12 United States Patent
Wang et al.

US010817334B1

US 10,817.334 B1
Oct. 27, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(60)

(1)

(52)

(58)

REAL-TIME ANALYSIS OF DATA
STREAMING OBJECTS FOR DISTRIBUTED
STREAM PROCESSING

Applicant: Twitter, Inc., San Francisco, CA (US)

Inventors: Cong Wang, San Francisco, CA (US);
Maosong Fu, San Francisco, CA (US);
Karthik Ramasamy, San Francisco,

CA (US)
Assignee: Twitter, Inc., San Francisco, CA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 161 days.

Appl. No.: 15/921,419

Filed: Mar. 14, 2018

Related U.S. Application Data
Provisional application No. 62/471,337, filed on Mar.

14, 2017.

Int. CIL.

GO6F 9/46 (2006.01)

GO6F 9/48 (2006.01)

GO6F 9/50 (2006.01)

GO6F 1672455 (2019.01)

U.S. CL

CPC GO6F 9/4881 (2013.01); GO6l’ 9/5016

(2013.01); GO6F 16/24568 (2019.01)

Field of Classification Search
P oo e ettt e e e e ereearaenas GOG6F 9/52

USPC e 718/104
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,015,238 B1* 4/2015 Anton GOG6F 16/256
709/203
9,471,585 B1* 10/2016 Themmer GOO6F 3/0641

10,095,547 B1 10/2018 Kulkarni et al.
2009/0300615 Al1* 12/2009 Andrade GO6F 9/5066
718/100
2009/0313614 Al1* 12/2009 Andrade GO6F 8/451
717/151
2010/0293301 Al1* 112010 Aminiooeeeeeeee, GO6F 9/544
710/12
2010/0293532 Al1* 11/2010 Andrade GO6F 11/1438
717/140
2010/0293535 Al1* 11/2010 Andrade GO6F 8/433
717/156

(Continued)

OTHER PUBLICATTONS

Abadi et al.,, “The Design of the Borealis Stream Processing

Engine,” Proceedings of the 2005 Conference on Innovative Data
Systems Research (CIDR), Mar. 2005, 13 pages.

(Continued)

Primary Examiner — Mehran Kamran
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Methods, systems, and apparatus, including computer pro-
grams encoded on computer storage media, for data stream
processing. One method performed by a stream manager in
a group ol containers including streaming processes and
stream managers 1mcludes recerving a first data streaming
object of the data streaming objects from a first component
in the group of containers; determining whether to process
the first data streaming object; 1n response to determining to
process the first data streaming object processing the first
data streaming object and routing the first data streaming
object; and 1n response to determining not to process the first
data streaming object, routing the first data streaming object.

20 Claims, 9 Drawing Sheets

70

/

Instance

Obtain a serialized object
71

l

Determine whether the object is from a

non-local stream manager or a local
instance
12

Stream
Manager

Determine to process the
object

3

Y

Determine not to process the
ohject
74

US 10,817,334 Bl
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0010581 Al* 1/2011 Tanttu GO6F 9/5038
714/11

2011/0231447 Al1* 9/2011 Starkey GOOF 16/27
707/792

2011/0302318 Al1l™* 12/2011 Buger HO4L 12/2838
709/231

2012/0331333 Al* 12/2012 Imaki GOOF 11/1658
714/2

2014/0280766 Al* 9/2014 Banerjee HO4L 65/60
709/219

2015/0103837 Al* 4/2015 Duttacovevnnn, HO4L 47/125
370/401

2015/0120224 Al* 4/2015 Siebelcc....0 GO1R 21/00
702/61

2015/0135255 Al* 5/2015 Theimer HO4L 63/20
726/1

2016/0098662 Al* 4/2016 V0SS ..ccovveeenenn G06Q 10/06316
705/7.26

2016/0103665 Al* 4/2016 Liuoeeeeeeennn, GOOF 11/3082
717/158

2016/0269247 Al* 9/2016 Chakradhar HO4L 67/12
2016/0323348 Al* 11/2016 Bradbury HO4L 67/02
2018/0176193 Al* 6/2018 Davisccccevvennnn, HO4L 9/3247
2018/0246708 Al* 8/2018 Benton GOO6F 8/47
2019/0190852 Al* 6/2019 Zhangc............. GO6F 3/06

OTHER PUBLICATIONS

Aurora.Apache.org [online] “Aurora System Overview,” available
on or before Feb. 18, 2018, via Internet Archive: Wayback Machine
URL <https://web.archive.org/web/20180218144047/http://aurora.
apache.org:80/documentation/latest/getting-started/overview/>,
[retrieved on Jan. 11, 2019], retrieved from: URL <http://aurora.

apache.org/documentation/latest/getting-started/overview/>, 5 pages.

Blog. Twitter.com [online], “Optimizing Twitter Heron,” Mar. 16,
2017, [retrieved on Jan. 10, 2019], retrieved from URL <https://
blog.twitter.com/engineering/en_us/topics/open-source/2017/optinmizing-
twitter-heron.html>, 7 pages.

Fu et al., “Streaming (@ Twitter,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, Dec. 2015, 13

pages.
Kulkarni et al., “Twitter Heron: Stream Processing at Scale,”
Proceedings of the Assoclation for Computing Machinery (ACM)
Special Interest Group 1n Management of Data (SIGMOD) Inter-

national Conference on Management of Data, Jun. 2015, pp. 239-
250.

Mesos.Apache.org [online], “Mesos Architecture,” available on or
before Jan. 23, 2018, via Internet Archive: Wayback Machine URL
<https://web.archive.org/web/20180123213922/http://mesos.apache.
org/documentation/latest/architecture/>, [retrieved on Jan. 11, 2019],

retrieved from: URL <http://mesos.apache.org/documentation/latest/
architecture/>, 3 pages.

Microsofit.Github.io [online], “Why Bond?” available on or before
Mar. 18, 2017 via Internet Archive: Wayback Machine URL <https://
web.archive.org/web/20170318153739/http://microsoft.github.10:80/
bond/why_bond.html>, [retrieved on Jan. 19, 2019], retrieved from
URL <https://microsoft.github.io/bond/why_bond.html#protocols>,
4 pages.

Protocol Buffers [online], “Developer Guide,” available on or
before Jan. 8, 2018 via Internet Archive: Wayback Machine URL
<https://web.archive.org/web/20180108001525/https://developers.
google.com/protocol-buflers/docs/overview>, [retrieved on Jan. 11,
2019], retrieved from: URL <https://developers.google.com/protocol-
buffers/docs/overview>, 7 pages

Thrift. Apache.org [online], “Thrift Network Stack,” available on or
before Nov. 2, 2017, via Internet Archive: Wayback Machine URL
<https://web.archive.org/web/20171102184436/https://thrift.apache.
org/docs/concepts>, [retrieved on Jan. 11, 2019], retrieved from
URL <https://thrift.apache.org/docs/concepts™>, 4 pages.

Zaharia et al., “Discretized Streams: An Efficient and Fault-Tolerant
Model for Stream Processing on Large Clusters,” Proceedings of the
4th USENIX Conference on Hot Topics 1n Cloud Computing, Jun.
12-13, 2012, 6 pages.

Zookeeper. Apache.org [online], “ZooKeeper Overview,” available
on or before Feb. 10, 2018, via Internet Archive: Wayback Machine
URL <https://web.archive.org/web/20180210014135/http://zookeeper.
apache.org:80/doc/13 .4.11/zookeeperOver.html>, [retrieved on Jan.
11, 2019], retrieved from: URL <https://zookeeper.apache.org/doc/
13.4.13/zookeeperOver.html> 7 pages.

* cited by examiner

U.S. Patent Oct. 27, 2020 Sheet 1 of 9 US 10,817,334 B1

T T T T P T T T P =TT T T FET 0T P T T,
—_—,

STREAM PROCESSOR
E ;

E ; JOB A JOB B

| é 144 s o0 148 |

: é 1

| é |

| SCHEDULER

16

TS

CLUSTER MANAGER

18
| CLUSTER
i 13
CLUSTER NODE A CLUSTER NODE B
15A - 158

Stream Processing System 10

FIG. 1

U.S. Patent Oct. 27, 2020 Sheet 2 of 9 US 10,817,334 B1

\
N S
Bolt B
T T T,
238 VR
Spout B / Bolt E
228 23E

FIG. 2

U.S. Patent Oct. 27, 2020 Sheet 3 of 9 US 10,817,334 B1

Container A 31

c ot o5 2 22 2 0 2520 42 2 2 2o 21 25 0 o4 25 2 o 1 20 5 2 o 24 /

T
opology Master |
32 |
Container B 31 | Container C 31
~ Spout , Y - Y | spout | l
| | ; ; ! BGH:A '
; A | BoltB | Stream | Stream B { |
326 — Manager B g —»4 Manager C , 3¢
5 L ' B s
| 338 : -/ 33C
Bolt C Ei Bolt D = g /| == | | BoltC BoltD |
. | %L A i T %
. 3 ~
I
Container D 31 Container E 31E
Spout || _ . | — Yy \ S Spout s
| | Boilt A
A Bolt B Stream Stream | B | g
32D o R ManagerD 4 5 ManagerE | - 32E |
- ' 33D i | 33E E
Bolt C Bolt D - 1 BoltC || BoltkE
... —

FIG. 3

U.S. Patent Oct. 27, 2020 Sheet 4 of 9 US 10,817,334 B1

Object Gateway Object Deserializer
S
41 42

Object Processor
43

TELE [TELTER FEETPEE TEELELEE TEETETE TTRELEER TTELTERE JTLLEvER JETLITee | RETLE TELE]

SUNE JEELETE TTUELER YERUELR TETELUR TEEEEEE TETEEUE TEPECEE TELLIvE [TPETER EELEEE JTPETEEE JTELELE JTETLECE TTPEEELER YEETEL

Object Router Object Serializer
l 45 44

ETIILE | ETIILE | ETIILE | L ITELELEE JEELETE

Stream Manager 40

FIG. 4

U.S. Patent Oct. 27, 2020 Sheet 5 of 9 US 10,817,334 B1

Object ID
51

Source ID
52

Payload
53

Destination ID
54

Object 50

FIG. 5

U.S. Patent Oct. 27, 2020 Sheet 6 of 9 US 10,817,334 B1

60

K

Obtain a serialized object
61

l

YES Determine whether to process the
object
62

NO

Deserialize the object
63

l

Process the object
64

l

Serialize the object
65

Route the object
66

FIG. 6

U.S. Patent Oct. 27, 2020 Sheet 7 of 9 US 10,817,334 B1

Obtain a serialized object

Instance ' Determine whether the object is from a Stream
~ non-local stream manager or a local Manager
instance
72
' s
Determine to process the Determine not to process the
object object
13 74 |
_______________ |

FIG. 7

U.S. Patent Oct. 27, 2020 Sheet 8 of 9 US 10,817,334 B1

e

Obtain an object
81

Access serialization/deserialization resources in a memory
pool for stream manager

32

Serialize/deserialize the object using the resources
83

FIG. 8

U.S. Patent Oct. 27, 2020 Sheet 9 of 9 US 10,817,334 B1

90

~

Obtain a deserialized object
91

ldentify fields of the object that need to be modified
92

Modify the identified fields in place
93

FIG. 9

US 10,817,334 Bl

1

REAL-TIME ANALYSIS OF DATA
STREAMING OBJECTS FOR DISTRIBUTED
STREAM PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §
119(e) of the filing date of U.S. Patent Application No.
62/4°71,337, for “Real-Time, Fault-Tolerant, and Distributed
Processing of Data Streams,” which was filed on Mar. 14,
2017, and which 1s 1incorporated here by reference.

BACKGROUND

This specification relates to data stream processing sys-
tems.

Conventional data stream processing systems process
streams of data, often in real time. In some data stream
processing systems, the system provides continuous queries
that execute in real time to process particular data streams.
For example, a typical data stream processing system may
analyze aspects of the data streams to determine real-time
trends, real-time conversations, real-time recommendations
or real-time search.

SUMMARY

This specification describes technologies for real-time
analysis of data streams using a stream processing system.
These technologies generally involve techniques for man-
aging the processing ol data streams by stream managers
including determining whether to process a given data
streaming object before deserializing 1t, processing a data
streaming object by modifying the fields of the data stream
object 1 place and perform serialization and/or deserializa-
tion ol a data streaming object using corresponding code in
a memory pool accessible to the stream managers.

In general, one mnovative aspect of the subject matter
described 1n this specification can be embodied in data
stream processing systems for executing a stream processing
10b each having a logical topology on a cluster including a
plurality of cluster nodes, where the data processing systems
include a scheduler that 1s configured to generate a group of
containers for the stream processing job based on the logical
topology, wherein the group of containers include a first
container and one or more second containers, the first
container mcludes a topology manager that manages the
execution of the logical topology on the cluster, each second
container of the one or more second containers includes a
stream manager and one or more streaming processes, the
one or more streaming processes communicate data streams-
ing objects with each other using stream managers, each
stream manager 1s configured to: receive a first data stream-
ing object of the data streaming objects from a first com-
ponent 1n the group of containers, determine whether to
process the first data streaming object, 1n response to deter-
minming to process the first data streaming object, process the
first data streaming object and route the first data streaming
object, and 1n response to determining not to process the first
data streaming object, route the first data streaming object.

Other embodiments of this aspect include methods that
include performing actions of the scheduler. Other embodi-
ments of this aspect include corresponding computer sys-
tems, apparatus, and computer programs recorded on one or
more computer storage devices, each configured to perform
the actions of the methods. A system of one or more

10

15

20

25

30

35

40

45

50

55

60

65

2

computers can be configured to perform particular opera-
tions or actions by virtue of software, firmware, hardware, or

any combination thereol installed on the system that in
operation may cause the system to perform the actions. One
or more computer programs can be configured to perform
particular operations or actions by virtue of including
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the actions.

Other embodiments of this aspect optionally include one
or more of the following features. Each stream manager 1s
configured to determine to process the first data streaming
object 1f the first component 1s a streaming process of the
one or more streaming process, and determine not to process
the first data streaming object 1f the first component 1s
another stream manager in the group of containers. Process-
ing the first data streaming object includes modifying one or
more {fields of the first data streaming object n place.
Processing the first data streaming object and routing the
first data streaming object in response to determining to
process the first data streaming object includes deserializing
the first data streaming object to generate a deserialized
object; processing the deserialized object to generate a
processed object; serializing the processed object to generate
a serialized objet; and routing the serializing object. Dese-
rializing the first data streaming object includes accessing a
deserialization resource 1n a memory pool accessible by the
stream manager and deserializing the first data streaming
object using the desenalization resource. Serializing the
processed object includes accessing a serialization resource
in a memory pool accessible by the stream manager and
serializing the processed object using the serialization
resource.

The subject matter described 1n this specification can be
implemented 1n particular embodiments so as to realize one
or more of the following advantages. Data stream processing
can be performed faster and with fewer CPU cycles to
perform data stream serialization, deserialization, and pro-
cessing, resulting in greater throughput. Memory used by
stream managers for processing data stream objects can be
decreased. Kernels supporting data stream processing sys-
tems will receive fewer calls from the data stream process-
ing systems. Additionally, improving the stream manager
performance directly impacts the overall performance of the
topology since 1t 1s 1n the path of all tuple commumnications.
Stream managers avoid repeat serializations by determining
whether to process an mput object based on the source of the
object.

The details of one or more embodiments of the subject
matter of this specification are set forth 1n the accompanying,
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an example stream processing system.

FIG. 2 1s an example logical topology for a stream
processing job.

FIG. 3 1s a diagram 1illustrating an example group of
containers for execution of a logical topology.

FIG. 4 1s a diagram 1illustrating example components for
routing data streams between streaming processes 1n an
example stream manager.

FIG. 5 1s a diagram 1illustrating an example data stream
object.

FIG. 6 1s a flowchart of an example process for handling
data stream objects.

US 10,817,334 Bl

3

FIG. 7 1s a flowchart of an example process for deter-
mimng whether to process a data streaming object.

FIG. 8 1s a tlowchart of an example process for serializing
or deserializing a data streaming object.

FI1G. 9 15 a flowchart of an example process for processing,
a data streaming object.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 1s an example stream processing system 10. The
stream processing system 10 1s a system of one or more
computers that 1s configured to process one or more streams
of data and on which the techniques described in this
document can be implemented.

The stream processing system 10 includes a stream pro-
cessor 12, a scheduler 16, a cluster 13 of computing
resources, and a cluster manager 18.

The stream processor 12 obtains a group of stream
processing jobs, for example Job A 14A and Job B. The
stream processor 12 can obtain stream processing jobs, for
example, from a user of the stream processing system 10.
Each stream processing job 1s a group of one or more
processing tasks to be performed on a stream of data. An
example of a stream processing job 1s counting a number of
active users 1n a stream of data. Each stream processing job
includes a logical topology that describes each processing
task 1n the stream processing job including a type for each
processing task and a relationship between the processing
tasks. Logical topologies are described in greater detail
below with reference to FIG. 2.

The stream processor 12 communicates with the sched-
uler 16 to execute the stream processing jobs. The scheduler
16 converts a stream processing job having a logical topol-
ogy to executable unmits called containers and communicates
with the cluster manager 18 to execute the containers in the
computing resources of the cluster 13. Fach container
includes processes that correspond to at least some of the
tasks of a logical topology. Containers are explained with
greater detail below with reference to FIG. 3.

In some 1implementations, the scheduler 16 recerves oflers
for available computing resources in the cluster 13 from the
cluster manager 18 and requests that the cluster manager 18
execute certain containers on the cluster 13 based on the
offered resources and any scheduling constraints 1n accor-

ance with a scheduling algorithm. An example of a sched-
uler 16 can be APACHE AURORA. APACHE AURORA 1s
a service scheduler that runs on top of APACHE MESOS,
supporting long-running services that take advantage of
APACHE MESOS’ scalability, fault-tolerance, and resource
isolation. Additional information about APACHE AURORA
can be found at http://aurora.apache.org/, the contents of
which are incorporated here by reference.

The cluster 13 of computing resources includes multiple
cluster nodes, for example, cluster node A 15A and cluster
node B 15B. The multiple cluster nodes may be local to each
other or may be distributed. The cluster manager 18 man-
ages the execution of computer programs, €.g., containers

generated by the scheduler 16, on the cluster nodes.
An example of a cluster manager 18 1s APACHE MESOS.

APACHE MESOS 1s a cluster manager that simplifies the
running of applications on a shared pool of computing
resources, €.g., servers, while providing eflicient resource
isolation and sharing across distributed applications or
frameworks. Representative frameworks include APACHE

HADOOP, APACHE STORM, and RUBY ON RAILS. In

10

15

20

25

30

35

40

45

50

55

60

65

4

operation, APACHE MESOS takes a heterogeneous collec-
tion of computing resources and allocates those resources
using a distributed scheduling mechanism called resource
offers. APACHE MESOS decides how many resources to
offer each framework, while the frameworks decide which
resources to accept and which computations to run on them.
APACHE MESOS 1s, therefore, a thin resource sharing layer
that enables fine-grained sharing across diverse cluster com-
puting frameworks, by giving frameworks a common inter-
face for accessing cluster resources. Additional information
about APACHE MESOS can be found at http://mesos.a-
pache.org/, the contents of which are incorporated here by
reference.

The stream processing system 10 can include additional
components that provide services to one or more of the
components of the stream processing system 10, manage
one or more of those components, and/or provide interfaces
for communication between two or more of those compo-
nents. For example, in some implementations, the stream
processing system 10 includes a distributed coordination
service that (among other things) allows the scheduler 16 to
lock a computing resource in the cluster 13 while using the
computing resource to avoid contlicting use of the resource
by other schedulers. A distributed coordination service can
offer different services to the cluster. For example, the
distributed coordination service can provide a location to
store information about the cluster, such as the location of
masters and schedulers. In another example, the distributed
coordination service can provide a distributed lock service
used by the scheduler 16 to implement leader election when
there 1s more than one scheduler 16 running at the same
time. In one example approach, multiple distributed coor-
dination services run at the same time, and all work together

to provide these services. An example distributed coordina-
tion service 1s APACHE ZOOKEEPER. Additional infor-

mation about APACHE ZOOKEEPER can be found at
https://zookeeper.apache.org/, the contents of which are
incorporated here by reference.

The resulting outputs of the stream processing jobs can be
provided as other inputs within the stream processing system
or externally. For example, 1n a social networking platform,
real-time streams being processed by the stream processing
system can 1nclude, for example computing real-time active
user counts or computing real-time engagement with mes-
sage content on the social networking platform. The results
can be used, for example, to update the visualizations of the
engagements 1n a graphical user interface provide to users of
the social networking platform. For example, when a user
views a message on the social networking platform, the
engagement counts can be updated based on the stream
computations. Other stream processing jobs can be used to
generate outputs used to determine real-time trends, real-
time conversations, real-time recommendations or real-time
search that can then be provided for presentation to one or
more users, €.g., 1n response to a request such as a search
query.

FIG. 2 1s an example logical topology 20 for a stream
processing job. The logical topology 20 1s a directed acyclic
graph representing computation of the job. Each node 1n the
logical topology contains processing logic and the links
between the nodes indicate how the data flows between
them. These data flows can be referred to as data streams. In
some i1mplementations, a data stream 1s an unbounded
sequence of tuples. Nodes take one or more data streams and
transform them into one or more new data streams. The
logical topology includes two types of nodes: spouts and
bolts. A spout 1s a source of a data stream. A bolt consumes

US 10,817,334 Bl

S

tuples from data streams, applies its processing logic, and
emits tuples in outgoing data streams. In one example
approach, a bolt processes any number of input streams and
produces any number of new output streams. Some example
processing logic performed by bolts includes functions,
filters, streaming joins, streaming aggregations, or database
queries.

A spout can obtain a data stream from a particular source,
e.g., from a queuing broker such as Kestrel, RabbitMQ), or
Katka and/or by generating the data streams but a spout can
also generate its own stream or read from another location,
¢.g., a streaming API. Spouts generate mput tuples that are
fed into each topology. For example, a Katka spout can tap
into a particular Katka queue and emit 1t as a data stream to
one or more designated bolts.

The logical topology 20 includes spout A 22A that pro-
vides data streams to bolt A 23A and spout B 22B that
provides data streams to bolt B 23B and bolt C 23C. Bolt A
23 A and bolt B 23B provide processed data streams to bolt
D 23D, while bolt B 23B and 23C provide processed data
streams to bolt E 23E.

In one example approach, each topology 1s a directed
acyclic graph of spouts and bolts, with each edge in the
graph representing a bolt subscribing to the output stream of
some other spout or bolt. A topology may be an arbitrarily
complex multi-stage stream computation. Topologies can
run indefinitely when deploved.

In one example approach, a stream processor runs topolo-
gies within a framework on top of a cluster manager. Spouts
generate input tuples that are fed into the topology, and bolts
do the actual computation. In some implementations, each
specific topology 1s equivalent to a logical query plan 1n a
database system. Such a logical plan 1s translated 1nto a
physical plan before actual execution. As a part of the
topology, a programmer can specily the number of tasks for
cach spout and each bolt (1.e. the degree of parallelism), and
how the data 1s partitioned as 1t moves across the spout and
the bolt tasks (grouping). The actual topology, parallelism
specification for each component, and the grouping speci-
fication, constitute the physical execution plan that 1is
executed on the machines.

In one such example approach, the stream processor uses
tuple processing semantics that include:

At most once—No tuple 1s processed more than once,
although some tuples may be dropped, and thus may
miss being analyzed by the topology.

At least once—Fach tuple 1s guaranteed to be processed
at least once, although some tuples may be processed
more than once, and may contribute to the result of the
topology multiple times.

FIG. 3 1s a diagram illustrating an example group of
containers 30 for execution of a logical topology. The
containers 30 include a first container, container 31A, that
includes a topology master 32. The topology master 32
manages the execution of the logical topology using the
containers 30. For example, the topology master 32 can be
a point of contact for discovering a status of an execution of
the logical topology. Moreover, the topology master 32 can
be an interface that allows processes executing the logical
topology to discover the logical topology and the containers
30.

In some 1mplementations, upon startup, the topology
master 32 makes itself discoverable by creating an ephem-
eral node at a well-known location 1n the distributed coor-
dination service. The ephemeral node can prevent multiple
topology masters from becoming the master for the same
topology, thereby providing different processes of the topol-

10

15

20

25

30

35

40

45

50

55

60

65

6

ogy a consistent view of the entire topology. The ephemeral
node can also allow other processes that belongs to the
topology to discover the topology master 32.

The topology master 32 also serves as a gateway for the
topology metrics through an endpoint. As illustrated, since
the topology master 1s not involved 1n the data processing
path, it 1s not a bottleneck. In some example approaches, a
standby topology master can be swapped 1n to replace the
current topology master as necessary based on state saved 1n
the distributed coordination service.

The containers 30 further include a group of second
containers, containers 31B-E. Fach container of the second
containers includes a stream manager, stream managers
33B-E for the containers 31B-E, respectively, and a group of
streaming processes, groups 32B-E for the containers 31B-
E, respectively.

A streaming process 1n a second container performs a task
that corresponds to a defined task, e¢.g., a spout or a bolt, in
the logical topology. A streaming process 1 a second
container communicates with other streaming processes 1n
the same container or a diflerent container to perform
communications between the tasks defined by the logical
topology.

To transmit a data streaming object to a destination
streaming process, a source streaming process directs the
object to a stream manager of the container that includes the
source streaming process. The stream manager routes the
data streaming object to the destination streaming process.

If the destination streaming process 1s 1n the same con-
tainer as the stream manager, the stream manager routes the
object to the destination streaming process. If the destination
streaming process 1s 1n a diflerent container than the stream
manager, the stream manager routes the object to the stream
manager of the container that includes the destination
streaming process. The stream manager of the container that
includes the destination streaming process then routes the
object to the destination streaming process.

One key function of a given stream manager 1s to manage
the routing of tuples efliciently. Each streaming process can
connect to 1ts local stream manager to send and receive
tuples. All stream managers 40 i1n a topology connect
between themselves to form a O(k2) connection network,
where k 1s the number of containers/stream manager in the
physical plan of the topology. The number of streaming
processes, n, 1s generally much larger than k, this design
permits a way to scale the communication overlay network
by multiplexing O(n2) logical channels over O(k2) physical
connections. Furthermore, any tuples routed from one
streaming process to another streaming process in the same
container can be routed using a local short-circuiting mecha-
nism.

FIG. 4 15 a diagram 1illustrating examples components for
routing data streams between streaming processes 1 an
example stream manager 40. The stream manager 40
includes an object gateway 41, an object deserializer 42, an
object processor 43, an object senalizer 44, and an object
router 43.

The object gateway 41 recerves a data streaming object.
The object gateway 41 also determines whether the stream
manager 40 should process the object. 11 the object gateway
41 determines that the stream manager 40 should process the
object, the object gateway 41 sends a signal to the object
deserializer 41 to deserialize the object. I the object gate-
way 41 determines that the stream manager 40 should not
process the object, the object gateway 41 sends a signal to
the object router 45 to route the object.

US 10,817,334 Bl

7

The object deserializer 42 deserializes the data streaming,
object. Streaming processes and stream manager transmit
data streaming objects in a serialized form. Therefore, to
perform processing on the object, the stream manager 40
needs to first deserialize the object using the object deseri-
alizer 42. When the object deserializer 42 finishes deseral-
1zing the object, the object deserializer 42 sends a signal to
the object processor 43 to process the object.

The object processor 43 processes the data streaming
object. Processing the data streaming object can include
changing the format of the object and/or one or more fields
of the data streaming object. For example, the object pro-
cessor 43 can change an 1dentifier or header field of the data
streaming object 1n accordance with a processing algorithm.
Fields of a data streaming object are explained in greater
detail below with reference to FIG. 5.

When the object processor 43 finishes processing the data
streaming object, the object processor 43 sends a signal to
the object senializer 44 to serialize the object. The object
serializer 44 then serializes the object for transmission to a
destination streaming process or stream manager. When the
object serializes 44 finishes serializing the object, the object
serializer 44 sends a signal to the object router to route the
object to a streaming process or a stream managetr.

FIG. 5 1s a diagram 1llustrating an example data streaming,
object 50. The object 50 includes an object identifier 51 that
1s a unique 1dentifier of the object 50, a source 1dentifier 52
that 1dentifies the streaming process from which the object
50 originates, a payload 53 that includes the stream pro-
cessing data of the object 50, and a destination 1dentifier 54
that identifies the intended destination streaming process for
the object 50.

To process the data streaming object 50, a stream man-
ager, €.g., stream manager 40 of FIG. 4, may need to modity
one or more fields of the object 50, such as the object
identifier 51 of the object 50. In some 1mplementations, the
stream manager changes the format of the object, e.g., by
batching the object with one or more other data streaming,
objects, and updates the object 1dentifier to a new unique
identifier for the changed object.

FIG. 6 1s a flowchart of an example process 60 for handing
data streaming objects. The process 60 can be performed by
a stream manager, €.g., the stream manager 40 of FIG. 4. The
stream manager obtains a serialized data streaming object
(61) and determines whether to process the object (62). If the
stream manager determines to process the object, the stream
manager deserializes the serialized object (63), processes the
deserialized object (64), and serializes the processed object
(65) belore routing the serialized object to a destination. If
the stream manager determines not to process the object, the
stream manager simply routes the serialized object (65) to
the destination.

In some steam processing systems, a stream manager
deserializes every serialized data streaming object that the
stream manager obtains. Such an eager deserialization 1s
costly because deserializing an object consumes significant
computational resources. By performing desernalization
only 1n situations 1n which the stream manager determines 1t
needs to process an object, a stream manager can reduce the
amount of processing required to perform 1ts processing and
routing tasks.

Determining whether to process a data streaming object 1s
described in greater detail below with reference to FIG. 7.
Serializing or deserializing an object 1s described 1n greater
detail below with reference to FIG. 8. Processing an object
1s described in greater detail below with reference to FIG. 9.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 7 1s a flowchart of an example process 70 for
determining whether to process a data streaming object. The
process 70 can be performed by a stream manager, €.g., the
stream manager 40 of FIG. 4.

The stream manager obtains a serialized data streaming
object (61) and determines whether 1t has received the object
from a streaming process local to the stream manager or
another stream manager from a different container (62). In
some 1mplementations, the stream manager determines the
source ol the object from one or more fields of the object,
such as a header or i1dentifier field of the object.

If the stream manager determines that it has received the
object from a local process, the stream manager will deter-
mine to process the object (63). This 1s because the stream
manager assumes that the object has not previously been
transmitted to a stream manager where the object could have
been processed.

When a stream manager processes a data streaming
object, it typically changes the format or contents of the
object 1n accordance with a processing algorithm and gen-
erates a new unique 1dentifier for the changed object. After
processing, the changed object 1s 1n a format acceptable to
stream managers and as such does not typically need to be
re-processed by any future stream manager that receives and
routes the object.

However, if the stream manager determines that it has
received the data streaming object from a non-local stream
manager, the stream manager will determine not to process
the object (64). This 1s because the stream manager assumes
that the object has previously been processed at the non-
local stream manager.

FIG. 8 1s a flowchart of an example process 80 for
serializing or deserializing a data streaming object. The
process 80 can be performed by a stream manager, ¢.g., the
stream manager 40 of FIG. 4.

The stream manager obtains a data streaming object (81)
and accesses serialization or deserialization resources 1n a
memory pool accessible by the stream manager (82).

Computer programs, €.g2., streaming processes 1n contain-
ers, communicate with each other through serialized data.
Serialization refers to the process of converting data to a
format that 1s understandable by two or more computer
programs. In some implementations, seralization can refer
to converting data to a language-neutral format such as the
extensible mark-up language (XML). Computer programs
written 1n different programming languages can then com-
municate data in a language-neutral format to each other.

A source computer program serializes the data by con-
verting 1t to a serialized format using a serialization
resource, €.g., an instance of a serialization program. The
destination computer program deserializes the serialized
format by converting 1t to a programming language of the
destination computer program using a deserialization
resource, €.g., an instance of a desernalization program.
Examples of serialization and deserialization computer pro-
grams 1nclude data conversion programs associated with

Google’s PROTOCOL BUFFERS, APACHE THRIFT, and
MICROSOFT BOND. Additional information about PRO-
TOCOL BUFFERS can be found at https://developers.
google.com/protocol-bullers/docs/overview, the contents of
which are incorporated here by reference. Additional infor-
mation about APACHE THRIFT can be found at https://
thrift.apache.org/, the contents of which are incorporated
here by reference. Additional information about MICRO-
SOFT BOND can be found at https://microsoit.github.io/
bond/why_bond.html#protocols, the contents of which are
incorporated here by reference.

US 10,817,334 Bl

9

A memory pool 1s a segment of computer memory. The
stream manager or some other component of a data stream
processing system that includes the stream manager can
cache serialization and desenalization resources in the
memory pool. Without caching those resources in the
memory pool, the stream manager may have to first obtain
memory allocation for the resources and load the resources
into allocated memory resources. When a serialization or
desenialization resource 1s cached in a memory pool, the
stream manager can avoid such memory allocation and
loading tasks, which saves processing time and cycles.

The stream manager serializes or deserializes the object
uses the corresponding resources (83). In some stream
processing systems, a stream manager does not have access
to the serialization or deserialization resources. As a result,
to perform serialization or deserialization, the stream man-
ager has to make calls to a third-party component, e.g., a
kernel or operating system that manages memory resources
to allocate memory resources to serialization or deserializa-
tion resources. Such calls can increase processing time. By
directly accessing serialization or deserialization resources,
a stream manager can perform serialization or deserializa-
tion tasks more efliciently.

FIG. 9 1s a flowchart of an example process 90 for
processing a data streaming object. The process 90 can be
performed by a stream manager, e.g., the stream manager 40
of FIG. 4. The stream manager obtains a data streaming
object (91), determines fields of the object that need to be
modified to process the object, and modifies those fields 1n
place to perform processing.

In some stream processing systems, a stream manager
does not perform object modification 1n place. Instead, the
stream manager may copy the object mnto a new location.
This requires a copy operation, an object allocation opera-
tion for the new object, and an object deallocation operation
for the old object 1n addition to the operations needed to
modily the new object. By moditying a data stream object
in place, the stream manager can avoid performing copy,
allocation, and deallocation operations and thus perform
object processing more efliciently.

Additional examples of stream processing systems
including techniques for containerized stream processing
can be found, for example, 1n U.S. patent application Ser.
No. 15/069,893, for Stream Processing at Scale, filed on
Mar. 14, 2016, which 1s incorporated here by reference.

Embodiments of the subject matter and the functional
operations described 1n this specification can be imple-
mented 1n digital electronic circuitry, i tangibly-embodied
computer soltware or firmware, mm computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non transitory
program carrier for execution by, or to control the operation
of, data processing apparatus. Alternatively, or 1n addition,
the program 1instructions can be encoded on an artificially
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that 1s generated to
encode 1nformation for transmission to suitable receiver
apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a random
or serial access memory device, or a combination of one or
more of them. The computer storage medium 1s not, how-
ever, a propagated signal.

10

15

20

25

30

35

40

45

50

55

60

65

10

The term “data processing apparatus” encompasses all
kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, €.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific mtegrated circuit). The apparatus can also
include, 1n addition to hardware, code that creates an execu-
tion environment for the computer program in question, €.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program (which may also be referred to or
described as a program, software, a software application, a
module, a software module, a script, or code) can be written
in any form of programming language, including compiled
or interpreted languages, or declarative, functional, or pro-
cedural languages, and it can be deployed in any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program may, but need not, cor-
respond to a file 1n a file system. A program can be stored in
a portion of a file that holds other programs or data, e.g., one
or more scripts stored 1n a markup language document, 1n a
single file dedicated to the program in question, or in
multiple coordinated files, e.g., files that store one or more
modules, sub programs, or portions of code. A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

As used 1n this specification, an “engine,” or “soltware
engine,” refers to a soltware implemented 1mnput/output sys-
tem that provides an output that 1s different from the input.
An engine can be an encoded block of functionality, such as
a library, a platform, a software development kit (“SDK”),
or an object. Each engine can be implemented on any
appropriate type of computing device, e.g., servers, mobile
phones, tablet computers, notebook computers, music play-
ers, e-book readers, laptop or desktop computers, PDAs,
smart phones, or other stationary or portable devices, that
includes one or more processors and computer readable
media. Additionally, two or more of the engines may be
implemented on the same computing device, or on difierent
computing devices.

The processes and logic flows described 1n this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on 1nput data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Computers suitable for the execution of a computer
program 1include, by way of example, can be based on
general or special purpose microprocessors or both, or any
other kind of central processing unit. Generally, a central
processing unit will receive 1structions and data from a read
only memory or a random access memory or both. The
essential elements of a computer are a central processing
unmit for performing or executing instructions and one or
more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transier data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto optical disks, or optical disks. However, a

US 10,817,334 Bl

11

computer need not have such devices. Moreover, a computer
can be embedded 1n another device, e.g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.

Computer readable media suitable for storing computer
program 1nstructions and data include all forms ol non-
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be supplemented by, or
incorporated 1n, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, €.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide for mteraction with a user as
well; for example, teedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, mcluding acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s client device 1n response
to requests received from the web browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, ¢.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any
combination of one or more such back end, middleware, or
front end components. The components of the system can be
interconnected by any form or medium of digital data
communication, €.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN™), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments of particular inventions.
Certain features that are described 1n this specification 1n the
context of separate embodiments can also be implemented 1n
combination 1n a single embodiment. Conversely, various
teatures that are described in the context of a single embodi-
ment can also be mmplemented 1n multiple embodiments
separately or in any suitable subcombination. Moreover,
although features may be described above as acting in
certain combinations and even 1itially claimed as such, one
or more features from a claimed combination can in some

10

15

20

25

30

35

40

45

50

55

60

65

12

cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components i the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged mnto multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

What 1s claimed 1s:

1. A data stream processing system for executing a stream
processing job having a logical topology on a cluster that
includes a plurality of cluster nodes, the data stream pro-
cessing system comprising:

a scheduler that i1s configured to generate a group of
containers for the stream processing job based on the
logical topology, wherein:
the group of containers includes a first container and

one or more second containers,
the first container includes a topology master that
manages the execution of the logical topology on the
cluster, wherein the logical topology comprises one
or more spouts and one or more bolts, wherein each
spout represents a source of a respective data stream
that provides data streaming objects of the respective
data stream to one or more bolts, and wherein each
bolt represents operations comprising processing one
or more data streaming objects,
cach second container of the one or more second
containers includes a stream manager and one or
more streaming processes, wherein each streaming
process corresponds to a respective spout or bolt of
the logical topology,
the one or more streaming processes communicate data
streaming objects with each other using stream man-
agers, and
the stream manager of each second container 1s con-
figured to:
receive a lirst data streaming object from a first
component 1n the group of containers;
determine 1f the first component 1s a streaming
process ol the same local second container or if
the first component 1s the stream manager of a
non-local second container in the group of con-
tainers;
in response to determining that the first component 1s
a streaming process of the same local second
container, process the first data streaming object
and route the processed first data streaming object
to one or more of a non-local second container in

US 10,817,334 Bl

13

the group of containers or a different streaming

process ol the same local second container; and
in response to determining that the first component 1s

the stream manager of a non-local second con-

tainer i the group of containers, route the first
data streaming object, without processing the first
data streaming object, to a streaming process of
the same local container.

2. The data stream processing system of claim 1, wherein
processing the first data streaming object comprises modi-
tying one or more fields of the first data streaming object 1n
place.

3. The data stream processing system of claim 1, wherein
processing the first data streaming object and routing the
first data streaming object in response to determining to
process the first data streaming object comprises:

deserializing the first data streaming object to generate a

deserialized object;

processing the deserialized object to generate a processed

object;

serializing the processed object to generate a serialized

objet; and

routing the serialized object.

4. The data stream processing system of claim 3, wherein
deserializing the first data streaming object comprises
accessing a deserialization resource 1n a memory pool
accessible by the stream manager and deserializing the first
data streaming object using the deserialization resource.

5. The data stream processing system of claim 3, wherein
serializing the processed object comprises accessing a seri-
alization resource 1n a memory pool accessible by the stream
manager and serializing the processed object using the
serialization resource.

6. The data stream processing system of claim 1, wherein
routing the first data streaming object to a non-local second
container in the group of containers comprises routing the
first data streaming object to the stream manager of the
non-local second container.

7. A method performed by a stream manager of a par-
ticular container 1n a group of containers that each include
one or more streaming processes and a stream manager,
wherein:

the group of containers 1s configured to execute a stream

processing job having a logical topology that comprises
one or more spouts and one or more bolts, wherein each
spout represents a source ol a respective data stream
that provides data streaming objects of the respective
data stream to one or more bolts, and each bolt repre-
sents operations comprising processing one or more
data streaming objects, and

cach streaming process corresponds to a respective spout

or bolt of the logical topology, the method comprising:
receiving a first data streaming object from a first com-
ponent 1n the group of containers;

determining if the first component 1s a streaming process

of the same local container or if the first component 1s
the stream manager of a non-local container in the
group ol containers;

in response to determining that the first component 1s a

streaming process ol the same local container, process-
ing the first data streaming object and routing the
processed first data streaming object to one or more of
a non-local container 1n the group of containers or a
different streaming process ol the same local container;
and

in response to determining that the first component 1s the

stream manager of a non-local container 1n the group of

5

10

15

20

25

30

35

40

45

50

55

60

65

14

containers, routing the first data streaming object, with-
out processing the first data streaming object, to a
streaming process ol the same local container.

8. The method of claam 7, wherein processing the first
data streaming object comprises modilying one or more
fields of the first data streaming object 1n place.

9. The method of claim 7, wherein processing the first
data streaming object and routing the first data streaming
object 1n response to determining to process the first data
streaming object comprises:

deserializing the first data streaming object to generate a

deserialized object;

processing the deserialized object to generate a processed

object;

serializing the processed object to generate a serialized

objet; and

routing the serialized object.

10. The method of claim 9, wherein deserializing the first
data streaming object comprises accessing a deserialization
resource 1n a memory pool accessible by the stream manager
and desernializing the first data streaming object using the
deserialization resource.

11. The method of claim 9, wherein serializing the pro-
cessed object comprises accessing a serialization resource 1n
a memory pool accessible by the stream manager and
serializing the processed object using the serialization
resource.

12. The method of claim 7, wherein routing the first data
streaming object to a non-local container in the group of
containers comprises routing the first data streaming object
to the stream manager of the non-local container.

13. The method of claim 7, wherein the group of con-
tainers 1s a group of second containers, wherein each second
container i1n the group of second containers 1s communica-
tively linked to a first container, and wheremn the first
container includes a topology master that manages the
execution of the logical topology.

14. One or more non-transitory computer storage media
encoded with computer program instructions that when
executed by one or more computers cause the one or more
computers to perform operations comprising:

receiving, at a stream manager of a particular container 1n

a group ol containers that each include one or more

streaming processes and a stream manager, a first data

streaming object from a first component in the group of

containers, wherein

the group of containers i1s configured to execute a
stream processing job having a logical topology that
comprises one or more spouts and one or more bolts,
wherein each spout represents a source of a respec-
tive data stream that provides data streaming objects
of the respective data stream to one or more bolts,
and each bolt represents operations comprising pro-
cessing one or more data streaming objects, and

cach streaming process corresponding to a respective
spout or bolt of the logical topology;

determiming 1f the first component 1s a streaming process

of the same local container or if the first component 1s
the stream manager of a non-local container in the
group ol containers;

in response to determining that the first component 1s a

streaming process ol the same local container, process-
ing the first data streaming object and routing the
processed first data streaming object to one or more of
a non-local container 1n the group of containers or a
different streaming process of the same local container;
and

US 10,817,334 Bl

15

in response to determining that the first component 1s the
stream manager of a non-local container 1n the group of
containers, routing the first data streaming object, with-
out processing the first data streaming object, to a
streaming process of the same local container.

15. The one or more non-transitory computer storage
media of claim 14, wherein processing the first data stream-
ing object comprises modifying one or more ficlds of the
first data streaming object 1n place.

16. The one or more non-transitory computer storage
media of claim 14, wherein processing the first data stream-
ing object and routing the first data streaming object 1n
response to determining to process the first data streaming,
object comprises:

deserializing the first data streaming object to generate a

deserialized object;

processing the deserialized object to generate a processed

object;

serializing the processed object to generate a serialized

objet; and

routing the serialized object.

17. The one or more non-transitory computer storage
media of claam 16, wherein deserializing the first data

10

15

20

16

streaming object comprises accessing a deserialization
resource 1n a memory pool accessible by the stream manager
and desenializing the first data streaming object using the
deserialization resource.

18. The one or more non-transitory computer storage
media of claim 16, wherein serializing the processed object
comprises accessing a serialization resource 1n a memory
pool accessible by the stream manager and serializing the
processed object using the serialization resource.

19. The one or more non-transitory computer storage
media of claim 14, wherein routing the first data streaming
object to a non-local container in the group of containers
comprises routing the first data streaming object to the
stream manager of the non-local container.

20. The one or more non-transitory computer storage
media of claam 14, wherein the group of containers 1s a
group of second containers, wherein each second container
in the group of second containers 1s communicatively linked
to a first container, and wherein the first container includes
a topology master that manages the execution of the logical

topology.

	Front Page
	Drawings
	Specification
	Claims

