US010810103B2

12 United States Patent (10) Patent No.: US 10,810,103 B2
Lin et al. 45) Date of Patent: Oct. 20, 2020

(54) METHOD AND SYSTEM FOR IDENTIFYING (56) References Cited

EVENT-MESSAGE TRANSACTIONS |
U.S. PATENT DOCUMENTS

(71) Applicant: VMware, Inc., Palo Alto, CA (US)

5,469,463 A * 11/1995 Polich GO6F 11/2257
706/916
(72) Inventors: Junyuan Lin, Seattle, WA (US); 8,079,081 B1* 12/2011 Lavrikcccoo........ HO4L 41/069
Nicholas Kushmerick, Seattle, WA 709/223
(US); Jon Herlocker, Seattle, WA (US) 8,332,690 BL* 12/2012 Banerjee GOk 1 ;/1(117/22
(73) Assignee: VMware, Inc., Palo Alto, CA (US) 8,850,263 B1™ 92014 Yourtee GOOK 1;/&7/23
_ _ _ _ _ 9,465,684 Bl * 10/2016 Carter GO6F 11/0766
(*) Notice: Subject to any disclaimer, the term of this 2009/0113246 Al* 4/2009 Sabato GOGF 11/0769
patent 1s extended or adjusted under 35 714/37
U.S.C. 154(b) by 773 days. 2011/0185234 Al* 7/2011 Cohenccco........ GO6F ;?;2/23
_ 2012/0191638 Al* 7/2012 Li ...oiiiiiinnn, GO6N 5/025
(21) Appl. No.: 15/379,005 06/43
_ 2013/0080367 Al* 3/2013 Tonouchi GO6N 5/02
(22) Filed: Dec. 14, 2016 706/46
2014/0380105 Al1* 12/2014 Michel GO6F 11/0769
(65) Prior Publication Data 714/57
US 2018/0165173 A1 Jun. 14, 2018 (Continued)
(51) Int.Cl FOREIGN PATENT DOCUMENTS
ggg ; ?jgg (ggég-g}) WO WO0-2014043623 Al * 3/2014 .. GOGF 11/008
COGF 11/30 52006'033 Primary Examiner — Jared M Bibbee
GO6F 16/25 (2019.01) (57) ABSTRACT
59 gOS6FC{6/28 (2019.01) The current document 1s directed to methods and systems
(52) CPC ' GOGF 11/3476 (2013.01): GO6F 11/30 that process, classily, efliciently store, and display large

volumes of event messages generated in modern computing
systems. In a disclosed implementation, event messages are
assigned types and transformed into event records with
well-defined fields that contain field values. Recurring pat-
terns ol event messages, referred to as “transactions,” are
identified within streams or sequences of time-associated
event messages and streams or sequences of time-associated

event records.

(2013.01); GO6F 11/3006 (2013.01); GO6F
16/258 (2019.01); GO6F 16/285 (2019.01):
GOGF 2201/835 (2013.01); GO6F 2201/86
(2013.01)

(58) Field of Classification Search
CPC .. GO6F 11/3476; GO6F 16/285; GO6F 16/258;
GO6F 11/30; GO6F 11/3006; GO6F
2201/835; GO6F 2201/86

See application file for complete search history. 20 Claims, 77 Drawing Sheets
o
CPU —| CPU
MEMORY
110 ——
I U cp
oa_ /] CPU L1 CPU
\ \— 108
106
12
— srEomzmo / anoce |
118 — 14 — 118
12

ERIDGE

SOMTRILLER QLLEFR, COMTROLLER CONTRDLLER CONADLLER SOHTRLILLER

122_/I | | _ | _ E\ | 197
123 124 125 <L
26

MASS
STORAGE
DEVICE

: 128

1

US 10,810,103 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2015/0067410 A1* 3/2015 Kumar GO6F 11/004
714/47.3

2015/0143182 Al1* 5/2015 Rajamanickam ... GO6F 11/0781
714/48

2018/0113773 Al* 4/2018 Krishnan GO6F 11/0706

* cited by examiner

U.S. Patent Oct. 20, 2020 Sheet 1 of 77 US 10,810,103 B2

102 103
/o

| T MEMORY

‘ x N\
B 105 — 1%

112
SPECIALIZED i 1 R /

PROCESSOR |

g/ 14

BRIDGE

__________________ T

J J:‘_]_WL.._“ rm I
122 —/ ‘ \ I \ l\ ‘ 127
123 124 125

126 — i’”é"ég

DEVICE

FIG. 1 .

U.S. Patent Oct. 20, 2020 Sheet 2 of 77 US 10,810,103 B2

\

FIG. 2

US 10,810,103 B2

Sheet 3 of 77

Oct. 20, 2020

U.S. Patent

T\w..ﬁ\w

i

04 ——_

Hm)

X

_ 0BG} mmumamm ?55

YA

]

St

%

7

£ Ol

US 10,810,103 B2

Sheet 4 of 77

Oct. 20, 2020

U.S. Patent

Vi

Siempled

147

WB)SAS
buiieladn

suielboid
uonesiddy

v

CLY

— 0ly - 80V

abeli0s

SSENN Of

O/l “ - $10858001d

iy

1A% |/m A4y
{SOSSOIPPR/SIOSiDal | SBSSBIPPR/SIANS)

Emm___,_m._.u._.___._...._-.-Emm_____._a-%a

b}

SUONONIISUE
pabojaLd

suolonisu pabajiand-uou

SIBAL(]
30IA9(]

WBJSAS 8ji

juaisbeuB

ﬁEm_,a ¥Se| |-
oINpaYss |

AIOWIBIAL

) S{EMTIH SO oY

Piy

1 SIBAIOIU QO

‘a0eyIa)Ul ||2o-WAISAS

SI12)5ibal pue $assalppe Aowall |

- b @ -

444 / AN _/ cty -/

US 10,810,103 B2

Sheet 5 of 77

Oct. 20, 2020

U.S. Patent

0CS

sl B N2
Sa55alphe/ajsingl | S855aeppe/Iaisina) SUOIIRIS

-
_pabaiad *

... pabainud

suohonIjsul pabafialid-LUoN

S1aALIP 333D

umm_m__:za-ccﬂ N

SISAUP S0IASD

- 10)IUOIA
[dUla) WA ” [alliay A OUIYIEN [ENHIA
5aSsalppe/is)siDal | Sassalppeis)SiDal SUQIENISUI]
____psbispmuc pabajiaud-uou _ pabajiald m:omu:‘:mﬁnmmm_i_a "ON
10, S8, SO S0 S0
uonesidde uoneadde uoneandde uoneondde uGneadde
........ | |

—

orm|\

004

904

706G
815

804

916

4%

US 10,810,103 B2

Sheet 6 of 77

Oct. 20, 2020

U.S. Patent

dlEmMmpie

A7 /

waysAg bunessdp

42 \

ke
UCHBZIRNIA

065 \
AN

sauyoen) |
[enuif |

z_,..

_ Loeddde

uonesidae |

m |

=0

uoheaidde

P | PR T N Fl

F
PRI TR TR Ln
by o o o M A R R L R v

M PRI \

3 wlinl

SIB]Siba) PUE SoSSaippE AIOWSL
UE stonanisu pabisiald-ucy

“ mg\ @E\

n
-
n
-
h
n
-
-
\w |
o
b
-

i

A \

"

swielbold
uoneoiddy

US 10,810,103 B2

Sheet 7 of 77

Oct. 20, 2020

U.S. Patent

9t
A

079
A\

1sajueus jo 1sahip
SOPMOUL JEUE SJEdHIa

ajl; a0inosal Jo 15961q

3|l 82inosal 0 1sabi(]

iy aBew ysIp Jo 1seBiq

aly eBew; ysip Jo 1sebig

abeyoed w_u ﬁwgm

<" adojeaus>

0¢Y l\

1eW04 Uolezijenuip usdo

ahexoed 4A0

9|l 92NOSA

o[} @3HI0S5al

JTITITITIIIIIIIITTTTTN aeomosas |~ CF
/ .ﬁ... ||||||||||||||||||||| ,,.“.f
/! \ ,,_,,.,,,,
o -~ NN
/i 3fl} TINIX £29 R *
NN BEEEI———
..b. e //,__,. fff..__.,....fff ol afe Uy YSIp \\w u\ —‘@
/ <adojpAug/> [N N\
/ “h N ,.,,..,,,.,,.,,_”.,,ﬁ No| ot eBewrysip | 013
H <U0[109]|07) WBISAS ENUIA/> \ \ "
/ m ,,,,,,,,,._,,,,,.,,,,f — T
<UON08S SIEMPIBH [BNUIA/> N\ 009
: \ v
649 | <UONO9S B1eMpIEH [BNHIA> Vel N, TR 30
L <Ui009]|0D WalsAS feniiA> soduoseq 4p0 |~ VOO
<U0N8S IOMIAN/>
<UOIJ08S HIOMIBN> /
<0108 YSI(]/> /
829 m)/ 209
<U0(}99S NSK]> K
<S90UBIBLEN/> /
9¢Y A m ,/
<S80UAIBIaY > /
f

VoL

/ Ol ZLL
21uan ere ieoisAud
gl L2 1%

US 10,810,103 B2
D
N

Sheet 8 of 77

Oct. 20, 2020

/ T U WeL A
/s
_ 1004 89IN0SOY

- 7 iz | o .

JBIUSN BIB(T [EeNLIA, | Ll

U.S. Patent

US 10,810,103 B2

Sheet 9 of 77

Oct. 20, 2020

U.S. Patent

¢C3
/

_ aleMpIEH

| whe] |
m m:DzmM_EEt_}_ |

”Ms_}w _33_”

53 _E>_

_ wieby 1804

_ | wabe OOA | Ue8

/

dnyoeq
UORBIHILL A SAIT

AjlligeiieAy YbiH
IBINPBYIS 92iN0SaY paINGISI(]

L (8
\

SIeMpPIeH

| 198
UOIEZI[ENUIA

w..s__;_.__ . 55.._

(A | |wa]

_ Wwoeby 150k

wabe Daa |

3 Ol

0¢8
/

;s_}

628:

_ SIEAMDICH

1AE7

UOlEZI[enHIA

§>_

A _E>_

juaby 150H

juabe DA

SODIAIOG DI0)

SaIABS PaNgIsIy

¢038
/

alemples] _

IEYCE

HOREZHETHIA

-lllllIII_lI

| | Juewebeuely |
\ | [eweD Eleq |

3

IBAIeQ

ENMIA

-

708
A

—_
aseqgelep

18]Ua0)

ejeq [ENPIA

>

018

~. Juswsbeuews 821N0SaN

1B|npayos yse |

buIbbo) JO UCI98)|00 SONSIBIS

.

",

Az

SJUBAS 9 SULB)Y
buluoisiacid WA
uoieinbyuos WA
Luoeinbiuod 3soH

US 10,810,103 B2

Sheet 10 of 77

Oct. 20, 2020

U.S. Patent

Z U0 HNE%

¢06 /

6

NS\\

- 9¢6

lII.III-I.I

-
|
u |
SIDUSD PIEDR IENLIA
] _F P mﬁ _\
_
7

|
| | —
A A
L e 7CH
N 7 L 10}0811p PRO2
7 OUO ,7€ OUQ,” ZOH0, 7 | DUO ~
16— Ktm / - h .

810

Sm\\

el 20—

. j00d YI0MIaU WIoJ) BUILDISIAOLS NEOMIBN
SDOIBIEN BIDIN pUR dlepdwa]
uonendguon Jsjuan) B1e(] [enuIA uoneziuebin

T

PUB UG3Rlr
BUILOISIACI-

Bijuon uoneziuedin

U B IETHIA 1 goppisiu) juswieBeue)y

IL6
026 e

~— 9C6
acela)ul S DaA m
- ya HA!

Sadideq JOJo-(] PNOIDY | «
PEO

US 10,810,103 B2

2poU JOA

O
pt
o
—

\

2 18038 YOA

1
I
|

3"

g T —— Y
g
—_—
Y AR TR Y W ey

piol OL0L ¢10l

SPOU JOA

p .
| m OGN |
" e H r 3 ,...,....

I~ b s /
= oo — e ,.,
“ A . y K
= P 77 _ 2001
= _ _ 7 mﬂi 73]¢ A9)U30 |
2@ _ L P e S elep prun ||
7 ; v 3pou JOA 8pou JOA L

i il "] //')

L0} €001
_ 1001 — 6101
S 10JUB0 it _
~ 2Jep oA uﬁf/ AT [P |
& apoLs AN
: v sy
> 3PON IIA NN 20
S N
/ N
9001 .

U.S. Patent

SaJlAas PO 7777

fued o =X 0201

SPOU JOA

US 10,810,103 B2

Sheet 12 of 77

Oct. 20, 2020

U.S. Patent

ghil =T

i I R
l‘ii fff
‘ll

86613 101093 aInjie} HOH

£0 X51P
LW H f0A08

BINi2; 450 Burplia Ll

e
. - -
S— e . S e —p—

L
L
-
o
“ _
L
1

A0y

\

=

¢OL)

/

U.S. Patent Oct. 20, 2020 Sheet 13 of 77 US 10,810,103 B2

1208 1210
1202 -

............. - prp——— m_—mumuﬂdﬂj'
1
2013-12-02T710:44:24.08572 li~ge~esx5.vmmware.com Rhttpproxy:
[28959B80 verbose "BProxy Reg 466917') Connected to

localhost ;8307 ——— 1212 - “MM“*1206

2013-12-02T10:44:24.08472 li-ge-esxb.vimware.com Rhttpproxy:
| FEFCEBE0 verbose "Proxy Reg 4669%1'}] new proxy client
TCFP {10553*127 0.0.1:80, peerwlz? G. G 1:50155)

2013~12~ GETlO 44:24.0%9372 li~ge-esxb.vmware.com Rhttpproxv:
[2B89B20 verbose 'Proxy Reg 46685'] The client closed the
stream, not unexpectedly.

Dec 2 18:48:29 strata-ve 2013-12-02718:48:30.,2737
L/FAZ2448R700 infc 'commonvpxLro' oplD=1947d46£9] [VpxLRO] -
FINISH task-internal-2163522 -- -- vim,SessionManager.logout -

2013-12-02T18:48:51.356% stratz-esxl.eng.vmware.com Vpxa:
65B5ABS0 wverbose "VpxaHalCnxHostagent' opIbD=WFU-ed393333]
WaltFGrUgéatesDDne} CDmpleted callback

e el T T T 0T ldholodlooffinolicoliodononondonmittinkoifeictbinkinintliniloomiloleisl el]

2&13*12 02T18:48:51.3%807 strata—-esxl.eng.vmware.com Vpxa:
OOBOARBSD wverbose 'VpxaHalCnxHostagent' oplID=WFU-ed393333]

WaitFeorUpdatesDone] Starting next WaitForUpdates () call to

hastd ” i | f204

201353-12-02T18:48:51.3852 strata-esxl.eng.vomware.com Vpxa:
| 65B3ARBS0 verbose 'vpxavpxalnvtVm' oplD=WEU-ed393333}
VpralnvtVmChangelistenar] Guest DiskInfo Changed

Z013-12-02T18:48:51.3852 strata-esxl.eng.vomware.com VYpxa:
 0OB2AEBS0 verbose ‘halservices’® oplID=WFU-2d383333]
VpxaHalServices] VMGuestDiskChange Evenit for vmi{é) 59

2013-12-027T18:48:51.3952 strata-esxl.eng.vmware,com Vpxa:
| 65B5ABS0 verbose ‘hostdvm' oplD=WFU-ed393333}1
EVpxaHal??Hgstagent} 59: Guestinfic changed ‘guest.disk’

; 2013-12-02718:48:51.385Z strata-esxl.eng.vmware.com Vpxa:
 0OB5ABS0 verbose 'VpxzaHalCnxHostagent' opll=WFl-ed3983333]

VpzaHailnxHostagent::ProcesslUpdate] Applving updates from
L3718 to 123719 {at 123718)

||||||||||||||||||||||||||||||||

2013=12~02718:48:51.39572 strata-esxl.eng.vmware.com Vpxa: |
L 0OBOABS0 verbose 'VpxaHalCnxHostagent' opllD=WFU-ed393333]
| WaltlorUpdatesDone] Received callback J

2013«12-02T18:48:51.36072 li~dev-esxzt.eng.vmware.com Hostd:
L 01l7C1BE0 error 'SoapAdapter HTTPService'] HTTP Transaction

ey e
e

FIG. 12

US 10,810,103 B2

Sheet 14 of 77

Oct. 20, 2020

U.S. Patent

8lLEl

0cEl

el iy ey

ik 2

¢l 9l ”

el o Ty ——
st a8

i_i__“i v,
o o

ueudio [pspasoxe pIoyssiylzet L9

| J0138JUASIONAB SN0 Uids
aupuswBBeuew aNanb/o0LIAXE)A |
[LogzuIgssenanb)|owIoN-18AE)

-eNIAZE L €02 €1-6-F) 02

/
e

y,

/@om_‘

i

U.S. Patent Oct. 20, 2020 Sheet 15 of 77 US 10,810,103 B2

clligtier
gistriputor
0
“

1412 | 1413 7 1418, 1419 , 1420 , 1421 1422
A\ L/ A A
e e
- — — =
1424< [' — — —]
L TT] I T 111 L]

FIG 14A

U.S. Patent Oct. 20, 2020 Sheet 16 of 77 US 10,810,103 B2

/ 1430

first message

cluster
distributor

1434
/

FIG. 148

U.S. Patent Oct. 20, 2020 Sheet 17 of 77 US 10,810,103 B2

receive next \

I message \\
/ \
j | ‘x
! \
/
1
/ 1446
/ L7 \
/ ; compute metric m \
I \
;o \
;] \
/ | a
1440 ! !
! 1 448 |
/ i / |
/ 1
second / 1 . N :
\ assigned {0 ex- ~~. r
message i \ ting cluster? \ ;
——_—-—.:-"'-{ “1
P e N h! ! f"
- \, \'.\ Y r ff f
1/ Cluster L ~ 7 e ;
’ " : ™, -
. \distributor] 57 - il
\ 4 s d ™ - : ” - d
N A— A e A -
’ y
.-'" d /
1434 Sy
y; /
/ 4
7 ’
g !
Iy !
r !
4 /
/ /
/ /
/ /
/ /
/ /
! !
/ /
/ /
! !
/ /
/ /

1436~ =~ S 15 FIG. 14C

U.S. Patent Sheet 18 of 77

Oct. 20, 2020

1506 x

US 10,810,103 B2

2014~05-29 | 17:15:37 xServer 35-A-102 NIC 1635.4A67.8FAL :f 15072
| transmission fallure -- [194.16.223,2], [196.216.250.1307, |
;[?12 83 136 ?6] |
1510 « 1511 \ 1519 \[, disregard white space / 1518
2@14w05 29 | 17:15:37 xServer 36-A-102 NIC 1633.4R6? BFAL
transmission feilure -- [194.16.223,2}, [196.216.250.130], — 1904
{112 88.136, 75} |
1510 1512 . 1518
L initial token recognition
date fime 3 MAC address
o
2514--135 55 : 17 15137 xServer 36~R=102 NIC 1633 ﬁam ‘gFal | 1518
transmission falluze -~ [1894.16.223, 21, {1946, 216 250.1307, f”ﬁﬂ

[112.88.136.76]

disregard punctuation, separation symbols

b1 Py
2@14&-&5“‘29 { 1‘3*15 3? AServer 36-A- 1@2 NIC 1635 rﬁlAa’? EFRI 1520
transmission failure ~- {194.16.223,2), (196.216.250.1301, |—""
[112.88,136. 75]
second token recognition
N2
2@14 GE é? 5 i*? 15 3? roerver 36-A~107 NIC 2._,635 -'-IRE“? 3}5’31 1524
tranamlsSLQH fFailure —- L154{16,243'23, (186216 250713067, *’gﬁﬁ
{1i2.39 135 ?61 E
1524 1522 523
parameterization
v ,L
Pl P2 xServer 46-A~102 mr:
Lransmission failure P4 P 1526
P& { |
1531 ! 1532 1528; fnalpass 1929
k4
[Pl P2 xServer 36-A-102 NIC B3 T
| transmission failure ré P5 | F1 o= 2014-05-27 date
/} PG P2 = 17:15:37 time
EE"E = 1HIB.ARGT ,EBFAL | MAC
1534 | _
P4 = 194.16.223.2 IPv4
/ips = 196.216.250.130 IPv%%
F'G 15 1534 P6 = 112.88.136.76 | Ipva

U.S. Patent Oct. 20, 2020 Sheet 19 of 77 US 10,810,103 B2

/ 1602

token= [| [| | [[TTTTTTTTITITTTT] =8

123 4 5

C A= 18 S,
B, = A
A, A DS,
B, B @A,
1604 «
A, A DS,
B, B, @A,
A = A @S
. B.= B_ ®A

where x ® y = (x + y)mod 65521

/1606

Adler (token)= | B B“l A A

US 10,810,103 B2

Sheet 20 of 77

Oct. 20, 2020

U.S. Patent

[Jr.”—

_T.
)

N-tﬁ

ﬁ (1)
(1L)3

)

A=

- (1Y

(L))

(L) |

(L)Y

c0L) \

_ ()]

|
_ L=t _ Avﬁ _

X low

T O |
&)

| 09

()Y

:‘m Avﬁ ~

vOLL \

US 10,810,103 B2

Sheet 21 of 77

Oct. 20, 2020

U.S. Patent

ANt L EARN - CAT o TAIN =

9091 ~

A
NE\

d3l 9l

V38l DI

708) \

US 10,810,103 B2

Sheet 22 of 77

Oct. 20, 2020

—.”..v” A~ —

U.S. Patent

9181

J81 Ol

=P PN =P I010A JUAWAORASIP JO Y)3Ud]

v

Vgl
P=A—n

APUB T SIOJIIA JINILIJ JOJ JOIIIA JUIWDOR[ASIP

@ |

o

Q

= ol 9Ol

=

. f f _m_ 8061

w A vawEm.ﬁm B :Lv b

S O + (,omeay,) OIPY 4 of = Y

m 0 + (,uorsstwsuen,) 12|pY 4 d = Y

w O + (WDINW)PIPV I =Y} 906!
O+ (,Z01-V-9€.) 0PV 4 I = Y |

S O + (. JOAISX,) BIPY s« d =Y

2

(oanyrey ‘vorssrwsuen ‘QIN ‘TO[-V-9€ IARSX) =L, voo:

[
Xeul 8Iv

(35%0 pow | 5 +("3) 1PV || =(.L) 7

U.S. Patent

U.S. Patent Oct. 20, 2020 Sheet 24 of 77 US 10,810,103 B2

t Y STV
u | o202 | v, | 2004 usvs | 2008
u, Vi | U,~V, |
| 117 V’.‘-’ u? V?
- l‘ '[—
u” Vﬂ uH-VH
e L
. M u-v=d

whenu,=v;,, u;—v, =10
otherwise u;—v,#0

1

1 /2010

o008/ o Vd'-d = (1-1)+(1-1)+0+(1-1)+ 0+ 0---+(1-1)
1 = number of non-matching vector elements
,[O
1

1 FIG. 20

U.S. Patent Oct. 20, 2020 Sheet 25 of 77 US 10,810,103 B2

event message
normalized
2142 event 2142 2143
message 1—4‘7' _4
2012 ™ [creale new cluster T "
\ J, with index 7/ = + 1 yse received i
v, | and associated ——jevent message

| feature vector v, B
2124 4 A process event
f i v d 7 < thresholc Y_,message usingfi
> ¥i; n function and usef ~ 7140
/ | e resuliing event /

2136 e o e . o ______remfd | I

=

select cluster ;
and store
record

o I F
L -
i i

.

b

1

1

h

rrir/Pagepletgignge I'H

21184 — _ |
F_j — —

T T

_-.i“ T F g o S
e 2 *ﬁf‘* Py L o gt
3 b } e
|
Tt ' e P r Ciiiae a
! *r pp———
w :t N 1

]

2120 "’/m o D] Dl [ve] [vz] m@
p172 100 I3 000 () (D) (D) (03] (D% () [0 (I
2124 M/%T} Tg‘i ks f4£ ..;fﬁ £ | f1g

T
5"“7
"f’ﬂ:-}

E

=
:”iJ

g f§

C3 Cq C 5 Cﬁ

C, G
2106/ \ \2109\2110\2111\ \211 \2115
>0 2108 2119 2114 2116
/ FIG. 21

US 10,810,103 B2

Sheet 26 of 77

Oct. 20, 2020

U.S. Patent

90¢¢
\

|+ :.U. _:.U

p0ce 3UCC
O

mU mU _U

/|| V]

a] Cat] [fa]

EA _ b Ta _ ! :ﬂg

¢¢ Ol

EEIE

'al} [Ca] [Car] [fard]

Y

US 10,810,103 B2

Sheet 27 of 77

Oct. 20, 2020

U.S. Patent

90e¢ ; ¥0EC
i

MDD Py 0 Ty 19

7]

Farl fai] Fai Pail
R /v fnzw fnze flaus

HEH HHEAH

“EH HEEE

| vy _.ﬁ |

iy ﬁ ‘ _ . ;

?EU ;+tou — @.Eum_ Em_...,m__v ’Q aIslM
10

fertiry “1in) ¢ (A) 7G BISUM
¢0EC

U.S. Patent Oct. 20, 2020 Sheet 28 of 77 US 10,810,103 B2

event record Ca ~ Cup '
2404]
T/ N T

initial cluster | —_—
determination | .
2406 table-driven
\ cluster-

r- 2414
determination /
refinement mtype static portion

L Vs | | Vo | L Vs |
D! [ID;] [ID;] [ID.] Dy} [ID,] [1D;] [IDy, 1D,

fl | f! f fB f-:l fﬁ I: f.f, l f]r ‘ fg f-g f] 0 f,;

US 10,810,103 B2

Sheet 29 of 77

Oct. 20, 2020

U.S. Patent

._..._.q”_ ._.ﬁ_._._.

FLdT
it u ! _H 1L O F@N
gl ff/g‘ N
i u ! _H \\ + .w«
vadl N w
p] —= BANTTRF UOTSSTUSURITY,, 9L79€T 88 CTT |VAdI]
e\ DET "0GZ"9TE 061 |[bAdI
40IN Z0T-Y-9¢ I=2ATag¥, ¢ £ CC ST "Tel |padl
oUIT] YA8 T LOWYE "HEOT vl
PV LE-STLT [=2WTh
31epR FLOZ/62/G |238P
| !
| N _ X \
B ﬁ X - ¥08e
AN
LGe mﬁ _
- - .
(94 9C€T 88 ZT1T]
“TOET 0GZ "9 —— VINTIBR] UOTISSTUSURI]

2°%6T] ‘{2 €22 9T %61l

DIN CO0T-¥-9¢ I8AI3CX LEGT: LT | 6Z-G0-%107¢

c04C

e ol

80G¢

US 10,810,103 B2

Sheet 30 of 77

Oct. 20, 2020

U.S. Patent

d9¢ Ol

_H_NO T — mEO
SﬁQ G E_Q

NN@N DOCTy «— cEO

ey o1y W} e— 25 { Jig — 29

L
L
L
-
L
-
J
3
y
L
a
L

0292 _

V9¢ Ol

mEO (4g} __T....,H vmmpm N: vmﬁw — 001N

%FU Comine EU

0Ly — Ty

U.S. Patent Oct. 20, 2020 Sheet 31 of 77 US 10,810,103 B2

2630
Cz — Sy } I S2 — {Caoo, Croz, Caog)

2632
/

2634

2635
2636

Cooo — Saoo{ } H Szoo — {Csoo, Caot}
Coot == Sopt{)}/ S201 — {Caog, Cao1)
Caz — Soz() #f Szo2 — {Csoo, Cso1)

Ll L

wpr

2640 \ :
Co — S) /1S 53— {Caop, Cao1, Caoo, Caot. Csoo, Csot}

2636 \ Cavo — Saool)/ Saoo — {Cao0, Cz01} i
2636 \ Caot —= Soot{)/ Szo1 — {Caco, Caor}
Cooz — Sz } Szo2 — {Csoo, Cso1}

e o

2040 \ :
Ca — 32 } /S 2 — {Cano, Ca01, Caoo, Cao1, Csoo, Cront}

/ 2042

FIG. 26C

US 10,810,103 B2

70L¢
™~
0~ . .
Sy
e P\p\0Z (raquisosglisquienon|isqojapbiaquieldasshisnBnylAinfeunclAenfiudylyoe|Arenigailienuep)sipiile-0l | 7102 ‘Joquieosq ¢
7 ”
@ piP\0Zs\aaalronfooldesibryfinrlunp|Aepjlidylep|gadiuer)sipélc-0] _ 710z 990 €|
s 9,
DP-PLe-OmG (L) | 2ad
<
~ P\P\OZ PiLE-0hs\(1aquisoagliequisronliaqoophisquisideghsnbny|Ainplaunp|Aepiidyiyorepy|Aienigadlienuer) | ¢1.0g ‘gl Jaquiasag
= cL.Z 777 /
> iz ol CHE 0L/7 p\moz/ele-olmelLlo) \E%:ﬂ
- B g A . |92z
PIPL0Z P\ ¢ [€-01 4 (oaqironhooldesibnylinrlunpifeilidylienlgs luer) v10Z €1 98C
GLLZ “ _
80.L¢ \ UOISSaI0XT Je[nhay 90 N_N 21E(]

U.S. Patent

¢0L¢

O & © © 6 6

US 10,810,103 B2

Sheet 33 of 77

Oct. 20, 2020

U.S. Patent

d.¢ 9l sejorieyo jndui w6ip = p

191084249 Indul 3BI-UoH = d

QL¢ Ol

0Gl¢ — ml:l.__h Ll = suotsod
g g — =

‘(suonisod ‘s '4)puyy = unu

O R = suousod

N IRCIEICI AL I ANEIEED B[] T PTITATBIQL [ZToTif [T

Y 7 B
76/2 6612 9617

8V.LC / VvLe /

o[d[H[F] =¥ \ommm

CuPAP\P |, =
.9|dwiexd

D.__.\NN _— Am:DEmOQ JUI 'S m:Em ", :G_mmmaxmt_mnﬁmmﬁw oUK WU

WLl /

cvlc /

aunnol /ndwos ¢ V40 € VAN ¢
0.2 "
QELC \ a9€/l¢ \ vele \

LN d.¢ 9|4

LoIssaidx3 Jemnbsy

AN \

PP\ 02 ¢ (/Isy) éle-ol sé@mw_e,Tmnsmumaﬁmn_,Esmaz,az__gDﬁo_ao_Esgammm%mﬁ:m:%:%:_,__=_,_m,s_,,g_,__ﬁ_,____E%%_;e_m.s__._mzhameﬁu__ﬂﬂ_amamﬁ___mav

02/¢ /

©re'@ W

PAPL 02 &'P ALE-0] §\ (1equiadagloagliaquianon|aonlisgooohiaoliequisidag]daghsnBnyiBnylAnr|inpfeung|unplAepldylidyiyorebiep| ienigeige4ifienuerjuer)

® ™ O

US 10,810,103 B2

Sheet 34 of 77

Oct. 20, 2020

U.S. Patent

V8¢ Ol

Jabajul

i

Jabajul paubis

e iy B,

EIITHITR =)

1

-

IV

JYIN

PAdI

pAgl

FAd]

yAdl

auwp

s

auu

au)

9}ep

ajep

alep

alep

\ toIssaldxs Jeinboy
¢08¢

adA| 81e(]

U.S. Patent Oct. 20, 2020 Sheet 35 of 77 US 10,810,103 B2

2800
S

\ 2804

sfring

/2812

FIG. 288

FOW

/ 2808 / 2809 / 2810
length

iIndex

U.S. Patent Oct. 20, 2020 Sheet 36 of 77 US 10,810,103 B2

2902~

1903 Error nhttp://abc returned 501
T—Error https://pgr returned 501

2004 —— EBrror nttp://abc returned 404

290 /T'”“G'f https://pgr returned 404
9

FIG. 29A

arbitrary in-cluster message

rror hitp:/fabc / g
in-cluster megsage | returned 501 in-ciuster message %
Error: http:/fabc Error: hitp:/fpry @ é
specific boundary S: returned 404 retumed 501 % @
, D
all regexs above this [~ " hitp://abc Error {.*) 3 &
boundary are too Return {.*} retumn 501 2 &
specific {ie don't _ N I ﬁ ©
match some in-cluster -7 >« 7 Ny "B
strings) . - L
_—| Error {.*) retumed (.*) | correct regexp
2912 e
general boundary G: 1, Wi g) N -
all regexs belowthis N, .7

boundary are {oo — N =

specific (ie match (") 501

some ouiside-cluster

strings) outside-clust outside-cluster message
-Liuster message Error http:/fabc

Waming no such file foo

(sabesssil aI0W Sayoew)
jelauah aioul

rettrned nothing

“*\ 2910)

FIG. 29B

US 10,810,103 B2

Sheet 37 of 77

\ 3004

FIG. 30

Oct. 20, 2020

o L
)
O3 = L o)
/.. {0 2
— / ok o
/ f-
L D
sl wleras® [M-
T
.n“.......... b ; e wk -
o o - | <> -
) ap L €Y { - | e
9 =
- !
S ——— "
-
I - .
-
11 G B -
]
Lo R - R ¢ & ad CF I o e
E
m 10 T e 4% B 0 e 110 o
mm” D W ! E N 1 o W & vl Q
. e O O3 .. N T | — 0 e 3 .
= N o) S we BN 4 § - o3 D TR N 1 ST .r:mui,
CR I e ¥ LE I S v | Sl - i | F -
Lh T e S Lve SR A e O IS L _FIE..EE Eos SRy & B e | —_ {5
. 0F wew e LLE 33, £ e LEy B 8 we 3 I T - v L
&0 o e
Ko - k.
o D 2
| &5 ISE e
o | e T
> | ” .
Ty _ L~ wr- 0k] L o] b B v
% - - - o Ll -~ RS _ TR A
m EE .ﬂ.._q.”v..._.._.,HF 5._.._.!.. = A = [g.nw
m @& v - G ¢ @ v o W PR T o B oy 0 oe— -
- W— 3] » L] ">
e — &) O < - Eﬁ-l..lw.!ﬂl. e 1) .z e o= Ty .oy
W .IEHEE— LD @ o o - XM D Oy = I L G Ay — /./
%_ 0 e e N oy T B T e .ﬂlirt.ntwﬁd on IR Y o S 2
m b e D t R Al L bl I B ey -

U.S. Patent

U.S. Patent Oct. 20, 2020 Sheet 38 of 77 US 10,810,103 B2

3102 apply regular
/ expression * *
Error o
lFa bolou o1 e a i 1
address 18%4 § - —> @5‘.223;2—] > 111.03.06
16 2 23 . 2 a i \ \
1 :83:06 _ 3110 3111
Er r or
IFa it uvr e a t
/a ddress 1894, ——> [194.16.190.36 | —> [11.04.12
3103716 . 190 .36 a f o
1 :___E]_i 1 2
Error o
Fa il ure a i
/:a ddress 194 —> [194.16.36. 45 | —> [12:22:51 |
31047 116 . 35 45 at
12:22:51
Eor r—;_; o
Fail ur e a t
address 202 ————> [202.169.172.39 |—> [12:10:44]]
3105/%69 T 72 .38 @
it 1210 4 4
Error
[Fa i 1L ure a t |
laddress 320 .| -~ [320.30.65.192] > [20:16:02]
3106/?3[].55.192 a i
c90 16 02

FIG. 31A

U.S. Patent Oct. 20, 2020 Sheet 39 of 77 US 10,810,103 B2

194.16.223.2 | = {11.03.06 | = [ipva | = [time

\3‘!10 \31ﬂ ;3114

194.16.190.36 | — [11.04.12] — [ipva | = [time
/3118
194.16.35.45| —> [12:22:51] — [ipve | — [time

1202.169.172.39 | —> [12:10:44 s l1pva | — !time

320.30.65.192| —> 120:16:02| —> [1Pva | — [time

-1G. 31B

U.S. Patent Oct. 20, 2020 Sheet 40 of 77 US 10,810,103 B2

3202
Error Failure at address (.¥)at (.7) —

e

_Erm_r Fgﬂiﬂ]ure_”atl ad_c_i_r_ess (.} (IPv4) (%) at (-*).(Z‘_"E?) (.*)

J J

3206 3208

FI1G. 32A \
3204

3212 . |
|FPv4 | 3210
314 b _— -
\ time
2917 / data-table template 1918

FIG. 32B

US 10,810,103 B2

Sheet 41 of 77

Oct. 20, 2020

U.S. Patent

vee Ol .
LA - OOO,,/
RN . \O \
5muO I >0 O ,,_
#/ %O O\, L .,mwmm\ #/ > O%%_
/f@..@\\ \\\. %ﬁmvuo.f// // () \\
oee - e O AN\ s T -
/ O 0O = / 2P
| OO | /o © ;
_ O~ O ;O O\
— _H“,,O OO \ | O OQOO#
e \o A9 o / T/O oXele,
\ O SOL 7 N O. O ./
AN O s0ps D~
\\mo,;m/x/ momm\\fr..lua \\\xm,f,ﬁ/
\\O OO/ _\\ %Q /,,
| O
| //ﬁv () O\ | ‘l _// O OO\\
- _ ~O 7 21ee O Ov

U.S. Patent

Oct. 20, 2020

Sheet 42 of 77

US 10,810,103 B2

time of critical

.
I / s34 /

temporal

. Neighbornood
of critical event

avent

3342

3346

FIG. 33B

event-record [og

3330

U.S. Patent Oct. 20, 2020 Sheet 43 of 77 US 10,810,103 B2

| Ate
... — | {.03, 1.2}

F1G. 34A

U.S. Patent Oct. 20, 2020
3440
N TS
—_ dre.gs
— - At 3.75
- A1 0,35
mis
oy “ J
—x At 1.05
3441 §
' e Ar3.15
miy
- At 0.65
,

At 15

At 2.75

At 1.65

Sheet 44 of 77

US 10,810,103 B2

At €{0.1,1.0}

At{2.7,3.7}

At €{0.3,1.6}

F1G. 34B

U.S. Patent

4

3906
/

Oct. 20, 2020

3908

Sheet 45 of 77

- 3502

US 10,810,103 B2

FIG. 35A

U.S. Patent Oct. 20, 2020 Sheet 46 of 77 US 10,810,103 B2

FIG. 35B

1
3513
7]
W

U.S. Patent Oct. 20, 2020 Sheet 47 of 77 US 10,810,103 B2

FIG. 35C

5
3519

3518

35621

U.S. Patent Oct. 20, 2020 Sheet 48 of 77 US 10,810,103 B2

N~
1 ©
T ‘-
1)
ap
Wm =
O
N
o
L)
<)

/ 3530

/ 3528

U.S. Patent Oct. 20, 2020 Sheet 49 of 77 US 10,810,103 B2

T3
+ 2

/ 3538
g:
&

| TS
|]

e
3 [l TS
m\\ﬂ* | CLS%
0 } .
|- O
] LL

T3
[+ 2

/ 3536

Tt
L

i

- T6
{+1

e A i

T 2 FRPIET |
1

16

T1
1

US 10,810,103 B2

Sheet 50 of 77

Oct. 20, 2020

U.S. Patent

?.H.. .
3l

3!

2451 \

45¢

Ol

U.S. Patent Oct. 20, 2020 Sheet 51 of 77 US 10,810,103 B2

%} - F I
LS e B BN
o poss | A
| gy
\ @
e RN
) T
Ak LD
o oM
1 m -
~ |- O
| | Ll
e <
o ;ﬁ +
A Gl
LD
b | O7 &7 g-}‘:
oA
. \ :
E :
o =
~— | |
ol BTy
..
£ § O] e
- :I —
L
T
L
<

T2

U.S. Patent Oct. 20, 2020 Sheet 52 of 77 US 10,810,103 B2

T2
[+ 3

T1
1

T3
KAk

T3
f+2
FIG. 35H

T2
1

o

3530
/

T6 |7+ 1]
-

U.S. Patent

Oct. 20, 2020

event message
ProOCessing

Sheet 53 of 77

- 3602a

3602¢c
queue even; |

US 10,810,103 B2

3602d
/

newly message for typin -
received event gand ek signal event|
mesgage fransformation to message
- __eventrecord |
N
3602e | ;
new event queue event record signal event
record for processing I " “record ';
v 36021‘/ 36029 / v
-\ 3602h
, !
default handler | |- 3992
3602
more
events
7

FIG. 36A

U.S. Patent Oct. 20, 2020

event record
prer:essmg

monitor _counter = Dj
mem counter=0

event record

- dequeue
| availabie event
records and
place in memory,

indications in
memory {0
associate the

current system
time with the

event records

v

monitor_counter ++

1 1

- waitfornext |_— 3604b

Sheet 54 of 77

seting | _ 3604c¢

B up(fate _— 30044
counters

US 10,810,103 B2

FIG. 36B

counter >

Y || memary

fhresholdZ

malntenance

— mem_counter = {

3604g 3604h
Pr , A

S Y || monitor || _|monitor_counter=
< | |
| U :
l b
mem_ counter ++ o
1Y - 3604m 3504 /o /7

b |

U.S. Patent Oct. 20, 2020 Sheet 55 of 77 US 10,810,103 B2

update counters

set sliding window
| rgarkeqc to crteate a X
window of most recently
stored event records, | —" 30063
with window including at
most M event records
received with the
preceding N units of
time

o

fo;%éééh'ev;?m”rec%rd i |
rom most recen 3606b
stored to least recegtly —

stored newly stored
event records

>
Y ——

for e-ach event record ; 3606c
from £ + 1 to final event |~
record In window

determine event tyb"es 1

; 3606d
' and ¢, for event records —
| i and;j

Jtt Y event records in
window?
3606
N _ 3606h
) bt Y ~"event records in

ewly stored even
records’”

FIG. 360

U.S. Patent

| types ¢; and #;

Oct. 20, 2020

(o

R T

receive event

are
one or both
of z; and £ on
heartb?eat/ list

N
—

search for |
counter for ¢; and

find unused

counter or, It no
unused counters, - 3600t

the least recently
Updated counter

mm

| set counter (o
. count ¢; and ¢
. CO-OCCUITENCES,
. setcount =1,
i and set access
| time {o time
|associated with ¢;

Sheet 56 of 77 US 10,810,103 B2

—— 30082

- 3608b

Update count
and access
fime within

counter

T

_— 3608e

FIG. 36D

U.S. Patent Oct. 20, 2020 Sheet 57 of 77 US 10,810,103 B2

memory
maintenanc
v

t = time associated 26104
with most recently |
entered event |
record

I T

i = either address of
first event record
with associated time| _~ 3610b

t;, forwhich ¢ —¢, >
N, or -1, when there
| i no such event
record

j = either address of|
event record that Is |
separated from the

maost recentl
entered ever%{{ P Jo1de

record by M — 2
event records, or -1,
If there is no such

event recora

' - 3610d

d = closest of / and

7 10 address of most
recently entered
event record and

between most | _~ 3010e FIG. 36k

recently entered
event record and

end of bhuffer

v

move event records

.

shift remaining

3610t from d to end of In- | .
™~ memory buffer to ? en_trl[es Dtr bliﬁer - 3610g
long-term storage or ,| POINIErs 10 piace

to another memory remaining entries at
for further - bottom of memory

processing | ___burier.

U.S. Patent

Oct. 20, 2020

monitor counters)

determine set 7 of
event types included in
at least one counter

4

nrepare a map, map(f),
. that returns a unique

- index for each event
type in 1'inrange

[01 |TI i} 1]

Sheet 58 of 77

deallocate unneeded
co-occurence matrices
and allocate a new co-
occurrence matrix S of

dimension |7] by |7]

T

for each ev;;nt type i in

CP (S, i, T, map())

more
event :gypes]

US 10,810,103 B2

FIG. 36F

U.S. Patent

3014¢C —_

3014d —__

J014e —__

Oct. 20, 2020

receive S, i T, and
map()

;' determine set of
event types U/
nalred with 7 in

counters

Y

for each counter ¢
that includes i/ and a

____E?mbe" of U, u

estimate P(u\)as
(value of counter i)/

1o

Sheet 59 of 77 US 10,810,103 B2

_—3b14a

_— 3014D

3614

lace i on
heanpeat-event list
and remove all
counters containing
/

3614h
~

variance <
thresQole

determine variance
of the estimated
P(uli) values

store P ulg
estimate in ,H

using map()

F1G.

3014f

306G

coungers C

U.S. Patent

Oct. 20, 2020

prepare {able of co-
oceurrence

 receive Tand S,

| allocate table of co-

| oceurrence C

delete from T any
event types on

heartbeat list

for each event type :

fremainingin 77

store at most L
entries In C for ¢
with greatest
estimated

conditional
probabilities

selected from S

store Cin set of
timer ordered and
fime assoclated
tables of co-
occurrence,
removing any no
longer needed
tables of co-
occurrence Iin set

Sheet 60 of 77 US 10,810,103 B2

_— 36164

_— 3b16D

3616

_—3616d

_— 3616t

F1G. 36H

US 10,810,103 B2

Sheet 61 of 77

Oct. 20, 2020

U.S. Patent

9¢ DI

(2En)d | (UPn)g Tﬁm&i (Mfn)g | (g

_m | tm | tm n 37
Oilrn)d E_m&i (n)d | (4'n)d

Fri LH CH ¥i
ceog — ﬁ |

U.S. Patent Oct. 20, 2020 Sheet 62 of 77 US 10,810,103 B2

dentify
transactions 1

| recelve a reference

| to memory buffer £ | _— 3640

containing event
records

determine set of 3647
event types 7'in E ""’f

remove from T

those events not | _— 3644
occurring in table of
CO-occurrence

h 4

for each event type |_— 3640
tin T

%

Y

ﬁndlonggétseto{
Co-0ccurting event- I S
3647 —__ tﬁgﬁ . with otain o0 3630
-
th,é;ﬂg)ld candidate -«
.......... transactions in CT

store found set as a
candidate

transaction in set of
3648 —__ candidate

transactions CT more?r nz
ordered by a score |
that considers 3649

length and T1P(uif)

F1G. 36J

U.S. Patent Oct. 20, 2020 Sheet 63 of 77 US 10,810,103 B2

event records

s 3702

— 06
3716 vmH01A /
B - transaction trans‘action
2708 value
4/ h\
]
/3709
— | 13 > vmBO1A
3704 3710 | |
| Ivm501ﬁn 5 / J
- 712!

FIG. 37A

@\
= 72 : /|
3 7 S
= /| R
M mNm @_H_ | SUOINCESURI] L_,,m\m .u@m Lo | fo
" 42 VRV AV
7» _
7 suoloesuel] e Pelt
— . . 1alnuap! play \
~ a2 |- e o | fra w iz M 172 fra “ S lwnu | 00— —
e~ | / adA} pJonal-Juoas
= e g) e
2 seie” VL6 oy e &
2 . m ¢ | 0
9 |
;e [[a [[
| k |
—
= N,ﬁm\
] A
> (1oB83u1) YON
C e R ~ (ebau O RN gzse
~ _ _ _ w ”.— 7 | m E | _ M . .. o o Nmm:“mm.., J7/§
LSaneA
6CLE \ (181muap! pistl pI09aI-uUsAS) plalj JGLE
— N\ " G2LE
(adA} pial piooel-jusas) adAy

(T TIIIITIIII 1T [l rodf; PIOSBI TR mﬂaﬂwmm
72.¢
026 /

U.S. Patent
N

U.S. Patent

Oct. 20, 2020 Sheet 65 of 77

. find transadions)
receive a reference

3802a
E 1o stored event "
records

generate alist L © 3802
! common event- |~

record types

l

aliocate a set of | 3802¢
candidate field sets ~
S

— e ——

ﬁnd dentifier ;| 7 o
fields (L, E, FS)|

|-|.|-|-|.|.i

3802e
find

dentifier fields N

returned true
7

Y

T denty 3802

transactions

| B EL)]

Y

deallocate L and |_— 38020
FS

3802h

F1G. 38A

US 10,810,103 B2

U.S. Patent

Oct. 20, 2020

find identifier fields)

receive:
| a list L of common event types;

%records E:

3804f ~_

a reference to stored event

a reference to a set of event

an event type, F.type;

a field type, F.fiype,
a field identifier, Fi.field,

a first value set, Fi.values!

a second value set, Fi.valueZ;

Fi.OK; and Fi NOK

Y

maxlter = value for
maximum number of
terations; upperT = upper
threshold number of
identifier fields: JowerT =
lower threshold number of
mdicator fields

numliter = 0
sRegions = @

-

while numliter <
maxlter

i

records candidate field sets FS, each |
field set F; in S having:

33804¢
/

Sheet 66 of 77

3804b
/

' 3804d
/

| —

candigate
selection (L, £,
| FS, sRegions)

v

numlitert++

>

- 3804e

/ 38049

1

evaluate (FS, |
upperl,
lowerT)

US 10,810,103 B2

FIG. 38B

3804k
pd
fiX-up

returned #rue
?

fix-up ('S

upperl,
lowerT)

numiter <
maxfter

avaluate

returned #rue
?

U.S. Patent

Oct. 20, 2020

@didate selection }

receive L, E, FS,
sRegions

—

éé'!'ect a next |
window of event | - 3806b

records in £ not
already In sRegions

I
sRegions +=
selected window

e

| pt=median

| timestamp value 3806d
| associated with ~

event records In
window

v

for each event
recordein &

|- 3806¢

P 3806e

3606h ~__

i Y

extract fields (;[33806

filter fields (FS) | —

Sheet 67 of 77

US 10,810,103 B2

-1G. 38C

U.S. Patent Oct. 20, 2020 Sheet 68 of 77 US 10,810,103 B2

Cexta’act fleids

receive e, FS, L, - 3808a
pt

Fh ed F | 3808c

J-type an
identifier type
?

3308f
/

add Fito FS with
N Fl' ljfpé'f :_E?. fypej
Fi ftype = f.type,

ere an £ in
with F.type == e.type

and I fiype == Fi.OK =0, and
- FiNOK =0
/ 3808 E—
add field value to add field value 1o
Fi.valuesl d Fivalues?
I 3808h /
Y

FIG. 38D

U.S. Patent

Oct. 20, 2020

mitialC ount

 threshold

for each element

k= j_j‘-_j to last

for each element

jin vl from first
1o last

177
threshold

Sheet 69 of 77

(filter fields

| receive reference
| M

US 10,810,103 B2

38104

t allocate | 3810b
emporary value
“ ﬁsiﬁf rayn'd v2

v

ﬁ}?eachﬁ ; nFS

initialCourntt =
|Fivalues]| +

3810¢c

Ve 3810d

Fvalues?|

e

while Fivaluesl

fivaluesZ 18 not

is not empty AND |~ 38108

empty

7 from
Fivalues]

| select final value (3810f

aaaaaaa

jin
Fivalues2

remove j from
Fivalues] and

Va 3810

. - 3610n

~ remove / from
Fivalues? and
from Fivaluesl

3810k

add remaining
t values of
| fi-valuesa o vl

add remaining
values of
Fovalues] {10 vi

U.S. Patent

Oct. 20, 2020

Sheet 70 of 77

| evaluate }

Y

receive £8, upperT,

_— 36122

and lowerT

count = {)

_—3812b

US 10,810,103 B2

for each F,in FS |— 9812C
F thPg?;ﬂfd-? A Y countt+ —— 38128
b < threshold4
£ OK
2
Y
N
38120
< upperl AND N
count > lowerT return false
foreach £, in FS —— 3812h FIG 38F
- 3812
threshold3 AND Y 3812
FLNOK ool delete F; from FS
F.OK —
N . _ _ 38121
3812K sort IS by
Y N | FNOK
F.OK
in ascending order

U.S. Patent Oct. 20, 2020 Sheet 71 of 77 US 10,810,103 B2

receive FS, 38143
upperT, and —

[lowerT

h A

delete F; from FS ' __— 3814b
for which F. OK < 1

— h 4

sort S by

F.NOK __—3614d
F.OK

in ascending order

- delete enough F;
- fromend of sorted | _— 3814f
1 Fsothat |[FS] <
' upperl

¥
L el

F1G. 38G

U.S. Patent Oct. 20, 2020 Sheet 72 of 77 US 10,810,103 B2

(identify transé&iem)

receive 7S, a reference

Etostaredevent | _—~ 3816a
records, and list of

common event types L

_

for each F,in FS }/ 3816b o
B 38164 ™~ | supplement(FS,

fotobrinh il nty

S
” E T L)
randomly select values - 3816¢

for field from £ and I |
pEace__i_tf: Fiovaluesl
3816p ~_ remove any entries

from 7 with less than 2
everd-type/field pairs

A

36160

3816e

allocate a list of event- 3
field lists 7" of length

Bloo

initiatize each listrin 7

3816 ~ with & different event-
type/field pair from F§

'

3816 ~for each £, i in S from
first to last |

F — s |~ 3816m
3816h ~ foreach F,jin FS frﬁﬂ " i

3816n

i+ 1 1o last

vy . N
3816i - [sim{i, j, FS, T) ‘ ' mora%EnFS

rrrrrr

eturned by sim

threshoid
?

—»! | add (i, j, FS, T

F1G. 38H

U.S. Patent

receive i, j, FS, T

1

divisor =
min{|F.values |,
F.valuesl|)

I

COUIL ==

Oct. 20, 2020

Fivaluesl

foreach valuevin |_— 3818d

3818e —j‘ .
1 1'? Y
N F.values] > | count

?

vin F.values]
?,

retVal =
count
dIvisor

_— 3318h

Sheet 73 of 77

US 10,810,103 B2

T 3818

FIG. 38l

U.S. Patent

Oct. 20, 2020 Sheet 74 of 77 US 10,810,103 B2

(=

| receive 7, j, FS, ;L 38202

for each value vin |_— 3820b
Fivalues!
""" / 3820¢
3820c -
V 1

In F.valuesi

?

N _,laddvio Fivaluesl

values in
Fivalues]

add e/f pairs in 77
0 7;

_— 3820f

FIG. 384

U.S. Patent Oct. 20, 2020 Sheet 75 of 77

(" supplement)
—

receive F.S, 'E, | 382727
randL

v

create a map, map(), that |

maps each field of each event

type notin L, e/f, t0 a unique

linteger in [0, 1-N], where N is |- 38220

; number of fields In

- uncommon event types, and
the inverse map, map-1()

v

allocate a sparse matrix of
Integers A4 with dimensions 38220
L Txv-n)

v

' determine window selection | __ 38994
critera

fr.jf“é“a“u‘:":'ﬁbf I windows w - 382%¢

selected from £

S

foreach |__ 3899f
fransaction¢tin T

US 10,810,103 B2

3822 - 3820
field in ¢in 7 with Y for each field / with same
the same value B— value in window,
Mt map(f e)|t+

N e ——A AL S LA

FIG. 38K

U.S. Patent

Oct. 20, 2020

h 4

Sheet 76 of 77

for each transaction
tinTf

M7

In sparse matrix A7 and

Mt|li| == W

?

another
rinT
Y,

3822m

US 10,

field/event type =

map” (i)

310,103 B2

- 382n

add field/event type

to ¢

38220

F1G. 38L

_ 6t Ol

ssejo enel joa9h0) sseippeepou pessyiTeael uoisiea pinbucissss pnbTapou adA JusAe pIRBTISISND adAypEng Jagun T A Taeeer.

PR
el ok L oy P Plolir i b

3

K]
L ILE iy

Pl

[vo7a96002519¢9 Aianb pajaidica Ainy ayiom) {soinSiaYIoMUpIEBS60Y pINQUE SaRARUR BISUIBOpalemu o1 e PRISIS
(03N 2E'V0Z 291 0L/ ErEE-PeaIg-0Sseaid JaxiomypIeagboT] {0000 + Zee 90020 ve-id - SHL STSHOAT

~ - oo SILL ST JON SIU8AT
sse|y eael ana) bo| ssesppeTepou pesift el uosian pinbTuosses pinfepou edAMusne pinbTmsnp adArppng Jaqun B4 PPy
[pozass |

Aanb buuru pagsiuly] [eyaseag iy sandleve Bisudor siemwawod] [O4n1 28907 291 011 -Pea-sioyaieagBol (0600 + EZE00POZ0 §2-10GHGE] o0 TU oTUe

Lk Rk e o) P
L e

m
L my]

706%

paxapul sabessall i mwa ssepene] 99 Bo) ey erel uDisIeA u_mmaa_ﬁ@m oIng™ m.ﬁm ,mm@%ma%% Eajuma.wm,..,_m__,mm[hmﬁ;ﬁ mmbﬁ._ﬁ Jamunyg piing GO PO b8l
['apu) o) sabessaw ggc/) pRppy] Daxapuy SuxapurBisuiboraemunwod] [04M) 100 ZiMew - uwo)-z-sexapil] [0000+ £0S 04020 ¥2-10-5102) Co-104L0L

TSR T TP HIL

sy M Al g b
Ll e

; Eﬂﬁ@%ﬁﬁ:ﬁ SR JO SIUAS 0|
JOBICSREBHELRE=UDNO0] DS durjssy BSW AG BIOHO Bstl S AFB068CER A, DdRUaAR B GZS50Z0/81.2h Y090
=> CUBISSWN P YZ96.G19200hE =< dwrisamg WOHd bsw 1937138 :Aenb paneasy] feoinagissiopusieasboy payngussip sonfeus ybisulbo) aJemiun %Em WMW wm_ﬁww r
10JNI €€ Y02 20 0H/LEGTZ-PEAIYI-I0SSBI0IS SNIOMUNIESSE0T] {0000 + EIRE0H0Z0 bZ-10-6:02]

- - . - wopenp-paepdn
Q064 epow-mlsnjo ssep enel jars o) | Tpadi peangTesel uoisiea pInfTUOISSeS pINGTBDOU Ssalppe opou sdATuene pinBsisme SdApUNG sAquinu pgng 706 65-10-81

L o

US 10,810,103 B2

T PP AT A AR

~ 1995 950+ v perepdn (apow s2isnid] [rebrueos T 0o y005 WBisuBor alemua wos) [OdNI 100 2Z1/1L-PeaI-Rinpaydgo] [0000-Ev8'65:C0:81 SZ-10-Glog] BETHIEHIC

7 - e 3, et ep—_ 238 A

— mwmb_u;mnm_ﬁ- easi b0y ssauppeapou praigTesel uois:aa pinfucissss pinfiTapou adAMueas pbiseisnp adAmIng sequinuTpng e s

& ” *) | N ipananbus APeaIje 8l SISUIBD} £ 35neda(.m_”_w _@m,mm.mw

~ sauea] Mat e o) Buisnoy] g SIL 10 aten PUEMWAW09} [OINI 66802 29K 04/k-PRaI-/Ey-100d [0000+ZE1'066:0°20 bz-lo-gpoz] SEHOEHOE

- ShETenhesie T Sl Fanait (pUROXS) LIGNORSURT S} JO SIUSAS § ~ - _.i.

= TRETerE e (530 dursaluy few A9 ¥I0K0 bW S 29e0pPEYZA, 0K IUBA B /07196V0022) qeenarl]

L => QWIBISBIIN § ZO0EEZ0RGOLY) =< dueisown WO bsw 103735 Aiegnb pansosy] [eoegianiopmyoragboT painansip sondeuejybisuoraemunwos] SHA 85081

= o [04N1 €€'502 291 012pSzE-Peaiy-Iossesiq uaiopuseagbo] [0000+ v11 865020 pz-lo-gi0g) o WOSHIT [016¢
paxapul”sobussaE Y muwsA " ;

ssepo eael joaoy 001 peanpeae] uomoa pinfusissss E%:m?c SSRUPRE DpoU BdAIU0AS pIdTIeysnp edAyoung sequinu T mn 1L08Ge09L
["xepul 0} sabessal 507 pappy] [exepul Supapu ubisuiboyslemwawon} (048 ¥222'9b) DifEW L -Yuwo)-Z-9%8p4)]) [0000 + OFS £S:L0°20 &-E-Eu EZ-L0-61L02 _

poxapul sobessew I mWa ssepenel s "Bop ssauppeTepou pealu;ene] uOBIoA pInBrudisses pbiapou adAuaAs ombrisEne 2dApEng @QNLTDIRG 120956081 |
— W GOz pappy] [1exapy) GuwepuriybiswbBoraemwawoy] [0IN) ¥ Z2288b1 GLPeWEH- LU0 z-Jexapu)} Jo000 + LA /SC020 $2-10-SL07 CE-10-GL07
e~ CUERISEUE | MG e ettt et bt
N o deng A - - - - - AR |
o~ SPIRIE MONS Ao %mﬁu BARE |OAD) ._w_m mmﬂammmm_ %_mmm: &_mzm:%_mwmw pnbapou Sseppe opou adAj Jusae pinfiTivsnp A pING JBquny pIng JO0GEICOG
Eaaaul 3 1xapur Buap ubBsuborsemuA- WD OO0 A7 LASWNE JRULIG - | - QO -1~ -L{1-
= 306¢ TS 50¢ Pappy] baxapuy Bunapurybisuibo) JO4N1 Vo0 2w ruuiod-)-oxopul [0000 + 28695:60:20 v2-I0GLozt £2-10-6102 _
& ERE . __..__u.r Emﬁﬁm}w 14 30 o %Ew SPUBL] A sadd | jean JGE | L1 SIHOAT]
% e - DOOSOTPO'EL E2-10-5LOZ 0000 BS:E0:B) €2 L0-SL0Z } T el poy
8 B[] [o[- sweumwoms -3 1
fek-ibebpieh Wi b o P A Hr A A Y A Aaied b oy - w
a uum_.p____ﬂzw_ nnm T_ﬂ._. B | _ 18583 4 ~ BN .mm_._nmﬂcmbm wnw..,_crau _
50:50:3 1 GOWOHL YOY08 EOP0B ZO:b0:4L LOPHB 646081 T gmigogl |
.m - LR NP TR wire PP A e e “_“.‘. HHR—— " " H—" " e Iﬁ—.r
S (oes W_,.,* 205 g) =Jeq L (spuocesgl 000°90:b0'BE O3 COO'BSE0BL €2-L0-5107 (PIEOqUsSEQ) PPY)
P s ojuRRAUNE Gy “ SOAELRY SO -y _ﬁg PO sy Bopammup
- y : . o My R S A e -y AL A,) gt
- Z06€

US 10,810,103 B2

1

METHOD AND SYSTEM FOR IDENTIFYING
EVENT-MESSAGE TRANSACTIONS

TECHNICAL FIELD

The current document 1s directed to event logging and
event-log interpretation in complex computing systems and,
in particular, to methods and systems that process event
messages 1n order to type the event message, transform the
event messages 1nto event records, and identily related
event-message types and event-message transactions within
cvent-message streams, event-record streams, and event
logs.

BACKGROUND

During the past seven decades, electronic computing has
evolved from primitive, vacuum-tube-based computer sys-
tems, 1mitially developed during the 1940s, to modern elec-
tronic computing systems in which large numbers of multi-
processor servers, work stations, and other individual
computing systems are networked together with large-ca-
pacity data-storage devices and other electronic devices to
produce geographically distributed computing systems with
hundreds of thousands, millions, or more components that
provide enormous computational bandwidths and data-stor-
age capacities. These large, distributed computing systems
are made possible by advances in computer networking,
distributed operating systems and applications, data-storage
appliances, computer hardware, and software technologies.
Despite all of these advances, however, the rapid increase 1n
the size and complexity of computing systems has been
accompanied by numerous scaling issues and techmnical
challenges, including technical challenges associated with
communications overheads encountered in parallelizing
computational tasks among multiple processors, component
tailures, and distributed-system management. As new dis-
tributed-computing technologies are developed and as gen-
eral hardware and software technologies continue to
advance, the current trend towards ever-larger and more
complex distributed computing systems appears likely to
continue well 1nto the future.

In modern computing systems, individual computers,
subsystems, and components generally output large volumes
of status, informational, and error messages that are collec-
tively referred to, in the current document, as “event mes-
sages.” In large, distributed computing systems, terabytes of
cvent messages may be generated each day. The event
messages are oiten collected 1nto event logs stored as files in
data-storage appliances and are often analyzed both in real
time, as they are generated and received, as well as retro-
spectively, after the event messages have been nitially
processed and stored i event logs. Event messages may
contain information that can be used to detect serious
tallures and operational deficiencies prior to the accumula-
tion of a suthicient number of failures and system-degrading
events that lead to data loss and significant down time. The
information contained in event messages may also be used
to detect and ameliorate various types of security breaches
and 1ssues, to mtelligently manage and maintain distributed
computing systems, and to diagnose many diflerent classes
ol operational problems, hardware-design deficiencies, and
soltware-design deficiencies.

It has proved to be a challenging task for system admin-
istrators, system designers and developers, and system users
to 1dentily information within the enormous event logs
generated 1n distributed computing systems relevant to

10

15

20

25

30

35

40

45

50

55

60

65

2

detecting and diagnosing operational anomalies and useful
in admimstering, managing, and maintaining distributed
computer systems. System administrators, maintenance per-
sonnel, and other users of event messages continue to seek
new automated methods and subsystems to facilitate using
event logs to detect and diagnose operational anomalies and

to administer, manage, and maintain distributed computer
systems.

SUMMARY

The current document 1s directed to methods and systems
that process, classily, efliciently store, and display large
volumes of event messages generated in modern computing
systems. In a disclosed implementation, event messages are
assigned types and transformed into event records with
well-defined fields that contain field values. Recurring pat-
terns ol event messages, referred to as “transactions,” are
identified within streams or sequences of time-associated
event messages and streams or sequences of time-associated
event records.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a general architectural diagram for vari-
ous types ol computers.

FIG. 2 1llustrates an Internet-connected distributed com-
puter system.

FIG. 3 illustrates cloud computing. In the recently devel-
oped cloud-computing paradigm, computing cycles and
data-storage facilities are provided to organizations and
individuals by cloud-computing providers.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown in FIG. 1.

FIGS. 5A-B illustrate two types of virtual machine and
virtual-machine execution environments.

FIG. 6 illustrates an OVF package.

FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

FIG. 8 illustrates virtual-machine components of a vir-
tual-data-center management server and physical servers of
a physical data center above which a virtual-data-center
interface 1s provided by the virtual-data-center management
SErver.

FIG. 9 1llustrates a cloud-director level of abstraction. In
FIG. 9, three diflerent physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes™”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds.

FIG. 11 1illustrates a simple example of event-message
logging and analysis.

FIG. 12 shows a small, 11-entry portion of a log file from
a distributed computer system.

FIG. 13 illustrates the event-message-processing
approach represented by certain of these methods and sys-
tems.

FIG. 14A illustrates one implementation of clustering
methods and systems.

FIG. 14B 1illustrates processing of a first event message.

US 10,810,103 B2

3

FIG. 14C 1llustrates processing of a second message.

FIGS. 15-20 illustrate one implementation of the logic
used by an event-message-clustering system to compute a
metric for a received event message that allows the event
message to be assigned to a particular existing cluster.

FIG. 21 1llustrates an implementation of the event-mes-
sage-clustering system at a greater level of detail than, but
using the same illustration conventions as used in, FIG. 14A.

FI1G. 22 1llustrates a cluster-merge operation.

FI1G. 23 1llustrates a cluster-split operation.

FI1G. 24 provides a final illustration of one implementa-
tion of the event-message-clustering system.

FIG. 25 illustrates a process that extracts parameter values
from an event message.

FIGS. 26 A-C 1llustrate examples of editing of the redi-
rection-rule table.

FIG. 27A 1llustrates regular expressions corresponding to
various types of formats in which dates may be encoded in
event messages.

FIG. 27B illustrates construction of generalized regular
expressions that identity two or more types of date formats.

FIG. 27C 1illustrates an example of the use of regular
expressions 1n text processing.

FIG. 27D shows a representation of the deterministic
finite automata 2760 corresponding to the regular expression
2750 1n the example shown 1n FIG. 27C.

FIGS. 28A-B illustrate implementation of a regular-ex-
pression-based variable-finding subsystem.

FIGS. 29A-B 1llustrate a general approach to generating,
a parsing function for an event-message cluster.

FI1G. 30 illustrates a computational method for identifying
the static or conserved substrings within a cluster of event
messages.

FIGS. 31A-B illustrate the process of obtaining a more
specific regular expression by identifying encoded data
within the varnable portions of the event messages.

FIGS. 32A-B illustrate a final regular expression and
data-table template.

FIGS. 33A-B illustrate the information provided by the
clustering subsystem about event messages that can be used
to assign significance values to event messages which, in
turn, can be employed for various types ol event-message
prioritization.

FIGS. 34A-B introduce the notion of event-message
transactions.

FIGS. 35A-H 1illustrate a counter-based method, incorpo-
rated 1nto various event-record-processing subsystems, that
monitors event-message-type co-occurrences, with respect
to time, 1n order to establish event-message-type time cor-
relations, from which certain types of transactions can be
inferred.

FIGS. 36 A-J 1llustrate use of counters, as described above
with reference to FIGS. 35A-H, by an event-message pro-
cessing system, to record indications of event-message-type
co-occurrences in time and to use the indications of co-
occurrences to discover related event-message types and
candidate transactions.

FIGS. 37A-B provide 1nitial explanations and data-struc-
ture 1llustrations to facilitate discussion of flow-control
diagrams provided by FIGS. 38A-38L which follow.

FIGS. 38A-L provide control-tlow diagrams that describe
a second method for finding transactions of the type dis-
cussed above with reference to FIG. 37A within a sequence,
stream, or set of stored event records.

FIG. 39 illustrates various features provided in a user
interface for viewing event logs and discovering state
changes of interest.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION

The current document 1s directed to methods and systems
that 1dentily transactions in streams and sequences of event
messages and event records. In a first subsection, below, a
detailed description of computer hardware, complex com-
putational systems, and virtualization 1s provided with ref-
erence to FIGS. 1-10. In a second subsection, methods and
systems that process, classily, and ethciently store event
messages are discussed with reference to FIGS. 11-33B. In
a final subsection, methods and systems that identity and
display event-message transactions 1n streams and
sequences ol event messages and 1n streams and sequences
ol event records are discussed.

Computer Hardware, Complex Computational
Systems, and Virtualization

The term “abstraction” 1s not, 1n any way, intended to
mean or suggest an abstract 1dea or concept. Computational
abstractions are tangible, physical interfaces that are imple-
mented, ultimately, using physical computer hardware, data-
storage devices, and communications systems. Instead, the
term “abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data 1s exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
clectronically implemented application programming inter-
taces (“APIs”) and other electronically implemented inter-
faces. There 1s a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
1s described 1n terms of abstractions, functional layers, and
interfaces, the computational system 1s somehow difierent
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software 1s essentially a sequence of encoded symbols, such
as a printout ol a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It 1s only when
encoded computer instructions are loaded 1nto an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality 1s provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shait control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

US 10,810,103 B2

S

FIG. 1 provides a general architectural diagram for vari-
ous types ol computers. Computers that receive, process,
and store event messages may be described by the general
architectural diagram shown in FIG. 1, for example. The
computer system contains one or multiple central processing
units (“CPUs”) 102-105, one or more electronic memories
108 interconnected with the CPUs by a CPU/memory-
subsystem bus 110 or multiple busses, a first bridge 112 that
interconnects the CPU/memory-subsystem bus 110 with
additional busses 114 and 116, or other types of high-speed
interconnection media, including multiple, high-speed serial
interconnects. These busses or serial interconnections, in

turn, connect the CPUs and memory with specialized pro-
cessors, such as a graphics processor 118, and with one or

more additional bridges 120, which are interconnected with
high-speed serial links or with multiple controllers 122-127,
such as controller 127, that provide access to various dif-
ferent types ol mass-storage devices 128, electronmic dis-
plays, input devices, and other such components, subcom-
ponents, and computational resources. It should be noted
that computer-readable data-storage devices include optical
and electromagnetic disks, electronic memories, and other
physical data-storage devices. Those familiar with modern
science and technology appreciate that electromagnetic
radiation and propagating signals do not store data for
subsequent retrieval, and can transiently “store” only a byte
or less of information per mile, far less information than
needed to encode even the simplest of routines.

Of course, there are many diflerent types ol computer-
system architectures that differ from one another 1n the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions 1n
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainirame computers, but may also include a
plethora of various types ol special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

FIG. 2 illustrates an Internet-connected distributed com-
puter system. As commumnications and networking technolo-
gies have evolved 1n capability and accessibility, and as the
computational bandwidths, data-storage capacities, and
other capabilities and capacities of various types ol com-
puter systems have steadily and rapidly increased, much of
modern computing now generally involves large distributed
systems and computers interconnected by local networks,
wide-area networks, wireless communications, and the
Internet. FIG. 2 shows a typical distributed system 1n which
a large number of PCs 202-205, a high-end distributed
mainirame system 210 with a large data-storage system 212,
and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user sitting 1n a home office may access
hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and may access high-computational-bandwidth

10

15

20

25

30

35

40

45

50

55

60

65

6

computing services from remote computer facilities for
running complex computational tasks.

Until recently, computational services were generally
provided by computer systems and data centers purchased,
configured, managed, and maintained by service-provider
organizations. For example, an e-commerce retailer gener-
ally purchased, configured, managed, and maintained a data
center including numerous web servers, back-end computer
systems, and data-storage systems for serving web pages to
remote customers, receiving orders through the web-page
interface, processing the orders, tracking completed orders,
and other myriad different tasks associated with an e-com-
merce enterprise.

FIG. 3 illustrates cloud computing. In the recently devel-
oped cloud-computing paradigm, computing cycles and
data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers 1n order to carry
out any of many different types ol computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the orgamization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

Cloud-computing facilities are intended to provide com-
putational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the resources to pur-
chase, manage, and maintain in-house data centers. Such
organizations can dynamically add and delete virtual com-
puter systems from their virtual data centers within public
clouds in order to track computational-bandwidth and data-
storage needs, rather than purchasing suilicient computer
systems within a physical data center to handle peak com-
putational-bandwidth and data-storage demands. Moreover,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems,
including hiring and periodically retraining information-
technology specialists and continuously paying for operat-
ing-system and database-management-system upgrades.
Furthermore, cloud-computing interfaces allow for easy and
straightforward configuration of virtual computing facilities,
flexibility 1n the types of applications and operating systems
that can be configured, and other functionalities that are
usetiul even for owners and administrators of private cloud-
computing facilities used by a single organization.

FIG. 4 illustrates generalized hardware and software
components of a general-purpose computer system, such as
a general-purpose computer system having an architecture
similar to that shown 1n FIG. 1. The computer system 400 1s
often considered to include three fundamental layers: (1) a
hardware layer or level 402; (2) an operating-system layer or
level 404; and (3) an application-program layer or level 406.

US 10,810,103 B2

7

The hardware layer 402 includes one or more processors
408, system memory 410, various different types of input-
output (“I/O”) devices 410 and 412, and mass-storage
devices 414. Of course, the hardware level also includes
many other components, including power supplies, internal
communications links and busses, specialized integrated
circuits, many different types of processor-controlled or
microprocessor-controlled peripheral devices and control-
lers, and many other components. The operating system 404
interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
istructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system 1n ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that 1s mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers
abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other 1/0O devices and
subsystems. The file system 436 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
casy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

While the execution environments provided by operating
systems have proved to be an enormously successiul level of
abstraction within computer systems, the operating-systems-
provided level of abstraction 1s nonetheless associated with
dificulties and challenges for developers and users of appli-
cation programs and other higher-level computational enti-
ties. One difliculty arises from the fact that there are many
different operating systems that run within various different

10

15

20

25

30

35

40

45

50

55

60

65

8

types of computer hardware. In many cases, popular appli-
cation programs and computational systems are developed
to run on only a subset of the available operating systems,
and can therefore be executed within only a subset of the
various different types of computer systems on which the
operating systems are designed to run. Often, even when an
application program or other computational system 1s ported
to additional operating systems, the application program or
other computational system can nonetheless run more etl-
ciently on the operating systems for which the application
program or other computational system was originally tar-
geted. Another difliculty arises from the increasingly dis-
tributed nature of computer systems. Although distributed
operating systems are the subject of considerable research
and development eflorts, many of the popular operating
systems are designed primarily for execution on a single
computer system. In many cases, 1t 1s diflicult to move
application programs, in real time, between the different
computer systems of a distributed computer system for
high-availability, fault-tolerance, and load-balancing pur-
poses. The problems are even greater in heterogeneous
distributed computer systems which include different types
of hardware and devices running different types of operating
systems. Operating systems continue to evolve, as a result of
which certain older application programs and other compu-
tational entities may be incompatible with more recent
versions of operating systems for which they are targeted,
creating compatibility issues that are particularly difficult to
manage 1n large distributed systems.

For all of these reasons, a higher level of abstraction,
referred to as the “virtual machine,” has been developed and
evolved to further abstract computer hardware in order to
address many difliculties and challenges associated with
traditional computing systems, including the compatibility
issues discussed above. FIGS. 5A-B illustrate two types of
virtual machine and virtual-machine execution environ-
ments. FIGS. 5A-B use the same 1llustration conventions as
used 1n FIG. 4. FIG. 5SA shows a first type of virtualization.
The computer system 500 in FIG. 5A includes the same
hardware layer 502 as the hardware layer 402 shown 1n FIG.
4. However, rather than providing an operating system layer
directly above the hardware layer, as 1n FIG. 4, the virtual-
1zed computing environment illustrated in FIG. SA features
a virtualization layer 504 that interfaces through a virtual-
ization-layer/hardware-layer interface 506, equivalent to
interface 416 in FIG. 4, to the hardware. The virtualization
layer provides a hardware-like iterface 508 to a number of
virtual machines, such as virtual machine 510, executing
above the virtualization layer 1n a virtual-machine layer 512.
Each virtual machine includes one or more application
programs or other higher-level computational entities pack-
aged together with an operating system, referred to as a
“ouest operating system,” such as application 514 and guest
operating system 516 packaged together within virtual
machine 510. Each virtual machine 1s thus equivalent to the
operating-system layer 404 and application-program layer
406 1n the general-purpose computer system shown 1n FIG.
4. Each guest operating system within a virtual machine
interfaces to the virtualization-layer interface 508 rather than
to the actual hardware interface 506. The virtualization layer
partitions hardware resources into abstract virtual-hardware
layers to which each guest operating system within a virtual
machine iterfaces. The guest operating systems within the
virtual machines, 1n general, are unaware of the virtualiza-
tion layer and operate as 1f they were directly accessing a
true hardware interface. The virtualization layer ensures that
cach of the virtual machines currently executing within the

US 10,810,103 B2

9

virtual environment receive a fair allocation of underlying
hardware resources and that all virtual machines receive
suilicient resources to progress 1n execution. The virtualiza-
tion-layer interface 508 may differ for different guest oper-
ating systems. For example, the virtualization layer 1s gen-
crally able to provide virtual hardware interfaces for a
variety of diflerent types of computer hardware. This allows,
as one example, a virtual machine that includes a guest
operating system designed for a particular computer archi-
tecture to run on hardware of a different architecture. The
number of virtual machines need not be equal to the number
ol physical processors or even a multiple of the number of

Processors.

The virtualization layer includes a virtual-machine-moni-
tor module 518 (“VMM”) that virtualizes physical proces-
sors 1n the hardware layer to create virtual processors on
which each of the virtual machines executes. For execution
clliciency, the virtualization layer attempts to allow virtual
machines to directly execute non-privileged instructions and
to directly access non-privileged registers and memory.
However, when the guest operating system within a virtual
machine accesses virtual privileged instructions, virtual
privileged registers, and virtual privileged memory through
the virtualization-layer interface 508, the accesses result in
execution of virtualization-layer code to simulate or emulate
the privileged resources. The virtualization layer addition-
ally includes a kernel module 520 that manages memory,
communications, and data-storage machine resources on
behalf of executing virtual machines (“VM kernel”). The
VM kernel, for example, maintains shadow page tables on
cach virtual machine so that hardware-level virtual-memory
facilities can be used to process memory accesses. The VM
kernel additionally includes routines that implement virtual
communications and data-storage devices as well as device
drivers that directly control the operation of underlying
hardware communications and data-storage devices. Simi-
larly, the VM kernel virtualizes various other types of I/O
devices, including keyboards, optical-disk drives, and other
such devices. The virtualization layer essentially schedules
execution of virtual machines much like an operating system
schedules execution of application programs, so that the
virtual machines each execute within a complete and fully
functional virtual hardware layer.

FIG. 5B illustrates a second type of virtualization. In FIG.
5B, the computer system 340 includes the same hardware
layer 542 and software layer 544 as the hardware layer 402
shown 1n FI1G. 4. Several application programs 346 and 548
are shown runmng in the execution environment provided
by the operating system. In addition, a virtualization layer
550 1s also provided, in computer 540, but, unlike the
virtualization layer 504 discussed with reference to FIG. SA,
virtualization layer 550 1s layered above the operating
system 544, referred to as the “host OS,” and uses the
operating system interface to access operating-system-pro-
vided functionality as well as the hardware. The virtualiza-
tion layer 350 comprises primarily a VMM and a hardware-
like 1nterface 552, similar to hardware-like interface 508 in
FIG. SA. The virtualization-layer/hardware-layer interface
552, equivalent to interface 416 in FIG. 4, provides an
execution environment for a number of virtual machines
556-558, cach including one or more application programs
or other higher-level computational entities packaged
together with a guest operating system.

In FIGS. SA-B, the layers are somewhat simplified for
clarity of illustration. For example, portions of the virtual-
ization layer 350 may reside within the host-operating-

10

15

20

25

30

35

40

45

50

55

60

65

10

system Kkernel, such as a specialized driver incorporated into
the host operating system to facilitate hardware access by
the virtualization layer.

It should be noted that virtual hardware layers, virtual-
ization layers, and guest operating systems are all physical
entities that are implemented by computer instructions
stored 1n physical data-storage devices, including electronic
memories, mass-storage devices, optical disks, magnetic
disks, and other such devices. The term ““virtual” does not,
in any way, imply that virtual hardware layers, virtualization
layers, and guest operating systems are abstract or intan-
gible. Virtual hardware layers, virtualization layers, and
guest operating systems execute on physical processors of
physical computer systems and control operation of the
physical computer systems, including operations that alter
the physical states of physical devices, including electronic
memories and mass-storage devices. They are as physical
and tangible as any other component of a computer since,
such as power supplies, controllers, processors, busses, and
data-storage devices.

A virtual machine or virtual application, described below,
1s encapsulated within a data package for transmission,
distribution, and loading into a virtual-execution environ-
ment. One public standard for virtual-machine encapsulation
1s referred to as the “open virtualization format” (“OVE”).
The OVF standard specifies a format for digitally encoding

a virtual machine within one or more data files. FIG. 6
illustrates an OVF package. An OVF package 602 includes

an OVF descriptor 604, an OVF manifest 606, an OVF
certificate 608, one or more disk-image files 610-611, and
one or more resource liles 612-614. The OVF package can
be encoded and stored as a single file or as a set of files. The
OVF descriptor 604 1s an XML document 620 that includes
a hierarchical set of elements, each demarcated by a begin-
ning tag and an ending tag. The outermost, or highest-level,
clement 1s the envelope element, demarcated by tags 622
and 623. The next-level element includes a reference ele-
ment 626 that includes references to all files that are part of
the OVF package, a disk section 628 that contains meta
information about all of the virtual disks included in the
OVF package, a networks section 630 that includes meta
information about all of the logical networks included in the
OVF package, and a collection of virtual-machine configu-
rations 632 which further includes hardware descriptions of
cach virtual machine 634. There are many additional hier-
archical levels and elements within a typical OVF descrip-
tor. The OVF descriptor 1s thus a self-describing, XML file
that describes the contents of an OVF package. The OVF
manifest 606 1s a list of cryptographic-hash-function-gener-
ated digests 636 of the entire OVF package and of the
various components of the OVF package. The OVF certifi-
cate 608 1s an authentication certificate 640 that includes a
digest of the manifest and that 1s cryptographically signed.
Disk 1mage files, such as disk image file 610, are digital
encodings of the contents of virtual disks and resource files
612 are digitally encoded content, such as operating-system
images. A virtual machine or a collection of virtual machines
encapsulated together within a virtual application can thus
be digitally encoded as one or more files within an OVF
package that can be transmitted, distributed, and loaded
using well-known tools for transmitting, distributing, and
loading files. A virtual appliance 1s a software service that 1s
delivered as a complete software stack installed within one
or more virtual machines that 1s encoded within an OVF
package.

The advent of virtual machines and virtual environments
has alleviated many of the difliculties and challenges asso-

US 10,810,103 B2

11

ciated with traditional general-purpose computing. Machine
and operating-system dependencies can be significantly
reduced or entirely eliminated by packaging applications
and operating systems together as virtual machines and
virtual appliances that execute within virtual environments
provided by virtualization layers running on many diflerent
types of computer hardware. A next level of abstraction,
referred to as virtual data centers or virtual infrastructure,
provide a data-center interface to virtual data centers com-
putationally constructed within physical data centers. F1G. 7
illustrates virtual data centers provided as an abstraction of
underlying physical-data-center hardware components. In
FIG. 7, a physical data center 702 i1s shown below a
virtual-interface plane 704. The physical data center consists
ol a virtual-data-center management server 706 and any of
various different computers, such as PCs 708, on which a
virtual-data-center management 1nterface may be displayed
to system administrators and other users. The physical data
center additionally includes generally large numbers of
server computers, such as server computer 710, that are
coupled together by local area networks, such as local area
network 712 that directly mterconnects server computer 710
and 714-720 and a mass-storage array 722. The physical
data center shown in FIG. 7 includes three local area
networks 712, 724, and 726 that each directly interconnects
a bank of eight servers and a mass-storage array. The
individual server computers, such as server computer 710,
cach includes a virtualization layer and runs multiple virtual
machines. Different physical data centers may include many
different types of computers, networks, data-storage systems
and devices connected according to many different types of
connection topologies. The virtual-data-center abstraction
layer 704, a logical abstraction layer shown by a plane 1n
FIG. 7, abstracts the physical data center to a virtual data
center comprising one or more resource pools, such as
resource pools 730-732, one or more virtual data stores, such
as virtual data stores 734-736, and one or more virtual
networks. In certain implementations, the resource pools
abstract banks of physical servers directly interconnected by
a local area network.

The virtual-data-center management interface allows pro-
visioning and launching of virtual machines with respect to
resource pools, virtual data stores, and virtual networks, so
that virtual-data-center admuinistrators need not be con-
cerned with the identities of physical-data-center compo-
nents used to execute particular virtual machines. Further-
more, the virtual-data-center management server includes
functionality to migrate running virtual machines from one
physical server to another in order to optimally or near
optimally manage resource allocation, provide fault toler-
ance, and high availability by migrating virtual machines to
most eflectively utilize underlying physical hardware
resources, to replace virtual machines disabled by physical
hardware problems and failures, and to ensure that multiple
virtual machines supporting a high-availability virtual appli-
ance are executing on multiple physical computer systems
so that the services provided by the virtual appliance are
continuously accessible, even when one of the multiple
virtual appliances becomes compute bound, data-access
bound, suspends execution, or fails. Thus, the virtual data
center layer of abstraction provides a virtual-data-center
abstraction of physical data centers to simplily provisioning,
launching, and maintenance of virtual machines and virtual
appliances as well as to provide high-level, distributed
functionalities that ivolve pooling the resources of indi-
vidual physical servers and migrating virtual machines
among physical servers to achieve load balancing, fault

10

15

20

25

30

35

40

45

50

55

60

65

12

tolerance, and high availability. FIG. 8 1llustrates virtual-
machine components of a virtual-data-center management
server and physical servers of a physical data center above
which a wvirtual-data-center interface 1s provided by the
virtual-data-center management server. The virtual-data-
center management server 802 and a virtual-data-center
database 804 comprise the physical components of the
management component of the virtual data center. The
virtual-data-center management server 802 includes a hard-
ware layer 806 and virtualization layer 808, and runs a
virtual-data-center management-server virtual machine 810
above the virtualization layer. Although shown as a single
server 1n FIG. 8, the virtual-data-center management server
(“VDC management server’) may include two or more
physical server computers that support multiple VDC-man-
agement-server virtual appliances. The virtual machine 810
includes a management-interface component 812, distrib-
uted services 814, core services 816, and a host-management
interface 818. The management interface 1s accessed from
any of various computers, such as the PC 708 shown 1n FIG.
7. The management interface allows the virtual-data-center
administrator to configure a virtual data center, provision
virtual machines, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
physical data center that 1s abstracted to a virtual data center
by the VDC management server.

The distributed services 814 include a distributed-re-
source scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines 1n order to most eflectively make use of compu-
tational bandwidths, data-storage capacities, and network
capacities of the physical data center. The distributed ser-
vices further include a high-availability service that repli-
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
tailures experienced by physical hardware components. The
distributed services also include a live-virtual-machine
migration service that temporarily halts execution of a
virtual machine, encapsulates the virtual machine 1n an OVF
package, transmits the OVF package to a different physical
server, and restarts the virtual machine on the diflerent
physical server from a virtual-machine state recorded when
execution of the virtual machine was halted. The distributed
services also include a distributed backup service that pro-
vides centralized virtual-machine backup and restore.

The core services provided by the VDC management
server 1nclude host configuration, virtual-machine configu-
ration, virtual-machine provisioning, generation of virtual-
data-center alai 1s and events, ongoing event logging and
statistics collection, a task scheduler, and a resource-man-
agement module. Fach physical server 820-822 also
includes a host-agent virtual machine 828-830 through
which the virtualization layer can be accessed via a virtual-
infrastructure application programming intertace (“API”).
This interface allows a remote administrator or user to
manage an 1ndividual server through the infrastructure API.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server iformation through the host agents. The
virtual-data-center agents are primarily responsible for
offloading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server. The virtual-data-center agents relay and
enforce resource allocations made by the VDC management
server, relay virtual-machine provisioming and configura-

US 10,810,103 B2

13

tion-change commands to host agents, monitor and collect
performance statistics, alarms, and events communicated to
the wvirtual-data-center agents by the local host agents
through the interface API, and to carry out other, similar
virtual-data-management tasks.

The virtual-data-center abstraction provides a convenient
and eflicient level of abstraction for exposing the computa-
tional resources of a cloud-computing facility to cloud-
computing-infrastructure users. A cloud-director manage-
ment server exposes virtual resources of a cloud-computing,
tacility to cloud-computing-inirastructure users. In addition,
the cloud director introduces a multi-tenancy layer of
abstraction, which partitions VDCs into tenant-associated
VDCs that can each be allocated to a particular individual
tenant or tenant organization, both referred to as a “tenant.”
A given tenant can be provided one or more tenant-associ-
ated VDCs by a cloud director managing the multi-tenancy
layer of abstraction within a cloud-computing facility. The
cloud services interface (308 1n FIG. 3) exposes a virtual-

data-center management interface that abstracts the physical
data center.

FIG. 9 illustrates a cloud-director level of abstraction. In
FIG. 9, three different physical data centers 902-904 are
shown below planes representing the cloud-director layer of
abstraction 906-908. Above the planes representing the
cloud-director level of abstraction, multi-tenant virtual data
centers 910-912 are shown. The resources of these multi-
tenant virtual data centers are securely partitioned 1n order to
provide secure virtual data centers to multiple tenants, or
cloud-services-accessing organizations. For example, a
cloud-services-provider virtual data center 910 1s partitioned
into four different tenant-associated virtual-data centers
within a multi-tenant virtual data center for four different
tenants 916-919. Fach multi-tenant virtual data center i1s
managed by a cloud director comprising one or more
cloud-director servers 920-922 and associated cloud-direc-
tor databases 924-926. Each cloud-director server or servers
runs a cloud-director virtual appliance 930 that includes a
cloud-director management interface 932, a set of cloud-
director services 934, and a virtual-data-center management-
server 1terface 936. The cloud-director services include an
interface and tools for provisioning multi-tenant virtual data
center virtual data centers on behalf of tenants, tools and
interfaces for configuring and managing tenant organiza-
tions, tools and services for organization of virtual data
centers and tenant-associated virtual data centers within the
multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
1zation networks from a network pool. Templates are virtual
machines that each contains an OS and/or one or more
virtual machines containing applications. A template may
include much of the detailed contents of virtual machines
and virtual appliances that are encoded within OVF pack-
ages, so that the task of configuring a virtual machine or
virtual appliance 1s significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates 1 virtual appliances across organizations. Cata-
logs may include OS 1images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

Considering FIGS. 7 and 9, the VDC-server and cloud-
director layers of abstraction can be seen, as discussed
above, to facilitate employment of the virtual-data-center
concept within private and public clouds. However, this

10

15

20

25

30

35

40

45

50

55

60

65

14

level of abstraction does not fully facilitate aggregation of
single-tenant and multi-tenant virtual data centers into het-

erogeneous or homogeneous aggregations ol cloud-comput-
ing facilities.

FIG. 10 illustrates virtual-cloud-connector nodes (“VCC
nodes™”) and a VCC server, components of a distributed
system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC server and nodes. In FIG. 10,
seven different cloud-computing facilities are illustrated
1002-1008. Cloud-computing facility 1002 1s a private
multi-tenant cloud with a cloud director 1010 that interfaces
to a VDC management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
and 1007-1008, or any of various diflerent kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller 1s included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VDC management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VDC management serv-
ers, remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Event-Message Clustering Methods and Systems

FIG. 11 illustrates a simple example of event-message
logging and analysis. In FIG. 11, a number of computer
systems 1102-1106 within a distributed computing system
are linked together by an electronic communications
medium 1108 and additionally linked through a communi-
cations bridge/router 1110 to an administration computer
system 1112 that includes an administrative console 1114.
As mdicated by curved arrows, such as curved arrow 1116,
multiple components within each of the discrete computer
systems 1102 and 1106 as well as the communications
bridge/router 1110 generate event messages which are ulti-
mately transmitted to the administration computer 1112.
Event messages may be relatively directly transmaitted from
a component within a discrete computer system to the
administration computer or may be collected at various
hierarchical levels within a discrete computer and then
forwarded from an event-message-collecting entity within
the discrete computer to the admimstration computer. The
administration computer 1112 may filter and analyze the
received event messages, as they are received, 1 order to
detect various operational anomalies and impending failure
conditions. In addition, the administration computer collects

US 10,810,103 B2

15

and stores the received event messages 1n a data-storage
device or apphance 1118 as large event-message log files
1120. Either through real-time analysis or through analysis
of log files, the administration computer may detect opera-
tional anomalies and conditions for which the administration
computer displays warnings and informational displays,
such as the warning 1122 shown in FIG. 11 displayed on the
administration-computer display device 1114.

FIG. 12 shows a small, 11-entry portion of a log file from
a distributed computer system. In FIG. 12, each rectangular
cell, such as rectangular cell 1202, of the portion of the log
file 1204 represents a single stored event message. In
general, event messages are relatively cryptic, including
generally only one or two natural-language sentences or
phrases as well as various types of file names, path names,
and, perhaps most importantly, various alphanumeric
parameters. For example, log entry 1202 includes a short
natural-language phrase 1206, date 1208 and time 1210
parameters, as well as a numeric parameter 1212 which
appears to 1dentily a particular host computer.

There are a number of reasons why event messages,
particularly when accumulated and stored by the millions in
event-log files or when continuously received at very high
rates during daily operations of a computer system, are
difficult to automatically interpret and use. A first reason 1s
the volume of data present within log files generated within
large, distributed computing systems. As mentioned above,
a large, distributed computing system may generate and
store terabytes of logged event messages during each day of
operation. This represents an enormous amount of data to
process, even were the mdividual event messages highly
structured and precisely formatted to facilitate automated
processing. However, event messages are not so structured
and formatted, which 1s a second reason that continuously
received event messages and event logs are diflicult to
automatically interpret and analyze. They are even more
difficult to manually analyze and interpret, by human system
administrators and system analysts. Event messages are
generated from many different components and subsystems
at many different hierarchical levels within a distributed
computer system, from operating system and application-
program code to control programs within disk drives, com-
munications controllers, and other such distributed-com-
puter-system components. The event messages may be
generated according to a variety of diflerent event-message
structuring and formatting approaches used by various dif-
terent vendors and programmers. Even within a given sub-
system, such as an operating system, many different types
and styles of event messages may be generated, due to the
many thousands of diflerent programmers who contribute
code to the operating system over very long time frames. A
third reason that 1t 1s diflicult to process and analyze event
messages 1s that, in many cases, event messages relevant to
a particular operational condition, subsystem {failure, or
other problem represent only a tiny fraction of the total
number of event messages that are received and logged.
Searching for these relevant event messages within an
enormous volume of event messages continuously stream-
ing into an event-message-processing-and-logging subsys-
tem ol a distributed computer system may itsell be a
significant computational challenge. While text-search
methodologies may be employed to search for relevant data
within large log files, such methods are generally quite
time-consuming and imprecise. A fourth problem associated
with event messages 1n large, distributed computer systems
1s that storing and archiving event logs may itself represent
a significant computational challenge. Given that many

10

15

20

25

30

35

40

45

50

55

60

65

16

terabytes of event messages may be collected during the
course of a single day of operation of a large, distributed
computer system, collecting and storing the large volume of
information represented by event messages may represent a
significant processing-bandwidth, communications-subsys-
tems bandwidth, and data-storage-capacity challenge, par-
ticularly when 1t may be necessary to reliably store event
logs 1n ways that allow the event logs to be subsequently
accessed for searching and analysis.

Methods and systems for processing, classitying, and
ciliciently storing event messages, collectively referred to as
“event-clustering methods and systems,” have been devised
to address the above-mentioned challenges associated with
event-message processing and analysis as well as additional
deficiencies and problems associated with currently avail-
able event-message processing, analysis, and storage. FIG.
13 1llustrates the event-message-processing approach repre-
sented by certain of these methods and systems. In FIG. 13,
a traditional event log 1302 1s shown as a column of event
messages, mcluding the event message 1304 shown within
inset 1306. The methods and systems automatically process
event messages, as they are received, 1 order to transform
the recetved event messages into event records, such as
event record 1308 shown within mset 1310. The event
record 1308 1ncludes a numeric event-message-type 1denti-
fier 1312 as well as the values of parameters included in the
original event message. In the example shown 1n FIG. 13, a
date parameter 1314 and a time parameter 1315 are included
in the event record 1308. The remaining portions of the
event message, referred to as the “non-parameter portion of
the event message,” 1s separately stored 1n an entry 1n a table
of non-parameter portions that includes an entry for each
type of event message. For example, entry 1318 1n table
1320 may contain an encoding of the non-parameter portion
common to all event messages of type al2634 (1312 1n FIG.
13). Thus, the methods and systems have the eflect of
transforming traditional event logs, such as event log 1302,
into stored event records, such as event-record log 1322, and
a generally very small table 1320 with encoded non-param-
cter portions, or templates, for each different type of event
message.

The event-record log, such as event-record log 1322, and
other types of accumulations of event records have numer-
ous advantages over a traditional event-message log. A first
advantage 1s that each event record 1s typed. Because the
event records are typed, the event-record log can be easily
searched, partitioned, and otherwise processed based on
event-message types, which produces a significant compu-
tational advantage for downstream event-analysis and event-
interpretation systems. A second advantage 1s that, as shown
in FIG. 13, event-record logs are significantly compressed
with respect to traditional event-message logs. Because only
one copy of the non-parameter portion of each type of event
message needs to be stored 1n the associated table, a sig-
nificant data compression 1s achieved by the methods and
systems. The compression ratios achieved depend on the
average ratio ol non-parameter characters to parameter
characters 1n event messages. In many cases, compression
ratios of between 2:1 and 10:1 can be achieved by storing
event records rather than event messages. Because terabytes
of event messages may be collected on a daily basis within
a large, distributed computing system, this potential rate of
data compression represents a significant decrease in com-
putational and hardware-usage overheads. A third advantage
of event-record logs 1n comparison to event-message logs 1s
that the event-record logs are fully and uniformly structured,
which additionally facilitates downstream automated analy-

US 10,810,103 B2

17

s1s and interpretation. The downstream analysis and inter-
pretation systems directly acquire relevant parameters and
an event-message type from an event record, without the
need for parsing and typing a large variety of different types
ol event messages.

Returming brietly to FIG. 11, 1t should be noted that the
simple example illustrated 1n FIG. 11 fails to illustrate the
entire problem space addressed by the methods and systems.
In large, distributed computing systems, for example, 1t
would be impractical to funnel all event messages to a single
administration computer. Instead, processing, analysis, and
storage of event messages 1s typically carried out by mul-
tiple discrete computer systems and 1s therefore also dis-
tributed. As a result, methods and systems for processing,
typing, and efliciently storing event messages need to be
both scalable and distributable over multiple computer sys-
tems 1n order to be generally useful over a range of diflerent
types of distributed computing systems as well as over
significant time frames during which distributed computing
systems may increase in size due to continuous addition of
new processing components. The distributed virtual-data-
center and virtual-cloud management systems discussed 1n
the first subsection of the current document are examples of
systems 1n which event-message processing, typing, and
storage may be distributed over multiple computational
nodes.

In the current application, the phrase “event-message-
clustering system” refers to any of various standalone sys-
tems as well as subsystems and components of standalone
systems and systems within distributed computing systems
that carry out event-message clustering by the event-mes-
sage-clustering methods. The phrase “event message” refers
to any of various types of information entities include
parameters and non-parametric portions to which the cur-
rently described clustering-based typing methods can be
applied.

FIG. 14A illustrates one implementation of clustering
methods and systems. Rectangles 1402-1406 represent
incoming event messages to an event-message-clustering
system. The event-message-clustering system includes an
event-processing-and-distribution component 1410 and
multiple clusters of event records 1412-1422. Each cluster
includes stored event records, such as the stored event
records 1424 of cluster 1412, and a cluster identifier, such as
cluster 1dentifier 1426 of cluster 1412. The event-message-
clustering system 1410 processes each received event mes-
sage to transform the recerved event message mto an event
record and determines to which cluster to assign the event
record. The clusters represent a typing scheme for event
messages. In other words, each cluster represents a message
type. The event-message-clustering system 1410 operates in
real time to transform event messages mnto event records and
to type the event messages by assigning each event record
corresponding to an event message to a particular cluster.
The stored event records may be accessed by downstream
event-analysis and event-interpretation systems. In certain
implementations, the event records may be physically stored
by separate systems. Event records may not only be accessed
by other entities, but may be periodically flushed to event-
record archives, copied to downstream event-record-pro-
cessing components, and transierred to downstream event-
record-processing components. Imitially, when a cluster 1s
first 1mitialized and begins storing events, the cluster may
store unprocessed event messages rather than event records
for an 1nmitial period of time. Only when a suflicient number
ol event messages of a particular type have been accumu-
lated can downstream analysis components provide tools to

10

15

20

25

30

35

40

45

50

55

60

65

18

the event-message-clustering system that allow the event-
message-clustering system 1410 to transform event mes-
sages 1to event records.

FIG. 14B 1llustrates processing of a first event message.
Initially, there are no clusters. The first received event
message 1430 initiates creation of a first cluster 1432 to
which the cluster-distributor-component 1434 of the event-
message-clustering system 1410 assigns the first event mes-
sage. A temporary identifier 1436 1s assigned to the first
cluster.

FIG. 14C 1llustrates processing of a second message. The
second event message 1440 1s analyzed by the cluster
distributor 1434 as represented by the logic shown 1n 1nset
1442. In step 1444, the cluster distributor receives the
second message and, 1 step 1446, computes a numeric
metric m for the received event message. In conditional step
1448, the cluster distributor determines whether the com-
puted metric 1s close to the metric 1436 assigned to the first
cluster. If the computed metric m for the second event
message 1s sulliciently close to the metric 1436 assigned to
the first cluster, then the second message 1s added to the first
cluster 1450. Otherwise, a new cluster 1s created 1452 and
the second event message 1s added to the new cluster 1454,
The metric computed for the second event message m 1s
assigned as the metric associated with the new, second
cluster 1456. Subsequently received event messages are
similarly processed. Fither a subsequently received event
message 1s assigned to an existing cluster, when a metric
computed for the subsequently received event message 1s
sulliciently close to a metric for an existing cluster, or a new
cluster 1s created and the subsequently receirved event mes-
sage becomes the first event message assigned to the new
cluster. Thus, clusters are created dynamically as event
messages are recerved and processed.

FIGS. 15-20 illustrate one implementation of the logic
used by an event-message-clustering system to compute a
metric for a recerved event message that allows the event
message to be assigned to a particular existing cluster. FIG.
15 illustrates one 1mplementation of an event-message-
normalization procedure that i1s used to prepare an event
message for computation of a metric. The received event
message 1502 1s first tokenized by considering the event
message to consist of tokens separated by non-printing
characters, referred to as “white space.” In FIG. 15, this
initial tokenization of the event message 1504 1s 1llustrated
by underlining of the printed or visible characters. For
example, the date 1506, time 1508, and vertical bar 1510 at
the beginning of the text contents of the event message 1502,
following 1nitial tokenization, become a first token 1510, a
second token 1511, and a third token 1512, as indicated by
underlining.

Next, an 1nitial token-recognition pass 1s made to recog-
nize any of the nitial tokens as various types of parameter
values. Parameter values are tokens or message fields that
are likely to be highly variable over a set of messages of a
particular type. Date/time stamps, for example, are nearly
umque for each event message, with two event messages
having an 1dentical date/time stamp only in the case that the
two event messages are generated within less than a second
of one another. Additional examples of parameters include
global unique 1dentifiers (“GUIDs”), hypertext transfer pro-
tocol status values (“HTTP statuses™), universal resource
locators (“URLSs”), network addresses, and other types of
common information entities that identily variable aspects
of a type of event. By contrast, the phrase “transmission
failure” 1n event message 1502 likely occurs within each of
a large number of transmission-failure event messages. In

US 10,810,103 B2

19

FIG. 15, the recognized tokens 1n the event message fol-
lowing initial token recognition 1516 are indicated by shad-
ing. In the example shown in FIG. 15, mitial token recog-
nition determines that the first token 1510 1s a date, the third
token 1512 1s a time, and the seventh token 1518 1s a media
access control address (“MAC address™). Various types of
symbolically encoded wvalues, including dates, times,
machine addresses, network addresses, and other such
parameter values can be recognized using regular expres-
sions or programmatically. For example, there are numerous
ways to represent dates. A relatively simple program or a
simple set of regular expressions can be written to recognize
symbolically encoded dates 1n any of the common formats.
It 1s possible that the token-recognition process may incor-
rectly determine that an arbitrary alphanumeric string rep-
resents some type of symbolically encoded parameter when,
in fact, the alphanumeric string only coincidentally has a
form that can be interpreted to be a parameter value. The
currently described methods and systems do not depend on
absolute precision and reliability of the event-message-
normalization process. Occasional misinterpretations gener-
ally do not result 1n mistyping of event messages and, 1n the
rare circumstances in which event messages may be
mistyped, the mistyping 1s most often discovered during
subsequent processing. Relatively computationally straight-
forward processing methods are adopted in the currently
described methods and systems for normalization and typing
ol event messages, because event messages are generally
continuously received at high rates, as a result of which the
computational overhead associated with processing of each
event message represents a significant constraint.

In certain implementations, normalization may terminate
following initial token recognition. In the implementation
illustrated 1n FIG. 15, the event message 1s subject to an
additional token-recognition step after re-tokenizing the
non-parameter portions of the event message by removing,
punctuation and separation symbols, such as brackets, com-
mas, and dashes that occur as separate tokens or that occur
at the leading and trailing extremities of previously recog-
nized tokens, as shown by underlining in the event message
1520 m FIG. 15. After removal of the punctuation and
separation symbols, an additional token-recognition pass in
the example of FIG. 15 recogmizes additional types of
symbolically encoded parameter values, including the three
version-4 Internet-protocol (“IPv4”) addresses 1522-1524 in
event message 1524.

Those tokens that have been recognized in the two
token-recognition passes are considered to be parameters,
denoted “P1,” “P2,” . . . “P6” in the parameterized event
message 1526 1n FIG. 15. The remaining tokens 1528-1532
represent the non-parameter tokens present within the event
message. A final pass may imvolve promoting one or more of
the non-parameter tokens to parameters based on certain
criteria. For example, token 1529 1n the parameterized event
message 1526 might be considered to be a parameter value
that represents the identifier of a server. In the example
shown 1n FIG. 15, however, no additional tokens are pro-
moted to the status of parameter values following the final
pass 1534. The result of normalization 1s therefore a
sequence ol non-parameter tokens interspersed with param-
cter values 1534 and a table 1536 that shows the type and
symbol encodings for the parameter values. There are many
computational techniques for encoding a list of non-param-
cter tokens recognized within an event message including,
as one example, a list of pointers and associated string
lengths.

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 16 illustrates the computation of the Adler cyclic
redundancy check (“CRC”) value from a token comprising
a string ol characters. As shown at the top of FIG. 16, the
token can be thought of as an array of characters 1602 S.
Two 16-bit values A and B, are computed as indicated by
the recursive expressions 1604 in FI1G. 16. The high and low
bytes of the two 16-bit values A and B are arranged 1606
into a 32-bit value that constitutes the Adler CRC for the
token. The Adler CRC values are computed, in many cases,
to recognize corruptions ol a token following network
transmission or other such operations. Small one-bit and
two-bit transmission errors result in very different Adler
CRC values computed for the orniginal token and corrupted
token recerved through an error-introducing communica-
tions medium. In one implementation of the currently
described methods and systems, the Adler CRC 1s used for
computing a metric m for an event message.

FIG. 17 1llustrates computation of a metric m for an event
message. In certain implementations of the currently
described methods and systems, the metric m 1s a vector of
integer values. This vector, referred to as a “feature vector,”
can be thought of as being computed by a matrix-multipli-
cation-like operation. In FIG. 17, the feature vector v 1702
1s produced by a matrnix-multiplication-like operation 1n
which a matrix-like vector of m functions 1704, each of
which takes n arguments 1s multiplied by a vector of
non-parameter tokens identified within an event message
1706 to produce the feature vector v 1702. The number of
elements, or number of dimensions, of the feature vector v
1s equal to the number of functions in the matnx-like
function vector 1 and the number of arguments supplied to
cach function n 1s equal to the number of non-parameter
tokens n 1n the ordered set ol non-parameter tokens T
corresponding to an event message.

FIGS. 18A-C illustrate computation of the distance
between two points represented by vectors. Vectors of
dimension n can be thought of as directed distances 1n an
n-dimensional space or as the coordinates for points 1 an
n-dimensional space, where the ray between the origin and
the point 1s equal to the directed distance represented by the
vector. FIG. 18A 1llustrates vector subtraction, 1n which a
vector v 1802 1s subtracted from a vector u 1804 to produce
the result vector u—v 1806. FI1G. 18B shows the computation
of the dot product u-v of two vectors u and v. The dot product
1808 can be viewed as a matrix multiplication between the
transpose of the first vector 1810 and the second vector
1812. FIG. 18C illustrates computation of the distance
between two points represented by two vectors u and v. First,
a displacement vector d 1s computed as u—v 1814. Then, the
length of the displacement vector 1s computed as the square
root of the dot product of the displacement vector 1816. The
distance between two event messages can be similarly
calculated as the square root of the dot product of the
difference, or displacement vector, computed from the two
feature vectors corresponding to the two event messages.
Thus, the metric m computed by one implementation of the
event-message-clustering system, discussed i FIGS. 14 A-
C, 1s a feature vector and an event message 1s assigned to
that cluster for which the distance between the event mes-
sage and the first event message assigned to the cluster 1s
minimal. In other words, the clusters represent regions 1n an
m-dimensional space that contain similar event messages.

FIGS. 19 and 20 illustrate one particular implementation
for computing feature vectors and the distance between
event messages represented by feature vectors. As shown 1n
FIG. 19, the function 1.() for computing the value of element
1 of a feature vector, 1n the described implementation, 1s:

US 10,810,103 B2

21

argmax
[i(T) = . ([P = Adler(r;) + Q; Imod Oxffffifff).
J

In essence, the function §,() computes, for each non-
parameter token t; in the event message I, the Adler CRC
value, multiplies the Adler CRC value for t, by a first
constant, and then adds a second constant to the product of
the Adler CRC value for t; and the first constant. The result
1s truncated to a 32-bit value using a mod operation. The
function f,() returns the maximum of these computed values
for each of the non-parameter tokens. FIG. 19 provides an
example using the example tokenized event message 1534
of FIG. 15. The non-parameter tokens together comprise an
ordered set of tokens T 1904. The function f,() computes a
32-bit value h, for each non-parameter token t, as shown in
the set of five expressions 1906. The function §,() returns
the maximum of these computed values 1908.

FIG. 20 illustrates computing the distance between two
event messages represented by two feature vectors com-
puted for the two event messages. FIG. 20 shows a first
teature vector u 2002 corresponding to one event message
and a second feature vector v 2004 corresponding to another
event message. To compute the distance between the two
event messages, a displacement feature vector d 2006 1s first
computed. Because the values of the feature-vector elements
are computed based on Adler CRC wvalues, diflerences
between elements do not correspond to distances 1n particu-
lar dimensions, since CRC functions tend to produce very
different values for different, but similar tokens. Therefore,
when two corresponding elements of two feature vectors are
identical, and their differences equal to zero, then the dis-
tance-metric for these element values 1s zero, but when the
difference between two corresponding feature-vector ele-
ment values 1s non-zero, 1t can only be concluded that the
corresponding feature-vector element values are different
and thus are separated by some distance in the correspond-
ing dimension. In the described implementation, all non-
zero element values 1n the displacement vector 2006 are
replaced by the value “1” to produce a modified displace-
ment vector d' 2008. The square root of the dot product of
the modified displacement vector 2010 1s equal to the
number of non-matching feature-vector elements in the two
feature vectors u and v or, equivalently, to the number of
non-zero elements 1n the modified displacement vector d'.
However, the square root of the dot product of the modified
displacement vector 1s a type of displacement-based metric,
just not the familiar Euclidean, or L2, distance metric. Were
a similarity-preserving hash function used, rather than the
Adler CRC, 1 computing the feature vector, a stepwise
distance metric closer to the L2 distance metric would be
computable from the feature vectors representing two event
messages.

FIG. 21 illustrates an implementation of the event-mes-
sage-clustering system at a greater level of detail than, but
using the same 1llustration conventions as used 1n, FIG. 14A.
In FIG. 21, the event-message-clustering system includes
event-message-processing logic 2102, a distributor compo-
nent 2104, and a set of n clusters 2106-2116. Each cluster
includes a number of assigned event records, such as the
assigned event records 2118 for cluster 2106, a feature
vector for the cluster, such as feature-vector 2120 for cluster
2106, a cluster 1dentifier, such as cluster identifier 2122 for
cluster 2106, and a processing function, such as processing
function 2124 for cluster 2106, that can be used by the
event-message-clustering system to parse an event message

5

10

15

20

25

30

35

40

45

50

55

60

65

22

in order to extract parameter values from the event message.
As discussed above with reference to FIG. 14A, after a
cluster 1s first created, the cluster temporarily stores event
messages, rather than event records, and 1s associated with
a temporary ID and no parsing function. However, once
downstream analysis systems have analyzed an 1nitial set of
cevent messages associated with, or assigned to, the cluster,
the downstream analysis systems provide a final identifier
and parsing function for the cluster to the event-message-
clustering system. When a next event message 2130 is
received by the event-message-clustering system, the event
message 1s normalized 2142, as discussed above with ref-
erence to FIG. 15, and a feature vector v, 2134 1s computed
for the normalized event message, as discussed above with
reference to FIGS. 16-18. The computed feature vector v, 1s
compared with all of the feature vectors for the n clusters to
determine a cluster 1 associated with feature vector v, for

which the distance d computed for v, and v, 1s minimal 2136.
When d 1s less than a threshold value 2138, the event
message 1s processed using function J, associated with
cluster 1 to produce a corresponding event record which 1s
output, along with the cluster index 1, to the distributor
subcomponent 2104. Otherwise, when d 1s not less than the
threshold 2138, a new cluster 1s created with index 1=n+1,
the feature vector computed for the recerved event message
v, 1s associated with this cluster 2142, and the recerved event
message 1s passed, along with the cluster index, to the
distributor subcomponent 2104. The distributor subcompo-
nent 2104 then assigns the event message or event record to
the cluster with index 1. Again, the event messages and event
records associated with clusters may be physically stored by
the event-message-clustering system or may be stored by
another component, with the event-message-clustering sys-
tem either returning event messages and event records to
requesting downstream components or references to event
messages and event records stored in another component.
Event records and event messages may be deleted form
clusters, copied to other locations, and periodically archived.

The feature-vector-based typing of event messages pro-
vides a first estimate of event-message classification. How-
ever, downstream analytical components that analyze event
messages may determine that two or more clusters represent
a single event-message type and may therefore request that
the clusters corresponding to these types be merged together.
Similarly, downstream analytic components may determine
that the event messages 1n a particular cluster actually have
two or more diflerent types and may therefore request the
event-message-clustering system to split the cluster into two
or more clusters. The merge and split operations thus allow
a refinement or fine tuning of the nitial feature-vector-based
event-message typing carried out by the event-message-
clustering system.

FIG. 22 illustrates a cluster-merge operation. The left
portion of FIG. 22 shows n existing clusters 2202 within the
event-message-clustering system. A downstream component
requests that clusters C, and C, be merged together. As a
result, the event-message-clustering system creates two
rules 2204 that indicate that event messages 1mtially typed
to belong to C, and C, now belong to anew cluster C__,. The
new cluster 2206 1s created to store subsequently recerved
cvent messages that were previously typed as belonging to
clusters C, and C, and clusters C, and C, 2208-2209 are
marked 2210 and 2211, respectively, to indicate that they
will no longer be receiving event records and that, after a
period of time, may be removed or returned to a pool for
reallocation.

US 10,810,103 B2

23

FIG. 23 illustrates a cluster-split operation. In an example
shown 1n FIG. 23, a downstream component requests that a
cluster C, be split mnto two new clusters. The downstream
component additionally provides a function S,() that takes
cither a feature vector v, or an event record, as an argument,
and returns an indication of which of two or more clusters
to assign an event record. In response to the split request, an
event-message-processing system adds a split rule 2302 to a
set of stored rules that indicates that an event message
assigned to cluster C, should now be assigned to the cluster
returned by a call to the function S,() where the function
S,() returns either C,__, or C__,. In addition, the event-
message-clustering system creates the two new clusters C,
and C,__, 2304 and 2306. Finally, the event-message-clus-
tering system marks 2308 cluster C, 2310 as no longer
receiving event records and as a candidate for removal or
reallocation after some period of time. Note that, in the
implementation described in FIGS. 22 and 23, new clusters
created as a result of merge and split operations are not
assoclated with feature vectors, since event records are
directed to these clusters in two steps, the last of which
involves applying a redirection rule, such as the redirection
rules 2204 and 2302. In alternative implementations, rather
than using CRC functions for computing feature vectors,
similarity-preserving hash functions may instead be used, as
a result of which distances computed as the magnitude of
displacement computations on feature vectors may corre-
spond to the degree of dissimilarity between event messages
represented by the feature vectors. In this case, the event-
message-clustering system may be able to use adjustable
thresholding and newly computed feature vectors associated
with merge and split clusters 1n order to direct event mes-
sages to appropriate clusters based on the computed feature
vectors as 1n the logic 2102 discussed above with FIG. 21.

FI1G. 24 provides a final illustration of one implementa-
tion of the event-message-clustering system. FIG. 24 uses
similar illustration conventions as used m FIGS. 21 and
14A. The event-message-clustering system includes event-
message-processing logic 2402 which includes initial cluster
determination logic 2104 and table-driven cluster-determi-
nation refinement logic 2406. The mitial cluster determina-
tion logic 2404 normalizes an input event message, com-
putes a feature vector from the non-parameter tokens within
the normalized event message, and uses the feature vector to
identily a cluster to which to assign the event message. The
table-driven cluster-determination-refinement logic 2406
applies redirection rules 1n a table of redirection rules 1n
order to carry out any specified redirection of the initial
cluster determination that results from previous merge and
split operations, as discussed above with reference to FIGS.
22 and 23. The distributor subcomponent 2408 and clusters
2410 are similar to those described with reference to FIG.
21. The event-message-clustering system additionally
includes a table of redirection rules 2412 and a table of static
portions for each message type 2414 that allow the event-
message-clustering system to regenerate original event mes-
sages from event records should the original event messages
be needed. The table of redirection rules 2412 includes at
most one entry for each cluster identifier. A particular cluster
may be associated with a single redirection rule or may not
be associated with a redirection rule. As discussed above, the
redirection rules either indicate to which cluster an event
message 1nitially designated as belonging to a first cluster
should be forwarded or includes a rule that uses a function
to determine to which cluster to forward an event message
initially determined to belong to a cluster that was subse-
quently split. When a redirection rule 1s applied to a first

10

15

20

25

30

35

40

45

50

55

60

65

24

cluster indication to generate a second cluster 1dentification,
the redirection-rule table 1s again accessed to determine
whether there 1s another redirection rule that may be applied
to the second cluster 1dentification. In other words, redirec-
tion rules are 1teratively applied until a cluster indication 1s
obtained for which there 1s no redirection rule 1n the redi-
rection-rule table.

FIG. 25 illustrates a process that extracts parameter values
from an event message. As discussed above, each cluster 1s
associated with a parsing function that allows the event-
message-clustering system to extract parameter values from
the event message. In the example shown 1n FIG. 25, the
function f, associated with a cluster corresponding to event-
message type X, when applied to a recerved event message
of type x 2502, returns an ordered list of parameter values
extracted from the message. The sorted list of parameter
values can be assembled into an event record 2504 that
describes the recerved event message. The event record may
include a header with an indication of the event-message
type 2506, a list of parameter values and associated param-
cter types 2508, and any additional information 2510 that an
event-message-clustering system may choose to associate
with event records, including details with regard to from
where the event message was received. A representation of
the static, non-parameter portion of the message 2512 along
with an indication of the message type 23514 may be stored
in the static-portion table (2414 m FIG. 24) to allow the
original message 2502 to be reconstituted from the event
record 2504 generated from the original event message.

The redirection rules stored by the event-message-clus-
tering system may be periodically analyzed in order to
remove and archive unneeded redirection rules. In addition,
this analysis may recognize situations 1n which some num-
ber of redirection rules can be replaced, often along with
readjustments 1n the set of clusters managed by the event-
message-clustering system. FIGS. 26A-C illustrate
examples of editing of the redirection-rule table. In FIG.
26 A, the redirection-rule table includes two merge redirec-
tion rules 2602 and 2604 and a subsequently added split
redirection rule 2606. As 1t turns out, the split redirection
rule 2606 ecssentially reverses the merge operation repre-
sented by the two merge redirection rules 2602 and 2604. In
this case, the clusters C, and C.,; can be re-established and
the two merge redirection rules 2602 and 2604 removed,
temporarily leaving the split rule 2606 to allow event
messages that were typed as belonging to cluster C,,, to be
retyped during subsequent processing, as shown in the
inteunediate redirection-rule table 2610. Ultimately, once all
event records typed as belonging to cluster C,,, have been
flushed or archived, the split rule 2606 can be removed to
completely restore the redirection table with respect to
clusters C, and C., 2612.

FIG. 26B shows another example of redirection-rule-table
editing. In this example, cluster C, was split, as a result of
which the split rule 2620 was added to the redirection-rule
table. Subsequently, merge rules 2622 that reverse the split
operation were added to the redirection-rule table. In this
case, the split rule 2620 can be removed and the original
cluster C, re-established, producing an intermediary redi-
rection-rule table 2624. Once all the event records typed as
belonging to events C, ., C,,,, C,,,, and C,,, have been
removed and archived from the event-message-clustering
system, the merge rules and redirection rule can be removed
to restore the redirection-rule table to 1ts 1mitial condition
with respect to cluster C, 2626.

FIG. 26C shows yet an additional example of redirection-
rule table editing. In this example, the cluster C, was split

US 10,810,103 B2

25

three ways, resulting 1n the addition of redirection rule 2630
to the redirection-rule table 2632. Subsequently, each of the
new clusters created as a result of the split operation were
again split, resulting 1n the addition of split redirection rules
2634-2636. This set of split redirection rules can be modified
by creating a comprehensive split rule 2640 to directly split
cluster C, into the six clusters C,,5, Cio15 Canos Caois Csoos
and C.,,. The three split redirection rules 2634, 2635, and
2636 are maintained until all event records typed as belong-
ing to clusters C,,q, C,q,, and C,,, are removed and
archived. Then, they can be removed leaving only the
comprehensive split redirection rule 2640 1n the redirection-
rule table 2642. FIGS. 26A-C illustrate a few simple
examples of redirection-rule-table editing and associated
cluster reorganization. There are many additional, more
complex examples 1n which chains and cycles of redirection
rules can be removed from the redirection table. In addition,
clusters can be periodically re-indexed 1n order to compress
the range of active cluster indexes.

One approach to 1dentifying variables 1n event messages
as well as to generating parsing functions for event-message
clusters 1s to use regular expressions. FIG. 27A illustrates
regular expressions corresponding to various types of for-
mats 1 which dates may be encoded in event messages. In
FIG. 27A, examples of numerous date formats are shown 1n
a left column 2702 and corresponding regular expressions
that can be used to i1dentily substrings of symbols within a
symbol string representing dates in the formats are provided
in a right-hand column 2704. Regular expressions are gen-
crally symbolic encodings of search patterns that can be
applied to text i order to i1dentily substrings. The details
regarding various regular-expression syntaxes can be found
in numerous relerences. Regular expressions are widely
used 1n text-processing programs and are included 1n many
modern programming languages, including Perl, Ruby,
Python, and C++11.

In one type of symbolic encoding of dates, a date 2706 can
be expressed as a three-character indication of the month,
tollowed by a space, followed by a one-digit or two-digit
representation of the day of the month, followed by another
space, and finally followed by a four-digit representation of
the year. The regular expression 2708 represents a search
pattern that can be used to find symbolic encodings of dates,
in the format described with reference to date 2706 in FIG.
27A, 1 text and symbol strings. The parenthesized list of
vertical-bar-delimited three-character month specifications
2710 indicates that any of these three-character month
specifications may occur as the first part of the symbolic
encoding of a date. The *“/s” 2711 indicates a single white-
space character, the bracketed digit range 2712 indicates that
one of the digits 0, 1, 2, or 3 may next occur, but the question
mark 2713 indicates that the digit may or may not be present,
the “Id” 2714 indicates that a single digit next occurs, the
substring “20” 2715 indicates that the digits 2 and O next
tollow, and the pair of *“/d” substrings 2716 indicate that two
additional digits next occur.

In general, there 1s not a unique one-to-one mapping
between date formats and regular expressions. Many differ-
ent regular expressions can be developed to represent a
search pattern for any particular data-encoding symbol for-
mat. Furthermore, more complex regular expressions can be
devised to more exactly specily the substrings that can
represent a particular date format. For example, regular
expression 2708 would i1dentify “Feb. 31 2014” within a
symbol string as a date, but, of course, February 31* is not
a valid date. A more complicated regular expression can be
devised to exclude such invalid dates.

10

15

20

25

30

35

40

45

50

55

60

65

26

FIG. 27B illustrates construction of generalized regular
expressions that identity two or more types of date formats.
For example, regular expression 2720 can be used to 1identily

substrings representing dates encoded in either of the first
and third date formats shown in the left-hand column 2702

of FIG. 27A. These two different types of date formats are

similar, differing in that the month 1s fully spelled out in the
third format 2722 1n FIG. 27 A, rather than abbreviated, as 1n

the first format 2706 and the third format includes a comma
tollowing the day, while the first format does not. Regular
expression 2724 can be used to 1identily dates encoded in any
of the first three formats 2706, 2726, and 2722 1llustrated by

example 1n FIG. 27A. A generic regular expression can be
developed to recognize dates encoded 1n any of a very large
number of different possible date-encoding formats. How-
ever, 1n general, the more different formats recognized by a
regular expression, the larger and more complex the regular
expression. In many cases, 1t 1s more computationally ethi-
cient to develop a number of regular expressions to recog-
nize a corresponding number of classes of date formats and
to apply the number of regular expressions iteratively to text
in order to 1dentity all the possible dates within the text. The
methods described below employ table-driven searching in
which regular expressions are successively extracted from a
table and applied to an event message in order to 1dentify
data encoded 1n particular formats associated with particular
data types.

FIG. 27C illustrates an example of the use of regular
expressions 1n text processing. First, as shown by expression
2730 1 FI1G. 27C, 1t 1s well known that a regular expression
2732 can be transiformed into a non-deterministic finite
automata 2734. A non-deterministic finite automata can, in
turn, be transformed into a deterministic finite automata
2736, and deterministic finite automata 2736 can be 1mple-
mented as a computer routine 2738. In other words, a
computer routine can be developed to recognize substrings
within text specified by any given regular expression. These
computer routines can be embedded within text-processing
routines, many examples of which can be found in text-
processing applications and included 1n programming lan-
guages. One example 1s a routine “find” that returns the
indices of substrings within an input string 1dentified by an
input regular expression. FIG. 27C shows a declaration for
the function “find”” 2740. The function returns the number of
substrings 2742 identified within an input string 2744 that
correspond to an 1put regular expression 2746 and addi-
tionally returns, 1n an array of indices 2748, the indices of
the starting positions within the string of each identified
substring corresponding to the mput regular expression. For
example, when the input regular expression indicates a
succession of three digits 2750, input of the string 2752 to
the function “find” returns the number 2 (2754 1n F1G. 27C)
and the indices 2756 of two three-digit substrings. The mitial
symbols, or digits, of the two three-digit substrings are
shown by arrows 2758-2759 i FIG. 27C.

FIG. 27D shows a representation of the deterministic
finite automata 2760 corresponding to the regular expression
2750 1n the example shown 1n FIG. 27C. The deterministic
finite automata 1s a state-transition diagram that includes an
initial state 2762, a non-digit state 2764, and three digit
states, the last 2766 of which represents identification of a
three-digit substring. Arrows represent transitions between
states that occur on 1nput or consideration of a next symbol
of a symbol string. The identification of a three-digit sub-

string can be recorded upon reaching the final digit state
2766.

US 10,810,103 B2

27

Regular expressions can be used, in one implementation
of the currently described event-message-clustering subsys-
tem, to 1dentily variables within an event message. FIGS.
28A-B 1illustrate implementation of a regular-expression-
based variable-finding subsystem. FIG. 28 A shows a table of
data-type/regular-expression pairs 2802 that provides a basis
for variable identification. For each format or class of
formats for each different data type of variables 1n event
messages, a regular expression 1s stored in the table. In
general, the table 1s ordered, with more specific data types
occurring before, or higher in the table than, more generic
encoded data. For example, date and time formats are
generally readily recognized 1n text and are not ambiguous
with respect to formats for other data types, and therefore
occur higher 1n the table than more generic data types, such
as mtegers. FIG. 288 shows a results table 1n which results
of the variable-identiiying subsystem are stored for a par-
ticular processed event message. Each row 1n the results
table 2804, such as row 2806, represents an 1dentified
variable within an event message. The variable 1s charac-
terized by an index of the starting symbol of the variable
2808, the length of the symbol string corresponding to the
variable 2809, the row of the data-type table (2802 in FIG.
28A) corresponding to the data type of the variable 2810,
and the substring that encodes the variable within the event
message 2812.

FIGS. 29A-B illustrates a general approach to generating,
a parsing function for an event-message cluster. FIG. 29A
shows four very short event messages of a particular event-
message cluster 2902-2905. FIG. 29B 1llustrates a variety of
different regular-expression-based parsing functions for the
event-message cluster positioned along a vertical dimension
of specificity 2906. The most specific parsing function 2908
1s the literal string corresponding to the first event message
2902. This parsing function would be very eflective for
recognizing the first event message, but would fail to rec-
ognize any of the other event messages 1n the cluster. Thus,
parsing function 2908 1s far too specific to be used as the
parsing function for a cluster containing the four event
messages. By contrast, the most generalized parsing func-
tion 2920 would return success for all four of the event
messages 2902-2905 in the cluster. However, this generic
parsing function would return success when applied to any
event message. A uselul parsing function for the cluster 2912
represents a balance, 1n specificity, between the most general
parsing function 2910 and the most specific parsing function
2908. In the useful parsing function 2912, a regular expres-
sion that can be applied to event messages, the common
static portions of the event messages within the cluster are
represented by literals, including the substring “Error” and
the substring “returned.” The variable substrings within the
event messages are represented, 1n the regular expression
2912, by the regular sub-expression “(.*),” which matches
any substring, including an empty substring. Finding an
appropriate regular-expression-based parsing function for a
cluster of event messages thus imvolves generating a regular
expression that represents a specificity balance and that can
be used to extract the vanable portions of the event messages
of a cluster.

Next, one approach to generating useful parsing functions
for event-message clusters 1s described. FIG. 30 1llustrates a
computational method for identifying the static or conserved
substrings within a cluster of event messages. FIG. 30
provides an illustrated example of the common-substring-
recognizing method. In a left column 3002 of FIG. 30,
successive event messages within an event-message cluster
are shown. A right-hand column 3004 of FIG. 30 shows a

5

10

15

20

25

30

35

40

45

50

55

60

65

28

currently recognized common substring for the cluster as the
method considers, 1n turn, each successive event message
within the cluster. Following consideration of the first event
message 3006, the common substring 1s the entire first event
message 3008. This common substring 3008 1s next consid-
ered with respect to the second event message 3010. Com-
parison of the common substring 3008 to the second event
message 3010 reveals that, following consideration of the
first two event messages in the cluster, there are two com-
mon substrings 3012 and 3014. These two common sub-
strings 3012 and 3014 represent the common portions of
previous common substring 3008 and the second event
message 3010. Next, the common substrings 3012 and 3014
are compared to the third event message 3016. As a result of
this comparison, two new common substrings 3018 and
3020 are produced. This process continues with consider-
ation of subsequent event messages to produce common
substrings 3022 and 3023 which, should the remaining event
messages 1n the cluster follow the same pattern followed by
the 1mitial five event messages in the cluster, represent the
common or static portions of all of the event messages
within the cluster. These two common substrings 3022-3023
can then be used to create an 1mitial regular expression 3024
as the basis for a parsing function for the event messages of
the cluster. This 1mnitial regular expression includes the literal
strings for the two common substrings and regular-expres-
sion sub-expressions “(.*)” for the variable portions of the
event messages.

Following generation of an imtial regular expression, as
discussed above, a more specific regular expression can be
obtained by 1dentifying encoded data within the variable
portions of the event messages. FIGS. 31A-B illustrate this
process. In FIG. 31A, the same event messages 3102-3106
used 1n the example of FIG. 30 are again shown. The 1nitial
regular expression can be applied to each event message,
using a function similar to the previously described “find”
function, to 1dentily substrings corresponding to sub-regular
expressions within the mitial regular expression. In the
example shown in FIG. 31A, the find-like function 1s used
to i1dentily those substrings within each event message
corresponding to the variable portions specified by the
sub-regular expressions “(.*)” in the 1nitial regular expres-
sion. These substrings are linked together as a list. For
example, applying the initial regular expression to the first
cvent message 3102 produces the list of two substrings
3110-3111 that contain the variable portions of the first event
message.

FIG. 31B illustrates a next step in the process of creating
a more specific regular expression. In FIG. 31B, the lists of
substrings representing variable portions of event messages,
such as the list that includes substrings 3110 and 3111, are
converted mto lists of data types contained within the
variable portions. In the current example, substring 3110 1s
recognized as an IP address 3112 and substring 3111 1s
recognized as a time 3114. In this case, there are no
remaining non-data-type-encoding symbols 1n the sub-
strings. As shown 1n FIG. 31B, all of the lists of substrings
corresponding to variable regions of the five event messages
3102-3106 are converted into corresponding lists of data
types 3116-3120. Thus, the variable portions of the event
messages have been transformed into lists of data types,
allowing the 1nitial regular expression to be transformed into
a more specific regular expression that can serve as the basis
for a parsing function that can be used to extract variable
data from each event message of a cluster.

FIGS. 32A-B illustrate a final regular expression and
data-table template. The 1nitial regular expression 3202 for

US 10,810,103 B2

29

the example 1s transformed, as indicated 1n FIG. 32A, mto
a final expression 3204 by adding sub-regular expressions

3206 and 3208 for the IP-address and time encoded data,

bracketed by sub-regular expressions “(.*),” for each of the
variable portions represented in the initial regular expression
3202 by the sub-regular expression “(.*).” Note that the
actual sub-regular expressions for IP addresses and times are
not shown 1n FIG. 32A, but instead are symbolically rep-
resented by “(IPv4)” and *“(time),” respectively. In general,
the event messages ol a cluster consistently use the same
data-type formatting for each variable data value included 1n
the event messages of the cluster, so that only a single
sub-regular expression for each variable 1s needed 1n the
final regular expression for the cluster. The data-table tem-
plate 3210 consists of two rows 3212 and 3214. The first row
3212 includes an indication that the row represents an IP
address, 1n a first column, and includes a field 3216, in a
second column, to hold the encoding of an IP address
extracted from an event message. Similarly, the second row »g
3214 includes an indication that the row 1s a time value 3217
and a field 3218 to contain a time value extracted from an
event message. The final regular expression combined with
the data table obtained by applying the final regular expres-
s10n to an event message together represent the same infor- 25
mation as represented by the data structures shown 1n, and
discussed with reference to, FIG. 25. Thus, a final regular
expression prepared by the above-discussed methods and
data-table template, together, can be used as the parsing
function for a cluster. 30
FIGS. 33A-B illustrate the information provided by the
clustering subsystem about event messages. As shown 1n
FIG. 33A, and as discussed, in detail, in the preceding
subsection, the clustering subsystem organizes event mes-
sages 1nto clusters, illustrated in FIG. 33 A by dashed circles 35
3302-3307. Within these clusters, the various types of event
messages within the cluster are represented by small disks,
such as disk 3310 within cluster 3302. Each event-message
type 1s associated with a feature vector as are the clusters. In
general, the event-message types are not evenly or uniformly 40
distributed within a hyper-dimensional sphere about the
cluster position represented by the feature vector associated
with the cluster. Thus, 1n FIG. 33 A, the event-message types
are shown as non-uniformly distributed within the disks of
the clusters. Of course, the feature vector space 1s a generally 45
high-dimensional space rather than a two-dimensional disk,
but the non-umiform distribution of positions corresponding,
to feature vectors associated with event-message types 1s
analogously non-uniformly populated with positions corre-
sponding to event-message feature vectors. The clustering 50
subsystem additionally provides data-table templates 3312-
3317 for each cluster for storing the values of encoded data
extracted from event messages via the parsing function
associated with a cluster. The data-table templates include
indications of the data types of the encoded data. 55
In addition to the clustering-subsystem-provided informa-
tion shown 1n FIG. 33A, the event records generated from
event messages are stored 1n event logs. The event log 3330
can be considered to be a very long table or file that contains
a series of time-ordered event records. In FIG. 33A, each 60
event record 1s represented by a row 1n the event log 3330,
such as the event record corresponding to the first row 3332
of the event log. The event records may, as shown 1n FIG.
33B, include a cluster-1D field 3334, a time field 3336, a date
field 3338, and a field that contains the event record prepared 65
from a corresponding event message by the clustering
subsystem 3340.

10

15

30

As shown 1 FIG. 33B, the distributed computing system
may independently keep track of the time of various critical

system events that occur. It may be possible to determine the
position ol these critical events within the timeline repre-
sented by the event log. As shown in FIG. 33B, for example,
a critical event occurred at a time 3342 that falls between the
times associated with event record 3344 and event record
3346. Because the event records are time ordered in the
event log, a temporal neighborhood 3348 may be defined to
extend, 1n time, above, below, or both above and below the
time point 3342 of the critical event. In certain cases, the
critical events may, in fact, themselves be identified event-
log entries. In other cases, the critical events may be
identified, manually, by system administrators, or by other
types of data stored by the distributed computing system.

Event-Message Transactions

As discussed in preceding subsections, event-message
typing and transformation of event messages or log mes-
sages 1nto event records provides a foundation for managing
and maintaining event log files and processing event mes-
sages 1n order to make sense of voluminous quantities of
event-message data collected within distributed-computing
systems. The current document 1s directed to a next-hierar-
chical level 1n event-message processing that facilitates
extraction of meaningful indications of problems, anoma-
lies, and state-changes from large quantities of processed
event messages by system administrators, automated main-
tenance and management subsystems, and other consumers
ol event messages and log-file data.

FIGS. 34A-B introduce the notion of event-message
transactions. In this discussion, and in following discus-
sions, 1t 1s assumed that event messages have been pro-
cessed, as described 1n preceding subsections, to transform
the event messages into event records associated with event-
message types. The approaches and processes described in
this and following discussions may be alternatively applied
to unprocessed log files containing event messages, but, for
conciseness and clarity of illustration, 1t 1s assumed that the
currently described methods and systems are applied to
event records that contain event-message types and typed
and 1dentified fields, such as the event record 2504 shown 1n
FIG. 25.

In FIG. 34A, a column of event records 3402 represents
stored event records ordered in time, as indicated by the
downward-pointing time axis 3404. It can be assumed that
cach event record 1s time-stamped or otherwise associated
with a time value and that the time axis does not necessarily
represent a uniform, linear decrease 1n time 1n the downward
direction but only the direction of decreasing time values.
The most-recently received event record 3406 1s shown at
the top of the column and the least-recently recerved and
processed event record 3408 of the displayed event records
1s shown at the bottom of the column. In subsequent figures,
similar 1llustration conventions are used for memory builers
storing event records. Each event record contains an event-
message type, such as the type “al0” 3410 within event
record 3406. Examination of the event-message types within
event records 1n column 3402 reveals that in four instances
3416-3419, an event of type “h19” occurs soon aiter an
occurrence of an event of type “n68.” For example, 1n
instance 3416, the event record 3420 of type “h19” 3422
occurs 0.03 seconds following an occurrence of the event
3424 of type “n68” 3424. For each instance 3416-3419, the
time difference At for the occurrence of an event of type
“h19” following an occurrence of an event of type “n68” 1s

US 10,810,103 B2

31

indicated 1n seconds. Based on the instances 3416-3419, one
may conclude that the occurrence of an event of type “h19”
from 0.03 to 1.2 seconds following the occurrence of an
event of type “n68,” as mdicated by diagram 3430 to the
right of the column of event records, may represent a regular
pattern of time-correlated event-message-type occurrences.
Such patterns of time-correlated event-message-type occur-
rences are referred to as “transactions” in the current docu-
ment. A transaction representing time-correlated occur-
rences of two or more event-message types within a stream
or sequence of event records may correspond to significant
multi-event-record events, or state changes, that can provide
more uselul information to automated maintenance and
management subsystems, system administrators, or other
consumers of event messages and log files than a stream or
sequence ol event records containing unrecognized and
unidentified transactions. In essence, a transaction 1S a
higher-order type of information that can be extracted from
streams, sequences, or stored event records. Transactions are
recurring patterns ol event-message-type occurrences.

FIG. 34B illustrates, using diagrams similar to diagram
3430 1n FIG. 34 A, another transaction. Diagrams 3440-3442
indicate that events of the four event-message types “a’79,”
“044.” “h18,” and “m19” appear to co-occur within short
time windows 1n an event-record stream or sequence. Analy-
s1s of the patterns of event-message-type occurrences rep-
resented by diagrams 3440-3442 might result in the conclu-
sion, represented by diagram 3444, that an event of type
“h18” occurs within 0.3 to 1.6 seconds of an event of type
“ml19,” 1n either time order, followed by the occurrence of
an event of type “gd4” after 2.7 to 3 seconds and then an
occurrence of an event of type “a79” following an additional
0.1 to 1.0 seconds. Thus, 1t appears that the co-occurrence of
the event-message types “m19,” “h18,” “g44,” and “a79,” in
time, may represent a recurring pattern of event-message-
type of occurrence, or transaction. In the transaction repre-
sented by diagram 3430 1n FIG. 34A, an event of type “h19”
appears to occur following the occurrence of an event of
type “n68.” However, in the transaction represented by
diagram 3444 in FIG. 34B, occurrence of events of type
“ml19” and “hl18” are not ordered in time. Patterns of
event-message-type occurrences that comprise transactions
may therefore be strictly time ordered, partially time
ordered, or unordered with respect to time. In the following
discussion, methods and systems for identifying transactions
within streams or sequences of event records are discussed
that identify unordered transactions. In other words, these
methods and systems 1dentily transactions as regular recur-
ring patterns of event-message-type occurrences within time
windows without regard to the time ordering of the event-
message types within the time windows. These methods and
subsystems may be altered or enhanced to detect and dis-
criminate between unordered, partially ordered, or strictly
ordered transactions.

FIGS. 35A-H 1llustrate a counter-based method, incorpo-
rated into various event-record-processing subsystems, that
monitors event-message-type co-occurrences, with respect
to time, 1n order to establish event-message-type time cor-
relations, from which certain types of transactions can be
inferred. FIGS. 35A-H all use the same 1llustration conven-
tions, next described with reference to FIG. 35A. FIG. 35A
shows components ol an event-record-processing subsys-
tem. These include a memory bufler 3502 in which event
records are stored in association with an indication of the
time 1n which each event was received. Event records
3504-3505 continuously stream into the event-record pro-
cessing subsystem for temporary bullering within memory

10

15

20

25

30

35

40

45

50

55

60

65

32

buller 3502. As the buller 3502 fills, buflered event records
are periodically removed and transferred to downstream
event-record processing, mcluding long-term event-record
storage, 1n order to make room 1n the bufler 3502 for newly
arriving event records. A set of counters, including counter
3506, are used to monitor event-message-type co-occur-
rence in time. In general, there are a fixed number of
counters. In the example shown 1n FIGS. 35A-H, there are
seven counters, 1n total. In an actual event-record-processing
subsystem within a distributed computer system, there may
be many thousands of counters for monitoring event-mes-
sage-type time co-occurrences 1n a system that generates
tens of thousands of different event-message types. The
memory bufler 1s shown, 1n FIGS. 35A-H, to include rows,
cach corresponding to an event record. For example, the first
row 3508 corresponds to a memory location 1n which an
event record can be stored. Each event record includes an
event-message type 3509, an indication of the time at which
the event record was received 3510, and the remaining fields
of the event record 3511. Of course, many diflerent event-
record storage schemes may be used.

FIGS. 35B-H illustrate reception and processing of six
event records by the event-record-processing subsystem,
components of which are illustrated 1n FIG. 35A. The
incoming stream of event records includes a next event
record to process 3512 as well as a more recently received
event record 3513. Each event record includes a type, such
as the type “T1” 3514 of event record 3512 as well as the
remaining event-record fields, the values of which are rep-
resented by a capital letter, such as the capital letter “X”
3515 representing the remaining field values within event
record 3512. The contents of received event record 3512 are
placed into the last slot of the memory bufler 3516, as
indicated by curved arrow 3517 in FIG. 335B.

In FIG. 35C, the next event record 3513 1s processed. The
contents of this event record are placed into slot 3518 1n the
memory bufler 3502. At this point, because both event
record 3513 and previously processed event record 3512
have been entered into the memory bufler and are both
associated with the same reception time t, a co-occurrence n
time of the event-message types “T17 and “12” have
occurred. Theretore, as indicated by curved arrow 3519, an
unused counter 3506 1s 1nitialized to count co-occurrences of
the event-message types “I'1” and “T2.” The event-message
types for which the counter counts co-occurrences 1n time
are entered 1n the top-row entries 3520 and 3521 of counter
3506. An 1nitial count of “1” 1s entered in the counter 3522
and the most recent time for which a count has been entered
into the counter 3523 1s initialized to the time t at which the
last of the two event records stored 1n slots 3516 and 3518
was received.

In FIG. 35D, a next-received event record 3524 1s pro-
cessed. This event record 1s stored 1n slot 35235 of the
memory bufler 3502 1n association with the time t+1 3526
at which the event record 3524 was received. Because the
time span [t, t+1] 1s within a time window for co-occurrence,
two additional counters 3528 and 3530 are imitialized to
count co-occurrences of events “T1” and “T6” and co-
occurrences of the event-message types “12” and “16.”

FIG. 35E illustrates processing of yet another event
record received 1n the event-record stream. This next event
record 3532 is stored in slot 3534 of the memory buller
3502. Because the time span [t, t+2] 1s within a window of
time designated for event-message-type co-occurrences,
three additional counters 3536-3538 are 1mitialized to count
co-occurrences of the event-message types “I'1” and “13,”

“T2” and ““I'3,” and “T6” and *“13.”

US 10,810,103 B2

33

In FIG. 35F, yet another event record 3540 1s recerved and
processed. This event record 1s stored in slot 3542 in
memory bufller 3502. The time span [t, t+3] 15 within a
specified time window for event-message-type co-occur-
rence, and therefore, since event record 3540 has type “T1,”
counters 3506, 3528, and 3536 are updated and an additional
counter 3544 1s 1mmitialized to count co-occurrences of event
records with type ““I'1.” Note that the update operations have
updated the most-recent access times of counters 3506,
3528, and 3536 to t+3. Counter 3506 thus reflects the fact
that two co-occurrences of event-message types “T1” and
“I'2” have now occurred, the most recent at time t+3.

FIG. 35G illustrates processing of an additional event
record. The newly arrived event record 3546 1s stored 1n slot
3548 of the memory builer 3502. The newly arrived event
record has type “T3,” and thus counters 3536 and 3538 are
updated. However, the time of arrival of the new event
record 3546 1s t+4 3550, and the time span [t, t+4] exceeds
the window of occurrence 3552. Thus, counter 3536 1s
incremented only by one, to retlect the co-occurrence of the
newly arrived event record with the preceding event record,
but not twice to include the co-occurrence with the event
record stored in slot 3516, since i1t 1s outside the co-
occurrence time window 3552, This time window spans only
four time units. Note that the time window can be thought
of as sliding upward as new event records are placed nto
memory buffer 3502, with the time window extending
downward from the most-recently stored event. Because
there are two occurrences of event-message type “13”
within the time window 3552 1n the memory buifler 3502, a
counter that counts co-occurrence ol event-message type
“T'3” with 1tself needs to be incremented. However, there 1s
no such counter and there are no iree counters to mitialize.
Theretore, the contents of the least recently accessed counter
3530 are discarded and, as shown 1n FIG. 35H, counter 3530
1s reinitialized to count co-occurrence of the event “13” with
itself.

To summarize FIGS. 35A-H, as event records are pro-
duced by event-message processing, described i previous
subsections, they are temporarily stored in a memory butler
that allows each event record to be considered with respect
to preceding and following event records to count co-
occurrences of event-message types. A sliding time window
for co-occurrence 1s used, as discussed above with reference
to time window 3552 1n FIG. 35G. A number of counters are
employed to count event-message-type co-occurrences, but
the number of counters 1s generally less than the number of
possible event-message-type pairs. Therefore, counters that
have not been accessed for long periods of time are dis-
carded and remitialized to count newly detected event-
message-type co-occurrences.

FIGS. 36 A-J 1llustrate use of counters, as described above
with reference to FIGS. 35A-H, by an event-message pro-
cessing system, to record indications of event-message-type
co-occurrences in time and to use the indications of co-
occurrences to discover related event-message types and
candidate transactions.

FIG. 36A provides a control-flow diagram for an event-
message-processing system. The event-message-processing,
system executes a continuous event loop illustrated 1n FIG.
36A. In step 3602a, the event-messaging-processing sub-
system waits for a next event to occur. When the next-
occurring event 1s a reception of an event message, as
determined 1n step 36025, the received event message 1s
queued for typing and transformation to an event record, 1n
step 3602c¢, and an event-message signal 1s generated, 1n step
3602d, to alert an asynchronous event-message-processing

10

15

20

25

30

35

40

45

50

55

60

65

34

subsystem to process the newly received event message.
When the next-occurring event 1s generation of a new event
record, as determined in step 3602e¢, where the newly
generated event record 1s generated by the event-message-
processing subsystem signaled in step 3602d, the event
record 1s queued for event-record processing in step 3602/
and an event-record processing subsystem 1s signaled, in
step 3602¢, to again begin processing event records. Ellipses
3602/ indicate that other types of events are processed 1n the
event loop. A default event handler 3602; handles any events
not handled by specific event detection and handling, as
shown for newly received event messages and new event
records. When there are more events queued for handling, as
determined 1n step 3602;, control returns to step 36025.
Otherwise, control returns to step 3602a, where the event-
message-processing subsystem waits for a next event to
OCCUL.

FIG. 36B provides a control-flow diagram for an event
loop that implements the event-record-processing subsystem
signaled in step 3602¢g 1n FIG. 36A. In step 3604a, two local
variables monitor counter and mem counter are initialized
to 0. In step 36045, the event-record-processing-subsystem
cevent loop waits for a next event-record-generation event.
When a next event record has been generated, the event-
record-processing subsystem dequeues, 1n step 3604c¢, all
event records from an mnput queue and places the events 1n
a memory bufler, such as the memory bufler 3502 shown 1n
FIG. 35A. Fach event record placed 1n memory 1s associated
with an 1ndication of the time at which the event record was
received. In step 36064, a routine “update counters” 1s called
to update any event-message-type-co-occurrence counters,
as discussed above with reference to FIGS. 36A-H. In step
3604¢, the local variable monitor counter 1s incremented.
When the contents of the variable monitor counter exceed
the value thresholdl, as determined in step 3604/, a routine
“monitor counters™ 1s called. 1n step 3604¢g, after which the
local variable momitor_counter 1s reset to 0, in step 3604/.
In step 3604i, the local variable mem_counter 1s incre-
mented. When the value stored in the local variable mem
counter exceeds the value threshold2, as determined 1n step
3604/, the routine “memory maintenance™ 1s called, 1n step
3604%, following which the local variable mem_ counter 1s
reinitialized to O 1n step 3604/. When there are more event
records available for dequeuing and processing, as deter-
mined 1n step 3604m, control returns to step 3604¢. Other-
wise, control returns to step 36045, where the event-record-
processing subsystem waits for a next event-record-
generation event.

FIG. 36C provides a control-tlow diagram for the routine
“update counters,” called in step 3606c¢ in FIG. 36B. In step
3606a, the sliding window spanning the most-recently
stored event record downward through less-recently stored
event records 1s set to include at most M event records
within a time window of N time units. Thus, the window
within which a stored event record 1s compared to previ-
ously stored event records includes no more than M event
records and includes only event records associated with
times within a time span of N time units stretching back
from the time associated with the most-recently stored event
record. The total number of event records that are considered
for co-occurrence with any particular event record 1s thus
2M-2 and the total time span within which event records
may co-occur with the particular event record 1s 2N. Then,
in the nested for-loop of steps 36065-3606i, event-message-
type co-occurrences are detected and counted. The outer
for-loop of steps 360656-3606: considers each of the newly
received and stored event records dequeued from the input

US 10,810,103 B2

35

queue 1n step 3604¢ of FIG. 36B. The inner for-loop of steps
3606c-3606g considers all the event records within the
sliding time window below the event record currently con-
sidered by the outer for-loop of steps 36065-3606i. Each
detected co-occurrence of event-message types 1s counted
by a call to the routine “count,” 1 step 3606e. In this
implementation, i1t 1s assumed that event messages are
received frequently, so that a single sliding window can be
established 1n step 3606a for all of the event records
dequeued 1n step 3604¢ of FIG. 36B. Were that not the case,
then step 3606a would follow step 360656 to establish a
sliding window for each considered newly stored event
record.

FIG. 36D provides a control-flow diagram for the routine
“count,” called 1n step 3606¢ of FIG. 36C. In step 36084, the
routine “count” receives two event-message types t, and t..
When one or both of t; and t; are on a heartbeat list, as
determined 1n step 3608b, then no further action is taken by
the routine “‘count.” The heartbeat list 1s a global list
containing event-message types that are deemed to be types
of heartbeat event records that are periodically generated
and received by the event-record-processing subsystem.
Because their co-occurrence with other event-message types
1s generally coincidental, they are not considered candidates
for inclusion 1n transactions. Otherwise, in step 3608c¢, the
routine “count” searches for a counter that counts co-
occurrences of the event-message types t; and t,. When such
a counter 1s found, as determined 1n step 36084, the count
and access time within the counter are updated, in step
3608¢, as discussed above with reference to FIGS. 35A-H.
Otherwise, an unused counter or, 1f there are no unused
counters, the least-recently accessed counter 1s selected, 1n
step 3608/ and then initialized, mn step 36082, to count
co-occurrences of events t; and t;, as also discussed above
with reference to FIGS. 35A-H.

FIG. 36E provides a control-flow diagram for the routine
“memory maintenance,” called in step 36044 of FIG. 36B.
In step 3610q, the variable t 1s set to the time associated with
the event record most recently entered into the memory
bufler. In step 36105, the local variable 1 1s set to be the
address of, or reference, the first event record that i1s asso-
ciated with a time t, that 1s outside the time window of N
time events, or set to —1 when there 1s no such event record.
In step 3610c¢, the local variable 7 1s set to the address of the
event record, or to reference the event record, that 1s
separated from the most-recently received event record by
M-2 event records, or set to —1 when there 1s no such event
record. When both 1 and 1 have the value -1, as determined
in step 36104, then the memory-maintenance routine
returns. Otherwise, the local variable d 1s set to eirther 1 or 5,
in step 3610¢, to mark the first event record below the time
window that descends from the most-recently stored event
record. The event records that include d and previously
stored event records are then moved to long-storage memory
or queued for further processing, 1n step 36107, and the event
records remaining in the memory bufler are shifted down-
ward to the bottom of the memory butler in order to provide
space for newly recerved event records, 1n step 3610g.

FIG. 36F provides a control-flow diagram for the routine
“momnitor counters,” called in step 3604¢ of FIG. 36B. In
step 3612a, the routine “monitor counters” determines a set
T of event-message types that are included 1n at least one
counter. In step 3612bH, a map 1s prepared for mapping
event-message types mmto a monotonically increasing range
ol integers that are used as indexes into a matrix. In step
3612c, previously allocated but no longer needed co-occur-
rence matrices are de-allocated and a new co-occurrence

10

15

20

25

30

35

40

45

50

55

60

65

36

matrix S 1s allocated with dimensions I'TI by |I'T|, where |T|
represents the cardinality of the set T. Then, in the for-loop
of steps 36124-3612/, the routine “CP” 1s called, for each
event-message type 1 in T 1n order to detect and remove
heartbeat event-message types.

FIG. 36G provides a control-flow diagram for the routine
“CP,” called 1n step 3612¢ 1n FIG. 36F. In step 3614a, the
routine “CP” receives the co-occurrence matrix S, 1n event-
message type 1, and the map generated 1n step 36125 of FIG.
36F. In step 36145, the routine “CP” determines the set of
event-message types U, each of which 1s paired with event-
message type 11n one of the counters. In the for-loop of steps
3614c-3614f, cach counter ¢ that counts co-occurrences of
the event-message type 1 and one of the members of U 1s
considered. In step 36144, an estimate of the conditional
probability of the occurrence of u given occurrence of
event-message type 11s computed based on the counter value
for the currently considered counter c. This estimated con-
ditional probability 1s stored in the co-occurrence matrix S
in step 3614e. When the number of co-occurring event-
message types, |Ul, 1s less than or equal to a threshold value,
as determined 1n step 3614¢g, then the routine “CP” returns,
having computed the co-occurrence matrix values for event-
message type 1. Otherwise, 1n step 3614/, a variance of the
estimated conditional probability values computed 1n the
for-loop of step 3614¢-3614f 1s computed, 1n step 3614/%.
When the variance 1s less than a threshold value, as deter-
mined 1n step 3614, then event-message type 1 1s placed on
the heartbeat-event list and all counters contaiming 1 are
de-mitialized for use for counting other event-message-type
co-occurrences.

The co-occurrence matrix S, computed by the routine
“monitor counters,” discussed above with reference to FIG.
36F, 1s used to prepare a table of co-occurrence that can be
used to determine related event-message types as well as to
identily event-message-type transactions. FIG. 36H pro-
vides a control-flow diagram for the routine “prepare table
of co-occurrence.” In step 3616a, the routine receives a set
ol event-message types that occur in the counters T and a
recent co-occurrence matrix S and allocates an empty table
of co-occurrence C. In step 36165, any event-message types
on the heartbeat list are deleted from set T. In the for-loop
of steps 3616¢-3616¢, a list of at most L entries are stored
for each event-message type t with greatest estimated con-
ditional probabilities selected from the co-occurrence matrix
S. The table of co-occurrence C is then stored, in step 3616/,
for further use.

FIG. 361 i1llustrates a table of co-occurrence. The table of
co-occurrence 3618 includes a row for each event-message
type that occurs 1n a counter that 1s not a heartbeat event-
message type. The event-message types are stored in the first
field of each row, such as the event-message type t, 3619 1n
the first row 3620 of the table of co-occurrence. The second
field 1n each row indicates the length of an array containing
a list of co-occurring event-message types for the event-
message type associated with the row. Thus, the second field
3621 of the first row 3620 contains the integer 5 indicating
that there are five co-occurring event-message types for
event-message type t,. The third field 1n each row contains
a pointer to an array containing records, each record indi-
cating the co-occurring event-message type and the com-
puted conditional probability for the co-occurring event-
message type. The third field 3622 in row 3620 references
array 3623, with five entries or records, each indicating a
co-occurring event-message type and computed conditional
probability. Thus, a table of co-occurrence 1s essentially a
list of co-occurring event-message types for each of the

US 10,810,103 B2

37

event-message types associated with counters that are not
heartbeat event-message types. As discussed below, co-
occurring event-message types can be considered to be
related to one another and may be considered to be candi-
dates for transactions. FIG. 36] provides a control-tlow
diagram for a routine “1dentily transactions 1.”” This routine
identifies event-message-type transactions irom a table of
co-occurrence. In step 3640, the routine “identily transac-
tions 17 receives a reference to a memory bufler or file E
containing event records. In step 3642, the routine “identily
transactions 17 determines a set of event-message types t
contained 1n the event records 1n E. In step 3644, event-
message types are removed from the set T that are not also
present 1n the table of co-occurrence. Then, 1n the for-loop
ol steps 3646-3649, cach event-message type t remaining 1n
the set T 1s considered. In step 3647, the longest set of
co-occurring events 1n the table of co-occurrence for the
currently considered event-message type t having a product
of conditional probabilities greater than a threshold value 1s
determined. This set of event-message types 1s stored, along
with the event-message type t, as a candidate transaction in
a set of candidate transactions CT. Each candidate transac-
tion 1s associated with a score that considers both the length
of the transaction as well as the product of the conditional
probabilities of the event-message types within the transac-
tion. The top scored candidate transactions are retained in
CT, 1n step 3650, and returned as a set of event-message-
type transactions. Below, a different method for 1dentifying
transactions 1s discussed.

Next, a different and more precise method for 1identiiying
transactions within streams or sequences ol event records 1s
described. FIGS. 37A-B provide initial explanations and
data-structure illustrations to facilitate discussion of tflow-
control diagrams provided by FIGS. 38 A-38L which follow.

FIG. 37A shows a column of event records 3702 similar
to the column of event records 3402 discussed above with
reference to FIG. 34A. The event records are ordered in time
and contained within a time window 3704. A transaction
3706 has been determined to include the co-occurrence of
event records with event-message types 4, 13, and 6 3708-
3710. In addition to the co-occurrence of event records with
these types, the transaction specifies fields, within the event
records of the event-message types, which contain the same
value 1 order for an occurrence of the transaction to be
detected within time window 3704. When the fields 1n the
event records with event-message types specilied by the
transaction contain the same value, as they do 1n the example
shown 1n FIG. 37A, then an occurrence of the transaction
has been detected and the transaction can be considered to
have a value 3712 equal to the common value of the
specified fields 3714-3716 within the event records with the
specified event-message types. Thus, this type of transaction
1s a set of event-message-type/tield elements, each element
specilying the event-message type of a record as well as a
field 1n an event record of the event-message type. The
theory behind these event-message type/field transactions 1s
that quite often, related event records will contain a common
field with a common value 1ndicating an instruction, routine,
module, or other element of the control programs within a
distributed-computing system that generate the events.
Alternatively, the common value in the common fields of the
event records may refer to some other common source for
the set of event records that co-occur, in time, repeatedly
within a stream or sequence of event records and therefore
constitute a transaction.

FIG. 37B shows a number of data structures used 1n the

control-flow diagrams that follow in FIGS. 38A-L. A field

10

15

20

25

30

35

40

45

50

55

60

65

38

node F 3720 describes or represents a particular field within
a particular type of event record. The field node F 3720
includes an indication of the event-message type of the event
record contaiming the field 3722, an indication of the data
type of value stored 1n the field 3723, a field identifier 3724
that allows the field to be extracted from a stored event
record, a first set of values 3725 and a second set of values
3726 for the field obtained by various methodologies to be
discussed below, and two integer counts 3727 and 3728 that
are used in the methods discussed below. Note that, in one
implementation, the fields “valuesl” and *““values2” contain
references to arrays 3729 and 3730 that contain a set of
values for the field described by the field node F. A field set
FS 3732 1s an array or list of field nodes. An event-record-
type/field-identifier node 3734, or e/f node, includes an
indication of an event-record type and an 1dentifier for a field
within the event record. A transaction t 3736 includes an
indication of a number of e/f nodes within the transaction
3738 and an array or list of elf nodes 3740 that describe the
event-record types and included fields that together com-
prise a transaction. A set of transactions T 3742 1s an array
of transactions. In FIG. 37B, the transactions are rotated into
a vertical position within the array.

FIGS. 38A-L provide control-flow diagrams that describe
a second method for finding transactions of the type dis-
cussed above with reference to FIG. 37A within a sequence,
stream, or set of stored event records. In step 3802a, the
routine “find transactions™ receives a reference E to a set of
stored event records. In step 38025, the routine “find trans-
actions” generates a list L of common event-record types. In
step 3802¢, the routine “find transactions™ allocates a set of
candidate field sets FS. The set of candidate field sets FS 1s
discussed above with reference to 3732 1n FIG. 37B. In step
38024, the routine “find transactions” calls the routine “find
identifier fields” in order to determine a set ol candidate
fields within event records from which to construct trans-
actions. When the routine “find identifier fields” returns a
true value, as determined in step 3802¢, then, 1n step 3802/,
a routine “identify transactions” 1s called to identify a set of
transactions based on the identifier fields discovered by the
routine “find 1dentifier fields,” called 1n step 3802d. Finally,
the list L and the data structure FS are deallocated, 1n step
3802g. When the routine “find 1dentifier fields” returns a
false value, then the routine “find transactions” returns the
value @ 1n step 3802/. Otherwise, the routine “find trans-
actions” returns a reference to a set of transactions in step
3802i. The set of transactions 1s discussed above with
reference to 3742 in FIG. 37B.

FIG. 38B provides a first control-tlow diagram for the
routine “find identifier fields,” called 1n step 38024 of FIG.
38A. In step 3804a, the routine “find identifier fields”
receives the list L of common event-message types, a
reference E to stored event records, and the candidate field
sets data structure FS. In step 38045b, the local variable
maxlter 1s set to the maximum number of iterations for a
subsequent while-loop, the local variable upperT is set to an
upper threshold for the number of i1dentifier fields deter-
mined by the routine “find 1dentifier fields,” and the local
variable lowerT 1s set to a lower threshold for the number of
identifier fields identified by the routine *“find identifier
fields.” In step 3804c¢, the local variable numlter 1s set to 0
and the set variable sRegions 1s set to the @ set. The local
variable sRegions 1s a list of event-record windows already
sampled during candidate-field selection, discussed below.
In the while-loop of steps 38044-3804i, the routine “candi-
date selection™ 1s called, in step 3804e, repeatedly until the
while-loop terminates. During each iteration, following the

US 10,810,103 B2

39

call to the routine “candidate selection™ in step 3804e, the
local variable numlter 1s incremented, 1n step 3804/, and
then the routine “evaluate” 1s called 1 step 3804¢g. The
routine “evaluate” determines whether the set of candidate
ficlds FS contains a suflicient number of fields for loop
termination. When this routine returns a true value, then the
while-loop 1s exited, 1n step 3804/%. When the local variable
numlter has a value equal to maxlter, as determined 1n step
3804, the while-loop 1s also terminated followed by a call
to the routine “fix-up,” i step 3804;. When this routine
returns a true value, as determined 1n step 3804%, then the
routine “find 1dentifier fields” returns a true value. Other-
wise, the routine “find identifier fields” returns the value
false. The routine “fix-up” modifies the set of candidate
fields FS 1n order to produce an acceptable set of candidate
fields for transaction i1dentification.

FI1G. 38C provides a control-flow diagram for the routine
“candidate selection,” called 1n step 3804¢ of FIG. 38B. In
step 38064, the routine “candidate selection” receives the
list of common event-message types L, a reference to the
stored event records E, the set of candidate field sets FS, and
the set sRegions. In step 3806H, the routine “candidate
selection” selects a next window of event records 1n E that
1s not already a member of the set sRegions. In step 3806¢,
the selection window 1s added to the set sRegions. In step
38064, the local variable pt 1s set to the median timestamp
value associated with the event records in the selected
window. In the for-loop of steps 3806¢-g, the routine “can-
didate selection” 1teratively calls the routine “extract fields”
to place event-record fields and their values into field nodes
of the F'S data structure. Once the fields and field values have
been extracted from the event records and the currently
considered window, the routine “filter fields” i1s called, in
step 3806/, to process the fields and field values.

FI1G. 38D provides a control-flow diagram for the routine
“extract fields,” called 1n step 3806/ of FIG. 38C. In step
3808a, the routine “extract fields” receives an event record
¢, the FS data structure, the list of common events types L,
and the median timestamp value pt. When the type of the
event record 1s not a common event-message type, as
determined in step 38085, then the routine “extract fields”
returns. Only common event-message types provide candi-
date 1dentifier fields for construction of candidate transac-
tions. In the for-loop of steps 3808¢c-3808/, each field in the
event record e 1s considered. When the type of the field 1s a
type consistent with an identifier field, or candidate field, for
transactions, as determined in step 38084, and when there 1s
a field node within the FS data structure corresponding to the
event-record type and field type, as determined in step
3808e, then the value of the field 1s added to either the
values] array of the field node when the timestamp of the
currently considered event record 1s less than the median
timestamp value pt, 1n step 3808i, and 1s otherwise added to
the values2 array of the field node 1n step 3808/. When there
1s no node i the FS data structure corresponding to the
currently considered field, then a node 1s added to the FS
structure 1n step 3808/, and initialized. When, 1n step 38084,
the type of the currently considered field 1s not a type
corresponding to a potential identifier field, then no further
action 1s taken with respect to the currently considered field.
Thus, for each potential candidate 1dentifier field, the value
of the field 1n the currently considered event record e is
added to a node corresponding to the field 1n the FS data
structure, with the value of the field added to the valuesl
array when the timestamp of the event record e 1s less than
pt and otherwise 1s added to the values2 array. This has the
ellect of partitioning field values into field values 1n the first

10

15

20

25

30

35

40

45

50

55

60

65

40

portion of the currently considered window and field values
in the second portion of the currently considered window.
The lists of field values are subsequently compared to
identify candidate identifier fields as those 1n which the field
values differ in the different partitions, indicating that the
field values change relatively quickly. Field types consistent
with 1dentifier fields are those that may contain values
correlated with sources of event messages within control-
program 1instruction sequences. Thus, for example, a field
with Boolean type 1s not compatible with the requirements
for identifier fields, since Boolean type can have only one of
two values and therefore cannot i1dentily sources of event
messages.

FIG. 38E provides a control-flow diagram for the routine
“filter fields,” called in step 3806/~ of FIG. 38C. In step
3810a, the routine “filter fields” receives a reference to the
FS data structure. In step 38105, two temporary ficld-value
lists vl and v2 are allocated. In the for-loop of steps
3810¢-3810z, each node F, in the FS data structure is
considered. In step 38104, the local vanable mitialCount 1s
set to the sum of the number of values in the two arrays
valuesl and values2 of the currently considered node F..
Thus, the variable initialCount contains the total number of
values for the field 1n the two arrays values]1 and values2. In
the while-loop of steps 3810¢-3810, values that occur both
in F..values]1 and F,.values2 are removed from the two value
arrays and the remaining values i the two arrays are
removed from the two arrays and transferred to the tempo-
rary array or list vl. When the ratio of the number of values
in vl to the mtial count 1s less than a first threshold, as
determined 1n step 38107, then the node count F, .NOK 1s
incremented, 1n step 3810y,ecew3w to indicate that the value
distribution in the currently considered node F, was unsat-
1sfactory. A satisfactory distribution of values has the values
prior to the median timestamp 1n the currently considered
window for a field largely different from the values follow-
ing the median timestamp in the currently considered event-
record window. This means that the values of the field
generally differ over short periods of time. Otherwise, 1n the
nested for-loops of steps 38100-3810v, the unique values 1n
the list or array v1 are transierred to list or array v2. When
the ratio of the number of the unique values to the initial
count 1s less than a second threshold, as determined 1n step
3810w, then, 1n step 3810y, the counter F..NOK 1s incre-
mented to indicate that the distribution of the values in the
currently considered node F, was not compatible with an
identifier field. This 1s because identifier fields should have
mostly diflerent values within any given time window or, 1n
other words, could not remain constant over significant
periods of time. When the values prior to the median
timestamp 1n the currently considered event-record window
differs substantially from the values following the median
timestamp, and when most of the values for the field are
unmique within the currently considered time window, then
the counter F,.OK 1s incremented, 1n step 3810x, to indicate
that the dlstrlbutlon of values for the currently considered
field represented by node F, were compatible with the
expected value distribution for an 1dentifier field.

FIG. 38F provides a control-flow diagram for the routine
“evaluate,” called 1n step 3804¢ of FIG. 38B. The routine
“evaluate” determines whether the data structure FS con-
tains a suilicient number of viable candidate 1dentifier fields
to terminate the while-loop of steps 38044-3804; 1n the
routine “find identifier fields” shown in the control-flow
diagram of FIG. 38B. In step 38124, the routine “evaluate”
receives the thresholds upperT and lowerT as well as the
data structure FS. In step 38125, the local variable count 1s

US 10,810,103 B2

41

set to 0. In the for-loop of steps 3812¢-38127, the number of
acceptable candidate fields 1n the FS data structure are
counted. A candidate field represented by a field node F, 1s
acceptable when the count of acceptable value distributions
in F,.OK 1s greater than a threshold value and the ratio of
unacceptable distributions to acceptable distributions 1s less
than a different threshold value. When the number of accept-
able fields 1s less than upperl and greater than lowerT, as
determined in step 3812¢g, then, 1n the for-loop of steps
3812/:-3812k, all of the unacceptable field nodes are
removed from the FS data structure and the FS data structure
1s sorted, 1n step 3812/, 1n ascending order by the ratio of
unacceptable to acceptable distributions. When the number
ol acceptable candidate fields does not fall in the desired
range, as determined in step 3812¢g, then the routine “evalu-
ate” returns the value false.

FI1G. 38G provides a control-flow diagram for the routine
“fix-up,” called in step 3804/ of FIG. 38B. The routine
“fix-up” attempts to generate a set of candidate i1dentifier
fields from the fields contained in the FS data structure by
retaining those fields for which at least one value distribu-
tion was acceptable, sorting the remaining fields, and then
removing a suilicient number of the fields so that the number
of fields 1s less than the upper threshold upperl. In step
3814a, the routine “fix-up” receives the FS data structure FS
and the thresholds upperT and lowerT. In step 38145, any
field nodes F, are deleted from FS for which F,.OK is less
than 1. When the number of remaining fields 1s less than or
equal to the threshold lowerT, as determined 1n step 3814c,
then the routine “fix-up” returns a false value. Otherwise, in
step 38144, the remaining field nodes are sorted by the ratio
of unacceptable to acceptable distributions and, 1 steps
3814¢-3814/, the least desirable of the remaining fields are
deleted 1n order that the number of candidate fields in the FS
data structure 1s less than the upper threshold upperT.

FI1G. 38H provides a control-flow diagram for the routine
“1dentily transactions,” called 1n step 3802/ of FIG. 38A.
This routine uses the candidate 1dentifier fields stored 1n the
data structure FS and the stored set of event records E to
identify a set of transactions T. In step 38164, the routine
“1dentily transactions” receives the FS data structure, a
reference E to the stored event records, and a list of common
event-message types L. In the for-loop of steps 38165-d,
field values are selected from the event records for each field
represented by a field node F, and placed into the array
F.values] for that field. In step 3816¢, a transactions data
structure (3742 in FIG. 37B) 1s allocated and, in step 3816¢,
initialized with single-element transactions, each containing
a different event-message-type/field pair, or e/f pair, corre-
sponding to a node F, of the FS data structure. In other
words, each e/T pair represented by a node F, 1n FS becomes
the first element of each candidate’s transaction in the
transactions data structure. In the nested for-loops of steps
381629-38160, all possible pairs of candidate 1dentifier fields
are compared, using the function “sim,” called 1n step 3816.,
and when the field values of the pair of candidate identifier
fields are sufliciently similar, the fields are combined
together to form a multi-field transaction. As the nested
for-loop progresses, transactions comprising larger numbers
of candidate identifier fields are generated. In the outer
for-loop of steps 38162-38160, cach candidate identifier
field represented by a field node F, 1s considered, from {first
to last 1n the set of candidate identifier fields FS. In the inner
for-loop of steps 3816/72-3816m, the candidate identifier
fields following the currently considered candidate 1dentifier
field 1 are compared with the candidate identifier field 1 by
a call to the routine “sim™ in step 3816i. Note that the

5

10

15

20

25

30

35

40

45

50

55

60

65

42

following candidate 1dentifier fields j considered 1n the inner
for-loop of steps 38135/%4-m may be multi-field transactions.
When the currently considered candidate identifier field 1
compares favorably with one of the following candidate
identifier fields j, the values of the currently considered
candidate 1dentifier field 1 are added to those of the candidate
identifier field 1, by a call to the routine “add,” 1n step 38164,
and an e/f pair 1s added to the transaction corresponding to
the candidate 1dentifier field j. Following completion of the
nested for-loops of steps 3816/-38160, any transactions in
the set of transactions T that contain less than two e/T pairs
are removed, 1n step 3816p. Then, 1n step 38164, the routine
“supplement” 1s called to attempt to add any uncommon
event-message types to the transactions in the set of trans-
actions T.

FIG. 381 provides a control-tflow diagram for the routine
“sim,” called 1n step 3816: of FIG. 38H. In step 3818a, the
routine “sim’ receives the mdexes or identifiers 1 and j for
two nodes 1n the FS data structure along with the FS data

structure and the transactions data structure T. In step 38185,
the local vanable divisor 1s set to the mimmimum of the

[1

number of values contained in the two field nodes F; and F .
In step 3818c¢, the local variable count 1s set to 0. In the
tor-loop of steps 38184-3818¢, the number of values 1n field
node F; that also occur in field node F, are counted. The
return value for the function *“sim™ 1s computed, i step
3818/, as the ratio of the contents of the local variable count
to the contents of the local variable divisor. From a set
standpoint, the return value i1s the cardinality of the inter-
section of the values 1n field nodes F; and F, divided by the
minimum of the number of values 1n the two nodes. Again,
note that as the nested for-loops of steps 38162-38160 of
FIG. 38H 1terate, all of the field nodes except for the first
field node 1n the set of field nodes FS may become nascent
transactions and contain values representing the union of
values of multiple candidate 1dentifier nodes.

FIG. 38] provides a control-flow diagram for the routine
“add,” called 1n step 38164 of FIG. 38H. In step 3820q, the
routine “add” receives indexes or identifiers 1 and 1 of two
nodes in the FS data structure along with the transactions
data structure T. In the for-loop of steps 38206-3820e¢, the
values 1n the field node 1 are added to the values 1n the field
node 1. In step 38207, the e/1 pairs 1n transaction T, are added
to transaction T,

FIGS. 38K-L provide a control-flow diagram for the
routine “supplement,” called in step 38164 of FIG. 38H. In
step 3822a, the routine “supplement,” receives a reference to
the FS data structure, a reference to the set of stored event
records E, the transactions data structure T, and the list L. of
common event-message types. In step 38225H, the routine
“supplement” creates a map, map| | that maps each field of
cach event-message type that 1s not common, or, in other
words, not 1n the list L or, 1n other words, maps each e/1 patr,
to a unique integer 1n the range [0, 1-N], where N 1s the
number of fields 1n uncommon event-message types. In
addition, an inverse map, map~'[] is also created. The map
1s used to generate indexes 1nto a sparse matrix M. In step
3822c, the sparse matrix M 1s allocated. The sparse matrix
M has dimensions |TIx(N-1). In step 38224, window-
selection criteria are determined. In the nested for-loops of
steps 3822¢-3822j, for each of W windows w within the
stored event records E, each transaction t in the set of
transactions T, when the transaction t occurs 1n the currently
considered window, as determined 1n step 3822¢g, then a
count 1n the matrix M for each uncommon-event-message-
type field 1 that have the same value as the fields of the

transaction 1s incremented, 1n step 3822/. Then, moving to

US 10,810,103 B2

43

FIG. 38L, the nested for-loops of steps 38224-3822¢, each
transaction t in the set of transactions T 1s considered along
with each of the uncommon-event-message-type fields.
When the number of counts for a particular non-common
cevent-message-type field 1s equal to the number of windows
examined 1n the for-loop of steps 3822¢-38227 1n FIG. 38K,
the uncommon-event-message-type field 1s added to the
transaction 1n steps 3822#-38220.

Both of the above-described methods may be used to
enhance event-record-display applications 1n order to facili-
tate 1dentification of meaningiul patterns of event-message-
type occurrences. The first counter-based method for 1den-
tifying related event-message types, discussed above with
reference to FIGS. 34A-36J, generates tables of co-occur-
rence, such as the table of co-occurrence shown 1n FIG. 361,
asynchronously as event records are processed. These tables
of co-occurrence correspond to periods of time during
event-record generation and processing, and can be used to
identily related event-message types of event records gen-
crated during corresponding time periods. The methods
discussed above with reference to FIGS. 37A-38L can be
used to 1dentity specific event-record transactions within an
event log.

FIG. 39 illustrates various features provided in a user
interface for viewing event logs and discovering state
changes of interest. A first feature 3904 overlaid above the
event-log-display user interface 3902 1s a pop-up inquiry
that allows a user to filter displayed event messages so that
event messages related to a particular, selected event mes-
sage are displayed together. This filtering 1s carried out using
the table of occurrences generated by the methods discussed
above with reference to FIGS. 34A-36J. A second feature
3906 allows a user to select a field within an event message,
and the user interface then uses the value of the field to
identify a transaction that includes multiple event records
with similar fields containing the same value. The set of
transactions T generated by the second method described in
FIGS. 37A-38L can be used to identily the transaction to
which the event message belongs and then find other event
messages ol the transaction within the event log. Of course,
a time window centered around the event message 1s used
for transaction 1dentification. A third feature 3908 allows a
user to group event messages 1nto transactions for display of
transactions. In this case, the first and last messages of the
transaction are displayed along with an indication 3910 that
there are additional event messages within the transaction.
User mput to the indication 3910 allows a user to display an
particular additional event message within the transaction or
all of the event messages within the transaction. Many other
user-interface features may be developed based on event-
message transactions i1dentified using the above-described
methods.

Although the present mmvention has been described 1in
terms of particular embodiments, 1t 1s not intended that the
invention be limited to these embodiments. Modification
within the spirit of the invention will be apparent to those
skilled 1n the art. For example, any of many diflerent
alternative implementations can be obtained by varying any
of many different design and implementation parameters,
including choice of hardware components and configura-
tions of distributed computer systems, choice of program-
ming languages, operating systems, virtualization layers,
control structures, data structures, modular orgamzation, and
other such design and implementation parameters. The
methods for determining related event-message types and
specific transactions depend on many different thresholds
and considerations, the values of which may be varied to

10

15

20

25

30

35

40

45

50

55

60

65

44

produce alternative implementations. Various types of auto-
mated feedback and verification may be employed to tune
the transaction-identification methods.

It 1s appreciated that the previous description of the
disclosed embodiments i1s provided to enable any person
skilled 1n the art to make or use the present disclosure.
Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the disclosure. Thus, the
present disclosure 1s not intended to be limited to the
embodiments shown herein but 1s to be accorded the widest
scope consistent with the principles and novel features
disclosed herein.

The mnvention claimed 1s:

1. A subsystem that i1dentifies groups of related event-
message types, the subsystem comprising:

One Or MOore Processors;

One or more memories;

one or more data-storage devices; and

computer mstructions, stored in one or more of the one or

more memories that, when executed by one or more of

the one or more processors, control the subsystem to

receive event messages from event-message sources
within a distributed computer system that includes
the subsystem;

assign event-message types to the received event mes-
sages;

count event-message-type co-occurrences, 1n time,
within the received messages;

determine and store 1n memory, from the counted
event-message-type co-occurrences, pairs of related
event-message types; and

use the determined pairs of related event-message types
to select, from one or more sets of event messages,
related event-message types that are output to one or
more of an automated analysis subsystem, a display
device, and a system monitor.

2. The subsystem of claim 1 wherein the subsystem
assigns an event-message type to each received event mes-
sage by:

identifying non-parameter tokens within the event mes-

sages;
determining a feature vector generated from the non-
parameter tokens identified within the event message,

determining a distance between the determined feature
vector and a feature vector associated with each event-
message cluster, and

assigning to the event message a type associated with a

group ol event messages associated with the feature
vector at the smallest determined distance from the
determined feature vector.

3. The subsystem of claim 1 wherein the subsystem
counts event-message-type co-occurrences, in time, within
the received messages by:

maintaining a set of counters, each associated with two

event-message types and a most-recent access time;
maintaining each received event message 1n a memory
bufler, along with a timestamp, in time order, along
with earlier and later recetved messages until at least
one more recently received event message in the
memory buller 1s outside an event-message window
that includes the received event message; and
counting each co-occurring event message 1n the memory
bufler within the window that includes the recerved
event message 1 a counter associated with the type of

US 10,810,103 B2

45

the co-occurring event message and the type associated
with the received event message.

4. The subsystem of claim 3 wherein the window that
includes the received event message includes additional
cvent messages associated times that differ from the time
associated with the received event message by less than a
time-diflerence value.

5. The subsystem of claim 4 wherein the window that
includes the received event message includes no more than
a maximum number of additional event message.

6. The subsystem of claiam 3 wherein counting each
co-occurring event message 1n the memory buller within the
window that includes the received event message in a
counter associated with the type of the co-occurring event
message and the type associated with the received event
message further comprises:

when one of the counters in the set of counters 1s

associated with the type of the co-occurring event

message and the type associated with the receirved

event message,

setting the most-recent access time associated with the
counter to the time represented by one of the time-
stamps associated with the co-occurring event mes-
sage and the received event message, and

incrementing the counter; and

when no counters 1n the set of counters 1s associated with

the type of the co-occurring event message and the type
associated with the received event message,
reinitializing a counter in the set of counters having a
most-recent access time earliest in time by
setting the most-recent access time associated with
the counter to the time represented by one of the
timestamps associated with the co-occurring event
message and the received event message,
setting the counter to one, and
associating the counter with the type of the co-
occurring event message and the type associated
with the received event message.

7. The subsystem of claim 3 wherein the subsystem
determines and stores 1n memory, from the counted event-
message-type co-occurrences, pairs of related event-mes-
sage types by:

for each event-message type associated with a counter,

determining a conditional probability for the co-occur-
rence of other event-message types associated with
counters also associated with the event-message
type;

generating a set of event-message-type pairs that each
includes the event-message type and a diflerent other
co-occurring event-message type, the set ordered by
conditional probability for the pairs; and

adding at most a fixed number of the event-message-
type pairs with greatest conditional probabilities to
determined and stored related event-message types.

8. The subsystem of claim 3 wherein event messages are
one of:

raw event messages; and

event records that include the event-message type and the

values of parameter fields.

9. A subsystem that identifies event-message transactions,
the subsystem comprising:

ONne Or More processors;

one Or more memories;

one or more data-storage devices; and

computer instructions, stored 1n one or more of the one or

more memories that, when executed by one or more of
the one or more processors, control the subsystem to

10

15

20

25

30

35

40

45

50

55

60

65

46

receive a set of typed and time-stamped event messages
from event-message sources within a distributed
computer system that includes the subsystem;

identily a set of identifier fields among parameter fields
of the received set of typed and time-stamped event
messages;

determine and store in memory a set ol multi-event-
message transactions within the set of typed and
time-stamped event messages; and

use the determined multi-event-message transactions to
select, from one or more sets of event messages,
multi-event-message transactions that are output to
one or more of an automated analysis subsystem, a
display device, and a system monitor.

10. The subsystem of claim 9 wherein the subsystem
assigns an event-message type to each received event mes-
sage by:

identifying non-parameter tokens within the event mes-

sages;
determining a feature vector generated from the non-
parameter tokens identified within the event message,

determining a distance between the determined feature
vector and a feature vector associated with each event-
message cluster, and

assigning to the event message a type associated with a

group ol event messages associated with the feature
vector at the smallest determined distance from the
determined feature vector.
11. The subsystem of claim 9 wherein event messages are
one of:
raw event messages, values of parameter fields within
which are extracted by regular expressions; and

event records that include the event-message type and the
values of parameter fields that are extracted by field
types and positions associated with each type of event
record.

12. The subsystem of claim 9 wherein event-message
transactions comprise multiple event messages the co-occur
within a time window and that have common values for each
ol one or more sets of 1dentifier fields.

13. The subsystem of claim 12 wherein the subsystem
identifies a set of 1dentifier fields among parameter fields of
the recetved set of typed and time-stamped event messages
by:

for each of a number of common event-message types t,

for each of a number of time windows w,
for each of a number of initial candidate i1dentifier

fields f{,

extracting two sets of values from typed and
time-stamped event messages of event-message
type t within time window w for field 1, and

adding an evaluation of field 1 to a set of evalu-
ations maintained for field 1; and

for each of the number of common event-message types

L,
for each of a number of candidate identifier fields f,
when the set of evaluations maintained for field I
indicate that field 1s an 1dentifier field,
adding field fin association with type t to a final set
of candidate fields.

14. The subsystem of claim 13 wherein 1nitial candidate
identifier fields are selected from event-message parameter
fields to have field types that are associated with fields that
store greater than a threshold number of different possible
values and that occur 1n multiple types ol event messages.

15. The subsystem of claim 13 wherein an evaluation 1s
one of a positive evaluation and a negative evaluation.

US 10,810,103 B2

47

16. The subsystem of claim 15 wherein adding an evalu-
ation of field 1 to a set of evaluations maintained for field 1
turther comprises:

comparing the two sets of values extracted from typed and

time-stamped event messages for field {;

when the sets of values have more than a threshold

number of common values and when a ratio of unique
to total values i either set of values 1s below a

threshold value, adding a negative evaluation to the set
of evaluations maintained for field 1; and

when the sets of values have less than a threshold number

of common values and when a ratio of unique to total
values 1n either set of values 1s above a threshold value,
adding a positive evaluation to the set of evaluations
maintained for field 1.

17. The subsystem of claim 15 wherein the set of evalu-
ations maintained for field I indicate that field 1 1s an
identifier field when a ratio of positive evaluations to nega-
tive evaluations 1n the set of evaluations 1s greater than a
threshold value.

18. The subsystem of claim 13 wherein the subsystem
determines and stores 1n memory a set ol multi-event-
message transactions within the set of typed and time-
stamped event messages by clustering fields of the final set
of candidate fields by similarity, where the similarity
between two fields 11 and 12 1s a ratio of a cardinality of an

10

15

20

25

48

intersection of two sets of sample values, one set of sample
values for each field, to the minimum cardinality of the two
cardinalities of the two sets of sample values.

19. The subsystem of claim 18 further comprising storing,
as a transaction, a set of field/event-message-type pairs for
cach cluster as a different transaction.

20. Computer instructions encoded in a physical data-
storage device that, when executed by one or more proces-
sors of a system having one or more memories, one or more
data-storage devices, and a display device, control the
system to:

recerve a set of typed and time-stamped event messages

from event-message sources within a distributed com-
puter system that includes the subsystem;

1dentity a set of identifier fields among parameter fields of

the received set of typed and time-stamped event
messages;

determine and store 1 memory a set of multi-event-

message transactions within the set of typed and time-
stamped event messages; and

use the determined multi-event-message transactions to

select, from one or more sets of event messages,
multi-event-message transactions that are output to one
or more of an automated analysis subsystem, a display
device, and a system monitor.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

