 150 of FIG. 3 may be configured 1n a
manner substantially similar to that shown 1n FIG. 4. In the
example of FIG. 4, processing cluster 180 includes cores
182A-182N (*cores 182”), a memory umt 183 including a
coherent cache memory 184 and a non-coherent bufler
memory 186, a cluster manager 185 including WU queue
manager 187 for maintaiming (e.g., within hardware registers
of processing cluster 180) and manipulating WU queues
188, and accelerators 189A-189X (*accelerators 1897).
Each of cores 182 includes L1 bufler cache 198 (1.¢., core
182 includes L1 bufler cache 198A and in general, core
182N includes L1 buflier cache 198N). In some examples,
cluster manager 185 1s alternatively located within central
cluster 158, and/or WU queues 188 are alternatively main-
tained within central cluster 158 (e.g., within hardware
registers of central cluster 158).

An access node or DPU (such as access nodes 117 of FIG.
1, DPU 130 of FIG. 2, or DPU 150 of FIG. 3) may support
two distinct memory systems: a coherent memory system
and a non-coherent buller memory system. In the example
of FIG. 4, coherent cache memory 184 represents part of the
coherent memory system while non-coherent butler memory
186 represents part of the non-coherent buller memory
system. Cores 182 may represent the processing cores
discussed with respect to DPU 150 of FIG. 3. Cores 182 may
share non-coherent bufler memory 186. As one example,
cores 182 may use non-coherent buller memory 186 for
sharing streaming data, such as network packets.

In general, accelerators 189 perform acceleration for
various data-processing functions, such as table lookups,
matrix multiplication, cryptography, compression, regular
expressions, or the like. That i1s, accelerators 189 may
comprise hardware implementations of lookup engines,
matrix multipliers, cryptographic engines, compression
engines, regular expression interpreters, or the like. For
example, accelerators 189 may include a lookup engine that
performs hash table lookups in hardware to provide a high
lookup rate. The lookup engine may be invoked through
work units from external interfaces and virtual processors of
cores 182, and generates lookup notifications through work
unmts. Accelerators 189 may also include one or more
cryptographic units to support various cryptographic pro-
cesses. Accelerators 189 may also include one or more
compression units to perform compression and/or decoms-
pression.

An example process by which a processing cluster 180
processes a work unit 1s described here. Initially, cluster
manager 185 of processing cluster 180 may queue a work
unit (WU) 1n a hardware queue of WU queues 188. When
cluster manager 185 “pops” the work unit from the hardware
queue of WU queues 188, cluster manager 185 delivers the
work unit to one of accelerators 189, e.g., a lookup engine.
The accelerator 189 to which the work unit 1s delivered
processes the work unit and determines that the work unit 1s
to be delivered to one of cores 182 (in particular, core 182A,
in this example) of processing cluster 180. Thus, the one of
accelerators 189 forwards the work unit to a local switch of
the signaling network on the DPU, which forwards the work
unit to be queued 1n a virtual processor queue of WU queues
188.

As noted above, in accordance with the techniques of this
disclosure, one or more of accelerators 189 may be config-
ured to evaluate regular expressions. A JPEG accelerator of
accelerators 189, 1n accordance with the techniques of this
disclosure, may include a hardware-implemented JPEG
compression and decompression engine that further com-
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presses 1mage data for storage or decompresses (1.e.,
removes the further compression) the image data for
retrieval.

After cluster manager 185 pops the work unit from the
virtual processor queue of WU queues 188, cluster manager
185 delivers the work unit via a core interface to core 182A,
in this example. An interface unit of core 182A then delivers
the work unit to one of the virtual processors of core 182A.

Core 182A processes the work unit, which may mvolve
accessing data, such as a network packet or storage packet,
in non-coherent bufler memory 186A and/or external
memory 170. Core 182A may first look for the correspond-
ing data i cache 198A, and 1n the event of a cache miss,
may access the data from non-coherent bufler memory 186 A
and/or external memory 170. In some examples, while
processing the work umt, core 182A may store information
(1.e., the network packet or data packet) associated with the
work unit 1n an active segment of cache 198 A. Further, core
182A may, while processing the work umt, prefetch data
associated with a second work unit into a different, standby
segment of cache 198A. When core 182A completes pro-
cessing of the work unit, core 182A initiates (or causes
initiation of) a cache flush for the active segment, and may
also mitiate prefetching of data associated with a third work
unit (to be processed later) mto that active segment. Core
182A (or a virtual processor within core 182A) may then
swap the active segment and the standby segment so that the
previous standby segment becomes the active segment for
processing of the next work unit (1.e., the second work unait).
Because data associated with the second work unit was
prefetched into this now active segment, core 182A (or a
virtual processor within core 182A) may be able to more
clliciently process the second work unit. Core 182A then
outputs corresponding results (possibly including one or
more work unit messages) from performance of the work
unit back through the interface unit of core 182A.

As described herein, 1n some example implementations,
load store units within memory unit 183 may, concurrent
with execution of work units by cores 182 within the
processing cluster 180, identity work units that are enqueued
in WU queues 188 for future processing by the cores. The
load store units prefetch, from a non-coherent memory
portion of external memory 170, data associated with the
future work units and store the prefetched data associated
with the WUs to be processed by the cores mto a standby
segment of the level 1 cache associated with the particular
processing cores.

FIG. 5 1s a block diagram illustrating an example JPEG
accelerator 200, in accordance with the techniques of this
disclosure. JPEG accelerator 200 may correspond to one of
accelerators 146 of FIG. 2 or one of accelerators 189 of FIG.
4. While JPEG accelerator 200 1s described herein as being
configured for JPEG, 1n some examples, JPEG accelerator
200 may be configured to apply for other image compression
techniques. For instance, JPEG accelerator 200 may be
referred to as an example of an “1mage coding unit.” In this
example, JPEG accelerator 200 includes 1image guide unit
202, engines 203, context memory 204, Binary Entropy
Coding (BEC) unit 206, and Huflman coding unit 208. In
some examples, BEC coding unit 206 may be configured to
perform binary arithmetic coding, such as, for example,
context-adaptive binary arithmetic coding (CABAC). In
other examples, BEC unit 206 may be configured to apply
other entropy coding techniques.

Some aspects of this disclosure include configuring JPEG
accelerator 200 to include one or more mechanisms to
achieve higher throughput while keeping smaller footprint
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with single pass processing of mput. For example, JPEG
accelerator 200 may be configured to use a trailing pointer
to Huflman decode to reduce the amount of intermediate
storage as described herein. In some examples, JPEG accel-
crator 200 may be configured to use of dependency graph to
exploit parallelism across blocks 1n same component as
described herein. In some examples, JPEG accelerator 200
may be configured to encode LNZ (e.g., instead of a number
of non-zero coetlicients (NNZ)) to exploit the maximum
parallelism within a coetlicient block as described herein.

Some aspects of this disclosure include configuring JPEG
accelerator 200 to include techniques to split context
memory 1n direct access (e.g., direct access table 210) and
hash access (e.g., hash table 214) to significantly reduce the
s1ze ol context memory with less than 1% loss in compres-
sion. For example, JPEG accelerator 200 may be configured
to build a bounding box for “ideal” amount of direct access
as described herein. In some examples, JPEG accelerator
200 may be configured to perform best effort hashing with
no collision resolution (e.g., keys are not stored) as
described herein In some examples, JPEG accelerator 200
may be configured with a layout of direct memory access to
help to eliminate bank collisions as described herein.

Some aspects of this disclosure include configuring JPEG
accelerator 200 to include techniques to use multiple (e.g.,
8) engines to encode 1n round robin for helping to ensure
maximum utilization of all engines as described herein. For
example, JPEG accelerator 200 may be configured to build-
ing a work queue based on current work to maximize the
amount of work available all the time for engines as
described herein.

Some aspects of this disclosure include configuring JPEG
accelerator 200 to include techniques to build a speculative
decode/encode probability tree to reduce turnaround time 1n
case of keys with previous bit dependency (e.g., LNZ
High/I. NZ Low) as described herein. For example, JPEG
accelerator 200 may be configured to file 1t as generic and
usetul for RED encoding/decoding.

Some aspects of this disclosure include configuring JPEG
accelerator 200 to use LNZ and NNZ for coding. For
example, JPEG accelerator 200 may be configured to deter-
mine contexts using a LNZ syntax element and context-
based code coeflicient values using the contexts.

In general, 1mage guide unit 202 represents a processing,
umit (implemented in circuitry) that controls operation of
other components of JPEG accelerator 200. For example,
image guide unit 202 may receive work units from external
components (such as processing cores) to encode or decode
a JPEG 1mage. In particular, one or more cores of a pro-
cessing cluster, such as cores 182 of processing cluster 180
in FIG. 4, execute one or more 1nstructions to cause JPEG
accelerator 200 to encode a JPEG 1image into encoded image
data or decode encoded 1mage data to decode a JPEG 1mage.

Generally, 1n response to receiving an encoded 1mage to
be stored, Huflman coding unit 208 decodes Hullman-coded
data for syntax elements of the encoded 1mage, and 1image
guide unit 202 causes BEC unit 206 to reencode the decoded
data using BEC. Additionally, JPEG accelerator 200 may
rearrange the data to allow for parallel coding 1n an eflicient
manner, in accordance with the techniques of this disclosure
as discussed 1n greater detail below. Likewise, in response to
receiving an encoded 1mage from storage to be output, BEC
unit 206 decodes BEC-coded data for syntax elements of the
encoded 1image, and 1image guide unit 202 causes Hullman
coding unit 208 to reencode the decoded data using JPEG-
compliant Huflman coding. Similarly, JPEG accelerator 200
may rearrange the data back ito JPEG-compliant format.
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Image guide unit 202 may be implemented, at least in
part, in hardware, software, firmware or any combination
thereol. For example, image guide unit 202 may be imple-
mented within one or more processors, including one or
more microprocessors, digital signal processors (DSPs),
application specific integrated circuits (ASICs), field pro-
grammable gate arrays (FPGAs), or any other equivalent
integrated or discrete logic circuitry, as well as any combi-
nations of such components. The term “processor” or “pro-
cessing circuitry” may generally refer to any of the forego-
ing logic circuitry, alone or 1n combination with other logic
circuitry, or any other equivalent circuitry. In some
examples, 1mage guide unit 202 may represent soltware
istructions executed by one or more miCroprocessors.

Engines 203, which may include one or more encoding,
engines and/or one or more decoding engines, may be
configured to process diflerent syntax elements for a single
block of image data in parallel. The engines may code values
of syntax elements of one block 1n parallel with each other
and/or 1n parallel with values of syntax elements of other
blocks. For example, a first decoding engine of engines 203
may decode a first set of one or more bits of a syntax value
of an 1mage retrieved from storage. In this example, image
guide unit 202 may determine that the first set of the one or
more bits have values indicating that one or more values of
respective mstances of one or more other syntax elements
are to be decoded. For instance, the first decoding engine of
engines 203 may determine that a syntax element for coet-
ficient map values indicates a first coeflicient 1s to be
decoded. In this example, a second decoding engine of
engines 203 may decode one or more bits of one of more
values of the respective mnstances of the one or more other
syntax elements.

Image guide unit 202 may be configured to build a work
queue based on current work to maximize the amount of

work available all the time for engines 203. In some
examples, BEC umt 206 does not encode trailing zeroes 1n
a block.

To improve performance, 1image guide unit 202 may be
configured to use 8 encode/decode engines. In some
examples, image guide unit 202 may be configured to use
2-7 or more than 8 encode/decode engines. During encod-
ing, image guide unit 202 may have all the imformation
about the image. But during decoding, image guide unit 202
may have to wait for decoded bits to know 1f any given
coellicient has to be decoded further. This may not pose a
challenge when 1image guide unit 202 1s decoding a first bat
as LNZ value provides enough information on how many
bits of coeflicient map to decode. But as image guide unit
202 moves beyond the first bit of a coellicient map, a number
of coetlicients drops and continues to drop as 1mage guide
unit 202 moves on to higher order bits. Image guide unit 202
may wait for the coeflicient map to be decoded first and then
determine how many bits to be decoded based on the gate
bits. But with this technique, the utilization of engines 203
drops significantly. Instead, 1n some example, 1mage guide
unit 202 may deploy and use a work queue based approach
where engines 203 each have a cognizance of what bit 1s
decoded and what are the further decoded that entail with
current bit value. For example, when BEC unit 206 is
decoding LNZ, image guide unit 202 may cause engines 203
to go from a high order bit to low order bits. Assuming a bit
number 3 was set. This means that image guide unit 202 may
have at least 16 coetlicients to decode length bit 0. In this
example, engine 203 may not have to wait for values from
bit number 2, 1, and 0 to start work. Similarly, 1f a gate value
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ol the coeflicient came out to be zero then 1mage guide unit
202 may determine that at least one bit 1s to be decoded.

Each such encode/decode process may be referred to as
“work’ for one of engines 203. Having such awareness helps
image guide unit 202 create a queue of work for engines 203.
Each of engines 203 in turn refers to the queue and takes the
maximum work a respective engine can consume and
spreads the work evenly across all the available engines.
This approach helps to increase utilization of engines 203
and thus helps to provide optimum performance.

Huflman coding unit 208 may decode a received JPEG
image to be stored and reencode the image retrieved from
storage to be output permit image data representing a JPEG
image to be compressed for storage. In the example of FIG.
5, Hullman coding unit 208 may decode respective blocks of
a JPEG immage. Hullman coding unit 208 may generally
decode one or more blocks of the JPEG 1mage 1n parallel. In
particular, any block currently being decoded (or encoded)
by Huilman coding unit 208 may be referred to as a “current
block.” The current block may be specified by current block
pointer 222. In some examples, Hulflman coding unit 208
decodes from a block specified by context block pointer 220.
In some examples, Huflman coding unit 208 may decode
multiple blocks 1n parallel. For instance, Huflman coding
umt 208 may decode a first block specified by current block
pointer 222 and, 1n parallel, decode a second block specified
by context block pointer 220.

Context memory 204 may store context data, correspond-
ing to data decoded by Huflman coding unit 208 or BEC unait
206. For example, context memory 204 may store context
decoded from a current block specified by context block
pointer 220. In some examples, context memory 204 may
store context decoded from a current block specified by
context block pointer 220. As shown, context memory 204
may include direct access table 210 and hash table 214.

Usage of context memory 204 may be reduced by using
LNZ for decoding coellicient map values from megabytes to
10’s of kilobytes.

A probability distribution may be built 1n the form of a
N-dimensional array, where N 1s number of contexts image
guide unit 202 may use. In some examples, the value of N
may vary from 1 to 5 depending on what image guide unit
202 1s encoding. The high dimensionality of context may
create a relatively large probability table. Storing the rela-
tively large table close to engine may increase the area on
chip and may increase the access latency impacting the
performance of JPEG accelerator 200. In some applications,
tables are created for maximum possible values but the
values actually used may be limited. In some examples,
image guide unit 202 may use a linked list. However,
maintaining linked lists 1n memory may not be very eflicient
to do 1n hardware and the memory taken by linked list
maintenance may also be unacceptable.

In accordance with techniques described herein, 1image
guide unit 202 may build a bounding box for the N dimen-
sional array. This bounding box may be a subset of the actual
array and dimensions of this box that are based on values
that are more likely to hit this box. To address outliers, even
though most of the time 1mage guide unit 202 1s going to be
using values in the bounding box, image guide umt 202 may
use a small hash table. In this way, image guide unit 202 may
be able to absorb ~90% of entries 1n the table for high
resolution 1images and ~96% of entries 1n table for medium
resolution 1mages and ~98% of entries 1 low resolution
images. With this approach, image guide unit 202 may
reduce the size of context memory by orders of magnitude
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and hence able to keep the context array very close to
engine. This improves latency 1n access and thus gives a
major boost to performance.

Again, the context memory may be relatively large so
image guide unit 202 may be configured to use a direct
access N dimensional array (e.g., direct access table 210) as
part of context memory 204 and hash table 214 as part of
context memory 204. Image guide unit 202 may divide
context memory 204 in direct access table 210 and hash
table 214 based on the bounding box 1n an image. Use of
hash table 214 may help to reduce the size of table by orders
of magnitude but there still 1s an 1ssue of storing the keys for
hash table for collision resolution. Configuring image guide
unit 202 with an eflicient hashing algorithm, right set of
clements for key, and an optimal hash table size, image
guide unit 202 obtains a very small amount collision.
Collision 1 some cases does pollute the probability distri-
bution but the impact 1s minimal and advantage no collision
resolution 1n our case 1s very high. The reduction in com-
pression when compared to a fully instantiated N dimen-
sional array 1s ~1% on average.

Direct access table 210 may include banks 212A-212N
(“banks 2127"). For example, a first set of contexts 213 A may
be stored 1n bank 212A and a second set of contexts 213N
may be stored in bank 212B. For instance, bank 212A may
store a first entry mapping a first context of contexts 213A
to an indication of a first block and a second entry mapping,
a second context of contexts 213A to a second block.
Similarly, bank 212N may store a first entry mapping a first
context of contexts 213N to an indication of a third block
and a second entry mapping a second context of contexts
213N to a fourth block.

Image guide umt 202 may cause direct access table 210 to
fetch contexts from banks 212. For example, to access an
entry of bank 212A mapping particular context for a block
specified by BEC unit 206, image guide unit 202 may fetch
bank 212A. In this example, image guide unit 202 may
output the particular context of contexts 213A that 1is
mapped to the block specified by BEC unit 206.

Image guide unit 202 may specily banks as corresponding,
to different syntax elements for blocks of 1image data. For
example, image guide unit 202 may specily that bank 212A
stores a LNZ syntax element. In this example, image guide
unit 202 may specily that bank 212B stores an AC high
coellicient map syntax element. In this way, bank collisions
may be reduced or eliminated.

Hash table 214 may represent a data structure mapping
identifiers to corresponding context. As shown, hash table
214 may include hash function 218 and buckets 216 A-216N
(buckets 216). For example, to determine particular context
tor a block specified by BEC unit 206, image guide unit 202
may output an identifier to hash function 218. Hash function
218 may “map” the first identifier to a first value of a first
reference block to bucket 216A. That 1s, rather than explic-
itly mapping a unique bucket to each identifier, hash tunc-
tion 218 generates an output specifying a bucket to etlec-
tively map the first idenfifier to a first value of a first
reference block to bucket 216A.

Hash function 218 may be configured to mimimize colli-
sions. For example, 1n response to receiving a first identifier
to a first value of a first reference block, hash function 218
may indicate bucket 216A. In this example, 1n response to
receiving a second identifier to a second value of a first
reference block, hash function 218 may indicate bucket
216N. However, 1n some instances, a collision may occur.
For example, in response to receiving a first identifier to a
first value of a first reference block, hash function 218 may
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indicate bucket 216 A. In this example, however, 1n response
to receiving a second identifier to a second value of a first
reference block, hash function 218 may indicate bucket
216A.

To help to improve engine efliciency, image guide unit
202 may generate enough work to make sure engines 203
have tasks and help to prevent memory access from being a
bottle neck. To help to prevent memory access from being a
bottle neck, image guide unit 202 may refrain from per-
forming memory access in one shot. For example, image
guide unit 202 may use a direct access array and no collision
resolution 1n hashing. To address memory access latency,
image guide unit 202 may keep hash table 214 very small
and close to engines 203. Moreover, to help to prevent
memory access from being a bottle neck, image guide unit
202 may be configured for parallel access.

Some techniques to ensure parallel access 1s to add banks
in memory. However, such techniques may represent a best
cllort approach that does not ensure parallel access. Image
guide unit 202 may use mformation for the mechanism by
which 1image guide unit 202 1s generating work and access
pattern generated by the dependency graph to partition the
memory in banks in a way that there 1s no bank collision.

Hash table 214 may be configured to use no collision
resolution. For example, hash table 214 may store a first
context entry corresponding to a first value of a first refer-
ence block to hash bucket 216 A. In this example, 1n response
to hash function 218 mapping a second identifier to hash
bucket 216A, hash table 214 may output the first context
entry corresponding to the first value of the first reference
block. In this manner, 1n response to a collision between the
first value and the second value, the context data used to
code the first value and the second value will be the same.

Hash table 214 may be configured to use a queue data

structure. For example, image guide unit 202 may, when
accessing hash table 214, submit requests to access hash
table 214 through a queue data structure. In general, a queue
data structure has a first-in, first-out data storage and
retrieval behavior, in that data 1s retrieved from the queue
data structure 1n the same order as the data 1s stored to the
queue data structure.
BEC unit 206 may encode and decode image data for
storage. For example, BEC unit 206 may entropy encode
coellicients decoded by Huilman coding unit 208 for storage
at external memory 170. In another example, BEC unit 206
may entropy decode coeflicients received from external
memory 170 that are to be encoded by Huflman coding unit
208.

In some examples, BEC unit 206 may code using context
information. For example, BEC unit 206 may encode a
current block specified by current block pointer 222 using
context stored in context memory 204. In some examples,
BEC umt 206 may encode a current block specified by
current block pointer 222 using context decoded from a
context block specified by context block pointer 220. Simi-
larly, BEC unit 206 may decode data for a current block
using context information stored in context memory 204.

FIG. 6 1s a conceptual diagram 1llustrating a logical layout
of coeflicient blocks of a 3 component image with 2x2, 1x1,
1x1 MCU size, in accordance with the techmques of this
disclosure. A JPEG Image may include three components
(e.g., Y, Cb, and Cr) which may be derived from red-green-
blue (RGB). Each component 1n a JPEG image may be
broken into coeflicient blocks (e.g., 8x8). The blocks of
components may be interleaved when stored 1n 1image JPEG
file. An MCU number of blocks of a component that 1s found
next to each other may be used before jumping to next
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component. For example, a MCU conversion unit imple-
mented 1n circuitry may use 1, 2, or 4 MCU blocks of a
component that 1s found next to each other before jumping
to next component. Each component may have 1ts own MCU
value. For context based probability calculation of a block,

a MCU conversion unit implemented 1n circuitry may use

the block to the LEFT of current block, the block ABOVE
the current block, and the block on left above DIAGONAL
to the current block of the same component.

In the example of FIG. 6, each unit of Y (e.g., YO-Y17)
may represent a 2x2 MCU matrix and each umt of Cb (e.g.,
Cb0-Cbh8), and Cr (e.g., Cr0-Cr8) may represent a 1x1 MCU
matrix. For example, a MCU conversion unit implemented
in circuitry may generate the luma Y’ component 230 to
include a 2x2 block 240 representing luma data for a block
of pixels of a JPEG image. Similarly, the MCU conversion
unit may generate the chroma blue ‘Cbh’ component 232 to
include a 1x1 block representing blue-diflerence chroma for
the block of pixels of the JPEG image. Similarly, the MCU
conversion unit may generate the chroma red ‘Cr’ compo-
nent 234 to include a 1x1 block 244 representing a red-
difference chroma for the block of pixels of the JPEG image.
In this example, blocks 240, 242, and 244 may each form an
MCU for rendering the block of pixels of the JPEG image.

FIG. 7 1s a conceptual diagram illustrating Huflman
encoded blocks with scan encode order, 1n accordance with
the techmiques of this disclosure. As shown 1n FIG. 7, blocks
may be stored sequentially. To get context blocks a MCU
conversion umt implemented in circuitry may either (1)
store the Huflman decoded blocks 1n memory, (2) store the
Huilman encoded blocks in memory and decode the context
blocks, or (3) use trailing pointers and decode the context
block by reading the image again. Storing the Huiflman
decoded blocks 1n memory and storing the Huflman encoded
blocks 1n memory and decode the context blocks may use a
relatively large amount of intermediate storage. Storing the
Huilman encoded blocks 1n memory and decode the context
blocks and using trailing pointers and decode the context
block by reading the image again may use Hullman decod-
ers.

In accordance with one or more technmiques described
herein, a MCU conversion unit implemented 1n circuitry
may be configured to use a hybrid of storing the Huflman
decoded blocks 1n memory and using trailing pointers and
decode the context block by reading the image again may
use Huflman decoders to efiectively balance an amount of
storage used and a number of decoders used. For example,
a MCU conversion unit implemented in circuitry may be
configured to use two trailing pointers, one for current block
and one for block above. Again, rather than storing all
decoded Huflman encoded blocks 1n memory, image guide
unit 202 may cause Hulflman coding unit 208 to decode

Huth

man encoded blocks that include context information.
In the example of FIG. 7, image guide unit 202 may
specily current block pointer 222 to code Huflman encoded
block Y16 of luma ‘Y’ component 230 and specily context
block pointer 220 to code Huflman encoded block Y8 of
luma Y’ component 230. For example, Hullman coding unit
208 may decode Hullman encoded block Y8 to determine
context for Huflman encoded block Y16. For instance, BEC
unit 206 may receive an output from Huflman coding umit
208 that includes a decoded block for Huflman encoded
block Y8 and a decoded block for Hullman encoded block
Y16. In this example, BEC umt 206 may encode a com-
pressed coetlicient block for Huilman encoded block Y16
using the decoded Huflman encoded block Y16 and using
the decoded Hullman encoded block Y8 as context. In this
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way, BEC unit 206 may use context from Huflman encoded
block Y8 without relying solely on storing of decoded
Huilman blocks.

FIG. 8 1s a conceptual diagram illustrating examples of
context block storage for MCUSs, 1n accordance with the
techniques of this disclosure. A MCU conversion unit imple-
mented 1n circuitry may be configured to store the recent
decoded blocks to be used as LEFT and DIAGONAL for the
next block. However, as shown, this may pose some chal-
lenges because of how MCUs are stored and 1image. In some
examples, the MCU conversion unit may be configured to
keep a mimmum amount of data. For istance, the MCU
conversion unit may be configured to keep a minimum
amount of data for MCUs as large as 4x4.

In a first example, image guide unit 202 may store blocks
250 for current block C1l in context memory 204. For
instance, image guide unit 202 may cause Hullman coding
unit 208 to decode Huilman encoded blocks into blocks 250
that are stored (e.g., uncompressed, compressed, etc.) at
context memory 204. BEC unit 206 may encode current
block C1 using blocks 250 as context.

In a second example, 1mage guide unit 202 may store
blocks 252 for current block C2 in context memory 204. For
instance, image guide unit 202 may cause Hullman coding
unit 208 to decode Hullman encoded blocks into blocks 2352
that are stored at context memory 204. BEC unit 206 may
encode current block C2 using blocks 252 as context.

In a third example, 1mage guide unit 202 may store block
256 for current block C3 in context memory 204. For
instance, image guide unit 202 may cause Hullman coding
unit 208 to decode Huilman encoded blocks into blocks 256
that are stored at context memory 204. BEC unit 206 may
encode current block C3 using blocks 256 as context.

Again, image guide unit 202 may determine context for
decoding a block rather than relying solely on context block
storage. For example, image guide unit 202 may cause
Huflman coding unit 208 to decode Huflman encoded
blocks 1nto blocks 258 in parallel to decoding a Huflman
encoded block 1nto blocks C4. In this example, BEC unit
206 may encode current block C4 using blocks 258 as
context.

FIG. 9 1s a conceptual diagram 1llustrating a zig-zag scan
order, a direct current (DC) coelflicient, alternating current
(AC) low coetllicients (also referred to herein as simply “low
coellicients”), and AC high coeflicients (also referred to
herein as simply “high coeflicients™), 1n accordance with the
techniques of this disclosure. In the example of FIG. 9,
image guide unit 202 may cause JPEG accelerator 200 to
code coeflicients of block 70 in a zig-zag scan order. For
example, JPEG accelerator 200 may code coeflicients O, 1,
2,3, 4,5, and so on until reaching coeflicient 63 or a last-non
zero coellicient 1n that order. As shown, 1image guide unit
202 may specity coeflicient 0 as a DC coetlicient. In some
examples, image guide unit 202 may specity coeflicients 1,
2,3,5,6,9, 10, 14, 15, 20, 21, 27, 28, and 35 as low AC
coellicients. In some examples, image guide unit 202 may
specily coeflicients 1, 5, 6, 14, 15, 27, and 28 as a first
“zone” of low AC CoefﬁClents and coethicients 2, 3, 9, 10, 20,
21, and 35 as a second “zone” of low AC coef 1cients. In
some examples, image guide unit 202 may specily coefli-
cients 4, 7, 8, 11-13, 16-19, 22-26, 29-34, and 36-63 as AC
high coeflcients
BEC unit 206 may code a LNZ high syntax element. In
general, the LNZ high syntax element may represent a last
non-zero AC high coeflicient 1n the zig-zag scan order. For
example, BEC unit 206 may code a value for a LNZ high

syntax element of block 70, which may represent a last
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non-zero AC high coeflicient of the high AC coeflicients
(e.g., coelhicients 4, 7, 8, 11-13, 16-19, 22-26, 29-34, and
36-63) of block 70 1n z1g-zag scan order. For instance, a
LNZ high syntax element may have a value representing
coellicient 51 when coeflicient 51 1s non-zero and coetli-
cients 52-63 are zero. Similarly, BEC unit 206 may code a
LNZ low syntax element. For example, BEC unit 206 may
code a value for a LNZ low syntax element of block 70,
which may represent a last non-zero AC low coeflicient of
low AC coethicients (e.g., coellicients 1, 2, 3, 5, 6, 9, 10, 14,
15,20, 21, 27, 28, and 33) of block 70 in z1g zag scan order.
For instance, a LNZ low syntax element may specily coel-
ficient 14 when coetlicient 14 1s non-zero and coeflicients
15, 20, 21, 27, 28, and 35 are zero.

BEC unit 206 may use the LNZ high syntax element to
determine context for decoding other syntax elements. For
example, BEC unit 206 may determine context correspond-
ing to one or more of a value for a AC high coethlicient map
syntax element, a non-zero AC high values syntax element,
a LNZ low syntax element, or another syntax element. As
used herein, AC high coeflicient map syntax element may
represent a coetlicient map of AC High coeflicients with zero
value (e.g., coeflicient 4), and a non-zero AC high values
syntax element may represent high coeflicient values (e.g.,
coellicients 7, 8, 11-13, 16-19, 22-26, 29-34, and 36-63).
BEC unit 206 may use the context to code syntax ele-
ments. For example, BEC unit 206 may use the context to
code a non-zero AC high values syntax element, LNZ low
syntax element, a non-zero AC low values syntax element,
a DC coetlicient syntax element, or another syntax element.
As used herein, AC low coeflicient map syntax element may
represent a coellicient map for AC Low coetlicients with
zero value (e.g., coellicient 1), a non-zero AC low values
syntax element may represent coetlicient values (e.g., coel-
ficients 2, 3, 5, 6, 9, 10, 14, 135, 20, 21, 27, 28, and 335), and
a DC coeflicient syntax element may represent a constant
oflset.

BEC unit 206 may store coetlicients of a block (e.g., block
70) 11 a map value 1s non-zero. For example, in an 8x8 block,
because of DCT and quantization, most of the data tends
may be accumulated 1n one corner and has trailing zeroes. In
some examples, a number of non-zero coetlicient 1n a block
1s used as a context value which 1s used 1n encoding. For
example, the number of non-zero coethicients 1n a block may
be used as context for encoding one or more of a number of
non-zero values 1n a next block, a coeth

icient, or another
parameter. In some examples, BEC unit 206 may refrain
from storing encoded trailing zeroes of a block (e.g., an 8x8
block).

The use of number of non-zero (NNZ) value may make
the coellicient decoding linear as a BEC unit may stop
decoding beyond last non-zero value. In accordance with
techniques described herein, BEC unit 206 may store the
position of last non-zero (LNZ) value. In this way, BEC unit
206 may decode all coeflicients until a last non-zero value 1n
parallel. In this example all remaining bits of coeflicients
may use a remaining non-zero values as a context. However,
the last non-zero value doesn’t serve the purpose. To address
the foregoing, BEC unit 206 may use a distance from LNZ
as context for coding (e.g., encoding and/or decoding)
coellicient map for coeflicients. Once BEC unit 206 has the
coellicient map, BEC unit 206 may calculate NNZ from the
sum of the first bits. After BEC unit 206 calculates NNZ.,
BEC unit 206 can proceed to use the calculated NNZ as
context, for example, for coellicients.

BEC unit 206 may code values for ordinal bits of the
values of the coeflicient map syntax elements using context
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based on the position of the last-non-zero coeflicient. In
particular, for a current coethicient, BEC unit 206 may
determine a context for coding an ordinal bit of a value for
the coetlicient map syntax element as a distance between the
position of the current coeflicient and the position of the
last-non-zero coeflicient. Then, BEC unit 206 may code
(e.g., encode or decode) the ordinal first bit of the current
coellicient using the context.
BEC unit 206 may abstain from coding data for coefli-
cients of block 70 following the first last-non-zero coetl-
cient i the zig-zag scan order. For example, BEC unit 206
may abstain from coding data for coeflicients 52-63 of block
70 following coeflicient 51 when coethlicient 51 1s the last
non-zero coeflicient 1n the zig-zag scan order.
BEC unit 206 may code coeflicients of block 70 preceding,
a LNZ coellicient 1n the zig-zag scan order according to
contexts determined according to a distance between posi-
tions of coetlicients of block 70 and the first position of the
last-non-zero coetlicient. For example, image guide unit 202
may calculate a number of non-zero elements between a
position of coeflicients of block 70 and the calculated
position of the last-non-zero coethicient for block 70 to
calculate the NNZ. In this example, BEC unit 206 may
determine context according to the distance between posi-
tions of coetlicients of block 70 and the first position of the
last-non-zero coeflicient. In this way, BEC unit 206 may use
the distance from LNZ as context of the coetlicient map to
decode and/or encode. Once BEC unit 206 determines the
distance, BEC unit 206 may proceed to use the distance as
context. For example, BEC unit 206 may code coetlicients
using the distance as context.
BEC unit 206 may code data for coetlicients of block 70
preceding the LNZ coeflicient in the zig-zag scan order
according to contexts determined according to a distance
between positions of the coeflicients of block 70 and the
position of the last-non-zero coetlicient. For example, BEC
unit 206 may code data for coeflicients 1-51 when coeflicient
51 1s a LNZ for the high AC coetlicients according to
contexts determined according to a distance between posi-
tions of the coetlicients of block 70 and the position of the
last-non-zero coetlicient. In some examples, BEC unit 206
may code one or more of coetlicients according to contexts
in parallel. For example, BEC unit 206 may code data for
one or more of coethicients 1-51 when coellicient 51 1s a
LNZ for the high AC coeflicients according to contexts
determined according to a distance between positions of the
coellicients of block 70 and the position of the last-non-zero
coellicient 1n parallel.
BEC unit 206 may code coeflicients of block 70 preceding,
a first LNZ coellicient 1n the zig-zag scan order according to
contexts determined according to a NNZ value. For
example, BEC unit 206 may determine context according to
a calculated NNZ. BEC unit 206 may determine context
corresponding to a LNZ low syntax element, an ACH syntax
clement, an ACL syntax element, a DC coetlicient syntax
clement, or another coetlicient syntax element.
BEC unit 206 may code coetlicient map values for coel-
ficients of block 70. For example, BEC unit 206 may code
a coellicient map for coeflicients of block 70 before coding
coellicients of block 70. As used herein, the coethicient map
may 1nclude a plurality of gate bits that each indicate
whether a respective coellicient of a block 1s to be coded.
FIG. 10 1s a conceptual diagram illustrating a dependency
graph 261 for context determinations for inter and intra
block coeflicients, 1n accordance with the techniques of this
disclosure. The context based probability generation for
coellicients 1 a block (e.g., an 8x8 block) may depend
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cumulative statistics of all the previous blocks that have
been encoded. This may pose a restriction while encoding
and decoding an 1mage. For example, a BEC unit may not
encode or decode a current block in parallel to previous
blocks. Rather than sequentially processing such blocks,
image guide unit 202 may “dissect” dependencies to a finer
level. For example, BEC unit 206 may begin coding part of
a next block as soon as dependency requirements are met 1n
a current block. In this way, BEC unit 206 may use a detailed
dependency graph to apply a pipeline which can start
working on next block (and a further block) 1n parallel to
current block.

In general, as shown m FIG. 10, BEC unit 206 may use
data of LNZ high syntax element 260 as context when
coding AC high coetlicient map syntax element 262. Like-
wise, BEC unit 206 may use AC high coetlicient map syntax
clement 262 as context when coding LNZ low syntax
clement 268 and/or non-zero AC high values syntax element
266 (1llustrated as “NZ ACHO, NZACH 1, ... NZACHn”
and also referred to herein as simply “ACH syntax element
2667).

Dependency graph 261 may generally indicate what syn-
tax elements include data that 1s be used as context when
coding other syntax elements (e.g., per the solid arrows for
syntax elements within a block and per the dashed arrows for
syntax elements in different blocks), and thus, which ele-
ments may be coded 1n parallel. For example, BEC unit 206
may code LNZ low syntax element 268 1n parallel with ACH
syntax element 266, because LNZ low syntax element 268
and ACH syntax element 266 do not depend on one another.

For example, BEC unit 206 may code a first syntax
clement of a first block of image data. For instance, BEC
unit 206 may code a first value for LNZ high syntax element
260 for the first block. In this example, BEC unit 206
determines a first context for coding a second value of a
second instance of the first syntax element of a second block
of the image data. For instance, BEC unit 206 may deter-
mine a value of AC high coeflicient map syntax element 262.

In this example, BEC unit 206 may context-based code a
second value of the second instance of the first syntax
clement of the second block of the image data after coding
the first value of the first instance of the first syntax element
using the first context. For instance, BEC unit 206 may code
a value of LNZ high syntax element 264 after coding the
value of LNZ high syntax element 260 using AC high
coellicient map syntax element 262.

In this example, BEC unit 206 may code a third value of
a {irst mstance of a second syntax element of the first block
in parallel with coding the second value or after coding the
second value. For instance, BEC unit 206 may code a value
of ACH syntax element 266 1n parallel with coding the value
for LNZ high syntax element 264 or after coding the value
for LNZ high syntax element 264.

Although, 1 the above examples, BEC unit 206 codes
ACH syntax element 266 as a second syntax element, other
syntax elements may be used, for example, but not limited
to, an LNZ low syntax element 268, an AC low coellicient
map syntax element 274, non-zero AC low values syntax
clement 276 (1llustrated as “NZ ACL 0, NZ ACL 1, ... NZ
ACL n” and also referred to herein as simply “ACL syntax
clement 276), a DC coeflicient syntax element 282, or
another syntax element.

In another example, BEC unit 206 may code a first value
tor ACH syntax element 266. In this example, BEC unit 206
may determine context for ACH syntax element 284. In this
example, BEC unit 206 may context-based code ACH
syntax element 284. In parallel with the context-based
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coding ACH syntax element 284 or after the context-based
coding ACH syntax element 284, BEC unit 206 may code
one or more of AC low coeflicient map syntax element 274,
NZ AC low values syntax element 276, a DC coellicient
syntax element 282, or another syntax element.

In another example, BEC umit 206 may code a first value
for AC low coellicient map syntax element 274. In this
example, BEC unit 206 may determine context for DC
coellicient syntax element 294. In this example, BEC unit
206 may context-based code DC coeflicient syntax element
294. In parallel with coding DC coeflicient syntax element
294 or after coding DC coeflicient syntax element 294, BEC
umt 206 may code DC coeflicient syntax element 282.

FIG. 11 1s a flowchart illustrating example techniques for
encoding an 1image, 1n accordance with the techniques of this
disclosure. Initially, JPEG accelerator 200 receives Hullman
encoded 1mage data for storage (302). Huflman coding unit
208 decodes the Hullman encoded image data into MCUSs
(304). BEC unit 206 encodes MCUSs 1mnto compressed coel-
ficient blocks (306). JPEG accelerator 200 stores the com-
pressed coethlicient blocks (308). For example, JPEG accel-
crator 200 stores the compressed coeflicient blocks at
external memory 170.

FIG. 12 1s a flowchart illustrating example details for
encoding MCUSs, in accordance with the techniques of this
disclosure. The process of FIG. 12 represents an example of
step 306 of FIG. 11. Imitially, BEC unit 206 encodes a first
value of a first instance of a first syntax element of a first
block of 1mage data (320). BEC unit 206 determines a first
context for coding a second value of a second 1nstance of the
first syntax element of a second block of the image data
(322). BEC unit 206 context-based encodes the second value
of the second instance of the first syntax element of the
second block of the image data after coding the first value of
the first mstance of the first syntax element using the first
context (324). BEC unit 206 encodes a third value of a first
instance of a second syntax element of the first block 1n
parallel with coding the second value or after coding the
second value (326).

FIG. 13 1s a flowchart 1llustrating example techniques for
decoding an 1image, 1n accordance with the techniques of this
disclosure. Initially, JPEG accelerator 200 receives com-
pressed coetlicient blocks (352). BEC unit 206 decodes the
compressed coeflicient blocks into MCUSs (354). Hullman
coding unit 208 encodes the MCUSs 1nto Huflman encoded
image data (356). JPEG accelerator 200 outputs the Huiflman
encoded 1image data (358).

FIG. 14 1s a flowchart illustrating example details for
decoding MCUs, in accordance with the techniques of this
disclosure. The process of FIG. 14 represents an example of
step 354 of FIG. 13. Imitially, BEC unit 206 decodes a first
value of a first instance of a first syntax element of a first
block of 1mage data (370). BEC unit 206 determines a first
context for coding a second value of a second 1nstance of the
first syntax element of a second block of the image data
(372). BEC unit 206 context-based decodes the second value
of the second instance of the first syntax element of the
second block of the image data after coding the first value of
the first mstance of the first syntax element using the first
context (374). BEC unit 206 decodes a third value of a first
instance of a second syntax element of the first block 1n
parallel with coding the second value or after coding the
second value (376).

FIG. 15 15 a flowchart illustrating example techniques for
storing context information, i accordance with the tech-
niques of this disclosure. Initially, image guide unit 202
stores a {first portion of a set of context mformation 1n a
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memory of image coding unit as array representing direct
access table (402). For example, image guide unmit 202 stores
a lirst portion of a set of context information context
memory 204 as an array representing direct access table 210.
Image guide unit 202 stores a second portion of the set of
context mformation 1 a hash table (404). For example,
image guide unit 202 stores a second portion of the set of
context information in hash table 214.

Image guide unit 202 determines whether a context value
for context-based coding of a value of an instance of a
syntax element for the block of image data 1s stored in the
array or in the hash table (406). For example, image guide
unit 202 determines whether a context value for context-
based coding of a value of an instance of a syntax element
tor the block of image data 1s stored 1n the direct access table
210 or 1n hash table 214. In some instances, the value may
include a first value of a first instance of the syntax element
for a first block and the context value may include a second
value of a second mstance of the syntax element for a second
block. For instance, the first value may be for LNZ high
syntax element 260 and the context value may be for LNZ
high syntax element 264. Image guide unit 202 retrieves the
context value from either the array or the hash table accord-
ing to determination (408). BEC unit 206 context-based
codes the value of the instance of the syntax element using
context value (410).

FIG. 16 1s a flowchart 1llustrating example techniques for
executing a hash function, 1n accordance with the techniques
of this disclosure. The process of FIG. 16 represents an
example of step 404 of FIG. 15. Initially, image guide unit
202 executes a hash function that maps a first identifier for
first value of first reference block to a hash bucket (420). For
example, image guide unit 202 executes hash function 218
that maps a {first identifier for first value of first reference
block to bucket 216A. Image guide unit 202 stores a first
context entry corresponding to the first value of the first
reference block to the hash bucket (422). For example,
image guide unit 202 stores a first context entry correspond-
ing to the first value of the first reference block to the bucket
216A. Image guide unit 202 executes a hash function that
maps a second identifier for a second value of a second
reference block to the hash bucket (424). For example,
image guide unit 202 executes hash function 218 that maps
a second 1dentifier for a second value of a second reference
block to bucket 216A. In response to the hash function
mapping the second identifier to the hash bucket including
the first context entry, image guide unit 202 uses the first
context entry as context information during context-based
coding when accessing the hash table using second 1dentifier
(426).

FIG. 17 1s a conceptual illustrating example speculative
decode tree 500 for a LNZ syntax element (e.g., LNZ high
syntax element, LNZ low syntax element, etc.), 1n accor-
dance with the techniques of this disclosure. Even with a
work-queue based approach, there are certain restrictions
which cause problems 1n pipelining decoding. For example,
a dependency on previously encoded bits may cause prob-
lems 1n pipelining decoding. Pipelining the decoding a LNZ
syntax element may include configuring engines 203 to use
a few previous bits for checking if a current bit 1s zero or 1.

Generally, image guide unit 202 may build speculative
decode tree 500 of depth “D” based on a predefined bound-
ing box. Image guide unit 202 starts from the root node of
speculative decode tree 500 and traverses the path based on
the bit 1t decodes from the probability of parent node.
Traversing the path based on the bit BEC unit 206 decodes
may help to ensure that image guide unit 202 does not
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perform any unnecessary work and at the same time does not
wait for a probability lookup after each decode. Such
techniques may help to break apart one more “chain” of
processes to be performed and enables higher utilization of
image guide unit 202 giving higher throughput.

In the example of FIG. 17, BEC unit 206 decodes 3 baits
at a time. However, in some examples BEC unit 206 may
decode 1, 2, or more than 3 bits (e.g., ‘n” bits) at a time. In
this example, speculative decode tree 500 1s associated with
a LNZ syntax element. However, 1n some examples, BEC
umt 206 may select a speculative decode tree associated
with another syntax element that uses one or more previous
bits as context. As shown, speculative decode tree 500
represents a sequence ol bit values and a probability value
associated with the sequence of bit values.

Initially, BEC unit 206 determines a node of speculative
decode tree 500 having a sequence of bit vales correspond-
ing to values of a set of one or more bits. For example, BEC
unit 206 starts at node 502 for bit 5. BEC unit 206 decodes
a next bit, following the set of bits (e.g., following bit §), of
the LNZ syntax element according to the probability value
of the determined node of speculative decode tree 500. For
example, BEC unit 206 decodes bit 4 for node 504 according
to a context of ‘00°, decodes bit 3 for node 508 according to
a context of ‘00°, and decodes bit 3 for node 510 according
to a context of ‘01°. Sumilarly, BEC unit 206 decodes bit 4
for node 506 according to a context of ‘01°, decodes bit 3 for
node 512 according to a context of ‘10°, and decodes bit 3
for node 514 according to a context of ‘11°.

FIG. 18 1s a conceptual illustrating example speculative
decode tree 550 for a coeflicient, 1n accordance with the
techniques of this disclosure. In the example of FIG. 18,
BEC unit 206 decodes 4 bits at a time. However, 1n some
examples, BEC unit 206 may decode 1, 2, 3, or more than
4 bits (e.g., ‘n’ bits) at a time.

Image guide unit 202 selects speculative decode tree 550
associated with a coeflicient. Examples of coeflicient syntax
clements may include, but are not limited to, for example,
ACH syntax element 266, ACL syntax element 276, or
another coeflicient syntax element. Image guide unit 202
determines a node of speculative decode tree 550 corre-
sponding to the values of a set of one or more bits. For
example, image guide unit 202 may start at node 352. In this
example, BEC unit 206 may decode a next bit according to
the probability value of the determined node of speculative

decode tree 350. For example, BEC unit 206 may decode
that a gate value 1s at least 1 for node 552, at least 2 for node
554, at least 3 for node 556, and at least 4 for node 558.
BEC unit 206 may decode syntax elements in parallel
with decoding the gate syntax. For example, in response to
determining that the gate value 1s at least 1, BEC unit 206
may decode (e.g., in parallel) a bit 0 of coe:i‘icient. In this
example, 1n response to determining that the gate value 1s at
least 2 BEC unit 206 may decode (e.g., in parallel) a bit 1
for coetlicient. In response to determining that the gate value
1s at least 3, BEC unit 206 may decode (e.g., 1n parallel) a
bit 2 for coetlicient. In response to determining that the gate
value 1s at least 4, BEC unit 206 may decode (e.g., n
parallel) a bit 3 coeflicient. In this way, 1image coding umit
may decode up to 4 bits of coetlicients using speculative
decode tree 550.

FIG. 19 15 a flowchart illustrating example techniques for
decoding to help to maximize performance, in accordance
with the techniques of this disclosure. Initially, image guide
umt 202 selects a speculative decode tree associated with
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first syntax element (602). For example, image guide unit
202 selects speculative decode tree 550 associated with a
LNZ syntax element.

BEC unit 206 decodes a first set of one or more bits of a
first value of a first instance of a first syntax element of a
block of image data (604). The first syntax element may be
a gate syntax element for a transform coeflicient of the
block. For example, a first decoding engine of engines 203
decodes a first set of one or more bits of values of LNZ
syntax element. For instance, the first decoding engine of
engines 203 decodes a first bit of the LNZ syntax element.
Again, the LNZ syntax element may represent a position of
a last-non-zero coetlicient in z1g-zag scan order of the block.
In some examples, the first set of one or more bits may
include most significant bits of a first value of a first instance
of the LNZ syntax element that define a minimum number
of the transform coellicients to be decoded. In some
examples, the one or more values of the respective instances
of the one or more other syntax elements may correspond to
no more than the minimum number of the transform coet-
ficients to be decoded.

Image guide unit 202 determines that the first set of one
or more bits have values indicating that one or more values
of respective 1instances of one or more other syntax elements
of the block of image data are to be decoded (606). For
example, 1mage guide unit 202 may determine that the first
bit of the LNZ syntax element indicates syntax elements for
transform coeflicients of the block of image data are to be
decoded. The one or more other syntax eclements may
include one or more of an ACH syntax element, an ACL
syntax element, a DC coellicient syntax element, or another
coellicient syntax element. For example, image guide unit
202 may determine that the first bit of the LNZ syntax
clement indicates one or more of an ACH syntax element, an
ACL syntax clement, a DC coeflicient syntax element, or
another coetlicient syntax element are to be decoded.

In response to determination, BEC unit 206 decodes one
or more bits of one or more values of respective 1nstances of
one or more other syntax elements of block prior to decoding
second set of one or more bits of first value of first instance
of first syntax element (608). For example, a second decod-
ing engine of engines 203 decodes a one or more bits of one
of more values of the respective instances of the one or more
other syntax elements. For instance, the second decoding
engine of engines 203 decodes a coellicient for the first bit.
In some examples, engines 203 may code 1n parallel.

Image guide unit 202 determines a node of speculative

decode tree having a sequence of bit values corresponding to
values of first set of one or more bits (610). For example, the
first decoding engine of engines 203 determines node 352 of
speculative decode tree 550 has a sequence of bit values
corresponding to values of first set of one or more bits of the
LNZ syntax element.
BEC unit 206 decodes a next bit, following the first set of
one or more bits, of a first value of a first instance of the LNZ
syntax element according to probability value of determined
node of speculative decode tree (612). For example, the first
decoding engine of engines 203 decodes a next bit, follow-
ing the first set of one or more bits, of a first value of the
LNZ syntax element according to probability value of
determined node 552 of speculative decode tree 350. For
instance, the first decoding engine of engines 203 decodes
coellicient bit 0 according to probability value of determined
node 552, coeflicient bit 1 according to probability value of
determined node 554, and so on.

FIG. 20 1s a conceptual diagram illustrating a scan order
702 of coethicients of a block 700 to be decoded, 1n accor-
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dance with the techniques of this disclosure. Block 700 may
include other coeflicients beyond coetlicient 12 (e.g., one or
more zero coellicients). In the example of FIG. 20, image
guide unmit 202 determines an indication of a LNZ Syntax
clement for block 700 indicating a last non-zero coetlicient
(e.g., coellicient 12). For example, image guide unit 202
receives an indication of a LNZ syntax element for block
700 indicating a last non-zero coetlicient (e.g., coetlicient
12) to be decoded. In some examples, image guide unit 202
determines a last non-zero coeflicient (e.g., coeflicient 12)
for encoding and generates the indication of a LNZ syntax
clement for block 700 to indicate the last non-zero coetl-
cient. In some examples, LNZ syntax elements for block 700
may include a LNZ high syntax elements and two LNZ low
syntax elements, e.g., as explained with respect to FIG. 9.
Image guide unmit 202 may determine coellicients to
decode based on the LNZ syntax element. For example,
image guide unit 202 may determine that coeflicients to
decode comprise each coetlicient of block 700 that occurs 1n
a scan order for the block no later than a last non-zero
coellicient (e.g., coellicient 12). As shown, in this example,
BEC unit 206 decodes coellicients 1-12 1n scan order 702.
As shown, BEC unit 206 may decode coeflicients 1-12 in
ordinal order, which corresponds to a zig-zag scan order.
Image guide umt 202 may determine context for coding
(e.g., decoding, encoding, etc.) values of syntax elements for
cach coellicient of block 700. For example, image guide unit
202 may determine a context for coding each coeflicient of
block 700 as a distance between the position of the respec-
tive coellicient and the position of the LNZ coeflicient, as
indicated by the value of the LNZ syntax element. For
instance, image guide unit 202 may determine a context for
coeflicient 1 of block 700 as 11, a context for coeflicient 2

of block 700 as 10, a context for coethicient 3 of block 700
as 9, and so on.

FIG. 21 1s a conceptual diagram illustrating an example
table 750 of coellicient map values 752 and calculated NNZ
values 754 for coeflicients of block 700 of FIG. 20, i
accordance with the techniques of this disclosure. In some
examples, coellicients 1-12 may be high coetlicients. In
some examples, coelflicients 1-12 may be low coeflicients
corresponding to coellicients along a top row of a block and
along a left edge of a block.

In the example of FIG. 21, BEC unit 206 context-based
decodes coellicient map values 752 (also referred to herein
as a “coetlicient map”) 1n parallel. A first engine of engines
203 may generate a map value of ‘1’ for a coeflicient 1 and
a second engine of engines 203 may generate a map value
of ‘1’ for coellicient 2. Again, BEC umt 206 may context-
based decode bits of coetlicient map values 752 1n parallel
using context that 1s based on the LNZ syntax element, for
instance, a distance of a respective coetlicient to the LNZ
coellicient indicated by the LNZ syntax element.

Coefllicient map values 752 represent a map gate values,
where the gate values represent coeflicient values to be
decoded. That 1s, coellicient map values represents whether
to code a coellicient values. If a gate value of the coetlicient
map values 1s a °1,” the corresponding coellicient value 1s
coded. IT a gate value of the coellicient map values 1s a 0,
the corresponding coeflicient value 1s not coded.

BEC umt 206 may calculate NNZ values 754 using
coellicient map values 752. For example, to calculate NNZ
values 754, BEC unit 206 may calculate the sum of coefli-
cient map values 752 for coellicients of block 700 up to the
last non-zero coeflicient. BEC unit 206 may determine an
updated NNZ value for each coeflicient, where the updated
NNZ value represents a number of remaining non-zero
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coellicients. That 1s, after determining an 1nitial NNZ value,
BEC unit 206 may subtract one from the NNZ value after
passing a non-zero coellicient. For mstance, BEC unit 206
may calculate a second NNZ value for coetlicient 2 from a
first NNZ value for coell 6) by subtracting one

icient 1 (e.g.,
from the first NNZ value, because the gate value for the first
coeflicient 1s non-zero. Thus, the second NNZ value would
be 5, 1n this example.

After calculating the NNZ values 1n this manner, BEC
unit 206 may use the NNZ values as context information
when coding the coeflicients. For example, a first engine of
engines 203 may context-based code the values of the syntax
clements of a first coetlicient using the NNZ value as context
and, for each subsequent coeflicient, a subsequent coding
engine of engines 203 may context-based code the values of
the syntax elements of the subsequent coeflicient using the
updated NNZ value in parallel with context-based coding,
by the first coding engine, the values of the syntax elements
of the first coellicient.

More specifically, for example, BEC unit 206 may deter-
mine context for decoding coeflicient 1 based on the first
NNZ value (e.g., 6). BEC umt 206 may decode values of
syntax elements for the coeflicients of block 700 1n parallel.
For example, a first engine of engines 203 may decode the
values of the syntax elements of coeflicient 1 of block 700
using the first value of NNZ values 754 as context (e.g., 6)
in parallel with a second engine of engines 203 decoding the
values of the syntax elements of coeflicient 2 of block 700
using the second value of NNZ values 734 as context (e.g.,
S5), and so on.

FI1G. 22 1s a flowchart 1llustrating example techniques for
decoding using a LNZ high syntax element, 1n accordance
with the technmiques of this disclosure. Initially, image guide
unit 202 determines a LNZ high syntax element for a block
(802). For example, image guide unit 202 receives one or
more symbols 1n a bitstream indicating the LNZ high syntax
clement. In this example, the LNZ syntax element represents
the high LNZ syntax element, although in other examples,
the LNZ syntax element may represent a low LNZ syntax
clement. Image guide unit 202 determines coellicients of the
block to decode based on the LNZ high syntax element
(804). For example, image guide unit 202 determines the
coellicients to be decoded include each coetflicient occurring
in a scan order for the block up to and including the last
non-zero coeflicient of the block indicated by the LNZ high
syntax element.

Image guide unit 202 determines contexts for decoding
coellicient map values for each coetlicient to be decoded
based on the LNZ syntax element (806). For example, image
guide unit 202 determines a first context for decoding a gate
value for a first high coeflicient using a distance of the first
high coeflicient from the LNZ coeflicient indicated by the
LNZ high syntax element, a second context for decoding a
gate value for a second high coeflicient using a distance of
the second high coeflicient from the LNZ coetlicient indi-
cated by the LNZ high syntax element, and so on.

BEC unit 206 context-based decodes a coellicient map
value for a first high coetflicient for a block using the context
of LNZ-1 (808). In the example of FIG. 22, BEC unit 206
context-based decodes a coellicient map Value 'or a second
high coeflicient of the block using the context of LNZ-2
(810) and BEC unit 206 context-based decodes a coeflicient
map value for a ‘nth” high coeflicient for the block using the
context of LNZ-n (812) in parallel with context-based
decoding the coeflicient map value for the first high coet-
ficient. In this example, BEC umt 206 decodes a high
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examples, BEC unit 206 may decode an low coellicient map
syntax element 1n substantially the same manner. In this
example, BEC unit 206 decodes, however, in other
examples, BEC unit 206 may encode a high coetlicient map
syntax element and/or a low coeflicient map syntax element
in substantially the same manner.

Each engine of engines 203 may context-based decode a
respective coeflicient map value. More specifically, for
instance, a first engine of engines 203 may context-based
decode a coeflicient map value for a first high coetlicient
using the first context. Similarly, a second engine of engines
203 may context-based decode a coeflicient map value for a
second high coellicient using the second context. Again, in
this example, engines 203 decode, however, in other
examples, engines 203 may encode 1n substantially the same
mannet.

BEC unit 206 calculates a NNZ value for each high
coellicient using the coetlicient map values (814). For
example, BEC unit 206 determines a first NNZ value for a
first coeflicient as a sum of coellicient map value. In this
example, BEC unit 206 calculates a second NNZ value by
subtracting the coeflicient map value of the first coeflicient
from the first NNZ value. Likewise, BEC unit 206 calculates
cach subsequent NNZ value for a subsequent coetlicient by
subtractmg the coeflicient map value for the coetlicient from
the previous NNZ value.

BEC unit 206 may decode the coeflicients for the block
usmg the NNZ values (816). For example, a first engme of
engmes 203 may context-based decode the first coellicient
usmg the first NNZ value as context, a second engine of
engines 203 may context-based decode the second coetli-
cient using the second NNZ value, and so on.

Various examples have been described. These and other
examples are within the scope of the following claims.

What 1s claimed 1s:

1. A method comprising:

decoding, by an 1mage coding unit implemented 1n cir-

cuitry of a device, a first set of one or more bits of a first
value of a first instance of a first syntax element of a
block of image data;
determiming, by the image coding unit, that the first set of
one or more bits have values indicating that one or
more values of respective instances of one or more
other syntax elements of the block of image data are to
be decoded, wherein the one or more other syntax
clements does not include the first syntax element;
in response to the determination, decoding, by the image
coding unit, one or more bits of the one or more values
of the respective instances of the one or more other
syntax elements of the block prior to decoding a second
set of one or more bits of the first value of the first
instance of the first syntax element; and
outputting, by the image coding unit, an indication of the
block of the 1mage data based on the one or more values
of the respective instances of the one or more other
syntax elements of the block.
2. The method of claim 1,
wherein decoding the first set of one or more bits com-
prises decoding, by a first decoding engine of a plural-
ity ol decoding engines of the image coding unit, the
first set of one or more bits, and
wherein decoding the one or more bits of the one or more
values of the respective mnstances of the one or more
other syntax elements comprises decoding, by a second
decoding engine of the plurality of decoding engines,
the one or more bits of the one or more values of the
respective instances of the one or more other syntax
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clements, the second decoding engine being different
than the first decoding engine.

3. The method of claim 1, wherein the first syntax element
comprises a last-non-zero (LNZ) syntax element, and
wherein the one or more other syntax elements comprise
syntax elements for transform coeflicients of the block of
image data.

4. The method of claim 3,

wherein the LNZ syntax element represents a position of

a last-non-zero coellicient 1n zig-zag scan order of the
block, and wherein the first set of one or more bits
comprise most significant bits of the first value of the
first instance of the LNZ syntax element defining a
minimum number of the transform coeflicients to be
decoded, and

wherein the one or more values of the respective instances

of the one or more other syntax elements correspond to
no more than the minimum number of the transform
coellicients to be decoded.

5. The method of claim 3, wherein the one or more other
syntax elements comprise one or more of a non-zero alter-
nating current (AC) high values syntax element, a non-zero
AC low values syntax element, or a direct current (DC)
coellicient syntax element.

6. The method of claim 1, wherein the first syntax element
comprises a coellicient map syntax element for a transform
coellicient of the block, and wherein the one or more other
syntax elements comprises the transform coeflicient.

7. The method of claim 1, further comprising:

selecting a speculative decode tree associated with the

first syntax element, each node of the speculative
decode tree representing a sequence of bit values and a
probability value associated with the sequence of bit
values; and

after decoding the first set of one or more bits of the first

value of the first instance of the first syntax element:

determining a node of the speculative decode tree
having a sequence of bit values corresponding to the
values of the first set of one or more bits; and

decoding a next bit, following the first set of one or
more bits, of the first value of the first instance of the
first syntax element according to the probability
value of the determined node of the speculative
decode tree.

8. A device comprising:

a memory configured to store 1image data; and

an 1mage coding unit implemented in circuitry, the image

coding unit being configured to:

decode a first set of one or more bits of a first value of
a first instance of a first syntax element of a block of
image data;

determine that the first set of one or more bits have
values indicating that one or more values of respec-
tive mstances of one or more other syntax elements
of the block of image data are to be decoded, wherein
the one or more other syntax elements does not
include the first syntax element;

in response to the determination, decode one or more
bits of the one or more values of the respective
instances ol the one or more other syntax elements of
the block prior to decoding a second set of one or
more bits of the first value of the first instance of the
first syntax element; and

output an indication of the block of the image data
based on the one or more values of the respective
instances of the one or more other syntax elements of

the block.
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9. The device of claim 8,

wherein, to decode the first set of one or more bits, the
image coding unit 1s configured to decode, by a first
decoding engine of a plurality of decoding engines of
the image coding unit, the first set of one or more bits,
and

wherein, to decode the one or more bits of the one or more

values of the respective instances of the one or more
other syntax elements, the 1image coding unit 1s con-
figured to decode, by a second decoding engine of the
plurality of decoding engines, the one or more bits of
the one or more values of the respective instances of the
one or more other syntax elements, the second decod-
ing engine being different than the first decoding
engine.

10. The device of claim 8, wherein the first syntax element
comprises a coellicient map syntax element for a transform
coeflicient of the block, and wherein the one or more other
syntax elements comprises the transform coeflicient.

11. The device of claim 10,

wherein the LNZ syntax element represents a position of

a last-non-zero coeflicient 1n zig-zag scan order of the
block, and wherein the first set of one or more bits
comprise most significant bits of the first value of the
first instance of the LNZ syntax element defining a
minimum number of the transform coeflicients to be
decoded, and

wherein the one or more values of the respective instances

of the one or more other syntax elements correspond to
no more than the minimum number of the transform
coellicients to be decoded.

12. The device of claim 10, wherein the one or more other
syntax elements comprise one or more of a non-zero alter-
nating current (AC) high values syntax element, a non-zero
AC low values syntax element, or a direct current (DC)
coellicient syntax element.

13. The device of claim 8, wherein the first syntax element
comprises a coellicient map syntax element for a transform
coeflicient of the block, and wherein the one or more other
syntax elements comprises the transform coetlicient.

14. The device of claim 8, wherein the 1mage coding unit
1s Turther configured to:

select a speculative decode tree associated with the first

syntax element, each node of the speculative decode

tree representing a sequence of bit values and a prob-
ability value associated with the sequence of bit values;
and
alter decoding the first set of one or more bits of the first
value of the first instance of the first syntax element:
determine a node of the speculative decode tree having
a sequence of bit values corresponding to the values
of the first set of one or more bits; and
decode a next bit, following the first set of one or more
bits, of the first value of the first instance of the first
syntax element according to the probability value of
the determined node of the speculative decode tree.
15. A non-transitory computer-readable storage medium
comprising instructions that, when executed, cause a pro-
cessor to:
decode a first set of one or more bits of a first value of a
first 1nstance of a first syntax element of a block of
image data;
determine that the first set of one or more bits have values
indicating that one or more values of respective
instances of one or more other syntax elements of the
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block of 1mage data are to be decoded, wherein the one
or more other syntax elements does not include the first
syntax element;

in response to the determination, decode one or more bits
of the one or more values of the respective mstances of
the one or more other syntax elements of the block prior
to decoding a second set of one or more bits of the first
value of the first instance of the first syntax element;

and
output an 1ndication of the block of the image data based

on the one or more values of the respective instances of
the one or more other syntax elements of the block.
16. The non-transitory computer-readable storage
medium of claim 15, wherein the first syntax element
comprises a last-non-zero (LNZ) syntax element, and
wherein the one or more other syntax elements comprise
syntax elements for transform coeflicients of the block of
image data.
17. The non-transitory
medium of claim 16,
wherein the LNZ syntax element represents a position o
a last-non-zero coellicient 1n zig-zag scan order of the
block, and wherein the first set of one or more bits
comprise most significant bits of the first value of the
first instance of the LNZ syntax element defining a
minimum number of the transform coeflicients to be
decoded, and
wherein the one or more values of the respective instances
of the one or more other syntax elements correspond to
no more than the minimum number of the transform
coellicients to be decoded.

computer-readable storage
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18. The non-transitory computer-readable storage
medium of claim 16, wherein the one or more other syntax
clements comprise one or more of a non-zero alternating
current (AC) high values syntax element, a non-zero AC low

values syntax element, or a direct current (DC) coellicient
syntax element.
19. The non-transitory computer-readable storage

medium of claim 15, wheremn the first syntax element
comprises a coellicient map syntax element for a transform
coeflicient of the block, and wherein the one or more other
syntax elements comprises the transform coethlicient.

20. The non-transitory computer-readable storage
medium of claim 15, wherein instructions further cause the
processor to:

select a speculative decode tree associated with the first

syntax element, each node of the speculative decode
tree representing a sequence of bit values and a prob-
ability value associated with the sequence of bit values;
and

after decoding the first set of one or more bits of the first

value of the first instance of the first syntax element:

determine a node of the speculative decode tree having
a sequence of bit values corresponding to the values
of the first set of one or more bits; and

decode a next bit, following the first set of one or more
bits, of the first value of the first instance of the first
syntax element according to the probability value of
the determined node of the speculative decode tree.
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