12 United States Patent

US010812598B2

(10) Patent No.: US 10,812,598 B2

Gero et al. 45) Date of Patent: Oct. 20, 2020
(54) UNIFIED, BROWSER-BASED ENTERPRISE (56) References Cited
COLLABORATION PLATFORM 9 PATENT DOCUMENTS
(71) Applicant: Akamai Technologies, Inc., Cambridge,
MA (US) 9,113,032 Bl 8/2015 Vander Mey
2002/0124098 Al 9/2002 Shaw
(72) Inventors: Charles E. Gero, Quincy, MA (US); (Continued)
Thomas Houman, Beverly, MA (US); - -
Abhijit C. Mehta, Mountain View, CA FOREIGN PATENT DOCUMENTS
(US); Greg Burd, Cambridge, MA CN 102594793 A 7/2012
(US); Vladimir Shtokman, Cambridge, EP 1381237 A2 1/2004
MA (US) (Continued)
(73) Assignee: Akamai Technologies, Inc., Cambridge, OTHER PURI ICATIONS
MA (US)
PCT/US2017/068958, International Search Report and Written Opin-
(*) Notice: Subject to any disclaimer, the term of this ion, dated Apr. 23, 2018, 10 pages.
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by O days.
Primary Examiner — Normin Abedin
(21) Appl. No.: 15/857,781 (74) Attorney, Agent, or Firm — David H. Judson
(22) Filed: Dec. 29, 2017 (57) ABSTRACT
(65) Prior Publication Data A system for enterprise collaboration.is associated with an
overlay network, such as a content delivery network (CDN).
US 2018/0191832 Al Jul. 5, 2018 The overlay network comprises machines capable of
Related U.S. Application Data ingregs, fqrwarding and broadcasting traﬁic,. together with a
mapping inirastructure. The system comprises a front-end
(60) Provisional application No. 62/440,626, filed on Dec. application, a back-end application, and set of one or more
30, 2016. APIs through which the front-end application interacts with
the back-end application. The front-end application 1s a web
(51) Int. CL or mobile application component that provides one or more
GO6F 15/16 (2006.01) collaboration functions. The back-end application comprises
HO4L 29/08 (2006.01) a signaling component that maintains state information
: about each participant 1n a collaboration, a connectivity
(Continued) .
(52) US. Cl Comlljonent tha]i malcllages c:lqmilec.tlons routed thrtflugh the
IS tw { t that -
CPC et 6704 Qv 00 g gsors 2o et nda miliniing compoen o
(2013'0_1); HO4L 65/1093 (2013.01); peer to access other peers’ media streams through the
(Continued) overlay network rather than directly from another peer. Peers
(58) Field of Classification Search preferably communicate with the platform using WebRTC.

CPC . HO4L 65/1013; HO4L 65/1093; HO4L 65/40;
HO4L 65/4015; HO4L 65/403; HO4L
67/1042; HO4L 67/14

See application file for complete search history.

INTERNET

MAP
MAKER

-— AGENT

102~

A collaboration manager component enables users to con-
figure, manage and control their collaboration sessions.

10 Claims, 4 Drawing Sheets

ORIGIN | -106

SERVER

CON REGION
SERVER -I‘I 108 N\ Monmorine 110

\ LOGGING L~ 112

B 1115_1_ 103m — 114
| —» SERVER —I 102 L ¢
,i:al”' » ong ‘(n., - ADMIN L~ 116
Hilve '
NOCEC CDN

= v 1 eraama SERVER h 109
ELEEEFEEEEEER) 104 I DATA

> ’ o ! COLLECTION

o 120 o SYSTEM (EDGE} {108
| —— METADATA SERVER 102
= controL [| PTG L]
fiﬁ?ﬁiiﬁi%‘ﬁ?‘f 1

/ _
120 120 °

CDN L STAGING

US 10,812,598 B2

Page 2
(51) Int. Cl. 2016/0036983 Al* 2/2016 Korolev HO4M 3/5233
HO41 22/06 (2006‘01) 2016/0164968 Al 6/2016 P t al 37120312
egg et al.
HO4N 21/00 (2011'01) 2016/0171090 Al1* 6/2016 Schwartz G06Q 10/101
(52) U.S. CL 707/730
CPC HO4L 65/40 (2013.01); HO4L 65/103

(2013.01); HO4L 65/4015 (2013.01); HO4L
677104 (2013.01); HO4L 67/1042 (2013.01);

(56)

HO4N 21/00 (2013.01)

References Cited

U.S. PATENT DOCUMENTS

2009/0089379 Al
2012/0284638 Al

2014/0019630 Al

2014/0324942 Al
2015/0052455 Al

%

4/2009
11/2012
1/2014

10/2014
2/2015

Pegg

Cutler et al.

Namboodiri HO041. 65/60
709/231

Kessler

Boustead

FOREIGN PATENT DOCUMENTS

EP 2863632 Al 4/2015
WO 2015080734 Al 6/2015

OTHER PUBLICATIONS

EPO Application 17888103.3, Extended European Search Report,

dated Jun. 12, 2020, 14 pages.

Jang-Jaccard et al., WebRTC-based video conference service for
telehealth: Cornputino, Springer, Vienna, AT, vol. 98, No. 1, Sep.
25, 2014,

* cited by examiner

U.S. Patent Oct. 20, 2020 Sheet 1 of 4 US 10,812,598 B2

- ON <J O o0
. w \ g <« — -
e e L -~ — P
= -
g g
| (D Jomf
%ﬁ | |2 > |2 = —
x| |E[I8]13] |3 Iy :
oWl | = ol | & < -~ QO
BHIE A : a
AT P
Q.
= S
O o o o
(O © - - -
L O — -— -
,m/\cm\ =
T 0 0
2 = zZ.
- 22 22| |B|||«——
O O o3 SRy ST
O 7y Ty 7p -
ON
. wa
N
- &, D O
o o0 -~ P -
l._ P}) . 1
- - &, D 00O &)
LLs v <. - < <t
< N \ N N <D
'
2 QO < _1i
o, L) £
<< X = 8 <t *.Z%
= A <= o o
;_US -— -
-
o
L1
-
=
el —
- P
ol |o
< <

118
118

U.S. Patent Oct. 20, 2020 Sheet 2 of 4 US 10,812,598 B2

200

OPERATING 204

202
HARDWARE SYSTEM

APPLICATION WEB PROXY 207

A

206

MONITORING
208 NAME SERVER

PROCESS 210

219 DATA COLLECTION PROCESS

FIG. 2

US 10,812,598 B2

Sheet 3 of 4

Oct. 20, 2020

U.S. Patent

NOILVHO4LNI

NL1Sd

1432

SddV

J1180ON JAILVN

¢ct

JOVH01S

cle

INJNJINDS
AJVOT]

0ct

¢ DIAd

ONIXd1dIL 1NN

OLE

1dV {154y SIdl

€0t

(NYNL) AV13Y

[ALIAILDANNOD

80¢

IdV lduogeaep sfsu]

SddVv
ALdVd-QoIHL

8l¢

v0¢€
S/
ONI'IVNOIS | Na0alvld
90t
¢Ot
ON3-1NO¥A

ddV 834M
/oom

91¢€

U.S. Patent Oct. 20, 2020 Sheet 4 of 4 US 10,812,598 B2

US 10,812,598 B2

1

UNIFIED, BROWSER-BASED ENTERPRISE
COLLABORATION PLATFORM

BACKGROUND

Technical Field

This application relates generally to cloud-based collabo-
ration among users ol computing machines.

Brief Description of the Related Art

Real-time communications (e.g., videoconiferencing,
shared document editing, screen sharing, and the like) over
the Internet have been a part of our daily lives at work and
at home. That said, many of the existing technical solutions
are not interoperable, and there are still diflicult technical
problems (e.g., NAT traversal) that can stymie direct peer-
to-peer connections, thus dictating the use of relays to ensure
connectivity. When relays are overloaded, call quality sui-
ters. Further, multi-party video conferencing typically
requires a separate connection for each pair of users, and this
approach does not scale.

WebRTC, an Internet standard, was created to make
videoconferencing and point-to-point data transier easier to
implement. In particular, WebRTC (which stands for Web
Real Time Communications) seeks to take the most critical
clements of video chat and move them to one of the most
commonly used tools for accessing the Internet, namely, a
web browser. WebRTC 1s supported with plugins by both
Google Chrome and Mozilla Firefox. It allows the browser
to access the client machine’s camera and microphone,
provides a method for establishing a direct connection
between two users’ browser and to use that connection to
send audio and video, and it provides a method for sending
arbitrary data streams across a connection. WebRTC also
mandates that all data 1s encrypted.

While WebRTC provides significant advantages, it does
not 1itself address the scaling challenges associated with
connectivity across NAT and multi-party conferencing.
Thus, for example, a relay infrastructure (using TURN) 1s
needed to establish connections between two peers behind
NATs, and building a robust and scalable relay infrastructure
1s challenging. Additionally, multi-user video conferencing
over WebRTC requires full mesh connectivity between all
users; that 1s, a separate connection must be established
between each pair of users. Each user needs to upload their
video (and other data) multiple times—once for each peer—
and the resources required grow 1n a way proportional to the
square ol the number of users, which does not scale. These
1ssues are not limited to WebRTC; indeed, existing, dedi-
cated video conferencing solutions struggle with the same
problems. For example, Microsoit’s Skype relays are often
overloaded, significantly impacting the quality of Skype
calls that cannot use a direct peer-to-peer connection.
Another common solution, LifeSize, needs the same full-
mesh connectivity described above, which severely limits
the number of different remote sites that can participate in
one meeting.

The remains a need to enhance the performance, reliabil-
ity and scalability of WebRTC and to provide a ubiquitous
platform for real-time collaboration.

BRIEF SUMMARY

A system for enterprise collaboration 1s associated with an
overlay network, such as a content delivery network (CDN)

10

15

20

25

30

35

40

45

50

55

60

65

2

or other cloud-accessible architecture. In a representative
implementation, the overlay network comprises machines
capable of ingress, forwarding and broadcasting traflic,
together with a mapping inirastructure. The system com-
prises a front-end application, a back-end application, and
set of one or more APIs through which the front-end
application interacts with the back-end application. The
front-end application 1s a web or mobile application com-
ponent that provides one or more collaboration functions.
The back-end application comprises a signaling component
that maintains state information about each participant 1n a
collaboration, a connectivity component that manages con-
nections routed through the overlay network, and a multi-
plexing component that manages a multi-peer collaboration
session to enable an end user peer to access other peers’
media streams through the overlay network rather than
directly from another peer. Peers preferably communicate
with the platform using WebRTC. A collaboration manager
component enables users to configure, manage and control
their collaboration sessions.

The foregoing has outlined some of the more pertinent
features of the disclosed subject matter. These features
should be construed to be merely illustrative. Many other
beneficial results can be attained by applying the disclosed
subject matter 1n a different manner or by modifying the
subject matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the subject matter
and the advantages thereol, reference 1s now made to the
tollowing descriptions taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1 1s a block diagram 1llustrating a known distributed
computer system configured as a content delivery network
(CDN);

FIG. 2 1s a representative CDN edge machine configura-
tion;

FIG. 3 depicts the various components of a web-based
collaboration solution according to this disclosure; and

FIG. 4 illustrates a multi-party videoconierence setup that
1s enabled by associating the web-based solution of this
disclosure with an overlay network.

DETAILED DESCRIPTION

In a known system, such as shown in FIG. 1, a distributed
computer system 100 is configured as a content delivery
network (CDN) and 1s assumed to have a set of machines
102a-n distributed around the Internet. Typically, most of the
machines are servers located near the edge of the Internet,
1.e., at or adjacent end user access networks. A network
operations command center (NOCC) 104 manages opera-
tions of the various machines 1n the system. Third party
sites, such as web site 106, oflload delivery of content (e.g.,
HTML, embedded page objects, streaming media, software
downloads, and the like) to the distributed computer system
100 and, 1n particular, to “edge” servers. Typically, content
providers oflload their content delivery by aliasing (e.g., by
a DNS CNAME) given content provider domains or sub-
domains to domains that are managed by the service pro-
vider’s authoritative domain name service. End users that
desire the content are directed to the distributed computer
system to obtain that content more reliably and efliciently.
Although not shown in detail, the distributed computer
system may also include other infrastructure, such as a
distributed data collection system 108 that collects usage

US 10,812,598 B2

3

and other data from the edge servers, aggregates that data
across a region or set of regions, and passes that data to other
back-end systems 110, 112, 114 and 116 to facilitate moni-
toring, logging, alerts, billing, management and other opera-
tional and administrative functions. Distributed network
agents 118 monitor the network as well as the server loads
and provide network, traflic and load data to a DNS query
handling mechanism 115, which 1s authoritative for content
domains being managed by the CDN. A distributed data
transport mechanism 120 may be used to distribute control
information (e.g., metadata to manage content, to facilitate
load balancing, and the like) to the edge servers.

As 1illustrated in FIG. 2, a given machine 200 1n the
content delivery network comprises commodity hardware
(e.g., an Intel Pentium processor) 202 running an operating
system kernel (such as Linux or variant) 204 that supports
one or more applications 206a-». To facilitate content deliv-
ery services, for example, given machines typically run a set
of applications, such as an HT'TP proxy 207 (sometimes
referred to as a “global host” or “ghost” process), a name
server 208, a local monitoring process 210, a distributed data
collection process 212, and the like. For streaming media,
the machine may include one or more media servers, such as
a Windows Media Server (WMS) or Flash server, as
required by the supported media formats, or 1t may utilize
HTTP-based delivery of chunked content fragments that
constitute a stream.

A CDN edge server 1s configured to provide one or more
extended content delivery features, preferably on a domain-
specific, customer-specific basis, preferably using configu-
ration {iles that are distributed to the edge servers using a
configuration system. A given configuration file preferably 1s
XML-based and includes a set of content handling rules and
directives that facilitate one or more advanced content
handling features. The configuration file may be delivered to
the CDN edge server via the data transport mechanism. U.S.
Pat. No. 7,111,057 illustrates a usetul infrastructure for
delivering and managing edge server content control infor-
mation, and this and other edge server control information
can be provisioned by the CDN service provider itsell, or
(via an extranet or the like) the content provider customer
who operates the origin server.

The CDN may include a storage subsystem, such as
described 1n U.S. Pat. No. 7,472,178, the disclosure of which
1s incorporated herein by reference.

The CDN may operate a server cache hierarchy to provide
intermediate caching of customer content; one such cache
hierarchy subsystem is described 1n U.S. Pat. No. 7,376,716,
the disclosure of which 1s incorporated herein by reference.

The CDN may provide secure content delivery among a
client browser, edge server and customer origin server in the
manner described 1n U.S. Publication No. 20040093419.
Secure content delivery as described therein enforces SSIL-
based links between the client and the edge server process,
on the one hand, and between the edge server process and an
origin server process, on the other hand. This enables an
SSL-protected web page and/or components thereof to be
delivered via the edge server.

In a typical operation, a content provider identifies a
content provider domain or sub-domain that 1t desires to
have served by the CDN. The CDN service provider asso-
ciates (e.g., via a canonical name, or CNAME) the content
provider domain with an edge network (CDN) hostname,
and the CDN provider then provides that edge network
hostname to the content provider. When a DNS query to the
content provider domain or sub-domain 1s received at the
content provider’s domain name servers, those servers

10

15

20

25

30

35

40

45

50

55

60

65

4

respond by returning the edge network hostname. The edge
network hostname points to the CDN, and that edge network
hostname 1s then resolved through the CDN name service.
To that end, the CDN name service returns one or more [P
addresses. The requesting client browser then makes a
content request (e.g., via HI'TP or HT'TPS) to an edge server
associated with the IP address. The request includes a host
header that includes the original content provider domain or
sub-domain. Upon receipt of the request with the host
header, the edge server checks its configuration {file to
determine whether the content domain or sub-domain
requested 1s actually being handled by the CDN. If so, the
edge server applies 1ts content handling rules and directives
for that domain or sub-domain as specified 1n the configu-
ration. These content handling rules and directives may be
located within an XML -based “metadata” configuration file.
Unified Browser-Based Enterprise Collaboration Platform
Using an Overlay Network

The following assumes familiarity with WebRTC.

According to this disclosure, an overlay network fabric 1s
used to provide a unified browser-based enterprise collabo-
ration platform. In particular, by distributing multiplexing,
and a relay infrastructure over a platform, such as a CDN (as
described above), a solution that facilitates multi-user 1s
provided but without requiring full mesh connectivity.
While a primary use case as described below 1s for high-
quality video conferencing that i1s scalable to large numbers
of users, this 1s not a limitation, as the cloud-supported
multiplexing and relay techniques herein may be used to
provide other multi-user collaboration, such as chat, docu-
ment sharing, and desktop sharing, all in a seamless and
scalable manner. The overlay network can also provide
additional functions and features to support a collaboration
session; as described below, these may include, without
limitation, persistent storage and recording of sessions and
documents, integration with existing videoconterencing and
telecommunications infrastructure (LifeSize rooms, PSTN,
etc.), management, and others.

FIG. 3 depicts a representative architecture 300 for an
enterprise collaboration platform using an overlay network
according to an aspect of this disclosure. There are three
primary elements: a front-end application 300, REST1ul
APIs 302, and a back-end or platiorm 304. The front-end
application (app) 300 preferably 1s built on a number of
components (described below) that are preferably accessed
through the one or more REST1Tul APIs 302. As will be seen,
this architecture allows on-premises infrastructure to be
integrated with the solution, and 1t could also be used to
allow third parties to create applications powered by the
plattorm. The platform components 304 include signaling
306, connectivity 308, multiplexing 310, storage 312, and
PSTN integration 314. In one embodiment, the platform 304
comprises part of an overlay network (or leverages elements
thereol), but this 1s not a requirement, as the solution herein
may be provided as a standalone architecture. Further, the
notion of a “component” herein may involve multiple
machines, whether co-located or distributed, as well as the
processes and programs executing thereon.

Turning first to the platform, the signaling component 306
preferably 1s a distributed signaling system that keeps track
of users’ state (e.g., “Online”, “Away”, “Busy”, etc.), and 1t
1s used to transmit the information (i.e., SDP) necessary to
initiate an RTCPeerConnection. The signaling component
306 preferably integrates with various user authentication
and i1dentity management solutions, although this 1s not a
requirement. The connectivity component 308 manages
video, voice and data connections routed though the overlay

US 10,812,598 B2

S

network platform to handle Network Access Translation
(NAT) traversal, as well as to provide enhanced performance
and security.

The multiplexing component 310 comprises multiplexing,
machines to allow for scalable, multi-peer sessions. This
component makes 1t so that each peer only needs to upload
its media stream once. Other peers are then able to access
peers’ media streams through overlay network edge
machines (rather than by direct connections to peers). The
multiplexing component provides for multiplexing in the
cloud to sigmificantly reduce edge bandwidth requirements
that would otherwise be required to support WebRTC (which
otherwise dictates a new connection be setup for pair of
peers 1n a multi-user collaboration). With this approach
herein of using the overlay network, there 1s no requirement
to setup a new connection for each pair of peers 1 a
multi-peer collaboration (conference, chat, etc.) session.

As will be described, and as a further feature, preferably
the multiplexing component 310 intelligently adjusts the
quality of different users’ streams to enhance performance—
¢.g., only deliver HD streams for people who are currently
speaking, deliver lower-quality streams to mobile devices,
etc.

The storage component 312 allows overlay network cus-
tomers to (optionally) store data from a collaboration session
(e.g., record a meeting, save work on a collaborative docu-
ment, etc.). The PSTN integration component 314 allows
users to join sessions from the PSTN and legacy telecom-
munications equipment, and 1t allows users to call out over
the PSTN. Although not depicted, the platform may include
a transcoding component that allows for communications
between browsers that do not have the same video codecs
implemented, and for one-way broadcasting to browsers that
do not support WebRTC.

As noted, the front-end components 300 interact with the
back-end platform 304 using an application programming,
interface, such as RESTful APIs 302. These APIs 302
provide methods for exchanging SDPs to set up calls,
provide mnformation on which chat rooms are available,
which media streams are available 1n each chat room, which
user media streams 1n a given chat room are most “relevant”™
at any given moment, and so forth. The APIs preferably also
provide methods for interacting with other parts of the
back-end, e.g., verifying users’ identities, accessing storage
(saving data, retrieving data, searching), and the like. As also
depicted, the APIs also preferably include a JavaScript (JS)
API 303, referred to herein as “iris.js,” which 1s a thin layer
on top of the base WebRTC API and other HIMLS5 com-
ponents. The 1ris.yjs API 303 preferably uses the other
RESTT1ul APIs to integrate with the overlay network fabric.
In particular, the 1ris.;s API allows applications to establish
and use video, voice, and data channels. Preferably, the
front-end web app 1s built on the JavaScript API, and third
party applications may use this API to build apps that
scamlessly integrate with the platform.

The front-end components 300 comprise a web applica-
tion (or web app) 316, which i1s a unified communication
tool built on 1r1s.3s. The web app 316 routes video, voice, and
data through the overlay network fabric. The web app also
provides (or iterfaces to) one or more collaboration func-
tions or technologies, such as video chat, collaborative
document editing, desktop sharing, and the like. Because the
web app 316 preferably 1s built 1n an API (such as ir1s.js 303,
which can support several data channels), 1t 1s easily exten-
sible. Thus, users are able to choose which voice, video, and
data channels to connect to for a given session—ior
example, several users 1n a video conference room could use

10

15

20

25

30

35

40

45

50

55

60

65

6

the room’s camera and mic for videoconierencing with a
remote site, but each individual user might use his or her
personal laptop to edit a shared document. Preferably, the
web app 316 1s skinnable so 1t can be rebranded and used by
enterprise customers. As noted, because 1r1s.js 1s built on top
of the WebRTC API’s, third parties are able to easily adapt
existing WebRTC applications to use the solution described
herein. The thurd party applications 318 are depicted here as
part of the front-end, but they may be separate and distinct.
As noted above, the REST1ul API 302 also makes integra-
tion with other collaboration tools possible. As also
depicted, the front end may include or have associated
therewith legacy on-premises equipment 320, such as Life-
Si1ze rooms. Further, the front-end may include or have
associated therewith native mobile apps 322, such as devices
and tablets that run native 10S and Android apps (as opposed
to HTMLS5 apps 1n mobile browsers, which are also sup-
ported). The API layer 302 enables a service provider or
third parties to easily build native mobile applications for the
solution.

In one embodiment, the above-described solution pro-
vides a multi-party voice and video chat system. FIG. 4
depicts further implementation details of a multi-party solu-
tion implemented within an overlay network 400, such as the
Akamai content delivery network (CDN). As depicted, there
are two end user peers 402 and 404, and each peer 1is
associated (e.g., using conventional CDN DNS mapping
operations) to respective edge servers 406 and 408. Each
peer also establishes a WebRTC connection to a media
server 410 that hosts the videoconference (1n this example
scenar1o). A signaling back-end 1s powered by a distributed
data store 412. In an example implementation, the platform
1s 1mplemented using a combination of Node.;s, PHP,

Apache, Cassandra, and Kurento Media server runming on
Ubuntu Linux machines. Cassandra data i1s accessed via the
RESTIiul API, which 1s powered by Node.js running behind
an Apache proxy 414. In this approach, signaling informa-
tion 1s exchanged via HT'TPS interactions using the REST1ul
API. Multiplexing 1s accomplished using the Kurento Media
Server (KMS) running on cloud Ubuntu VMs running in
geographically-distributed locations. In operation, the
Node.js signaling application performs a DNS lookup to the
CDN mapping to determine an optimal (in terms of one or
more factors such as latency, loss, load, availability, reach-
ability, etc.) media server to which as client should connect.
Clients upload their live media stream via WebRTC to the
chosen media server. The connection 1s set up by the
signaling layer through the REST1ul API. Other clients who
wish to subscribe to that media stream connect to the same
media server (via the signaling layer) and receive the stream.

While the approach shown 1n FIG. 4 1s typical, it 1s not a
limitation. In an alternative embodiment, the underlying
network environment may allow for direct connectivity
between peers. This requirement 1s met among users, for
example, as long as peers are connected to an enterprise
VPN. Another approach 1s to use STUN and TURN servers
(such as coturn) that run, for example, on cloud virtual
machine (VM) infrastructure. In still another embodiment, a
TURN-compliant version of a relay network for peer-to-peer
connectivity may be used. In the multi-party case described
above, STUN and TURN are not needed because it 1s
assumed that clients can connect directly to multiplexing
servers. Still another approach to connectivity may mvolve
a multicast overlay network to distribute streams.

In this example implementation, the API 1s powered by a
Node.js web application. The Node.js application interacts
with Kurento Media Server and Cassandra to orchestrate

US 10,812,598 B2

7

calls. The “inis.js” JavaScript API 1s a client-side
ECMAScript 6 library that allows web applications to
interact with the system via the Iris REST1Tul API. It contains
functionality that allows for easy WebRTC connection man-
agement, call orchestration, and automatic, dynamic quality
switching, e.g., as the relevancy of different participants 1n
a room changes. The web application 1s an HTMLS5 Web
App written on top of 1ris.js. The views are powered by a
PHP application.

The overlay network provides various support services to
the conferencing platiform. Thus, e.g., these services provide
one or more of: deployment, versioning, integration with
back-end overlay network infrastructure (key management),
load balancing, monitoring, single sign-on, auto-scaling, and
so forth.

With 1:1 conferencing, underlying media sessions prei-
crably are end-to-end encrypted. For multi-party confer-
ences, media sessions are encrypted between users’ clients
and the overlay network.

Any Internet-accessible client may be used 1n a confer-
ence provided 1t has a video camera and microphone/
speaker.

As has been described, the solution 1s a video and audio
conversation platform that does not require any special
equipment other than a client having a browser, a webcam,
and a microphone. The service provider (e.g., a CDN)
preferably provides (e.g., from a web page) a “lobby” or
index/directory from which a user can identily or start a
conference. By opening his or her browser to the lobby page,
a user can create a room (conference), join the room, see
who 1s already in the room, change his or her relevancy
(make your own video bigger relative to others), mute
others, and mute yourself. In addition, the user may be
provided the ability to communicate (with other users) that
are within the same domain, set download quality, set upload
quality, update a room, delete a room, leave feedback (when
the user leaves the room), use a non-standard camera, see
who created each room, and provide room deep linking
(using SSO). A further feature 1s to enable the user to create
a presentation.

In the lobby, the rooms may be orgamized by type, and 1t
may be created programmatically. The person who creates
the room may have his or her identity identified, and this
information may be captured from a user authentication
token. A room may be modified by a person who creates the
room. The person may whitelist or blacklist users in a room.
A default scenario 1s to allow no one to join a room except
for persons that are explicitly allowed by the room creator
via a whitelist.

Presentations allow for another type of room type. These
types of rooms allow 1-to-many communications. In a
standard multi-party room, every participant sees and hears
everyone else. In contrast, typically a presentation has one
presenter, one moderator, and a number of participants. A
participant can raise a question, typically first to the mod-
crator, who may then pass the question (11 approved) on to
the presenter. A room control panel may be provided to the
presenter in his or her display. A participant control panel
may be provided to the participant 1s his or her display.

Client-side JavaScript code may be subject to tampering;
thus, to 1mprove security preferably all server-side inputs
(including URL parameters) are scrubbed and validated. To
discourage brute-force attacks, a server-side delay 1s added
to failed authentication attempts. To prevent a guess as to
when an extended delay indicates a failed request, even
successiul authentication attempts are subjected to short
delays. Some randomness may be added to both delay types.

10

15

20

25

30

35

40

45

50

55

60

65

8

Preferably, user passwords are salted, and user passwords
are encrypted belore leaving the clients. Content 1s secured
by virtue of the WebRTC transport. Authentication prefer-
ably 1s handled wvia token-based authentication. Client
JavaScript preferably 1s minified (removing unnecessary
white spaces, etc.) and uglified (renames variables and
functions).

Other variants and extensions may be implemented.
These include room and lobby chat, file sharing, e-mail/
calendar integration, screen sharing, vanity rooms, anony-
mous-access rooms (including one-time 1nvites to outside
users), scaling, and look and feel changes. Scaling 1involves
multiple media servers, such as the KMS. Scaling enhance-
ments involve uploading each stream to i1ts own media
server, and sending streams from one media server to
another. The latter technique enables the provider to insert
an mtermediary stream layer to facilitate fan-out.

Generalizing, the collaboration session management
functions described above may be accessed by an authent-
cated and authorized user (e.g., an administrator) via a
secure web-based portal that 1s provided by the overlay
network service provider. In a representative embodiment,
the collaboration management functions are configured and
managed from one or more SSL-secured web pages that
comprise a secure collaboration session management portal.

The techmque described herein assumes that the overlay
network provides a network of machines capable of ingress,
forwarding, and broadcasting tratlic, together with a map-
ping infrastructure that keeps track of the load, connectivity,
location, etc., of each machine and can hand this information

back to clients using DNS or HI'TPS. An approach of this
type 1s described 1n U.S. Pat. Nos. 6,665,726 and 6,751,673,
assigned to Akamai Technologies, Inc., the disclosures of
which are incorporated herein. The technique described
there provides for an application layer-over-IP routing solu-
tion (or “OIP routing™).

The multiplexing component (of the back-end applica-
tion) implements or facilitates multicast OIP to distribute
individuals” video streams in a multiparty videoconference.
Multicast OIP could may also be used as a generic real-time
publish-subscribe overlay network or for broadcast of video
in real-time.

In this approach, a publisher (which may be just an
individual user) sends data to the multicast network. Clients
(e.g., end user peers running mobile devices, laptops, etc.)
subscribe to this data stream. The overlay network handles
intelligently routing and fanming-out the data stream to all
subscribers. The forwarding network may use multiple
paths, forward error correction, and the like to ensure the
reliability and performance of the stream. Preferably, the
intermediate communications also are encrypted.

The publisher and subscriber operations are now further
described. To initiate the session, a publisher makes a DNS
(or HTTPS) request to a load balancer operated by the
overlay network service provider (e.g., Akamai global traflic
manager service). The request preferably contains a unique
identifier for the publisher’s data stream. The load balancer
finds an ingress node on the network that has available
bandwidth, CPU, and other resources, and that will have
good connectivity to the publisher (close by from a network
perspective), and hands back an IP address (or URI) corre-
sponding to that node. This 1s a known OIP operation. The
publisher connects to the ingress node. Then, the publisher
sends its data (e.g., a video stream generated by a webcam)
to the ingress node. The overlay network handles distribut-
ing the video stream to subscribers. To obtain the stream,
subscribers make a DNS (or HT'TPS) request to mapping

US 10,812,598 B2

9

(overlay network DNS). This request contains the unique
identifier of the data stream which the subscriber wants to
consume. The mapping system finds an egress node that can
deliver the stream to the subscriber, and hands back an IP
address (or URI) for that egress node. If necessary, the
system builds a fan-out tree by assigning forwarding nodes
between the ingress and egress nodes. The system forwards
data through the forwarding nodes to the egress nodes. The
subscriber then connects to the IP/URI 1t got 1n the first step,

and consumes the data stream.
A typical use case 1s WebRTC. In the WebRTC case, the

ingress and egress nodes handle WebRTC PeerConnections.
Subscribers to a given stream have individual WebRTC
PeerConnections to individual egress nodes; the overlay
system takes care of distributing the stream from the ingress
nodes to the individual egress nodes.

Each above-described process preferably 1s implemented
in computer soltware as a set of program instructions
executable 1n one or more processors, as a special-purpose
machine.

Representative machines on which the subject matter
herein 1s provided may be Intel Pentium-based computers
running a Linux or Linux-variant operating system and one
or more applications to carry out the described functionality.
One or more of the processes described above are imple-
mented as computer programs, namely, as a set of computer
instructions, for performing the functionality described.

While the above describes a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order i1s exemplary, as
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References 1n the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

While the disclosed subject matter has been described in
the context of a method or process, the subject matter also
relates to apparatus for performing the operations herein.
This apparatus may be a particular machine that 1s specially
constructed for the required purposes, or it may comprise a
computer otherwise selectively activated or reconfigured by
a computer program stored 1n the computer. Such a com-
puter program may be stored in a computer readable storage
medium, such as, but 1s not limited to, any type of disk
including an optical disk, a CD-ROM, and a magnetic-
optical disk, a read-only memory (ROM), a random access
memory (RAM), a magnetic or optical card, or any type of
media suitable for storing electronic instructions, and each
coupled to a computer system bus. A given implementation
of the present invention 1s software written 1n a given
programming language that runs in conjunction with a
DNS-compliant name server (e.g., BIND) on a standard Intel
hardware platform running an operating system such as
Linux. The functionality may be built into the name server
code, or 1t may be executed as an adjunct to that code. A
machine implementing the techniques herein comprises a
processor, computer memory holding instructions that are
executed by the processor to perform the above-described
methods.

While given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and

the like.

10

15

20

25

30

35

40

45

50

55

60

65

10

While given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given 1nstructions, program sequences, code portions, and
the like. Any application or functionality described herein
may be implemented as native code, by providing hooks into
another application, by facilitating use of the mechanism as
a plug-in, by linking to the mechanism, and the like.

The techniques herein generally provide for the above-
described improvements to a technology or technical field,
as well as the specific technological improvements to vari-
ous fields including collaboration technologies including
videoconferencing, chat, document sharing and the like,
distributed networking, Internet-based overlays, WAN-
based networking, eflicient utilization of Internet links, and
the like, all as described above.

Having described our ivention, what 1s claimed now
follows below.

The mvention claimed 1s:
1. A system for enterprise collaboration associated with an
overlay network, the overlay network comprising machines
capable of ingress, forwarding and broadcasting traflic,
together with a mapping infrastructure, the system compris-
ng:
a front-end application comprising a web or mobile
application component that interfaces to or provides
one or more collaboration functions;
a back-end application comprising a signaling component
that maintains state information about each participant
in a collaboration, a connectivity component that man-
ages connections routed through the overlay network,
and a multiplexing component that manages a multi-
peer collaboration session to enable an end user peer to
access media streams of other peers through the overlay
network rather than directly from another peer; and
a set ol one or more application programming interfaces
(APIs) through which the front-end application com-
ponent 1nteracts with the back-end application compo-
nents, wherein the APIs mclude a JavaScript (JS) API
that executes 1n association with a base Web Real Time
Communications (WebRTC) API and one or more
Hypertext Markup Language Version 5 (HTMLS) com-
ponents;
wherein each of the components and the APIs are imple-
mented as software executed 1n one or more hardware
Processors;
wherein the connectivity component 1s configured to
perform a set of operations, comprising;:
publishing a video stream to the overlay network by
using the mapping inirastructure to find an ingress
node, and receiving the video stream from a pub-
lisher at the 1ngress node; and

enabling one or more subscribers to subscribe to the
video stream by, for each subscriber: using the
mapping infrastructure to find an egress node, and
delivering the video stream to the subscriber from
the egress node;

wherein the multiplexing component adjusts a quality of
at least one media stream during the collaboration
SeSS101.

2. The system as described in claim 1 wherein the
front-end application 1s a client-side script library built on
the JS API.

3. The system as described in claim 2 wherein the
client-side script library provides WebR1TC connection man-
agement.

US 10,812,598 B2

11

4. The system as described in claim 1 wherein the
collaboration session 1s one of: a videoconierence, a chat,
sharing a document, and sharing a desktop.

5. The system as described in claim 1 wherein the
back-end application further includes a storage component
to store data from the collaboration session.

6. The system as described i claam 1 wherein the
back-end application further includes a Public Switched
Telephone Network (PSTN) integration component to allow
participants to join the collaboration session from the PSTN
network.

7. The system as described 1in claim 1 the multi-peer
collaboration session 1s implemented over Web Real Time
Communications (WebRTC).

8. The system as described in claim 1 further including a
collaboration session manager.

9. The system as described in claam 8 wherein the
collaboration session manager outputs one or more web
pages Irom which an authorized end user can execute one or
more operations associated with the collaboration session.

10. The system as described 1n claim 9 wherein the one or
more operations includes one of: creating or deleting a room,
jolning a room, viewing participants in a room, whitelisting,
or blacklisting participants for a room, adjusting a relevancy
value of a media stream, muting or unmuting an audio
stream, adjusting a quality of a media stream, providing
teedback, adjusting equipment 1n a room, creating a presen-
tation for a room, creating a vanity room, creating an
anonymous access room, adjusting a look and feel of a room,
enabling room-specific collaboration activities, and provid-
ing room deep-linking.

G e x Gx ex

10

15

20

25

30

12

	Front Page
	Drawings
	Specification
	Claims

