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METHODS AND APPARATUSES FOR A
CACHING RECOMMENDATION ENGINE

This application claims the benefit of prionty to U.S.
Provisional Patent Application No. 62/653,375, filed Apr. 3,
2018, which application 1s hereby incorporated herein by

reference.

FIELD

At least some embodiments as described herein relate
generally to the design and operation of an intelligent
repository ol live media content for the purpose of further
high-quality instant redistribution as on-demand assets.

COPYRIGHT NOTICE

The present description includes maternial protected by
copyrights, such as illustrations of graphical user interface
images. The owners of the copyrights, including the
assignee, hereby reserve their rights, including copyright, 1n
these materials. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure, as 1t appears 1n the patent and trade-
mark oflice file or records, but otherwise reserves all copy-
rights whatsoever. Copyright Digital Keystone, Inc. 2018.

BACKGROUND

The video distribution industry (broadcast TV and Pay TV
including satellite TV, cable TV and Telco TV) 1s actively
transitioning irom legacy broadcast distribution to Internet
(IP-based) streaming delivery of 1ts video assets.

Certain TV network broadcasters, such as CBS and ABC
are offering some of their linear channels over IP as a
continuous and unique feed using a Linear Origin. Such
streaming content can be accessed for playback 1n real time
or near-real time via a PC browser or via TV-specific
services such as Apple TV or Roku, but on-demand, high-
quality access 1s limited.

Certain Pay TV service providers such as Comcast or
Cablevision are oflering subscribers the ability to store and
playback on-demand and live content in the network. On-
demand content 1s stored 1n general-purpose or dedicated
servers, while live content 1s stored i1n network-based
devices (N-DVR), cloud-based devices (C-DVR) or Live
On-demand Origins (LOD). All these can be referred to as
“Content Origination Systems” (COS). Such Content Origi-
nation Systems are hosted 1n a public or private cloud and
provide the subscriber with capabilities similar to an in-
home DVR by recording live events for live, near-live or
deferred playback.

Content Origination Systems allow for on-demand access
to linear (live TV) content. These systems enable the sub-
scriber to catch up with live events (news, sports, weather),
at any time, from the beginning of an event, while the event
1s still airing, or at any time after the event has ended.

Internet VOD services such as Netflix, Hulu, YouTube, or
PBS on Demand and others deliver video clips, movies and
TV series episodes over IP, by unicasting multiple VOD
sessions originated from copies of a single video file using
a VOD Origin. Some of the content can be recorded from
live sources and re-purposed for on-demand access via a
COS.

Live and on-demand content distribution systems over 1P
utilize industry standards (such as HLS and DASH) to define

media objects that include for each event a media descrip-
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tion (1.e. manifests or playlist depending on the delivery
standards) that references audio and video media elements

(1.e. audio or video fragment or segment depending on the
delivery standards) and their associated metadata. An event
can represent a past or current TV show episode, a newscast
or a movie. Fach event can be defined at least by the
originating channel (such as the local CBS atliliate broadcast
station) and a start and stop time (such as Yesterday from 8
PM to 9 PM PDT).

Many live and on-demand events are delivered with
multiple simultaneous audio and video representations, such
as video streams at diflerent resolutions, and/or English
language as well as Spanish language audio tracks. Certain
live and on-demand events can include multiple simultane-
ous representations that describe different views of the same
performance, such as multiple camera angles used 1n sports
and music performances. The multiple representations are
delivered simultaneously, and the selection of which repre-
sentations to be rendered 1s performed 1n the player.

PRIOR ART

Prior Art utilized by TV service providers to deliver TV
services on-demand over IP includes the design and inte-
gration into service of a combination of COS together with
Content Delivery Network (CDN) systems. These systems
implement caching at multiple locations in the distribution
network for the purpose of storing commonly requested
media objects.

A subscriber’s initial media object playback request is
forwarded to the COS by the CDN. The 1dentified media
object 1s delivered to the subscriber by the CDN and a copy
1s cached according to the caching instructions returned to
the CDN by the COS along with the media object itself. The
caching instruction defines for how long the media object
should be stored in the CDN. Subsequent requests for the
same media object are delivered directly from the CDN
cache, without the need for any new requests to the COS,
thus reducing the trathic load on the COS and increasing the
overall efliciency of the distribution.

In a content delivery system, media descriptions and
media elements of a live or on-demand event are delivered
to a CDN by a COS. The COS enable subscribers to catch
up with live and recorded events (news, sports, weather), at
any time, from the beginning. However, these very dynamic,
very large origins present a completely new challenge for the
CDN. Existing live-only Linear Origins request a CDN to
cache content only for a few seconds, and this 1s easily
handled by a CDN. VOD Origins present a static catalog
where most of the content remains the same over long
periods of time and therefore most content playback requests
to the CDN are for content that 1s already in the CDN cache.
On the other hand, COS that store live TV events have a
tendency to saturate their downstream CDN by recommend-
ing more caching that the CDN can sustain, and by offering
a content catalog that 1s constantly updated with new live
events. As a result, the CDN 1s regularly forced to flush
random valid content from its cache to make room {for
always new content playback requests. Constant flushing
introduces additional pressure to the delivery path upon
deleting, and constant new playback introduces additional
pressure each time the media objects need to be fetched
again from the origin.

U.S. Pat. No. 9,819,972 defines a novel L.ive On Demand
(LOD) Ongin architecture that enables the provision, opera-
tion and management of massively scalable, highly eflicient,
high availability COS that offer random access to linear
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teeds without playback restrictions, supporting live, near-
live, catch-up, start-over and on-demand access modes
regardless of the origin, network and player limitations.

If among others, the architecture 1in U.S. Pat. No. 9,819,
972 resolves the constraints of the limited storage capacity
of the COS by providing means for unbounded scalability,
it does not directly address the consequence of the limited

capacity of the downstream CDN. Due to the finite size of

the CDN caching capacity, it 1s good practice for the origin
to attempt to limit the amount of CDN caching by setting an
expiration time for each media object, usually by defining
the value of a “maximum age™ parameter. This value can be
constrained by the business requirements set upon publish-
ing each event. As an example, for an event that 1s published
for one week, the origin may set the expiration time of each
media object up to one week. The CDN uses this expiration
value 1n a “best effort” mode, to decide when to delete a
media object from its cache to make room for new media
object requests. In 1deal circumstances, the CDN will keep
cach media object 1n 1ts cache until the expiration time for
that object 1s reached.

If the expiration time of media objects 1s set too high in
aggregate (so content 1s cached for too long), the CDN
reaches 1ts maximum capacity and starts to randomly delete
media objects, including some that will be requested again
by one or more client devices. If the expiration time of an
asset representation 1s set too low (so content 1s cached for
too short a period of time), the corresponding media objects
will expire and would need to be requested again in their
entirety in case that asset representation continues to be
requested by one or more client devices.

It 1s desirable to run a CDN at or near its storage capacity
in order to achieve maximum utilization of 1its resources.
However, due to the high utilization and the finite storage
capacity, the CDN may be forced to flush 1ts cache by
prematurely deleting some media objects that 1t was
instructed to keep for a longer period, just to make room for
new playback requests for other media objects. Upon any
subsequent request of the prematurely deleted media object,
the CDN will treat 1t as an 1nitial request, 1t will fetch the
requested content again from the origin and it will store it
again 1n the cache, likely resulting 1n the premature deletion
of another media object. These premature CDN cache
flushes and subsequent cache misses don’t necessarily result
directly into a playback failure, as any prematurely deleted
media objects remain available 1n the COS and 1f they were
to be requested again by a client device, the CDN would be
able to fetch, cache and deliver the original media object
again and again. However, multiple cache misses due to
premature cache flushes are the symptoms of a system
behavior that goes against the CDN objective of an opti-
mized and eflicient content delivery.

A CDN 1s methcient at flushing 1ts non-expired content
after i1t reaches its capacity threshold for multiple reasons:

The task of freeing storage capacity 1s a time-critical
operation of the CDN that diverts computing, memory
and disk resources from the primary objective of serv-
ing content requests.

The selection of the media objects to be deleted, 1s at best
based on a limited demand history for the object,
without taking into account the probability of future
use.

Media object delete decisions are made without taking
into account the fact that such object 1s part of a larger
event and 1t 1s preceded and succeeded by other objects.
Randomly deleting one or more portion of an event
results on following different distribution sequences
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over time, which creates additional network 1nstability
and potential player confusion.

A CDN 1s very eflicient at discarding and refreshing

content that has expired for multiple reasons:

The task of removing expired content 1s a background
maintenance operation that can be done periodically
without pre-condition and at a low priority.

The CDN 1s a slave of the COS that set the caching
expiration time and doesn’t need to make a decision on
its own 1n real-time on which media objects need to be
deleted first.

SUMMARY OF THE DESCRIPTION

The definition and the implementation of a Caching
Recommendation Engine (CRE), capable of learning the
CDN behavior and of adaptively reducing or minimizing the
number of premature CDN cache flushes followed by cache
misses, while 1increasing or maximizing its caching perfor-
mance and efliciency, 1s addressed by embodiments of the
present invention. The embodiments of the invention pro-
vide mnovative methods and apparatuses to automatically
compute and continuously adjust the individual caching
expiration values per-event and per-representation in order
to maximize the performance and efliciency of the CDN.

The objective of a CRE 1n one embodiment 1s to continu-
ously adjust the expiration time (e.g., a time-to-live (TTL))
of the currently delivered media elements based on continu-
ous learning of the rolling CDN behavior to improve the
utilization efliciency or maximize the value of the caching
capacity of the CDN in the future.

In one embodiment of the invention, the selection of the
best caching options for each channel representation 1s
calculated from a state that represents one week of compiled
demand for media elements that were recorded and first
delivered exactly a week ago.

In one embodiment, a CRE makes no assumption on the
characteristics of the CDN or the COS. An embodiment of
a CRE can leverage novel Artificial Intelligence (Al) and
optimized Control Theory (CT) approaches, upon real time
data mining to finely tune the behavior of out-of-reach
downstream components to attempt to always perform at
their optimal point.

In one embodiment, the reinforced learning of the CDN
behavior 1s a continuous task that leads to the definition of
a single system state, in order to fulfill the Markov Property.

In another embodiment, the CRE learns the behavior of
the downstream CDN by profiling by event, by representa-
tion, and by time, the secondary requests made to a COS for
media objects that have been already cached by the CDN
and either prematurely tlushed or expired. The profiling data
can be aggregated periodically over a Collection Interval
(e.g., 10 minutes) that 1s generally set to be shorter than the
duration of an event (which may be 60 minutes or longer).

In another embodiment, the CRE utilized the media
request profile history over an Analytic Period that 1s
selected based on the likelihood of repeated CDN and player
request patterns. As an example, by setting the Analytic
Period to one week, the CRE will take into account the
request profiles for weekly and daily repeating events.
Knowing when to set the expiration can also be dependent
on understanding the consumption pattern of each particular
event 1n one embodiment. For example, a daily night event,
which airs from 11 pm to midnight on a popular channel wall
mostly have some live requests, minimum demand during
the night but some new requests catching up during the
commute hours. A weekly event (e.g. an event every Mon-
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day night during football season) will mostly have many
requests that span several days after the show airs. By
comparison, a morning newscast would only be watched
only until the noon newscast starts to be available. In one
embodiment, the caching recommendations from a CRE can
take these consumption patterns mto account and use them
as, Tor example, default caching recommendations until the
actual event profile 1s learned from the CDN’s behavior over
time, or use them 1n generating new caching recommenda-
tions.

In another embodiment, the COS 1s a LOD as described
in U.S. Pat. No. 9,819,972 which 1s mcorporated by refer-
ence herein.

In another embodiment of the invention, the Caching
Recommendation Engine operates without any CDN.

In one embodiment, the CRE continuously collects the
request profile of each event for each collection 1nterval, and
utilizes the collected profiles, aggregated over an entire
Analytic Period, to determine a better cache value to be used
tor that event by the CDN going forward, with a process that
repeats indefinitely in order to continuously adapt to varying,
demand patterns and varying CDN performance.

The embodiments described herein include methods for
operating a Caching Recommendation Engine on one or
more servers, data processing systems that implement one or
more servers, and non-transitory computer readable medium
or media that store executable program instructions which
when executed by a data processing system (such as one or
more servers) cause the data processing system to perform
one or more of the methods described herein.

The above summary does not include an exhaustive list of
all embodiments 1n this disclosure. All systems and methods
can be practiced from all swtable combinations of the
various aspects and embodiments summarized above, and
also those disclosed 1n the Detailed Description below.

BRIEF DESCRIPTION OF DRAWINGS

The embodiments as described herein are illustrated by
way ol example and not limitation in the figures of the
accompanying drawings in which like references indicate
similar elements.

FIG. 1 shows a block diagram illustrating an exemplary
embodiment of a CRE connected with a COS.

FI1G. 2 details a flowchart of the transactions processed by
an exemplary embodiment of a CRE.

FIG. 3 shows a block diagram representing the main
functions of an exemplary embodiment of a CRE.

FIG. 4 shows a block diagram representing an exemplary
embodiment of a database table capable of storing the
analytics data of a published event.

FIG. 5 shows a block diagram representing an exemplary
embodiment of a database table, capable of storing the CDN
behavior for the channel representations over time.

FIG. 6 defines an exemplary embodiment of a database
table capable of storing the recommended CDN expiration
time of a channel representation over time.

FIG. 7 defines an exemplary embodiment of a database
table capable of storing the current recommended CDN
expiration time of an event.

FIG. 8 defines an exemplary embodiment of the decision
process that leads to the defimition of the caching require-
ments.

FIG. 9 defines an exemplary embodiment of current state,
past action and mined profiles mnvolved 1n the definition of

the next caching recommendation actions.
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FIG. 10 shows an example of a CRE embodiment that
uses collection intervals over analytic periods to derive new

caching recommendations

FIG. 11 shows an example of a data processing system
that can be used to implement one or more caching recom-
mendation engines; 1n one embodiment, a server farm can
include a plurality of the systems shown in FIG. 11 to
provide one or more caching recommendation engines.

DETAILED DESCRIPTION

The embodiments will be described with references to
numerous details set forth below, and the accompanying
drawings. The following description and drawings are 1llus-
trative of the embodiments and are not to be construed as
limiting. Numerous specific details are described to provide
a thorough understanding of the embodiments as described
herein. However, 1n certain instances, well known or con-
ventional details are not described 1n order to not unneces-
sarily obscure the embodiments 1n detail.

Reference throughout the specification to ““at least some
embodiments”, “another embodiment”, or “an embodiment”
means that a particular feature, structure, or characteristic
described in connection with the embodiment 1s 1included 1n
at least some embodiments as described herein. Thus, the
appearance of the phrases “in at least some embodiments” or
“1n an embodiment” 1n various places throughout the speci-
fication are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures, or
characteristics may be combined 1n any suitable manner 1n
one or more embodiments.

FIG. 1 shows a block diagram 100 illustrating an exem-
plary embodiment of a CRE 160 connected with a COS 130.
Origin 130 continuously ingests one or more live video
streams 110, through one or more Content Acquisition
Networks (CAN) 120 that are coupled to one or more live
video streams 110. One or more client devices (such as client
device 150) request media elements from a CDN 140. If the
content 1s not available within the CDN caching storage 141,
it 1s Turther requested from origin 130, which fetches it from
its database storage 131. The origin 130 1s connected to a
CRE 160 responsible for profiling the CDN behavior and
making individual caching suggestions for the currently
delivered media elements that intend to improve the delivery
clliciency and the quality of the experience. In one embodi-
ment of the imvention, a database 131 1s maintained by the
COS and made available to the CRE for access to the CRE.
In another embodiment, the database 131 1s shared between
the COS and the CRE. In another embodiment of the
invention, the database 131 1s maintained by the CRE and
made available to the COS for access.

FIG. 2 details a flowchart 200 of the transactions pro-
cessed by an exemplary embodiment of a CRE 160 con-
nected to a COS 130. A client device 150 1ssues transaction

201 to request a specific media element for a channel
representation seg(n) 201 from a CDN 140. As request 201
was never placed to the CDN 140 before, the CDN could not
have cached the media element yet, so 1t 1ssues a subsequent
request 202 to origin 130. CRE 160 qualifies the request as
Original Request 203 and provides a recommended expira-
tion time (e.g. ttl(n)). COS 130 responds to the CDN 140
with transaction 204 that includes seg(n) and a caching
istruction ttl{n). CDN 140 records the media element into
its caching storage 141 according to the caching instruction
and responds to client 150 with transaction 205. In one
embodiment, an event can be a show or program or other
content on a channel that has at least a start time on a day
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of the week. An event can be defined by a channel and a start
time and a stop. For example, a show can be defined by its
channel (e.g. CBS) and start time (e.g. 7 p.m.) and its stop
time (e.g. 7:30 p.m.). An event can be a live event that can
be recorded and broadcast concurrently (at substantially the
same time), such as “Saturday Night Live”. Moreover, each
event can be broadcast concurrently 1n a plurality of different
representations such as different bit rates of transmission,
different quality or format levels such as standard definition

and high definition, etc.

In one embodiment, the event can be delivered as stream-
ing media through HITP compliant processes and systems

such as processes and systems using the Dynamic Adaptive
Streaming over HI'TP (DASH) standard (such as ISO/IEC
23009-1) or the Apple HLS (HT'TP Live Streaming) system.
In an embodiment that uses DASH or HLS, the event 1s
delivered by transmitting small segments of the entire event
(c.g. segments that are each about 10 seconds 1n duration),
and these small segments can be considered media elements
that are described by playlists that client devices use to
request the media elements.

In one embodiment of the mvention, the CRE registers
more than one Original Media Element requests per media
description representation, when these requests come
together within a short time interval. This scenario remains
very frequent when the CDN includes multiple independent
mid-tier servers.

In transaction 211, the same or a diflerent client 150 asks
for the same media element as transaction 201. Because
seg(n) has been previously cached by the CDN 140 1n
caching storage 141, transaction 212 1s returned without
requiring a round trip to origin 130 by sending the media

clement from caching storage 141.
CDN 140 expires seg(n) after ttl(n) 220. When the same

or a different client 150 asks for seg(n) again 221, CDN 140
goes back to origin 130 with transaction 222, as the media
clement 1s no longer available from storage 141. CRE 160
qualifies the request 221 as TTL Request 223, because the
request 1s coming after media element time+ttl(n). Transac-
tion 224 1s returned with the same parameters as transaction
204. CDN 140 re-caches seg(n) for the duration of ttl(n) and
delivers to the client seg(n) via transaction 225.

In the example shown 1n FIG. 3, CDN 140 tlushes seg(n)
230 betfore the media element expires to free some space 1n
its caching storage. When the same or a different client 150
asks for seg(n) again 231, CDN 140 goes back to COS 130
with transaction 232, as the media element 1s no longer
available from storage 141. CRE 160 qualifies the request as
Flush Request 233, because the request 1s coming after the
interval of the Orniginal Request and before media element
time+ttl(n). Transaction 234 is returned with the same
parameters as transaction 204. CDN 140 re-caches seg(n) for
the duration of ttl(n) and delivers to the client seg(n) via
transaction 235.

In one embodiment of the invention, ttl(n) 1s further
adjusted so seg(n) in storage 141 never outlives seg(n) 1n
storage 131.

FIG. 3 shows a block diagram 300 representing the main
functions of an exemplary embodiment of a Caching Rec-
ommendation Engine 160 connected with a COS 130. CDN
140 mitiates a media element request for seg(n) that 1s
processed by a Delivery Servlet 301. The response sequence
in one embodiment includes fetching seg(n) from a Content
Table 314 of the database storage 131, fetching ttl(n) from
an Event Daemon 303, recording log(n) to an activity
Daemon 302 and delivering the payload to CDN 140.
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Event Daemon 303 can be, in one embodiment, a stand-
alone process that continuously queries an Event Action
Table 313 to maintain 1n memory a current set of delivery
actions for all events that have been published 1n the system.
In one embodiment of the invention, one delivery action for
an event 1s the definition of a caching value for one of 1ts
representations. Activity Daemon 302 can be, in one
embodiment, a standalone process that aggregates all deliv-
ery transactions for a sampling time interval to batch write
them 1n an Event Analytics Table 310. In one embodiment
of the mnvention, a delivery transaction includes when a
media element has been 1ssued, when i1t has been delivered
and with what expiration time.

CRE 160 1n one embodiment 1s responsible for mining the
data of Event Analytics Table 310, to write recommended
caching actions to Event Action Table 313. The CRE 160
operation includes 1 one embodiment operations A (Com-
puting 330), B (Mining 340) and C (Defining 350).

In one embodiment of the invention, operation A (Com-
puting 330) corresponds to CRE 160 performing a batch
read of analytics data that are event specific, per server and
indexed to media element delivery time, to update a Channel
Profile Table 311 with data that are channel and represen-
tation specific, aggregated across all servers, and indexed to
media element 1ssue time. In another aspect of the embodi-
ment, operation A 1s performed as a micro batch map &
reduce operation, where each server of the origin 130 1s
focusing only on the channels that it 1s currently ingesting.
These batches are sequenced periodically, but not more often
than the aggregation interval of Activity Daemon 302 in one
embodiment. In another aspect of the invention, the channel
data of table 311 are not modified atter the event data of table
310 have expired.

In one embodiment of the invention, operation B (Mining,
340) corresponds to CRE 160 performing a batch read of the
profile data of Channel Profile Table 311 to aggregate the
state of each channel representation for the profiled window
and to define the recommended caching instructions that will
result in 1mproved or the best use of the CDN caching
capacity, by solving the Bellman equation of the Markov
Decision Process. In one embodiment of the invention, the
Bellman equation 1s resolved adaptively by adjusting the
caching values 1ssued at the beginning of the profiled
window, based on the reward gathered during the overall
availability window. In another aspect of the embodiment,
operation B decreases the amount of total recommended
caching hours, if a high level of premature CDN flushes has
been detected. In another aspect of the embodiment, opera-
tion B increases the caching recommendation for the chan-
nel representations that have shown a high level of demand
post expiration. In another aspect of the embodiment, the
unit of mcrement and decrement used by the algorithm in
operation B corresponds to the granularity (in time) of the
data recorded 1n table 311.

In one embodiment of the invention, the profiled window
1s set to one week to capture the periodicity of both daily and
weekly consumption patterns. In another aspect of the
invention, the recommended caching instructions are written
to a Channel Caching Table 312 indexed by channel repre-
sentation. In another aspect of the invention, the data of table
311 are deleted past the profiled window. These batches are
sequenced periodically, but not more often than the batch
interval of operation B. In one embodiment of the invention,
the data of table 312 are updated at every collection interval.

In one embodiment of the invention, operation C (Defin-
ing 350) corresponds to CRE 160 performing a batch read of
the recommendation data of Channel Caching Table 312 to
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create one or more caching actions for the active published
events of table 313. An active published event 1s an event
that 1s currently airing. There could be as many caching
actions as there are representations for an event. These
caching actions are sequenced periodically in one embodi-
ment, but not more often than the computation interval of
operation B. In one aspect of the embodiment, the caching
action of an event stops to be updated by operation C after
the event has turned 1nactive.

FIG. 4 shows a block diagram 400 representing an exem-
plary embodiment of a database Event Analytics Table 310,
designed to store the analytics data of a published event.

Table 310 has a compounded primary key based of row time
410, which changed periodically and event URL 411, which

uniquely 1dentify an event. In one aspect of the embodiment,
row time changes every new day for the purpose of spread-
ing (e.g. load balancing for storage) the table rows on a
maximum of servers. Table 310 has secondary key expira-
tion time 412 and action 413 to facilitate the retrieval of the
data. In one embodiment of the invention, an event could
have 1ts expiration time updated. Other fields include value
414 to store the parameters of the action, and also include
channel name 415 and channel group 416 to avoid joining
tables upon query in a “shared nothing” NoSQL database
environment and event create time 417 for versioning pur-
poses.

In one aspect of the embodiment, the event analytics data
are stored 1n table 310 as object and value pair, where object
1s defined as keyword *“_delivery™, followed by the analytics
interval start time and the server IP address, and data 1s a
string 1ncluding count, status and performance of manmifests
and media element responses. In another aspect of the
embodiment, media element responses are qualified 1n term
of media element delay, whereas a media element delay 1s
the time between when a media element 1s 1ssued and when
it 1s delivered. In another aspect of the embodiment, media
clement responses include the duration of the media element
itsell and 1ts size.

FIG. 5 shows a block diagram 500 representing an exem-
plary embodiment of a database Channel Profile Table 311,
designed to store the CDN behavior for the channel repre-
sentations over time. Table 311 in one embodiment has a
compounded primary key based on row time 3510, which
changed periodically and channel HASH 3511, which
uniquely 1dentifies a channel. In one aspect of the embodi-
ment, row time changes every day for the purpose of
spreading the table rows on a maximum of servers. Table
311 in one embodiment has secondary key representation
HASH 512 and interval start 513 to facilitate the retrieval of
the data. In one embodiment of the invention, the interval
start changes every new hour. In one aspect of the embodi-
ment, table 311 includes the past caching recommendation
514 of CRE 160 applicable to the row media elements,
which consists of all the media elements 1ssued from 1nterval
start to interval start plus one hour. H1-23 columns 515-537
and C2-C7 columns 538-543 include the metrics that
describe the consumption by the CDN of the channel
representation media elements for the row. For example, in
column 515 the metrics includes the characterization of the
requests for the row media elements during their first hour,
in column 537 during their twenty fourth hour, 1n column
538 during their second day and 1n column 543 during their
seventh day. In one aspect of the embodiment, the metrics
includes the number and characterization of the requests as
Original Request, TTL Request or Flush Request, and their
S1Z€.
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FIG. 6 shows a block diagram 600 representing an exem-
plary embodiment of a database Channel Caching Table 312,
designed to store the actual caching recommendation for
cach channel representation. Table 312 1n one embodiment
has a static primary key 610 to locate all data on a single row.
Table 312 has secondary key channel HASH 611 and
representation HASH 612 to facilitate the retrieval of the
data. In one aspect of the embodiment, table 312 includes the
actual recommended caching duration 613 for the new
channel representation media elements.

FIG. 7 shows a block diagram 700 representing an exem-
plary embodiment of a database Event Action Table 313,
designed to store the current action caching recommendation
for each channel representation. Table 313 has a com-
pounded primary key based of row time 710, which changes
periodically and event URL 711, which uniquely 1dentifies
an event. In one aspect of the embodiment, row time changes
every new day for the purpose of spreading the table rows
on a maximum ol servers. Table 313 has secondary key
expiration time 712 and action 713 to facilitate the retrieval
of the data. In one embodiment of the invention, an event
could have 1ts expiration time updated. Other fields include
value 714 to store the parameters of the action, channel
name 715 and channel group 716 to avoid joining table upon
query 1n a shared nothing NoSQL database environment and
event create time 717 for versioning purpose. In one aspect
of the embodiment, table 310 and table 313 share the same
schema to facilitate table merging when publishing a
detailed description of the event.

In one aspect of the embodiment, the event action data are
stored 1n table 313 as object and value pair, where object 1s
defined as keyword “_caching”, followed by the represen-
tatton HASH, and data the recommended time 1n hour, the
media element should be kept by the CDN before 1t expired.

FIG. 8 shows a flow chart 800 representing the informa-
tion tlow to and from the CDN 140 and the CRE 160 1n an
exemplary embodiment. In the flow chart media element
requests are collected 320 (over a period of time) and a
request profile 1s computed on a per event representation
basis (so the request profile 1s for each representation of each
event 1n one embodiment) and stored 330. A mining process
340 retrieves the request profiles and filters the profiles
related to the current collection interval and event. The
filtered profiles are aggregated across all events and pro-
vided as inputs to a defining process 350 that generates
updated caching recommendations to be applied to all media
clements delivered to CDN 140 for the current collection
interval.

FIG. 9 shows a block diagram 900 detailing the timelines
involved 1n the state transitions of an exemplary embodi-
ment of a CRE. In one aspect of the embodiment, for the
duration of a reference collection interval the system i1s 1n
state CN-P 910. During the reference collection interval, a
computing process 330 can collect request profiles and a
mining process 340 can process event profiles for all of the
events.

In another aspect of the embodiment, 1n order to generate
an updated definition of the caching recommendations for
the current collection interval (CN) 920, the CRE takes into
account the caching recommendations 1ssued one Analytic
Period ago 1n the reference collection interval (CN-P) 910
and takes into account the overall delivery performance of
the media elements delivered to the CDN one Analytic
Period ago 1n the reference collection interval during which
the recommendations (CN-P) applied, analyzed per event
representation over one Analytic Period. A defining process
350 in one embodiment computes a reward based on the
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mined profiles and the previous state. The system transits to
a new “‘state CN”” 920 and produces a new action 930 which
can include new caching recommendation on a per event
representation basis, and the new caching recommendation
can be transmitted to the CDN when a media element 1n the
current collection interval 1s requested.

In another aspect of the embodiment, a timeline 9350
indicates the relationship 1n time between a “reference state™
CN-P 910 and a “current state” CN 920. The time span
between 910 and 920 corresponds to an “Analytic Period”
(such as one week). The newly generated caching instruc-
tions will only apply, in one embodiment, to media element
requests for the events that are currently airing and been
recorded 960. Media elements for older events that may be
requested during the current Collection Interval will con-
tinue to be delivered with the caching recommendations that
were set during the last Collection Interval of the older
event, while 1t was still being recorded.

In another aspect of the embodiment, the overall CDN
behavior consists of one Request Profile 970 per requested
representation of each event that was recorded during the
reference Collection Interval. Request Profiles 970 are gen-
crated by mining the data collected by the Computing
process 330 with the goal to only select per event represen-
tation the information related to requests of media elements
recorded during the reference Collection Interval.

In another aspect of the embodiment, the Request Profile
970 may show 1nitial media requests 971 that occur imme-
diately after a media element was recorded, and media
requests 972 that occur while the caching recommendation
980 for the analyzed media elements 1ssued to the CDN was
still valid, and as such indicate an undesired CDN flush
operation. Other media requests 973 that occur “out of
window” indicate that the caching recommendation was
isuilicient to address actual content demand over time.

FIG. 10 shows a set of collection intervals along a time
line, and the definition of the reference collection interval for
two analytic periods 1001 and 1002, one collection interval
apart. In one embodiment, an analytic period can be a period
of time, such as one week, that 1s based on a predetermined
schedule of a repeating cycle of programs or content such as
TV shows and other content that are scheduled to repeat
every week (e.g. a TV show 1s broadcast for each and every
week—until cancelled or otherwise changed when the
schedule changes). The one-week analytic period can cap-
ture the periodicity of both daily and weekly consumption
patterns. The analytic period can be set to be shorter or
longer than one week. In one embodiment, each collection
interval can be a period of time that 1s used to capture
requests for media elements for only a portion of a typical
event (e.g. only 10 minutes of a 60-minute TV show) and
thus the collection interval represents data for a slice of time
of each event 1n most cases. When the analytic period 1s one
week, and the collection interval 1s 10 minutes, the analytic
period includes 1,008 collection intervals; FIG. 10 shows
only a subset of collection intervals within an analytic period
in one embodiment 1n order to simplily the drawing. Each
collection interval 1n the set of collection intervals 1s asso-
ciated with data about requests for media elements from the
CDN (or a set of a plurality of CDNs), and the CRE collects
these requests and then generates request profiles one for
cach event representation so each event representation has
its own request profile about requests from the CDN {for
media elements in only that event representation). Hence,
cach collection interval can be associated with a request
profile for each event representation that was requested
during the time slice of the collection interval.
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FIG. 10 shows how a CRE uses data associated with
collection intervals and one or more methods described
herein to generate new caching recommendations. For
example, methods described 1n conjunction with FIGS. 3, 8,
and 9 can be used to generate new caching recommendations
based on mined data from all collection mtervals of the
analytic period that include requests of media elements
recorded during the reference collection interval, and the
caching recommendations 1ssued during the reference col-
lection 1ntervals for these media elements. Collection inter-
val 1003 1n analytic period 1001 1s a reference collection
interval for collection interval 1007 (1n analytic period 1002)
when collection interval 1007 was the current collection
interval, and collection interval 1005 1s a reference collec-
tion interval for collection interval 1009 when collection
interval 1009 1s the current collection interval. In the
example shown in FIG. 10, collection intervals 1003 and
1007 are the first and last (respectively) collection intervals
in analytic period 1001, and collection intervals 1005 and
1009 are the first and last (respectively) collection intervals
in analytic period 1002. The CRE mines data from analytic
period 1001 related to media elements recorded during
collection 1nterval 1003 and uses the caching recommenda-
tion 1ssued during interval 1003 to generate a new caching
recommendation for collection interval 1007, and an
example of this new caching recommendation 1s shown 1n
FIG. 10 as 2 days for slice 1 of event 1 (which 1s the first 10
minutes of event 1) and 1 day for slice 1 of event 2 (which
1s the first 10 minutes of event 2 that 1s a program or other
content that 1s different than event 1). The CRE mines data
from analytic period 1002 related to media eclements
recorded during collection interval 1005 and uses the cach-
ing recommendation 1ssued during interval 1003 to generate
a new caching recommendation for collection interval 1009.
It can be seen from FIG. 10 that different slices of the same
event can have diflerent caching recommendations. More-
over, over time across multiple analytic periods, the same
slice of the same event (e.g. the first 10 minutes of an event)
can have different caching recommendations as the CRE
learns the CDN’s behavior and modifies the caching rec-
ommendations. Also, different representations (e.g. standard
definition and high definition) of the same event are ana-
lyzed separately and can have different caching recommen-
dations as the CRE learns the CDN’s behavior for the
different representations.

FIG. 11 shows one example of a data processing system,
which may be used as any one of the nodes 1n any one of the
embodiments described herein. Note that while FIG. 11
illustrates various components of a data processing system,
it 1s not 1intended to represent any particular architecture or
manner ol interconnecting the components as such details
are not germane to this description. It will also be appreci-
ated that other data processing systems which have fewer
components or perhaps more components than those shown
in FIG. 11 may also be used with one or more embodiments
described herein.

As shown 1n FIG. 11, the system 1100, which 1s a form of
a data processing system, includes one or more buses 1103
which 1s coupled to one or more microprocessor(s) 1106 and
a ROM (Read Only Memory) 1107 and volatile RAM 1105
and a non-volatile memory 1111. The one or more proces-
sors can be coupled to optional cache 1104. The one or more
microprocessors 1106 may retrieve the stored instructions
from one or more of the memories 1107, 1105 and 1111 and
execute the instructions to perform operations described
above. These memories represent examples of machine
readable non-transitory storage media that can store or
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contain computer program 1nstructions which when
executed cause a data processing system to perform the one
or more methods described herein thereby causing the
system 1100 to operate like any one of the nodes described
herein. The bus 1103 interconnects these various compo-
nents together and also interconnects these components

1106, 1107, 1105 and 1111 to an optional display controller
and display device 1113 and to optional peripheral devices
such as input/output (I/0) devices 1115 which may be one or
more ol mice, touch screens, touch pads, touch sensitive
mput devices, keyboards, modems, network interfaces,
printers and other devices which are well known 1n the art.
Typically, the mput/output devices 1115 are coupled to the
system through input/output controllers 1117. The volatile
RAM (Random Access Memory) 1105 1s typically imple-
mented as dynamic RAM (DRAM), which requires power

continually in order to refresh or maintain the data in the
memory.

The mass storage 1111 1s typically a magnetic hard drive
or a tlash memory or other types of memory system (or a
combination of systems) which maintain data (e.g., large
amounts ol data) even after power 1s removed from the
system. Typically, the mass storage 1111 will also be a
random-access memory although this 1s not required. The
mass storage 1111 can be used to provide storage for the
database 131. The mass storage 1111 can thus be used to
store the request profiles for the media element files and their
metadata. While FIG. 11 shows that the mass storage 1111
1s a local device coupled directly to the rest of the compo-
nents 1n the data processing system, 1t will be appreciated
that one or more embodiments may utilize a non-volatile
memory which 1s remote from the system, such as a network
storage device which 1s coupled to the data processing
system through a network interface such as a modem, an
Ethernet interface or a wireless network. The bus 1103 may
include one or more buses connected to each other through

various bridges, controllers and/or adapters as 1s well known
in the art.

What 1s claimed 1s:

1. A method for improving the cache performance of a
content distribution network (CDN), by learning the behav-
ior of the CDN and controlling the CDN with updated
parameters based on the learned behavior, the method com-
prising:

a) computing for each event representation, a request
profile representative ol collected media element
requests to a Content Origination system (COS)
received from a CDN and recording the request profile
for future use;

b) miming for a current collection interval and for each
event representation, all the recorded request profiles
that relate to content requested during a reference
collection interval that occurred one analytic period ago
relative to the current collection interval;

¢) defining an new caching recommendation on a per
event and per representation basis for the current col-
lection interval, where the new caching recommenda-
tion 1s calculated based on the caching recommendation
per event and per representation issued during the
reference collection interval, and on the mined data to
statistically reduce the number of repeated requests by
the CDN of the same media elements; and utilizing
machine learning techniques to model the CDN behav-
ior based on the mining of the request profiles to
differentiate primary requests from requests aiter CDN
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expiration and requests aifter a CDN flush of the media
clements 1ssued during the reference collection interval
of an analytic period.

2. The method as 1n claim 1, wherein the method further
comprises: storing the request profiles as histograms of
requests vs. time and wherein each event 1s a live event
recorded and delivered concurrently at the same time, and
wherein each event 1s delivered 1 a plurality of diflerent
representations.

3. The method as 1n claim 1, wherein the method further
comprises: transmitting, 1n response to a request for a media
clement of a first event representation, the new caching
recommendation for the first event representation to the
CDN along with the media element.

4. The method as in claim 3 wherein the defining 1s
performed repeatedly over time and the transmitting 1s
performed repeatedly over time.

5. The method as 1n claim 2, wherein the method further
comprises: receiving live content from diflerent channels of
live streaming media; storing the live content from each
channel 1n media elements which are a small fraction of time
of the content.

6. The method as 1n claim 5, wherein the storing includes
recording each of live video streams 1n the live content on
a plurality of nodes of a cluster of interconnected, autono-
mous live on demand nodes, wherein each media element 1s
concurrently replicated on one or more live on demand
nodes.

7. The method as 1n claim 1 wherein the analytic period
1s a period of time that 1s based on a predetermined repeating
schedule for broadcasting of content.

8. The method as 1n claim 7 wherein the analytic period
1s one of a week or a day.

9. The method as 1n claim 7 wherein the computing, the
mining and the defining are performed by a caching recom-
mendation engine (CRE), and the CRE continuously collects
request profiles for each collection interval of each event
representation, and the CRE uses the collected request
profiles to define new caching recommendations over time
for each event representation 1n order to continuously adapt
to varying demand patterns and varying CDN performance.

10. The method as 1n claim 9 wherein a first analytic
period for a first event representation defines, when mined,
a first caching recommendation for media elements of the
first event representation requested in the first collection
interval and wherein a second collection interval for the first
event representation defines, when mined, a second caching
recommendation for media elements of the first event rep-
resentation in the second collection interval and wherein the
first caching recommendation and the second caching rec-
ommendation are different.

11. The method as in claim 10 wherein the first collection
interval 1s a first time slice that 1s a first portion of time of
the first event representation and the second collection
interval 1s a second time slice that 1s a second portion of time
of the first event representation.

12. A method for improving the cache performance of a
content distribution network (CDN) by learning the behavior
of the CDN, the method comprising: computing for each
event representation a request profile that 1s representative of
collected media element requests to a Content Origination
System (COS) received from the CDN and recording the
request profile; mining for each event representation all
recorded request profiles that relate to media elements
requested during a prior analytic period; defining a new
caching recommendation on a per event representation basis
for use during a current analytic period wherein the new
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caching recommendation 1s based on a prior caching rec-
ommendation for each corresponding event representation
used during the prior analytic period and the mined data to
reduce the number of repeated CDN requests of the same
media elements; and

utilizing machine learning techniques to model the CDN
behavior based on the mining of the request profiles to
differentiate primary requests from requests aiter CDN
expiration and requests after a CDN flush of the media
clements 1ssued during a reference collection interval
ol an analytic period.

13. One or more non-transitory machine readable media
having executable instructions which when executed by one
or more data processing systems cause the one or more data
processing systems to perform a method for improving the
cache performance of a content distribution network (CDN),
by learning the behavior of the CDN and controlling the
CDN with updated parameters based on the learned behav-
ior, the method comprising:

a) computing for each event representation, a request
profile representative ol collected media element
requests to a Content Origination system (COS)
received from a CDN and recording the request profile
for future use;

b) miming for a current collection interval and for each
event representation, all the recorded request profiles
that relate to content requested during a reference
collection interval that occurred one analytic period ago
relative to the current collection interval;

¢) defining an new caching recommendation on a per
event and per representation basis for the current col-
lection interval, where the new caching recommenda-
tion 1s calculated based on the caching recommendation
per event and per representation issued during the
reference collection interval, and on the mined data to
statistically reduce the number of repeated requests by
the CDN of the same media elements; and utilizing
machine learning techniques to model the CDN behav-
ior based on the mining of the request profiles to
differentiate primary requests from requests after CDN
expiration and requests aifter a CDN flush of the media
clements 1ssued during the reference collection interval
ol an analytic period.

14. The one or more media as 1in claim 13, wherein the
method further comprises: storing the request profiles as
histograms of requests vs. time and wherein each event 1s a
live event recorded and delivered concurrently at the same
time, and wherein each event 1s delivered 1n a plurality of
different representations.

15. The one or more media as 1in claim 13, wherein the
method further comprises: transmitting, in response to a
request for a media element of a first event representation,
the new caching recommendation for the first event repre-
sentation to the CDN along with the media element.

16. The one or more media as 1n claim 15 wherein the
defining 1s performed repeatedly over time and the trans-
mitting 1s performed repeatedly over time.

17. The one or more media as 1in claim 14, wherein the
method further comprises: receiving live content from dif-
ferent channels of live streaming media; storing the live
content from each channel in media elements which are a
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small fraction of time of the content and wherein the storing,
includes recording each of live video streams in the live
content on a plurality of nodes of a cluster of interconnected,
autonomous live on demand nodes, wherein each media
clement 1s concurrently replicated on one or more live on
demand nodes.

18. The one or more media as in claim 13 wherein the
analytic period 1s a period of time that 1s based on a
predetermined repeating schedule for broadcasting of con-
tent.

19. The one or more media as in claim 18 wherein the
computing, the mining and the defining are performed by a
caching recommendation engine (CRE), and the CRE con-
tinuously collects request profiles for each collection inter-
val of each event representation, and the CRE uses the
collected request profiles to define new caching recommen-
dations over time for each event representation in order to
continuously adapt to varying demand patterns and varying
CDN performance.

20. The one or more media as 1n claim 19 wherein a first
analytic period for a first event representation defines, when
mined, a first caching recommendation for media elements
of the first event representation requested 1n the first collec-
tion 1interval and wherein a second collection interval for the
first event representation defines, when mined, a second
caching recommendation for media elements of the first
event representation in the second collection interval and
wherein the first caching recommendation and the second
caching recommendation are different.

21. The one or more media as 1n claim 20 wherein the first
collection interval 1s a first time slice that 1s a first portion of
time of the first event representation and the second collec-
tion 1nterval 1s a second time slice that 1s a second portion
of time of the first event representation.

22. One or more non-transitory machine readable media
having executable 1nstructions which when executed by one
or more data processing systems cause the one or more data
processing systems to perform a method for improving the
cache performance of a content distribution network (CDN)
by learning the behavior of the CDN, the method compris-
ing: computing for each event representation a request
proflle that 1s representative of collected media element
requests to a Content Origination System (COS) received
from the CDN and recording the request profile; mining for
cach event representation all recorded request profiles that
relate to media elements requested during a prior analytic
period; defining a new caching recommendation on a per
cvent representation basis for use during a current analytic
period wherein the new caching recommendation 1s based
on a prior caching recommendation for each corresponding
event representation used during the prior analytic period
and the mined data to reduce the number of repeated CDN
requests of the same media elements; and

utilizing machine learning techniques to model the CDN

behavior based on the mining of the request profiles to
differentiate primary requests from requests after CDN
expiration and requests after a CDN flush of the media
clements 1ssued during a reference collection interval
ol an analytic period.
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