12 United States Patent

Frerking et al.

US010803015B2

US 10,803,015 B2
*“Oct. 13, 2020

(10) Patent No.:
45) Date of Patent:

(54) CACHING SYSTEM AND METHOD

(71) Applicant: Walmart Apollo, LL.C, Bentonville,
AR (US)

(72) Inventors: John Randy Frerking, Prairie Grove,
AR (US); Richard Jackson, Bella
Vista, AR (US)

(73) Assignee: WALMART APOLLO, LLC,
Bentonville, AR (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 168 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 15/953,949

(22) Filed: Apr. 16, 2018

(65) Prior Publication Data
US 2018/0246903 Al Aug. 30, 2018

Related U.S. Application Data

(63) Continuation-in-part of application No. 15/143,953,
filed on May 2, 2016, now Pat. No. 10,419,572, and

GO6F 12/0871 (2013.01); GO6F 16/23
(2019.01); GO6F 16/907 (2019.01);

(Continued)

(38) Field of Classification Search
CpPC ... GO6F 16/172; GO6F 16/907; GO6F 16/23;
GO6F 3/0604; GO6F 11/2023; GO6F
11/2041; GO6F 11/2097;, GO6F 12/0871;
GO6F 21/50; GO6F 2201/82;

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

0,330,606 Bl
6,611,498 Bl

12/2001 Logue et al.
8/2003 Baker et al.

(Continued)

OTHER PUBLICATTIONS

International Search Report & Written Opinion in related Interna-
tional Patent Application No. PCT/US14/49976, dated Nov. 6,
2014, 9 pages.

(Continued)

Primary Examiner — Hanh B Thazi

(74) Attorney, Agent, or Firm — Schmeiser, Olsen &
Watts LLP

(57) ABSTRACT

Disclosed 1s a caching system for processing web-based

(Continued) service requests. The caching system includes one or more

pluralities of servers coupled to one or more online common

(51) Int. CL storage. Each one of the plurality of servers processes
GO6F 16/00 (2019.01) caching service requests from one or more clients coupled to

GOGF 16/172 (2019.01) the plurality of servers. Each one of the plurality of servers
(Continued) 1s capable of operating 1n an active/single mode, and active/

active mode, or an active/standby mode. A timestamp
exchange process 1s used to update or eliminate outdated
database records.

7 Claims, 25 Drawing Sheets

(52) U.S. CL
CPC GOGF 16/172 (2019.01); GO6F 3/0604
(2013.01); GO6F 11/2023 (2013.01); GO6F
11/2041 (2013.01); GO6F 11/2097 (2013.01);

1001

Data (" Begin f Data
Center #1 Center #2
,l s
Process
Data Request
l .
1003 . 1004
LUpdate Last Update Last
Update Timastamp Accass Timastamp

Timestamp Close to
Expiration ?

1006
¥ /

Send Request
to DC #2

No

Send Timestamp
frorn DC #2 to DG #1

1008

Dalete Database Record
on DC# 1, DC #2

1010
C Elnd { Nﬁs

US 10,803,015 B2

Page 2
Related U.S. Application Data 2005/0050112 Al* 3/2005 Chandrasekaranocooovvvvnenen,
S o GOGF 16/2322
a continuation-in-part of application No. 13/960,192, 2005/0198200 Al 0/2005 Subramanian et al.
filed on Aug. 6, 2013, now Pat. No. 10,116,762, 2006/0165040 A1~ 7/2006 Rathod
application No. 15/143,953, which is a continuation- 2006/0195607 Al 8/2006 Naseh et al.
. . 2007/0203944 Al 8/2007 Baltra et al.
in-part of application No. 13/960,266, filed on Aug. 6, 2007/0287858 Al 12/2007 Arner
2013, now Pat. No. 9,336,263. 2008/0082623 Al 4/2008 Michael et al.
2008/0140640 Al1* 6/2008 Raflfcoovvvvvnnininn, HO041. 29/06
(51) Int. CL 2008/0235298 Al 9/2008 Lin et al.
: 2009/0043881 Al 2/2009 Alstad
gggg ;§§2‘371 (38128) 2009/0113531 Al 4/2009 Emmerich et al.
(2013.01) 2009/0287746 Al 11/2009 Brown
HO4L 29/06 (2006.01) 2009/0299987 Al 12/2009 Wilson
HO41 29/08 (2006.01) 2009/0327098 Al 12/2009 Ronen et al.
GO6F 3/06 (2006.01) 2010/0138485 Al* 6/2010 Chow ..covvnnnnen, HO041. 67/2842
GO6F 16/23 2019.01 709/203
GO6F 16/907 (2019 0) 2010/0198972 Al 8/2010 Umbehooker
(2019.01) 2010/0299553 Al 112010 Cen
GO6F 11/20 (2006.01) 2010/0325371 Al 12/2010 Jagadish et al.
(52) U.S. CL. 2011/0038633 Al 2/2011 DeCusatis et al.
CPC oo GOG6F 21/50 (2013.01); HO4L 63/10 201170072217 Al 3/2011 Hoang et al.
5013.01): HO4L 6771004 (2013.01); HO4L 2011/0131197 Al 6/2011 Nielsen et al.
(' ’ ‘ ’ 2011/0138027 Al 6/2011 Friedmann et al.
67/2842 (2013.01); HO4L 67/42 (2013.01); 2011/0208695 Al 82011 Anand et al.
GO6F 2201/52 (2013.01); GOOF 2201/835 2012/0226712 Al 9/2012 Vermeulen et al.
(2013.01) 2013/0031060 A1* 1/2013 LOWETY ..ooov........ GO6F 16/9574
. . . 707/689
(58) Field of Classification Sea/“’h | 1o, 2013/0174223 Al 4/2013 Dykeman et al.
CPC ..o, GO6F 2201/835; HO4L 63/10; HO4L 2013/0185716 Al 717013 Vin ef al.
67/1004; HOAL 67/2842; HOAL 67/42 2013/0304843 Al 112013 Chow et al.
S P e e e e e e ere s e aannn, 707/638 2013/0318191 Al 11/2013 Yin et al.
See application file for complete search history. 2014/0067852 Al ~ 3/2014 Wong et al.
2014/0149537 Al1* 5/2014 Shankaran HO041. 41/0816
. 709/216
(56) References Cited 2014/0211793 Al 7/2014 Mital et al.
- 2014/0359043 Al 12/2014 Gao et al.
U.S. PATENT DOCUMENTS 2015/0046511 Al 2/2015 Frerking
2016/0248875 Al 8/2016 Frerking et al.
6,629,144 B1* 9/2003 Chu GO6F 11/1443
709/227
6,704,873 B1 3/2004 Underwood OTHER PUBLICATTONS
7,139,973 B1 11/2006 Kirkwood et al. | | -
7,165,116 B2 1/2007 Grove et al. International Search Report & Written Opinion in related Interna-
7,349,871 B2 3/2008 Labrou et al. tional Patent Application No. PCT/US14/49966, dated Nov. 6,
7,558,854 B2 7/2009 Nakahara et al. 2014, 7 pages.
7,801,826 B2 9/2010 Labrou et al. Prosecution history of related U.S. Appl. No. 13/960,266, filed Aug.
7,865,584 B2 1/2011 Grossner et al. 6 2013
7,962,603 Bl 6/2011 Morimoto ’ g -
§219.676 B2 7/2012 Jagadish et al, grgsoef;tlon history of related U.S. Appl. No. 13/960,192, filed Aug.
8,271,430 B2 9/2012 Wil ’ . .
83938j636 R1 1/2015 H(;csfslz:hild of al Prosecution history of related U.S. Appl. No. 15/143,953, filed May
90,055,139 B1 6/2015 Devireddy 2, 2016. o | |
9,336,265 B2 5/2016 Frerking International Preliminary Report in related International Patent
9,529,772 B1* 12/2016 Shankaran HO041., 41/0816 Application No. PCT/US14/49966, dated Feb. 18, 2016; 6 pages.
9,602,614 B1* 3/2017 Shankaran GO6F 12/0806 International Preliminary Report in related International Patent
2002/0085579 Al 7/2002 Sullivan Application No. PCT/US14/49976, dated Feb. 18, 2016; 8 pages.
2002/0116474 Al 82002 Copeland et al. Non-Final Office Action in U.S. Appl. No. 15/143,953 dated Jan. 18,
2002/0116582 Al 8/2002 Copeland et al. 2019; 9 pages.
2003/0041227 Al 2/2003 Nakamatsu Notice of Allowance in U.S. Appl. No. 13/960,192 dated Aug. 14,
2003/0065941 Al 4/2003 Ballard et al. 2018; 10 pages.
gggjﬁg?ggi’;g i 2//3883 Ezgigﬁ Zt 3%‘ Restriction Requirement 1n U.S. Appl. No. 15/143,953 dated Sep.
2004/0205099 Al 10/2004 Hagiwara 26, 2018; 5 pages.
2004/0213387 Al 10/2004 Chandrasekaran Notice of Allowance 1n U.S. Applﬁ No. 15/143,953 dated Jun. 12,
2005/0027543 A1 2/2005 Labrou et al. 2019; 11 pages.
2005/0028024 Al 2/2005 Kataoka et al.
2005/0044197 Al 2/2005 Lai * cited by examiner

U.S. Patent Oct. 13, 2020 Sheet 1 of 25 US 10,803,015 B2

Distributed
System

100
/101 e /102

Caching
Service

Web Service
Commands

FIG. T

US 10,803,015 B2

Sheet 2 of 25

Oct. 13, 2020

U.S. Patent

AL |

uoneoijdey
g 90IAI9S
buiyoen
pPaso|)
Jobeuepy
peo
dicc
Ji0c

V 90IAI9S

Buiyoen

MOy

Vog'e

80¢¢

¢ Il4

uonesiidey

g 92IAI0S
buiyoen

SN0V

1abeuepy
peo
Viec
810¢

V 92IAI9S
buiyoen

OAIOY

vOce

ve Il

90IA8g
buiyoen
Olc
Jusifo
Vioe

U.S. Patent Oct. 13, 2020 Sheet 3 of 25

Other Rest Soap

Soap
Service Calls Service (WSS)

Calls J Calls >
307~> 302 303) 304

Caching
Service

US 10,803,015 B2

HTTP HTTPS

(SSL/TLS
Encryption)
JOS JO6)
J08

US 10,803,015 B2

o |
| _
| |
| |
| |
_ |
“ |
| w
gc0y dd w
Jauan |
W | _
~ “ eleq “
= e .
< |
E | owo\
= |
s “ ® s ¢ 0 0
2£07 W A
- : 27z
m W 181U8D
2 e
: e
21 40) 4 | iebeue peo
= Z0¥
&
e ® o0 0 0
- \
% ok
- SIS 810% Vi0b

QL
o
O
Z

veor

U.S. Patent Oct. 13, 2020 Sheet 5 of 25 US 10,803,015 B2

Client Load Virtual System System
Manager Caching A B
Request Service
Request
Request Commlt
- | Transaction
pﬂ Request
' ack. = Commit
Response Transaction
ack,
Response Response

FIG. SA

U.S. Patent Oct. 13, 2020 Sheet 6 of 25 US 10,803,015 B2

/ 501 / 502 / 503 / 504 / 905
Client Load Virtual System System
Manager Caching A B
Request Service

Request

Request

Commit
Transaction

e
i
ﬂ
m———
e
e
i
_.ﬂ
mm—
#

Response

FIG. OB

US 10,803,015 B2

Sheet 7 of 25

Oct. 13, 2020

U.S. Patent

ﬂ.....:.:...............:....::...:...:....................:...........:...:....:......::................:..
“ Wa)SAS
" Buiyoen
|
|
m LWa)sAg abelo)g (e21607
|
|
|
' 909
"
"
ﬂn ||||||||||||| . m JEYVETS TRE 19AIBS JOAIDS
“ s
209 |, el _
-41009 “) M 2509 4609 £
||
swa)shg w ,m N M
Buiyoen T - m 19|pueH }sanbay
N e - “ m
9 L :] v09

£09
V109 \
sjsenboy

Wa)sAg labeueN peo

¢09

injujulalgiy diplohphieh Nupibinhiphl djuiulointph pighiokinh hbiopigiiiph. lpbsulil ibebinhind bjmiuliigbh dgibiplobint ohivhinhiod bdpbjebins juigbibiell impyblpbiolt elilplohit bjebinigbih dejelibiinty phbelieh pljshiniighl Mpilpbjbinly ddpbicbinigt hiimjeuikh nbighjebinly gyl igabighl -shobiohphl puinhigiiel| -igblysjeiins

Zi JausD eje(

US 10,803,015 B2

0L
e#dvd

8r0L

Sheet 8 of 25

cHAavd

4414

L #AVd

Oct. 13, 2020

{
|
|
i
i
i
i
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
i
i
|
|
|
i
i
|
i
|
|
|
|
810/ _
|

4¢0L

J¢0L

aecos

[e e o e e e

Jabeuep peon

Mighiel Jjhlploibiph. wpispioipintl nipiibiio dneblgill Giphbiojbh abgibiiph yjlulokioh pbiiohigl cigbipbjebin ulguiohpil| dplibipbeb iyl pghbiebilh njeblplgil hiiejeiniel uplvhbe il gl dgupblbinh obpiohel nbgabeby shjebighiiph jigijebioic ighjebebily Bjbnglly el iy

L# JojuaD ejeQ
o#uVd | GHIVd
IV CHIVd
ZHAvd L#EVd]

JajpueH isenbay

v0/

U.S. Patent

US 10,803,015 B2

#AVd
2c08
\r
&
= 2608
N ®
Lnlh ®
= (WVSASIS)
75 abeI0S TN
buiyoen
908 o160
m _ §608
~ | JoneS |
s | Buiyoe) |
2 vS08
l# "HVdT
veos
L# J8jua)) eje(£08

v08

U.S. Patent
=
% §\i
é\
E
|
E

86506

US 10,803,015 B2

abein)s
|eo160

asuodsay

L# JOJUSN) BlE(] O}
& asuodsay puas -
Qo
o abeio)g
—
- 201607 0} SJUM -
.m uoneoljdoy
2 1s8nbay 1804 -
JOAISS 9yoen
—
-
—
gl
ey gv06
y—
> Jo|pueH 1senbay
-
g¢06

006 —

Wa)SAS

U.S. Patent

(WVSASWAS)

%

¢06

(WVSASINS)
abeiniq

1eabo)

ojesijdoy

V606

JUalfo
0] asuodsal puag
‘9sSU0dSo)Y 191) -

Z# 1olus)) ejeq 0} 1S0d
uoijenijday anssj -

obe.0)g |eodibo

0} SJLIAA JUBID
1s9nbay 1504 -

JoAJag ayoen

vVv06

18|pueH 1senbay

labeue peo

Jusijo

106

ve06

U.S. Patent Oct. 13, 2020 Sheet 11 of 25 US 10,803,015 B2

1001

Center #1 Center #2
1002

Process

Data Request

1003 1004

Update Last
Update Timestamp

s
Timestamp Close to

Update Last
Access Timestamp

Yes *

1005

Expiration ? 1006
. " ®
No Send Request
to DC #2
®
®
1007
s NOo | Send Timestamp
Timestamp > from DC #2 to DC #1 .
Expired 7
1008

Yes
1009

Delete Database Record
onDC#1, DC #2

1010

N
FIG. 10

U.S. Patent Oct. 13, 2020 Sheet 12 of 25 US 10,803,015 B2

1103 1100

Processor /

1105 1101

1102
Input Interconnection Output
Device Mechanism Device

1104 1106
N /
| Memory | | Storage |

FIG. 11

U.S. Patent Oct. 13, 2020 Sheet 13 of 25 US 10,803,015 B2

1202

1201
Storage Memory
System

To
Processor

FIG. 12

U.S. Patent Oct. 13, 2020 Sheet 14 of 25 US 10,803,015 B2

1310

L aic B ol e - e B e R i

FIG. 13

1312

US 10,803,015 B2

s~ f o [
- ‘ L]
* .
v,
14 _.__.._ %
o |
¢ ¥
r
¢ f o) m.__... ¢
’ T p— ’ \ 3
‘ f g
u ﬁr_l..-.._....l.._l.._....l.._l.._....l.._l..i.lr.u-_._‘ ﬂ&. u..
¢ {
u]
P

o~

O y
T : .uu\\ii\\\\\\\.-n...m_ Y,
Al # N
N oy — w. ; ..a.w
£, P : |
0 ¢ ____. : &.1“ . -.wﬂ
2 5 .___.____. e S ./J/ ..n..
P / H....,. \
T p . ..‘..
____. ___ { #..
$ - N, \
o o= S S 1 .,.... .,a.w
M S O| ¢
N ﬂ m f P = \
% n 4 \.\.\.\, \ A ; { |
! ; . . ’ ey gyttt v
7 N 2o “
’» 1 _u :
; | : ¢
._ % AN ,
T AT w| |
{ j AR “,.,. | |
— 4 f f wa.w : o] I H
S § m | ! ..f ” — i
" m—.__ _f_ 2 :
— Yoy W
= Na— L { |
. .__ _r.fh, N
§
1> ‘M.. A M\\ \
C N YA

U.S. Patent

i
-*_,.».-"‘
4

1

e N
s
_—
-
b S
. T

k

™ Al K LS LK K L

-.uf'“"
E‘h—
L X

{

Ty oy Y o T T B B T T
My e

.

By B L bk

SR R Ry wT Myt R Ay e oA

US 10,803,015 B2

Sheet 16 of 25

Oct. 13, 2020

U.S. Patent

1510

-y, |
| L L |
\\
X (et 1 e W iy

'*‘f

4

. ' Y SN, WS LN L N A N WL
W‘TT}M,. .

st

LT R LT R VI T A N T RS A S | '

L F e, i B g 4 Juinge w

] + EA 4E af me

N
N
LO
1
ry »,
...&..u.......-._”__w__t....r uuuuuuuu e
£
= uhﬂ_ﬂ\l Ailplgligd, ol iy
AT
N o 00
0 J y
— ; \

1525

Q
:

US 10,803,015 B2

8@/ 9691 o1
N, 059t '\ IBToT]
Pm_,m 259} \ddidd
T/J ﬂ“\\ﬂr/;/f./..ff}/
v wvm: = \ N
fm il e e T e ol I o L B o Eimmwt._\::wmi.@!_”iimmf@:,_”i Omw_\ E\....\.\\..,\K\t // .f.s/,,/. ;f......iﬁ.r,.
Pioninidl sl haiulsP el A \ ,qiiv,fﬂf%ﬁﬂ ;;;;; N
” . ! el P P S N N, Y
= SE9L]! 8191, |ZISF| 9I9F| GISF |PISL (€IS
& EIA.{ 3
M\nu e W e w ey ek wn oms e iiii.ﬁ.ﬂiiixﬁ\!\iii#i% i
-t\...\.\\..........,
ool S\ L\ 099}
S - 199}
%_f =
— A7)
>
s

0C9l 8¢9l

0191

U.S. Patent

U.S. Patent Oct. 13, 2020 Sheet 18 of 25 US 10,803,015 B2

1700

Caching a service request from a client in a 1710
first online common storage at a first site,

where the first online common storage is
coupled to a first plurality of servers

1720
Replicating the service request using a dark
port to a second plurality of servers at a
second site
1730

Caching the service request in a second
online common storage, where the second
online common storage is coupled to the
second plurality of servers

1740
Delivering a success response to the client

U.S. Patent Oct. 13, 2020 Sheet 19 of 25 US 10,803,015 B2

1800

Caching a service request from a client in a 1810
first online common storage at a first site,
where the first online common storage is
coupled to a first plurality of servers

1820
Delivering a success response to the client
1830
Replicating the service request using a dark
port to a second plurality of servers at a
second site
1840

Caching the service request in a second
online common storage, where the second
online common storage is coupled to the
second plurality of servers

U.S. Patent Oct. 13, 2020 Sheet 20 of 25 US 10,803,015 B2

1900

Receiving a POST command from a client, 1910
wherein the POST command is associated

with a POST request key and a POST
request value

1920
Checking whether the POST request key
exists in a cache memory with an associated
stored value
1930

Replacing the stored value with the POST

request value in response to determining

that the POST request key value already
exists in the cache memory

U.S. Patent Oct. 13, 2020 Sheet 21 of 25 US 10,803,015 B2

2000

Receiving a PUT command from a client, 2010
wherein the PUT command is associated
with a PUT request key and a PUT request
value
Inserting the PUT request value into a cache 2020

memory in response to determining that the

PUT request key does not exist in the cache
memory

FlG. 20

U.S. Patent Oct. 13, 2020 Sheet 22 of 25 US 10,803,015 B2

2100

Receiving a DELETE command from a 2110
client, where the DELETE command is

paired with a CLEAR querystring and a
DELETE timestamp, and where the DELETE

command Is not associated with a key

2120

Deleting each key/value pair stored in a

cache memory that has a timestamp older
than the DELETE timestamp

FIG. 21

U.S. Patent Oct. 13, 2020 Sheet 23 of 25 US 10,803,015 B2

1620 1642
<> R
- 2120 2121
TIMESTAMP 2150 TIMESTAMP 2151
TTL 2160 TTL 2161 -
2122 2123

TIMESTAMP 2152 TIMESTAMP 2153

TTL 2162 TTL 2163

FIG. 22

U.S. Patent Oct. 13, 2020 Sheet 24 of 25 US 10,803,015 B2

2310
\i'/ 2320
» Read Next Entry
2330 Get sitet
timestamp and
| add TTL | i
. S |
2340 ?
2347 s
;f (Eligible for Expiration)) ~ {klse) |
| \/
pus ¥ “ TN
Send expiry ot Ge_; Sites ’
request to site? | *mzz 3?:‘;5“ ,
\.) T
g N ,,. 2344
(Eligible for Expiration) (Else)
| ¥ ’*
EXpire siteZ 2360 |
entry ’ /+?;\
\ S / 2370 Send site2
| S timestamp back |
MML"M Ry, _ ic s:tﬁ
Send response | |
back to sitet ,jy
.
23?2\\ 4 Update site1 A
? _— with site2
7 _ | timestamp ‘
| Expire site’ 2364 \ /
entry

FIG. 23

U.S. Patent Oct. 13, 2020 Sheet 25 of 25 US 10,803,015 B2

2400

2410

Caching a first database record in a first
online storage, wherein the first database
record comprises a key/value data and a first
timestamp

2420

Caching a second database record in a
second online storage, wherein the second
database record comprises the key/value
data and a second timestamp

2430

Replacing, by a first server communicatively
coupled to the first online storage, the first
timestamp with the second timestamp In
response to determining that the first
timestamp has expired and the second
timestamp has not expired

FIG. 24

US 10,803,015 B2

1
CACHING SYSTEM AND METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 15/143,953, filed May 2, 2016 and
entitled “Caching System and Method”, which 1s hereby
incorporated entirely herein by reference. This application 1s
also a continuation-in-part of U.S. patent application Ser.
No. 13/960,192, filed Aug. 6, 2013 and entitled “System and
Method For Storing and Processing Web Service Requests”,
which 1s hereby incorporated entirely herein by reference.
U.S. patent application Ser. No. 15/143,953 1s a continua-
tion-in-part of U.S. patent application Ser. No. 13/960,266,
filed Aug. 6, 2013 and entitled “System and Method For
Processing Web Service Transactions using Timestamp
Data”, and a continuation-in part of U.S. patent application
Ser. No. 13/960,192, filed Aug. 6, 2013 and entitled “System
and Method For Storing and Processing Web Service
Requests” which are hereby incorporated entirely herein by
reference.

BACKGROUND OF THE INVENTION

Technical Field

This mvention relates to caching systems, and more
specifically to a system and method for processing web-
based service requests.

State of the Art

There are many different caching system and methods for
processing web-based service requests. For instance, there
are systems for load sharing service requests among a
number of server-based systems. Conventionally, systems
that fail during the processing of web-based requests gen-
erally do not fail gracetully, and service errors occur as a
result. Accordingly, 1t would be beneficial to have a web-
based caching service that 1s capable of being scaled
depending on particular clients or applications.

DISCLOSURE OF THE INVENTION

According to one aspect, it 1s appreciated that 1t may be
useiul and particularly advantageous to provide a system
that 1s capable of servicing one or more web-based service
requests. According to one embodiment, a platform 1s pro-
vided that allows web-based service requests to be stored
and served 1n a more reliable manner. For instance, a caching
service may be provided that 1s capable of storing and
tracking received requests, and, responsive to failures in a
distributed computer system, i1s capable of transitioning
those service requests to other distributed computer system
resources. Conventionally, systems that fail during the pro-
cessing ol web-based requests generally do not fail grace-
tully, and service errors occur as a result.

Further, it would be beneficial to have a web-based
caching service that 1s capable of being scaled depending on
particular clients or applications. For instance, a cloud-based
platform may be provided that hosts applications that sup-
port multiple users, and each service for a particular provider
may be tailored to meet the needs of the application.
According to various embodiments, the caching service that
1s provided to support such applications may be adjusted to
support certaimn fault tolerance levels, response times,

10

15

20

25

30

35

40

45

50

55

60

65

2

tallover scenarios, and data replication and backup require-
ments. Optimally, the caching service exhibits high-perior-
mance, 1s highly available, eflicient, reliable, scalable and
cost-effective.

According to one embodiment, the caching service may
be configured 1n one of a number of different environments.
For instance, the caching service may be configured as an
active/single environment where a single caching service
entity responds to one or more web service requests. In
another environment, a caching service may be configured
as an active/active environment where two or more caching
service entities receive and respond to one or more web
service requests. In yet another implementation, a caching,
service may be configured as an active/standby system,
where two or more caching service entities receive one of
the web service requests, but a single enfity 1s responsible
for commuitting transactions.

Such a system will be beneficial when supporting one or
more data centers that include systems that serve as backup
systems that respond to service web-service requests. For
instance, active/active configurations may be used to cache
across multiple data centers for the purpose of performing
synchronous replication. In another example, active/standby
configurations may be used to cache requests across multiple
data centers for the purpose of performing asynchronous
replication to a “hot” standby data center.

According to another embodiment, the caching system
will support representational state transfer (REST) and
simple object access protocol (SOAP) service calls. Accord-
ing to another embodiment of the present invention, a
caching system supports hypertext transier protocol (HTTP)
and hypertext transier protocol secure (HTTPS) service
calls. In another embodiment, the service calls may be
encrypted (e.g., via secure socket layer/transport layer secu-
rity (SSL/TLS) encryption). In one embodiment, the service
requests may mclude commands such as POST, GET, PUT
and DELETE requests. In one implementation, basic secu-
rity may be provided for REST service requests (e.g., by
providing support for userid/password authentication and
authentication using resource access control facility
(RACF)). In one immplementation, basic security may be
provided for SOAP service requests (e.g., by providing
support for userid/password authentication using SOAP
header, and authentication using RACF).

In yet another embodiment, a distributed method for
updating timestamp information related to stored data 1s
provided. For instance, 1t i1s appreciated that timestamp
information for data may need to be made consistent across
multiple datasets (e.g., located at different datacenters). It 1s
realized that in high-volume transaction systems, it may not
be feasible to adequately transmit timestamp 1information in
an eflective manner between systems. For instance, exces-
sive network trathic would be created by synchronizing such
timestamp 1mformation created by multiple updates and data
accesses. Therefore, 1t would be pretferable to permit time-
stamp updates that minimize network trailic. Further, a
capability may be provided that permits timestamp infor-
mation to be maintained for a data element based on when
the data was last accessed. For instance, most data elements
only include information that identifies when a data element
was last updated, not when 1t was last accessed.

According to one aspect, a system for processing web
service requests 1s provided. The system comprises a server
configured to recerve and process web service requests, the
server comprising a plurality of virtual computer systems
adapted to service received web service requests; a logical
storage system coupled to the plurality of virtual computer

US 10,803,015 B2

3

systems, wherein each of the plurality of virtual computer
systems shares a common storage that 1s adapted to store the
received web service requests; and a request handler element
adapted to distribute a web service request to at least one of
the plurality of virtual computer systems for processing. In
one embodiment, the web service requests include at least
one of a group comprising a REST service request; and a
SOAP service request. In one embodiment, the server con-
figured to recetve and process web service requests 1s
operable 1n at least one of a group of operating modes, the
group comprising an active/single mode; an active/standby
mode; and an active/active mode.

In one embodiment, the system further comprises a load
balancing element adapted to distribute the web service
requests among a plurality of server systems. In one embodi-
ment, the plurality of virtual computer systems 1s located
within a partition. In one embodiment, a web service appli-
cation 1s assigned to a particular partition. In one embodi-
ment, the system further comprises transaction server com-
ponents that are adapted to process web service transactions.
In one embodiment, the logical storage system further
comprises a common database shared by the plurality of
virtual servers upon which web service requests are trans-
acted. In one embodiment, the system further comprises an
entity that monitors an expiration of a database record
associated with at least one web service request.

According to one aspect, the system further comprises
corresponding entities that execute among at least two of the
plurality of virtual computer systems, the entities being
adapted to compare timestamps associated with the database
record associated with the at least one web service request.
In one embodiment, the entity i1s adapted to delete the
database record associated with the at least one web service
request. In one embodiment, the at least two of the plurality
of virtual computer systems execute within separate com-
puter systems. In one embodiment, at least two of the virtual
computer systems are located in different data centers.

According to one aspect, a method for processing web
service requests 1s provided. The method comprises receiv-
ing, by a load sharing entity, a plurality of web service
requests from one or more client systems; storing, in a
common storage location, the received plurality of web
service requests; assigning at least one virtual computer
system to process at least one of the plurality of web service
requests stored in the common storage location; and pro-
viding a response to the one or more client systems that
generated the at least one of the plurality of web service
requests. In one embodiment, the at least one of the plurality
of web service requests includes at least one of a group
comprising a REST service request; and a SOAP service
request. In one embodiment, the method further comprises
an act of operating the at least one virtual computer system
in at least one of a group of operating modes, the group
comprising an active/single mode; an active/standby mode;
and an active/active mode. In one embodiment, the method
turther comprises an act of distributing the plurality of web
service requests among a group of virtual computer systems.
In one embodiment, the group of virtual computer systems
1s located within a partition. In one embodiment, the method
turther comprises an act of assigning a web service appli-
cation to the partition. In one embodiment, the method
turther comprises an act of sharing, by the group of virtual
computer systems, the common storage location that stores
the plurality of web service requests.

According to one aspect, a system for processing web
service transactions 1s provided. The system comprises a
plurality of servers each adapted to receive and process one

5

10

15

20

25

30

35

40

45

50

55

60

65

4

or more web service requests, the plurality of servers com-
prising a first and second server of the plurality of servers
that are each configured to compare timestamps associated
with at least one database record of a common database
associated with a web service application. In one embodi-
ment, the first server 1s adapted to delete the at least one
database record of the common database associated with the
web service application, 11 1t 1s determined that timestamps
of the first and second servers have expired, the timestamps
being associated with the at least one database record of the
common database. In one embodiment, the first and second
servers are configured to update a timestamp associated with
the at least one database record of the common database
associated with the web service application responsive to an
access to the at least one database record. In one embodi-
ment, the first and second servers are located 1n a first and
a second datacenter, respectively. In one embodiment, the
plurality of servers includes a plurality of virtual servers. In
one embodiment, the comparing of timestamps 1s responsive
to a determination by one of the first and second servers that
at least one of the timestamps 1s close to an expiration time.
In one embodiment, the system further comprises a request
handler element adapted to distribute a web service request
to at least one of the plurality of servers for processing. In
one embodiment, the system further comprises a component
configured to monitor processing of web service requests by
the at least one of the plurality of servers. In one embodi-
ment, the system further comprises a component to deter-
mine a failover of the processing of at least one web service
request to another one of the plurality of servers upon failure
of the at least one server. In one embodiment, the web
service requests mclude at least one of a group comprising
a REST service request; and a SOAP service request. In one
embodiment, the plurality of servers that receive and process
web service requests are operable 1n at least one of a group
of operating modes, the group comprises an active/single
mode; an active/standby mode; and an active/active mode.

According to one aspect, a method for processing web
service transactions 1s provided. The method comprises acts
of receiving and processing, by a plurality of respective
servers, one or more web service requests, wherein the
method turther comprises acts of comparing, by a first and
second server of the plurality of servers are to compare
timestamps associated with at least one database record of a
common database associated with a web service application.
In one embodiment, the method further comprises an act of
deleting, by the first server, the at least one database record
of the common database associated with the web service
application, 11 1t 1s determined that timestamps of the first
and second servers have expired, the timestamps being
associated with the at least one database record of the
common database. In one embodiment, the method further
comprises an act of updating, by the first and second servers,
a timestamp associated with the at least one database record
of the common database associated with the web service
application responsive to an access to the at least one
database record. In one embodiment, the method further
comprises an act of locating the first and second servers 1n
a first and a second datacenter, respectively. In one embodi-
ment, the plurality of servers includes a plurality of virtual
SErvers.

In one embodiment, the act of comparing of timestamps
1s responsive to an act of determining, by one of the first and
second servers, that at least one of the timestamps is close
to an expiration time. In one embodiment, the method
turther comprises an act of distributing, by a request handler
clement, a web service request to at least one of the plurality

US 10,803,015 B2

S

ol servers for processing. In one embodiment, the method
turther comprises an act of monitoring processing of web
service requests by the at least one of the plurality of servers.
In one embodiment, the method further comprises an act of
determining a failover of the processing of at least one web
service request to another one of the plurality of servers
upon failure of the at least one server. In one embodiment,
the web service requests include at least one of a group
comprising a REST service request; and a SOAP service
request. In one embodiment, the plurality of servers that
receive and process web service requests are operable 1n at
least one of a group of operating modes, the group com-
prising an active/single mode; an active/standby mode; and
an active/active mode.

Still other aspects, examples, and advantages of these
exemplary aspects and examples, are discussed in detail
below. Moreover, 1t 1s to be understood that both the
foregoing information and the following detailed description
are merely illustrative examples of various aspects and
examples, and are intended to provide an overview or
framework for understanding the nature and character of the
claimed aspects and examples. Any example disclosed
herein may be combined with any other example in any
manner consistent with at least one of the objects, aims, and
needs disclosed herein, and references to “an example,”
“some examples,” “an alternate example,” “various
examples,” “one example,” “at least one example,” “this and
other examples” or the like are not necessarily mutually
exclusive and are intended to indicate that a particular
feature, structure, or characteristic described 1n connection
with the example may be included 1n at least one example.
The appearances of such terms herein are not necessarily all
referring to the same example. The foregoing and other
features and advantages of the invention will be apparent to
those of ordinary skill in the art from the following more
particular description of the invention and the accompanying,
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing a system for caching
web service commands according to various aspects of the
present mvention;

FIGS. 2A-2C show embodiments of various caching
modes according to various embodiments of the present
imnvention;

FIG. 3 shows a diagram of diflerent web service requests
that may be serviced according to various embodiments of
the present invention;

FIG. 4 shows an example configuration of a caching
service according to one embodiment of the present inven-
tion;

FIGS. 5A-5B show example processes performed by a
caching service according to one embodiment of the present
invention;

FIG. 6 shows an example computer system with which
various aspects ol the mvention may be practiced;

FIG. 7 shows one example implementation of a caching
service using logical partitions distributed among multiple
data centers according to one embodiment of the present
invention;

FIG. 8 shows a more detailed implementation of a caching,
service that utilizes multiple caching servers within a logical
partition according to one embodiment of the present inven-
tion;

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 9 shows a process of caching service requests and
storing requests 1n logical storage according to one embodi-

ment of the present invention;

FIG. 10 shows a process for updating timestamp infor-
mation according to one embodiment of the present inven-
tion;

FIG. 11 shows an example computer system upon which
various embodiments of the present invention may be prac-
ticed;

FIG. 12 shows an example storage system capable of
implementing various aspects of the present mnvention.

FIG. 13 shows a block diagram of an online caching
system:

FIG. 14 shows a block diagram of an online caching
system;

FIG. 15 shows a block diagram of an online caching
system;

FIG. 16 shows a block diagram of an online caching
system:

FIG. 17 illustrates
requests;

FIG. 18 1illustrates

requests;
FIG. 19 illustrates

requests;
FIG. 20 1illustrates

requests;

FIG. 21 illustrates
requests

FIG. 22 illustrates a first and a second database record
stored 1n a first and a second online storage;

FIG. 23 illustrates a flow diagram for a timestamp
exchange process; and

FIG. 24 illustrates a method of processing a caching
service request from a client.

a method of processing web service
a method of processing web service
a method of processing web service
a method of processing web service

a method of processing web service

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

As discussed above, embodiments of the present inven-
tion relate to cachuing systems, and more specifically to a
system and method for processing web-based service
requests. Disclosed are caching systems capable of handling
web service requests from one or more clients.

FIG. 1 shows a block diagram of a distributed system 100
suitable for implementing various aspects of the invention.
In particular, according to one embodiment, FIG. 1 shows a
system 100 that includes a caching service 102 that 1s
capable of storing and servicing web service commands
according to various embodiments of the present invention.
More particularly, a caching service 102 may be provided
that services one more web service commands receirved from
one more clients such as client 101. Such web service
commands may be serviced as part of a website, application
service, storage or other web service type. It may be ben-
eficial to provide a storage and command processing plat-
form that 1s robust and capable of being scaled to any type
ol application.

FIGS. 2A-2C show various embodiments of different
caching service modes according to embodiments of the
invention. For example, FIG. 2A shows an active single
mode where a single instance of the caching service (e.g.,
caching service 210) provides support and servicing of client
requests (e.g. irom client 201A). In what 1s referred to herein
as an active/active configuration and shown in FIG. 2B, a
client (e.g., client 201B) sends a request to a load manager
221 A that distributes requests to two or more caching

US 10,803,015 B2

7

services (e.g. caching service 220A, caching service 220B).
In this configuration, the load manager sends requests to
multiple services, and replication ensures that each caching
service 1s consistent. FIG. 2C shows an active/standby
configuration where one caching service (e.g., caching ser-
vice A 230A) recerves and processes requests through an
active port, and where one or more other caching services
(e.g., caching service B 230B) remains “closed” and does
not recerve and process requests directly.

According to one embodiment of the present invention, 1t
1s appreciated that a caching service may be configured
using a virtualized environment with logical storage shared
between virtual servers, and the caching service may direct
web service requests to an available virtual server suitable
for servicing the request. For instance, the caching service
may direct the request to the most underutilized virtual
server that 1s available. In another embodiment, requests
may be stored 1n a common location accessible by multiple
virtual servers, and therefore, replication of request data 1s
not necessary between servers that share the common stor-
age location. Further, upon failure of a particular server,
another server may be tasked to service the request, access-
ing the request 1n common storage.

FIG. 3 shows a diagram of different web service requests
that may be serviced according to various embodiments of
the present invention. For istance, a distributed system 300
may be used that includes a client 301 that imitiates one or
more web service requests that are serviced by a caching
service (e.g., caching service 308). The service requests may
include, but are not limited to, HTTPS (e.g., with SSL/TLS
encryption) 306, HI'TP requests 3035, secure SOAP (e.g.,
using web service security (WS-Security or WSS) 304,
SOAP service calls 303, REST calls 302, or other types of
service requests 307. It should be appreciated that any type
of request or message format may be used with various
aspects of the present mvention.

FIG. 4 shows an example configuration of a caching
service according to one embodiment of the present inven-
tion. It 1s appreciated that a caching service may be operated
among multiple data centers 1n a distributed computer
system 400 according to one embodiment of the present
invention. For instance, requests received by clients (e.g.,
client A 401A, client Z 401B, etc.) may be directed to
different data centers (e.g., data center AA 404 A, data center
/7 404B, data center BB 404C) by a load manager (e.g.,
load manager 402). Load manager 402 may be a router, a
computer system or other type of specialized system capable
of receiving requests and directing the requests to different
data centers. Fach data center may include one or more
nodes or systems capable of servicing such requests. Such
nodes may include, for example, node AA 403A, node BB
403B, node 77 403C. It 1s appreciated that such nodes may
include physical systems, such as one or more server sys-
tems, a collection of systems (e.g., bladed server systems),
a cluster of systems, mainiframe computer system, or any
type and configuration of systems. Such systems may also
include virtualized resources such as virtual server systems,
and may include one or more levels of virtualization. In one
embodiment, such a caching system may be implemented
across data centers to provide redundancy 1n the case of site
or system failure.

FIGS. SA-5B show example processes performed by a
caching service according to one embodiment of the present
invention. In particular, FIG. 5A shows an active/active
configuration where requests are sent to a number of systems
simultaneously. In the event of failure, one of the active
caching systems continues to operate. In the example shown,

10

15

20

25

30

35

40

45

50

55

60

65

8

a client (e.g., client 501) sends a request to a load manager
(e.g., load manager 3502) which directs the request to a
caching service. According to one embodiment, the caching
service may be a virtual caching service implemented on a
virtual computer system. For instance, the virtual computer
system may include one or more virtual servers that receive
requests and direct them to one or more systems to be
processed. For instance, virtual caching service 503 may
direct a request 1n an active/active configuration to both a
system A 504 and a system B 305 for processing. In an
active/active configuration, both system A and system B
receive and process the request and provide an acknowledg-
ment and response to the virtual caching service 503. The
virtual caching service 503 provides a response directly to

client 501.

FIG. 5B shows an active/standby configuration where two
or more caching service entities recerve one of the web
service requests, but a single entity 1s responsible for com-
mitting transactions. The client 501, load manager 502,
virtual caching service 503, and systems (e.g., systems 504,
505) may be configured to operate i1n active/standby or
active/active mode as discussed above. According to one
embodiment, the wvirtual caching service 503 directs a
request to one of the systems (e.g., system 504) responsible
for committing the transaction, and the responsible system
replicates any necessary data to the other system (e.g.,
system 505). Virtual caching service 503 1s configured to
respond to client 501 once a response 1s recerved from the
responsible system (e.g., system 504). As the standby system
(e.g., system 505) does not receive the request directly, the
standby system takes over only upon failure of the primary
system (e.g., system A).

FIG. 6 shows an example computer system with which
various aspects ol the mmvention may be practiced. For
example, a distributed system 600 may be provided that
caches web service requests according to various embodi-
ments of the present invention. System 600 1ncludes one or
more caching systems (e.g., 601A-6017) that operate to
receive and process requests. System 600 may also include
a load manager 602 that directs receive requests (e.g.,
requests 603) to one or more caching systems for processing.
Each caching system may also include a request handler 604
that determines, within the caching system, what systems
will be processing each request. In one example implemen-
tation, a number of servers (e.g., servers 6058-6057) are
configured to receive requests directed to them from the
request handler 604. Each of the servers may be provided
access to a logical storage system 606 where transactions
may be committed. Further, requests that are received by the
request handler 604 may be stored within a common area
whereby servers may access and process received requests.
If a failure occurs, and the request 1s not processed, another
server may be capable of servicing the request.

FIG. 7 shows one example implementation of a caching
service using logical partitions distributed among multiple
data centers according to one embodiment of the present
invention. In particular, 1t should be appreciated that a
caching server may be implemented within a system having
logical partitions. A logical partition (LPAR) 1s the division
ol a computer processor, memory, and storage into multiple
sets ol resources so that each set of resources can be
operated independently with its own operating system
instance and applications. A logical partition may be defined
that exists on a single computer system or group of computer
systems. For example, many systems, including but not

US 10,803,015 B2

9

limited to standalone computer systems, groups ol comput-
ers, clusters, mainframes, and other types of systems may
use logical partitions.

As shown 1n FIG. 7, a distributed system 700 may be
provided that includes a number of data centers each having
one or more request handlers and logical partitions. For
instance, the caching service in a data center #1 (item 701A)
may include a request handler (TCP/SD) 703 A similar to
request handler 604 of FIG. 6. Further, a data center #2 may
include a similar request handler (TCP/SD) 703B. Such
handlers may receive requests and allocate them to process-
ing entities to be serviced.

As discussed, a caching service may include one or more
servers or other processing entities that are capable of
processing requests. For istance, as discussed, such entities
may 1include logical partitions or LPARs. In the example
shown, the data center #1 may include a number of LPARs
(c.g., LPAR #1-LPAR #6 (items 702A-702F)) that are
adapted to recerve and process requests from request handler
703A. Further, in the example shown, a data center #2 may
include a number of LPARs (e.g., LPAR #1-LPAR #3 (items
704A-704C)) that are adapted to receive and process
requests from request handler 703B. According to one
embodiment, users, organizations, applications or other enti-
ties may be assigned to a particular caching service, and that
caching service may have an assignment of particular
resources (e.g., LPARs, storage, etc.) to fulfill the service
requirements for web requests associated with the caching
service. Such resources may be allocated to particular enti-
ties using, for example, a management interface that 1s used
to set up the caching service for a particular entity.

FIG. 8 shows a more detailled implementation of the
caching service that utilizes multiple caching services within
a logical partition according to one embodiment of the
present mvention. For instance, a distributed system 800 1s
shown including a data center #1 and a defined caching
service. System 800 includes a load manager 804 that
performs similar functions as discussed above. The caching,
service also includes a request handler 803 that receives web
service requests.

In one implementation, within a particular LPAR (e.g.,
LPAR #1 (item 802A)), one or more caching servers (e.g.,
caching servers 805A-8057) may be defined that are capable
ol servicing web service requests. Such servers may include,
for example, one or more virtual servers that are defined
within the particular LPAR. Other LPARs (e.g., LPAR 8027)
may also have caching servers defined within these other
LPARs. According to one embodiment, multiple caching
servers are permitted to access a logical storage entity for the
purpose ol servicing requests. Logical storage may include,
for example, one or more physical storage devices, servers,
or other entities capable of storing data. For instance, a
logical storage entity 806 may be commonly accessed by
multiple caching servers. The caching servers may share the
same logical address space with other servers, and therefore
may be capable of servicing requests associated with a
particular defined caching service.

In one implementation, the caching service may be imple-
mented 1n an IBM mainframe environment. For instance, the
caching service may be implemented using LPARs as
defined 1n the IBM 7z/OS environment, as known 1n the art.
Multiple LPARs running z/OS can form a sysplex or parallel
sysplex, whether on one machine or spread across multiple
machines. Further, such systems may use a logical storage
entity such as a VSAM (virtual storage access method) as 1s
used with the z/OS, wherein an enterprise can organize
records 1n a file 1 physical sequence (the sequential order

10

15

20

25

30

35

40

45

50

55

60

65

10

that they were entered), logical sequence using a key (for
example, the employee ID number), or by the relative record
number on direct access storage devices (DASD). Although
some examples are shown using an IBM mainframe envi-
ronment, 1t should be appreciated that other virtualized
computer system types having common storage capabilities
may be used, and aspects of the present invention may be
used other similarly-configured systems.

FIG. 9 shows an example process of caching service
requests and storing requests in logical storage according to
one embodiment of the present invention. In a distributed
computer system 900, a client 901 communicates a request
to a load manager 902. The load manager sends the request
to a request handler 903 A. In the case of FIG. 9, the caching
service 1s configured 1n an active/standby mode, where the
request 1s not forwarded to the other request handler of the
cache server (e.g., request handler 903B associated with
cache server 904B).

In the example shown i FIG. 9, cache server 904A
receives the request, performs a post operation on the
request which results with a right to logical storage. In the
active/standby mode, the first cache server 1ssues a replica-
tion post to the request handler of the caching system of data
center #2. Request handler 903B sends the request to a
suitable cache server (e.g., cache server 904B) which hosts
the requests and rights to logical storage (e.g., logical
storage 905B). The standby cache server sends a response to
the active cache server of data center #1. The active cache
server receives the response and sends the response to the
client. In this way, the standby and active servers 1n both
data centers are updated, and upon failure of the active
server, the standby server may begin servicing requests (e.g.,
when the load manager 902 forwards requests to a port of the
standby server).

In a more detailed example, there are three configurations
available to each partition or user of the caching service:
active/single;
active/standby; or
active/active.

In one embodiment, the configuration 1s set for each
partition/user by using a parameter file that specifies the
mode of operation. In one embodiment, each active/single
data center has its own URUport combination, and clients
are configured to referencing the URUport directly 1n their
requests. In an active/standby configuration, the caching
system may have a URUport managed by a momtoring
component (e.g., a load manager or other entity), and client
requests reference the monitoring component (e.g., load
manager, load balancer, router or other entity). In the active/
standby configuration, a client does not reference the active/
standby URUport directly, as only the monitoring compo-
nent (e.g., a network router and load balancer) references the
active/standby URUport.

In one implementation, in the active/active mode, there 1s
a URUport managed by the caching server momitor, with
client requests referencing a network router and load bal-
ancer. A client does not reference the active/active URUport
directly, as only the network router and load balancer
references the active/active URUport. When 1n an active/
single configuration, a caching server partition/user 1s
defined to one data center within a virtual computing system.
For instance, a z/OS Parallel Sysplex may be used, and as 1s
known, the z/OS Parallel Sysplex combines two basic capa-
bilities of parallel processing and enabling read/write data
sharing across multiple systems with full data integrity. A
7z/OS Parallel Sysplex configuration may include two or
more physical zEnterprise servers (CPC/CEC (where CPC 1s

US 10,803,015 B2

11

a central processor complex, and CEC is a central electronic
complex or mainframe “box’’)), two or more logical parti-
tioned operating systems (LPAR) and two or more virtual
transaction servers (e.g., implemented as virtual servers, also
commonly referred to as “regions”). One virtual transaction
server that may be used in the IBM mainframe environment
includes the well-known CICS server. The CICS (Customer
Information Control System) servers 1s a well-known family
of application servers and connectors provided by IBM that
provides industrial-strength, online transaction management
and connectivity for mission-critical applications.

In one example implementation, a client application that
uses a caching service according to various embodiments
sends a REST/SOAP web service request to one URL for an
active/single port for a specific data center and the request
handler (e.g., a ZOS TCP/SD (Sysplex Distributor) and
WLM (work load manager)) routes the request to the “best

performing” LPAR and CICS server. Because the request
database (e.g., a cache file stored by SMSVSAM and/or
CFDT) are accessible to all CICS servers and z/OS LPARs,
there 1s no replication necessary between LPARs and/or
CICS regions. With the z/OS Parallel Sysplex, TCP/SD,
WLM, multiple LPAR and CICS servers, the active/single
provides high availability (HA) and load balancing. Should
the entire z/OS Parallel Sysplex fail, there 1s no recovery or
replication required when the system 1s restarted.

When 1n an active/standby configuration, a caching server
partition/user 1s defined to one data center within a z/OS
Parallel Sysplex as ‘active’ and another data center within a
z/OS Parallel Sysplex as ‘standby’. Both active and standby
systems are “live” and include two or more zEnterprise
servers (CPC/CEC), two or more logical partitioned oper-
ating systems (LPAR) and two or more CICS servers (e.g.,
virtual servers). The client application that uses the caching
service sends a REST/SOAP request to one URL, which 1s
handled by a network router and load balancer, which then
routes the request to the active/standby port on both data
centers. The active system maintains the client port opened,
allowing requests from the network router and load balancer.
However, the standby system maintains the client port
closed. The closed port signals the network router and load
balancer to send requests to the active system, which main-
tains the open client port. The client port on both the active
and standby systems are monitored and managed by a
caching server background process.

According to one embodiment, while requests are being
processed by the active system, asynchronous replication 1s
performed on the request through an internal port only
known by caching server to the standby system. The internal
port, used by both active/standby and active/active 1s only
known to caching server systems and does not process any
requests from caching server clients and/or network router
and network load balancers. With the z/OS Parallel Sysplex,
TCP/SD, WLM, multiple LPAR and CICS servers, the
active/standby provides high availability (HA) and load
balancing within the active Sysplex. Should the entire
Active z/OS Parallel Sysplex fail, the caching server moni-
tor (background process) on the standby system detects the
situation, then immediately opens the client port and sets the
caching server monitor control file as ‘“1n recovery’ status for
the system and for each partition/user. When the client port
1s available, the network router and load balancer then
begins routing all active/standby requests to the new ‘active’
system, which previously was marked/designated as
‘standby’. Because caching server requests were being rep-
licated from the other system before the failure, the cached
information 1s readily available when the client port

10

15

20

25

30

35

40

45

50

55

60

65

12

becomes active, except for messages that were between
client response and asynchronous replication. For those
records 1n this situation, the next GET request returns a ‘not
found’ status, prompting the client to 1ssue another POST to
create the record in the new Active system.

When the failed z/OS Parallel Sysplex, LPARs and the
CICS servers are restarted, the active/standby client port 1s
defined as ‘closed’, preventing the network router and load
balancer from sending caching server requests to the new
‘Standby’ system, however the internal port known only to
caching server 1s defined as ‘open’. On the active system, a
caching server monitor (e.g., a background process) detects
that the caching server CICS servers are now available
through the mternal port, which imitiates a background
process on the active system side that begins the recovery
process. Fach caching server partition/user includes a
‘recovery’ task started by the caching server monitor which
reads through the caching server file system and 1ssues a
POST request across the internal port to the standby system.
When each recovery task completes, a status record for each
caching server partition/user 1s updated in the caching server
master control file, which 1s used by the caching server
monitor process. During this recovery process, client
requests are being processed on the active system, with
asynchronous replication being performed on the request
through the internal port to the Standby system. Both
recovery and replication requests are processed concurrently
across the internal port between the active and standby
systems. When the recovery task(s) are complete, replication
continues for client requests received through the client port
on the active system, and the caching server momitor control
file 1s set as ‘recovery complete’ for the system and for each
partition/user. The client port on the newly recovered
‘active’ system 1s opened and the client port on the ‘standby’
system 1s closed, shifting the workload back to the primary
active/standby configuration for those partitions/users
within the two data center clusters.

When 1n the active/active configuration, a partition/user
that uses the caching service 1s defined to two data centers,
providing a z/OS Parallel Sysplex each defined as ‘active’.
Both active systems are “live” and include two or more
zEnterprise servers (CPC/CEC), two or more logical parti-
tioned operation systems (LPAR) and two or more CICS
servers (e.g., implemented as virtual servers).

According to one implementation, a client application that
uses the caching service sends a REST/SOAP request to one
URL, which 1s handled by a network router and load
balancer, which then routes the request to the active/active
port on both data centers. The client port on both active/
active systems 1s opened allowing the network router and
load balancer to send requests to both active/active systems.
While requests are being processed by the active system that
receives the request, synchronous replication 1s being per-
formed on the request through an internal port only known
by caching server. The mternal port, used by both active/
standby and active/active 1s only known to caching server
systems and does not process any requests from caching
server clients and/or network router and network load bal-
ancers. With the zZ/OS Parallel Sysplex, TCP/SD, WLM,
multiple LPAR and CICS servers, the active/active provides
high availability (HA) and load balancing within the active
Sysplex.

Should an entire active z/OS Parallel Sysplex fail, the
caching server momitor (background process) on the other
active system detects the situation, and sets the caching
server monitor control file as ‘1n recovery’ status for the
system and for each partition/user. When the failed z/OS

US 10,803,015 B2

13

Parallel Sysplex, LPARs and CICS servers are restarted, the
active/active client port 1s defined as ‘closed’, preventing the
network router and load balancer from sending caching
server requests and the caching server monitor control file 1s
set as ‘in recovery’ status for the system and for each
partition/user. The internal port on the recovering system 1S
open during restart. On the opposite active system, a cac. _’ung
server monitor (background process) detects the caching
server CICS servers are now available through the internal
port, which initiates a background process on the active side
that begins the recovery process.

Each caching server partition/user includes a ‘recovery’
task started by the caching server momitor which reads
through the caching server file system and i1ssues a POST
request across the internal port to the recovering active
system. When each recovery task completes, a status record
for each caching server partition/user 1s updated 1n the
caching server master control file on both systems, which 1s
used by a monitor process of the caching server. During this
recovery process, client requests are processed on the active
system, with synchronous replication being performed on
the request through the internal port to the recovering active
system. Both recovery and replication requests are pro-
cessed concurrently across the internal port between the
active and recovering systems. When the recovery task(s)
are complete, the port on the recovering system 1s set to
‘opened’, enabling the network router and load balancer to
send requests to both active/active systems. The caching
server monitor control file 1s set as ‘recovery complete’ for
the system and for each partition/user on both active/active
systems.

According to one embodiment, new commands may be
provided that implement various basic functions (e.g.,
POST, GET, PUT and DELETE commands) 1n a caching
system according to various embodiments of the present
invention. For example, one process that may be defined
according to various embodiments, 1s a key delete process.
For instance, when a DELETE request from the client
specifies a key 1n the URI, a specific record from the caching
server 1S deleted with the request replicated to the opposite
(remote) data center. For instance, 1n a large database, a user
may desire to delete a large number of product entries 1n the
database, and thus, by specilying a key range, a single
DELETE operation may be performed (e.g., by matching a
pattern).

Another option that may be supported by the DELETE
request may include a list of keys to be deleted using a
‘regex’ or regular expression verb on the URI. On a
DELETE request with ®ex specified on the URI, caching
server will delete a list of keys that match the pattern
specified 1n the ®ex command. Patterns for ®ex may
be specified as follows:

'key®ex="*
/key®ex=Sam*
/key®ex=Sam*1
/key®ex="*Sam*
Delete all keys
Delete keys that start with Sam (inclusive of a key <sam')
Delete keys that start with Sam and ending with <1
Delete keys that contain the word Sam
According to one embodiment, during the delete process,

only records with a timestamp of equal or older than
‘current’ time are deleted. This feature allows records to be
added/updated (POST/PUT) during a delete process when
®ex has been specified.

Another feature that may be provided with the delete
request when ®ex has been specified includes a “syn-

10

15

20

25

30

35

40

45

50

55

60

65

14

chronous delete request’ (SDR) or an ‘asynchronous delete
request’ (ADR). The .SDR or .ADR may be specified in the
final qualifier of the URI that precedes the key portion of the
URI. When .SDR 1s requested, the delete process 1s per-
formed synchronously, then the response 1s returned to the
client. When .ADR 1s requested, the delete process 1is
performed asynchronously after the response has been
returned to the client.

In another example, another process that may be defined
according to various embodiments, 1s a key retrieval process
or GET. When a GET request from the client specifies a key
in the URI, a specific record from caching server 1s returned.
Another option associated with the GET request includes a
list of keys to be returned (instead of actual record data)
using a ‘regex’ or regular expression verb on the URI. On a
GET request with ®ex specified on the URI, caching
server may be adapted to return a list of keys that match the
pattern specified in the ®ex command. Patterns for
®ex may be as follows:

'key®ex=*

/key®ex=Sam™

/key®ex=Sam™ 1

/key®ex=*Sam™

Return all keys

Return keys that start with Sam (inclusive of a key <sam')
Return keys that start with Sam and ending with <1
Return keys that contain the word Sam

It should be appreciated that other commands or opera-
tions may be provided when 1n a particular caching mode of
operation.

In yet another embodiment, a distributed method for
updating timestamp information related to stored data 1s
provided. Such timestamp distribution may be used in
association with the caching service for web service requests
as discussed above. For instance, it i1s appreciated that
timestamp 1nformation for data may need to be made
consistent across multiple datasets (e.g., located at different
datacenters). It 1s realized that in high-volume transaction
systems such as a web-based transaction system, 1t may not
be feasible to adequately transmit timestamp information in
an eflective manner between systems due to overhead,
network trathc, performance, and other considerations.

According to one embodiment, a record expiration pro-
cess includes an asynchronous or background process that
executes on 1mtervals (e.g., as set in a caching server control
file) 1n each of the servers defined in the active/single,
active/standby and active/active systems. According to one
embodiment, the server startup process starts an expiration
task for each partition/user file defined 1n the servers with the
interval defined 1in the caching server control file. Each
expiration task establishes and global ENQ or lock across
the Sysplex to ensure serialization of the expiration process
for each partition/user. The global ENQ or lock 1s released
when the expiration task completes processing of the parti-
tion/user file. Caching server expiration tasks may be started
on both systems in the active/standby and active/active
configuration.

In active/single, active/standby and active/active configu-
rations, the timestamp on each record gets set on POST/PUT
requests when ‘last update time” or LUT 1s specified with a
corresponding ‘time to live’ or TTL value, which may be
expressed 1n seconds. Another option 1s ‘last access time” or
LAT where the timestamp on each record gets set on
GET/POST/PUT requests with the corresponding TTL
value. The mimimum TTL may be, for example, 300 sec-
onds. The maximum TTL may be, for example, 86400

seconds. A default value may be set when the TTL value 1s

US 10,803,015 B2

15

not specified. For instance, the default value, when not
specified, may be 1800 seconds.

According to one embodiment, one advantages of a
caching server over other distributed database products is
that records do not get replicated across nodes (e.g., CICS
servers) within a cluster (e.g., a Sysplex), as the file systems
are accessible to all CICS servers and LPARs within a zZ7OS
Parallel Sysplex. In one implementation, replication of
POST/PUT (add/update) requests are performed across
active/standby and active/active data centers for all POST/
PUT requests.

Another advantage includes, according to one embodi-
ment, how a caching server handles GET and LAT requests,
as the timestamp 1s updated for each of these requests on the
local system that receives the request. However, according
to one embodiment, these requests are not replicated across
data centers. It 1s appreciated that replicating GET/LAT
information across data centers would cause excessive and
unnecessary network, processor and VO overhead.

According to one embodiment, a caching server handle
does not need to keep timestamps synchronized across data
centers when GE'T/LAT 1s utilized. Rather, according to one
embodiment, timestamp information 1s used for record expi-
ration, so 1instead of updating the timestamp on every
GET/LAT request, a caching server utilizes a technique
called a timestamp exchange during the expiration process.
When an expiration task 1s processing a partition/user file on
either the active/standby or active/active systems, each
record 1s read sequentially and the timestamp and time to
live (I'TL) are used to determine 1f the record 1s to be
expired. When a record 1s eligible to be expired on the local
system, a request 1s sent to the opposite (remote) system to
delete the expired record. If the record 1s not eligible to be
expired on the remote system, then the timestamp i1s returned
by the timestamp exchange process to the expiration process
and the timestamp updated on the local system. If the record
1s eligible to be expired on the remote system, then the
record 1s deleted on the remote system, and 1s then deleted
on the local system.

Further, a capability may be provided that permits time-
stamp information to be maintained for a data element based
on when the data was last accessed. For instance, most data
clements only information that identified when a data ele-
ment was last updated, not when 1t was last accessed. To this
end, timestamp 1information may be provided that indicates
when the particular data entry was last accessed.

FIG. 10 shows an example process for updating time-
stamp information according to one embodiment of the
present mvention. In particular, FIG. 10 shows a process
1000 for determining, among servers distributed among
multiple data centers, when a particular database record
should be deleted. A block 1001, process 1000 begins. At
block 1002, a server (e.g., a virtual server associated with a
web request caching service) receives and processes a data
request. For instance, there may be one or more operations
relate to database entries that may cause the server to update
the timestamp associated with a particular database entry.
For instance, at block 1003, the server may update a last
update timestamp (LUT) associated with a right to a data-
base instance. According to one embodiment, the server may
also be capable of updating a timestamp based on a last
access (e.g., a last access timestamp (LAT) updated at block
1004.

Further, each of the servers that may be performing
operations related to the same database entries may need to
determine when such entries should be deleted from the
database. For instance, at block 1005, a server determines

10

15

20

25

30

35

40

45

50

55

60

65

16

whether a timestamp associated with the database entry 1s
close to expiration. If not, the server continues to service
database requests. If the timestamp 1s close to expiration, the
server may send a request (e.g., at block 1006) to a corre-
sponding server from another data center (e.g., a server
located at data center #2). If 1t 1s determined (e.g., at block
1007) that the timestamp associated with that database
record 1s expired, both servers may delete the database
record in the databases at both data centers (e.g., datacenters
#1 and #2). If not, the datacenter may send 1ts more recent
timestamp to data center #1, and the database entry contin-
ues to exist. That 1s, other servers may be operating on
database entries, and 1f another server has a more recent
entry, then that database entry should not be deleted. Such
timestamps may be checked periodically, eliminating the
need for large numbers of messages to make data entries
consistent. At block 1010, process 1000 ends.

Example Computer Implementations

Processes described above are merely 1llustrative embodi-
ments of systems that may be used to cache web service
requests. Such 1llustrative embodiments are not intended to
limit the scope of the present invention, as any of numerous
other implementations for performing the imvention. None
of the claims set forth below are intended to be limited to any
particular implementation of a caching system, unless such
claim includes a limitation explicitly reciting a particular
implementation.

Processes and methods associated with various embodi-
ments, acts thereof and various embodiments and variations
of these methods and acts, individually or in combination,
may be defined by computer-readable signals tangibly
embodied on a computer-readable medium, for example, a
non-volatile recording medium, an integrated circuit
memory element, or a combination thereof. According to
one embodiment, the computer-readable medium may be
non-transitory in that the computer-executable instructions
may be stored permanently or semi-permanently on the
medium. Such signals may define instructions, for example,
as part ol one or more programs, that, as a result of being
executed by a computer, instruct the computer to perform
one or more of the methods or acts described herein, and/or
various embodiments, variations and combinations thereof.
Such mstructions may be written 1 any computer program-
ming language available now or 1n the future.

The computer-readable medium may be transportable
such that the instructions stored thereon can be loaded onto
any computer system resource to implement the aspects of
the present invention discussed herein. In addition, 1t should
be appreciated that the instructions stored on the computer-
readable medium, described above, are not limited to
istructions embodied as part of an application program
running on a host computer. Rather, the instructions may be
embodied as any type of computer code (e.g., soltware or
microcode) that can be employed to program a processor to
implement the above-discussed aspects of the present inven-
tion.

Various embodiments according to the invention may be
implemented on one or more computer systems. These
computer systems may be, for example, general-purpose
computers with any type of processor. Further, the software
design system may be located on a single computer or may
be distributed among a plurality of computers attached by a
communications network.

The computer system may include specially-pro-
grammed, special-purpose hardware, for example, an appli-
cation-specific integrated circuit (ASIC). Aspects of the
invention may be implemented in software, hardware or

US 10,803,015 B2

17

firmware, or any combination thereof. Further, such meth-
ods, acts, systems, system elements and components thereof
may be mmplemented as part of the computer system
described above or as an independent component.

A computer system may be a general-purpose computer
system that 1s programmable using a high-level computer
programming language. A computer system may also be
implemented using specially programmed, special purpose
hardware. In a computer system there may be any type of
processor known and used now of in the future, with any
type of operating system known now of in the future.

Some aspects of the invention may be implemented as
distributed application components that may be executed on
a number of different types of systems coupled over a
computer network. Some components may be located and
executed on mobile devices, servers, tablets, or other system
types. Other components of a distributed system may also be
used, such as databases, cloud services, or other component
types.

The processor and operating system together define a
computer platform for which application programs 1n high-
level programming languages are written. It should be
understood that the mvention 1s not limited to a particular
computer system platform, processor, operating system, or
network. Further, it should be appreciated that multiple
computer platform types may be used i a distributed
computer system that implements various aspects of the
present invention. Also, 1t should be apparent to those skilled
in the art that the present invention 1s not limited to a specific
programming language or computer system. Further, 1t
should be appreciated that other appropriate programming
languages and other appropriate computer systems could
also be used.

One or more portions of the computer system may be
distributed across one or more computer systems coupled to
a communications network. These computer systems also
may be general-purpose computer systems. For example,
various aspects of the invention may be distributed among,
one or more computer systems configured to provide a
service (e.g., servers) to one or more client computers, or to
perform an overall task as part of a distributed system. For
example, various aspects of the invention may be performed
on a client-server system that includes components distrib-
uted among one or more server systems that perform various
functions according to various embodiments of the mmven-
tion. These components may be executable, intermediate
(e.g., IL) or interpreted (e.g., Java) code which communicate
over a communication network (e.g., the Internet) using a
communication protocol (e.g., TCP/IP).

Certain aspects of the present imvention may also be
implemented on a cloud-based computer system, a distrib-
uted computer network including clients and servers, or any
combination of systems. It should be appreciated that the
invention 1s not limited to executing on any particular
system or group of systems. Also, 1t should be appreciated
that the invention 1s not limited to any particular distributed
architecture, network, or communication protocol.

Various embodiments of the present invention may be
programmed using an object-oriented programming lan-
guage, functional, scripting, and/or logical programming
languages. Various aspects of the invention may be imple-
mented in a non-programmed environment (e.g., documents
created in HITML, XML or other format that, when viewed
in a window of a browser program, render aspects of a
graphical-user interface (GUI) or perform other functions).

10

15

20

25

30

35

40

45

50

55

60

65

18

Various aspects of the mvention may be implemented as
programmed or non-programmed elements, or any combi-
nation thereof.

Further, on each of the one or more computer systems that
include one or more components of distributed system 100,
cach of the components may reside 1n one or more locations
on the system. For example, diflerent portions of the com-
ponents of system 100 may reside in different areas of
memory (e.g., random access memory (RAM), read-only
memory (ROM), disk, etc.) on one or more computer
systems. Each of such one or more computer systems may
include, among other components, a plurality of known
components such as one or more processors, a memory
system, a disk storage system, one or more network inter-
faces, and one or more busses or other internal communi-
cation links interconnecting the various components.

Any number of caching systems described herein may be
implemented on a computer system described below 1n
relation to FIGS. 11 and 12. In particular, FIG. 11 shows an
example computer system 1100 used to implement various
aspects. FIG. 12 shows an example storage system that may
be used. System 1100 1s merely an illustrative embodiment
of a computer system suitable for implementing various
aspects of the invention. Such an 1illustrative embodiment 1s
not mtended to limit the scope of the mvention, as any of
numerous other implementations of the system are possible
and are intended to fall within the scope of the invention. For
example, a virtual computing platform may be used. None of
the claims set forth below are intended to be limited to any
particular implementation of the system unless such claim
includes a limitation explicitly reciting a particular imple-
mentation.

For example, various aspects of the mvention may be
implemented as specialized software executing 1n a general-
purpose computer system 1100 such as that shown 1n FIG.
11. The computer system 1100 may include a processor 1103
connected to one or more memory devices 1104, such as a
disk drive, memory, or other device for storing data.
Memory 1104 i1s typically used for storing programs and
data during operation of the computer system 1100. Com-
ponents of computer system 1100 may be coupled by an
interconnection mechanism 1105, which may include one or
more busses (e.g., between components that are integrated
within a same machine) and/or a network (e.g., between
components that reside on separate discrete machines). The
interconnection mechanism 1105 enables communications
(e.g., data, mstructions) to be exchanged between system
components of system 1100. Computer system 1100 also
includes one or more input devices 1102, for example, a
keyboard, mouse, scanner, trackball, microphone, touch
screen, and one or more output devices 1101, for example,
a printing device, display screen, and/or speaker. The system
may also include any specialized components depending on
the application, including any barcode reader, magnetic
stripe reader, receipt printer, hand-held or fixed scanners, pin
entry devices (PED), or other device types. In addition,
computer system 1100 may contain one or more interfaces
(not shown) that connect computer system 1100 to a com-
munication network (1in addition or as an alternative to the
interconnection mechanism 1105).

The storage system 1106, shown in greater detail in FIG.
12, typically includes a computer readable and writeable
nonvolatile recording medium 1201 in which signals are
stored that define a program to be executed by the processor
or mformation stored on or in the medmum 1201 to be
processed by the program. The medium may, for example,
be a disk or flash memory. Storage system 1106 may also

US 10,803,015 B2

19

include logical storage comprising a number of physical
storage elements. Typically, 1n operation, the processor
causes data to be read from the nonvolatile recording
medium 1201 into another memory 1202 that allows for
faster access to the information by the processor than does
the medium 1201. This memory 1202 1s typically a volatile,
random access memory such as a dynamic random access
memory (DRAM) or static memory (SRAM). It may be
located 1n storage system 1106, as shown, or 1n memory
system 1104, not shown. The processor 1103 generally
manipulates the data within the integrated circuit memory
1104, 1202 and then copies the data to the medium 1201
alter processing 1s completed. A variety of mechanisms are
known for managing data movement between the medium
1201 and the itegrated circuit memory element 1104, 1202,
and the invention 1s not limited thereto. The invention 1s not
limited to a particular memory system 1104 or storage
system 1106.

The computer system may include specially-pro-
grammed, special-purpose hardware, for example, an appli-
cation-specific integrated circuit (ASIC). Aspects of the
invention may be implemented in software, hardware or
firmware, or any combination thereof. Further, such meth-
ods, acts, systems, system elements and components thereof
may be mmplemented as part of the computer system
described above or as an independent component.

Although computer system 1100 1s shown by way of
example as one type of computer system upon which various
aspects of the mvention may be practiced, 1t should be
appreciated that aspects of the invention are not limited to
being implemented on the computer system as shown in
FIG. 11. Various aspects of the invention may be practiced
on one or more computers having a different architecture or
components that that shown in FIG. 11.

Computer system 1100 may be a general-purpose com-
puter system that 1s programmable using a high-level com-
puter programming language. Computer system 1100 may
be also implemented using specially programmed, special
purpose hardware. In computer system 1100, processor 1103
1s any processor used now or in the future that operates any
operating system known now or in the future.

FIG. 13 shows an online caching system 1310. Online
caching system 1310 is used to process web-based service
requests for one or more clients. Online caching system
1310, in this embodiment, includes a plurality of servers
1312 coupled to at least one client 1319. FEach one of the
plurality of servers 1312 processes caching service requests
from client 1319. Plurality of servers 1312 in this embodi-
ment includes a server 1313, a server 1314, a server 1315,
a server 1316, a server 1317, and a server 1318. In some
embodiments, there are fewer or more servers included in
plurality of servers 1312. Plurality of servers 1312 1s also
referred to as a cluster of servers.

Online caching system 1310 also includes an online
common storage 1320. Online common storage 1320 1is
coupled to each one of plurality of servers 1312, and 1s used
by each one of plurality of servers 1312 to store key/value
data associated with online caching system 1310. The data
portion of the key/value information can be structured or
unstructured data, such as text, javascript object notation
(JSON), extensible markup language (XML), graphical
interchange format (GIF), joint photographic experts group
(JPEG), portable document format (PDF), videos, or other
format, as the data 1s treated as binary. When a media or
content type of “text/*” 1s requested, a translation between
extended binary coded decimal interchange code (EBCDIC)
and American standard code for interchange format (ASCII)

10

15

20

25

30

35

40

45

50

55

60

65

20

1s performed, enabling both *nix and mainframe application
to access the same information.

Information 1s stored in online common storage 1320 1n
key/value architecture manner, where the key can range
from 1 to 255 bytes 1n size, and the data from 1 byte to 2
gigabytes per record or object. Both the size of the key and
the size of the data are determined at the time of an HTTP
POST (insert) request. The data record (object) size on a
PUT (change) can be different that the original record
(object) whether larger or smaller, as the records are variable
in length.

Online caching service 1310 1s accessible via transmis-
sion control protocol/internet protocol (TCP/IP) requests
using hypertext transfer protocol (HTTP) and representa-
tional state transfer (REST) methodology. Caching system
1310 executes web service requests 1n one or more of
plurality of servers 1312, where each one of plurality of
servers 1312 1s primary and none of plurality of servers 1312
require the presence of another one of plurality of servers
1312. Since each of plurality of servers 1312 i1s “primary”
and does not need any other servers, online caching service
1310 enables the caching service to be executed in any one
or more of plurality of servers 1312, whether first or
subsequent requests, to access mformation stored in online
common storage 1320 or other storage devices. Each of
plurality of servers 1312 can operate 1n active/single, active/
active, or active standby mode. This provides high avail-
ability within plurality of servers 1312 or across a number of
plurality of servers, as explained further below.

Each one of plurality of servers (also called nodes) 1312
provides equal functionality independently of each other,
and each of plurality of servers 1312 have access to online
common storage 1320 as a key/value data architecture.
There 1s no distinguishing between primary and/or second-
ary servers. Information 1s stored/retrieved from online
common storage 1320 1n a shared manner, where online
common storage 1320 i1s accessible to caching services
executing 1n each of plurality of servers 1312.

Caching service 1310, when defined in an active/single
cluster as shown 1n FIG. 13, 1s located 1n a single data center
location. High availability 1s achieved because each of
plurality of servers 1312 act independently of each other,
with each of plurality of servers 1312 sharing online com-
mon storage 1320.

FIG. 14 shows an embodiment of online caching service
1410. Online caching service 1410 1s the same as online
caching service 1310 except, 1n this embodiment, two cli-
ents, first client 1319 and a second client 1419 are both
coupled to plurality of servers 1312, and plurality of servers
1312 process caching service requests for each of client
1319 and 1419. Plurality of servers 1312 can operate in
different modes for different clients. In this embodiment,
plurality of servers 1312 operates 1n active/active mode for
first client 1312, and 1n active/standby mode for second
client 1419.

FIG. 15 shows an embodiment of online caching service
1510. Online caching system 1510 1s the similar to online
caching system 1310, except that in this embodiment an
online common storage 1520 1s divided among more than
one hardware element, and a plurality of servers 1512 1is
divided among different types of hardware and operating
systems. Online caching system 1510 1s used to process
web-based service requests for one or more clients, 1n this
embodiment a client 1519. Online caching system 1510
includes a plurality of servers 1512 coupled to at client 1519.
Each one of the plurality of servers 1512 processes caching
service requests from client 1519. Plurality of servers 1512

US 10,803,015 B2

21

in this embodiment includes a server 1513, a server 1514, a
server 1515, a server 1516, a server 1517, and a server 1518.
In some embodiments, there are fewer or more servers
included 1n plurality of servers 1512. Plurality of servers
1512 1s also referred to as a cluster of servers. In this
embodiment servers 1513 and 1514 are resident on a first
hardware component 1522, where first hardware component
1522 uses a first operating system 1523, Servers 1515 and
1516 are on a second hardware component 1524 with a
second operating system 15235, and servers 1517 and 1518
are on a third hardware component 1526 using a third
operating system 1527. Plurality of servers 1512 can be
divided up onto many different hardware components using
many different operating systems.

Online caching system 1510 also includes an online
common storage 1520. Online common storage 1520 is
coupled to each one of plurality of servers 1512, and 1s used
by each one of plurality of servers 1512 to store key/value
data associated with online caching system 1510. In this
embodiment, online common storage 1s resident on a {irst
disk array 1546 and a second disk array 1544. Online
common storage can be resident on many different types and
numbers of online storage components.

FIG. 16 shows an embodiment of an online caching
system 1610. Online caching system 1610 1s similar to
online caching system 1310 except it 1s distributed across
two site locations, a first site 1628 and a second site 1630.
Online caching system 1610 includes a first plurality of
servers 1612 resident at first site 1628. First plurality of
servers 1612 1s coupled to a client 1619. Each one of first
plurality of servers 1612 processes caching service requests
from client 1619. First plurality of servers 1612 1s coupled
to first online common storage 1620. Each of first plurality
of servers 1612 uses first online common storage 1620 to
store key/value data associated with caching system 1610.

Online caching system 1610 also includes second plural-
ity of servers 1632 resident at second site 1630. Second
plurality of servers 1632 1s communicatively coupled to first
plurality of servers 1612 using dark port 1648. Dark port
1648 1s used to send communication 1640 between first
plurality of servers 1612 and second plurality of servers
1632. A dark port 1s a port that 1s used by online caching
service 1610, but 1s not available to client 1619.

Second plurality of servers 1632 1s coupled to second
online common storage 1642. Each of second plurality of
servers 1632 store key/value data associated with online
caching system 1610 in second online common storage
1642.

Second plurality of servers 1632 processes caching
requests for client 1619, through first plurality of servers
1612, as shown in FIG. 16. The order of processes used for
caching service requests from client 1619 using online
caching service 1610 depends on whether online caching
service 1610 1s operating 1n an active/standby mode or an
active/active mode for client 1619. Each of these 1is
explained herein.

When online caching service 1610 1s operating in an
active/standy mode for chient 1619, the caching process
begins with client 1619 sending a service request 1650 to
first plurality of servers 1612. Service request 1650 can be,
for example, a PUT or a POST command, or any other
caching service request. In the embodiment shown 1n FIG.
16, service request 1650 1s sent to server 1618, but service
request 1650 could be sent to any one of first plurality of
servers 1612. First plurality of servers 1612, 1n this embodi-
ment server 1618, commits service request 1650 to online
common storage 1620 1n a communication 1638 as shown 1n

10

15

20

25

30

35

40

45

50

55

60

65

22

FIG. 16. Since first plurality of servers 1612 1s operating in
active/standby mode for client 1619, first plurality of servers
1612 next returns success response 1652 to client 1619.
Once success response 1652 1s sent to client 1619, then first
plurality of servers 1612 sends update 1654 to second
plurality of servers 1632, requesting second plurality of
servers 1632 commit service request 1650 to second online
common storage 1642. Second plurality of servers 1632
commits service request 1650 to second online common
storage 1642 1n communication 1660. Second plurality of
servers 1632 sends caching success response 1656 to first
plurality of servers 1612, ending the process. In this process,
first plurality of servers 1612 sends success report 1652 to
client 1619 after caching service request 1650 from client
1619 1n first online common storage 1620, and before

replicating service request 1650 to second plurality of serv-
ers 1632.

When online caching service 1610 1s operating in an
active/active mode for client 1619, the caching process
begins with client 1619 sending service request 1650 to first
plurality of servers 1612. First plurality of servers 1612, in
this embodiment server 1618, commits service request 16350
to online common storage 1620 1n communication 1658 as
shown 1 FIG. 16. Since first plurality of servers 1612 1s
operating in active/active mode for client 1619, first plural-
ity of servers 1612 next sends update 1654 to second
plurality of servers 1632, requesting second plurality of
servers 1632 commit service request 16350 to second online
common storage 1642. Second plurality of servers 1632
commits service request 1650 to second online common
storage 1642 1n communication 1660. Second plurality of
servers 1632 sends caching success response 1656 to first
plurality of servers 1612. After second plurality of servers
1632 replicates the caching of service request 1650, first
plurality of servers 1612 sends success response 1652 to
client 1619, ending the process. In this process, first plurality
of servers 1612 sends success report 1652 to client 1619
after caching service request 16350 from client 1619 1n first
online common storage 1620, and after second plurality of
servers 1632 replicates service request 1650 to second
online common storage 1642.

FIG. 17 and FIG. 18 1illustrate the methods of processing,
web service requests as described above using online cach-
ing system 1610 of FIG. 16.

FIG. 17 illustrates method 1700 of processing web service
requests. Method 1700 1ncludes an act 1710 of caching a
service request from a client 1n a first online common storage
at a first site, where the first online common storage 1is
coupled to a first plurality of servers. Method 1700 also
includes an act 1720 of replicating the service request using
a dark port to a second plurality of servers at a second site.
In some embodiments, the dark port 1s a synchronous dark
port. And method 1700 includes an act 1730 of caching the
service request 1n a second online common storage, where
the second online common storage 1s coupled to the second
plurality of servers. And method 1700 includes an act 1740
of delivering a success response to the client. Method 1700
can include many other acts.

In some embodiments, method 1700 includes the second
plurality of servers sending a response back to the first
plurality of servers that the service request has been cached
in the second online common storage, before delivering the
success response to the client. In some embodiments, deliv-
ering the success response to the client occurs after caching
the service request from the client in the first online common
storage at the first site, and belfore replicating the service

US 10,803,015 B2

23

request using the dark port to the second plurality of servers
at the second site. In some embodiments, the dark port 1s an
asynchronous dark port.

In some embodiments, method 1700 includes the second
plurality of servers sending a response back to the first
plurality of servers that the service request has been cached
in the second online common storage after caching the
service request 1mn a second online common storage.

FIG. 18 illustrates a method 1800 of processing web
service requests. Method 1800 includes an act 1810 of
caching a service request from a client 1n a first online
common storage at a first site, where the first online common
storage 1s coupled to a first plurality of servers. And method
1810 includes an act 1820 of delivering a success response
to the client. Method 1800 also includes an act 1830 of
replicating the service request using a dark port to a second
plurality of servers at a second site. And method 1800
includes an act 1840 of caching the service request 1n a
second online common storage, where the second online
common storage 1s coupled to the second plurality of
servers. In some embodiments, method 1800 includes the
second plurality of servers sending a response back to the
first plurality of servers that the service request has been
cached 1n the second online common storage after caching
the service request 1n a second online common storage.

FIG. 19 illustrates a method 1900 of processing web
service requests using any one of online caching systems
1310, 1410, 1510, or 1610. Method 1900 includes an act
1910 of rece1ving a POST command from a client, where the
POST command 1s associated with a POST request key and
a POST request value. Method 1900 also includes an act
1920 of checking whether the POST request key exists 1n a
cache memory with an associated stored value. And method
1900 1ncludes an act 1930 of replacing the stored value with
the POST request value 1n response to determining that the
POST request key value already exists 1n the cache memory.

Method 1900 can include many other acts. In some
embodiments, method 1900 includes receiving a PUT com-
mand from a client, wherein the PUT command 1s associated
with a PUT request key and a PUT request value. In some
embodiments, method 1900 includes inserting the PUT
request value 1nto a cache memory 1n response to determin-
ing that the PUT request key does not exist in the cache
memory. In some embodiments, method 1900 includes
checking whether the PUT request key exists 1 a cache
memory. In some embodiments, method 1900 includes
inserting the PUT request value into the cache memory 1n
response to determining that the PUT request key does exist
in the cache memory, wherein the PUT request value has a
memory size different from the memory size of the value
originally associated with the PUT request key.

In some embodiments, method 1900 includes receiving a
DELETE command from a client, wherein the DELETE
command 1s paired with a CLEAR querystring and a
DELETE timestamp, and wherein the DELETE command 1s
not associated with a key. In some embodiments, method
1900 includes deleting each key/value pair stored in the
cache memory that has a timestamp older than the DELETE
timestamp.

In some embodiments, method 1900 1ncludes performing
a translation between EBCDIC and ASCII in response to
receiving a value with a text content type. In some embodi-
ments, method 1900 includes determining a size of the
POST request key and a size of the POST request value data
in response to recerving the POST command.

FIG. 20 1llustrates a method 2000 of processing a web
service request that includes an act 2010 of recerving a PUT

5

10

15

20

25

30

35

40

45

50

55

60

65

24

command from a client, where the PUT command is asso-
ciated with a PUT request key and a PUT request value.
Method 2000 also includes an act 2020 of mserting the PUT
request value 1nto a cache memory 1n response to determin-
ing that the PUT request key does not exist in the cache
memory. Method 2000 can include many other acts.

FIG. 21 1llustrates a method 2100 of processing a web
service request. Method 2100 includes an act 2110 of
receiving a DELETE command from a client, where the
DELETE command 1s paired with a CLEAR querystring and
a DELETE timestamp, and where the DELETE command 1s
not associated with a key. Method 2100 also includes an act
2120 of deleting each key/value pair stored in a cache
memory that has a timestamp older than the DELETE
timestamp. Method 2100 can include many other acts.

FI1G. 16, FIG. 22, FIG. 23, and FIG. 24 illustrate a
disclosed timestamp exchange process executed by online
caching system 1610. FIG. 16 illustrates a simplified block
diagram of online caching system 1610. FIG. 22 illustrates
a simplified diagram of a plurality of database records stored
in online storage 1620 and 1642 by online caching system
1610. FIG. 23 illustrates a flowchart of a timestamp
exchange process 2300 executed by online caching system
1610. FIG. 24 illustrates a method 2400 of processing a
caching service request from a client conducted by online
caching system 1610.

Referring to FIG. 16 and FIG. 22, online caching system
1610 includes first server 1618 resident at first site 1628.
First server 1618 1s one of first plurality of servers 1612.
First server 1618 1s communicatively coupled to client 1619
using a communication link 1651. First server 1618 pro-
cesses caching service requests for client 1619, such as a
caching service request 1650 as shown i FIG. 16. First
server 1618 caches database records 1n first online storage
1620 as part of processing caching service requests for client
1619. For example, first server 1618 stores a first database
record 2120 (FIG. 22) 1n first online storage 1620 as part of
processing caching service request 1630. First online storage
1620 1s resident at site 1628 and 1s communicatively coupled
to server 1618 using a communication link 1653.

Each caching instance (also called a service) has 1ts own
storage area, whether 1n memory, on disk or a combination
of both. An ‘enftry’ in the cache storage area 1s represented
as a record and accessed as a key/value. Each record will
have a timestamp (expressed as absolute time of when the
record was created/updated), a time-to-live (T'TL, repre-
sented 1n seconds), media-type (aka content-type) and the

number of 32 kb segments.

First server 1618 stores first database record 2120 1n first
online storage 1620, as shown 1n FIG. 16 and FIG. 22. First
database record 2120 includes key/value data 2130, as well
as a first timestamp 2150, and a first TTL 2160, as well as
other elements. Key/value data 2130 i1s associated with
caching service request 1650, 1n this embodiment.

It 1s to be understood that first server 1618 caches a
plurality of database records in online storage 1620, first
database record 2120 1s one of these records. First server
1618 caches a database records 2122, for example, which
includes key/value data 2132, timestamp 2152, and TTL
2162, as well as any number of further database records, as
illustrated 1in FIG. 22

Online caching system 1610 also includes second server
1635 resident at second site 1630. Second server 1635 1s one
of second plurality of servers 1632. Second server 1635 is
communicatively coupled to first server 1618 using a com-
munication link 1648, which 1s a dark port, in this embodi-
ment. Second server 1635 processes caching service

US 10,803,015 B2

25

requests for client 1619 through first server 1618, in this
embodiment, such as caching service request 1650 as shown
in FIG. 16. Second server 1635 caches database records 1n
second online storage 1642 as part of processing caching
service requests for client 1619. Second server 1635 1s
communicatively coupled to second online storage 1642
using a communication link 1661. Second server 1635 stores
a second database record 2121 1n second online storage 1642
(FIG. 16 and FIG. 22) in response to receiving caching
service request 1650 from first server 1618.

Second server 1633 stores second database record 2121 1n
second online storage 1642, as shown in FIG. 22. Second
database record 2121 includes key/value data 2130, as well
as a second timestamp 2151 and a second TTL 2161.
Key/value data 2130 1s associated with caching service
request 1650.

It 1s to be understood that second server 1635 caches a
plurality of database records 1n second online storage 1642,
second database record 2121 1s one of these records. Second
server 1635 caches a database records 2123, for example,
which includes key/value data 2133, timestamp 2153, and
TTL 2163, as well as any number of further database
records, as 1llustrated in FIG. 22.

First database record 2120 and second database record
2121 each have the same key/value data 2130, which 1s
associated with caching service request 1650. First database
record 2120 and second database record 2121 are stored at
different sites and in different storage media, and have
different timestamps and TTL wvalues. First and second
database records 2120 and 2121 are stored temporarily, and
are to be deleted when their lifetime has been exceeded. But
before they are deleted, a check 1s done to see if another
version of the key/value data has a more updated timestamp
and/or TTL. If so, the database record timestamp 1s updated
instead of deleting the database record. Online caching
system 1610 using a timestamp exchange process to update
and/or delete records. FIG. 23 shows a simplified tlowchart
of this timestamp exchange process.

The timestamp exchange process 2300 runs on 30 minute
intervals on server 1618, 1n this example, and reads thru the
cache storage sequentially using the key to retrieve the value
(record) and checks to see if a timestamp has expired. A
timestamp 1s expired when the associated TTL value has
been exceeded, which 1s determined by subtracting the
timestamp value stored 1n the record entry from the current
absolute time (the time that this process 1s being performed),
and comparing the resulting difference to the TTL. For
example, and as shown in FIG. 23, at node 2320 ({irst
database record 2120 1s retrieved, and at node 2330 the
timestamp 2150 and TTL 2160 of first database record 2120
are retrieved. At node 2340, timestamp 2150 and T'TL 2160
of first database record 2120 are used to determine 1f
database record 2120 1s eligible for expiration, meaming the
life of first database record 2120 has expired and database
record 2120 1s to be deleted. Server 1618 determines it
database record 2120 1s eligible for expiration by checking
to see 1l first timestamp 2150 has expired. First timestamp
2150 has expired when first TTL 2160 1s exceeded. Server
1618 determines 1f first TTL 2160 has been exceeded by
subtracting first timestamp 2150 from the current absolute
time and determining 1f the difference 1s larger than the TTL

value, which would mean first timestamp 2150 has expired,
first TTL 2160 has been exceeded, and first database record

2120 has exceeded 1ts time-to-live 2160.

If first database record 2120 1s not eligible for expiration,
then the process returns to node 2320 and retrieves the next
record.

10

15

20

25

30

35

40

45

50

55

60

65

26

If first database record 2120 1s eligible for expiration (1f
timestamp 2150 has expired because TTL 2160 has been
exceeded), then at node 2342, a call 1s made to a secondary
data center using the current record key, which, i this
example, 1s second site 1630 and key/value 2130. In the
embodiment shown 1n FIG. 16, node 2342 of FIG. 23 1s
executed by first server 1618 sending a timestamp update
request 1653 to second server 1635 regarding key/value data
2130. For node 2344 of FIG. 23, second server 1635
retrieves second database record 2121, which shares key/
value data 2130 with first database record 2120. At node
2350, second server 1633 uses second timestamp 2151 and
second TTL 2161 to determine 1f second database record
2121 1s eligible for expiration. Second database record 2121
1s eligible for expiration when second timestamp 2151 1is
expired. Second timestamp 2151 1s expired when second
TTL 2161 has been exceeded. Second TTL 2161 has been
exceeded when the different between second TTL 2161 and
the current absolute time 1s larger than second TTL 2161. At
node 2350, second timestamp 2151 is subtracted from the
current absolute time to determine if second TTL 2161 has
been exceeded. If second TTL 2161 has been exceeded,
second timestamp 2151 1s expired. If second TTL 2161 has
not been exceeded, second timestamp 2151 has not expired.

If second TTL 2161 has been exceeded, meaning database
record 2121 1s eligible for expiration, several actions occur
(see FIG. 23): First, at node 2360, second database record
2121 1s deleted from second online storage 1642. Second, at
node 2362, a timestamp expired indication 1655 1s sent from
second server 1635 to first server 1618. Timestamp expired
indicator 1655 tells first server 1618 that second database
record 2121 has also expired (second timestamp 2151 has
expired and second TTL 2161 is exceeded), and that both
first and second database record 2121 and 2120 are to be
deleted. Third, at node 2364, first server 1618 deletes first
database record 2120 in response to recerving timestamp
expired indicator 1635 from second server 1635.

However, 1f second TTL 2161 has not been exceeded,
meaning second database record 2121 1s not eligible for
expiration (second timestamp 2151 has not expired and
second TTL 2161 has not been exceeded), several different
actions occur (see FIG. 23): First, second database record
2121 1s not deleted from second online storage 1642, but
instead, at node 2370, second server 1635 sends second
timestamp 2151 back to first server 1618. Second, at node
2372, first server 1618 replaces first timestamp 2150 with
second timestamp 2151, and both {first and second database
records 2120 and 2121 remain in first and second online
storage 1620 and 1642.

This timestamp exchange process 2300 eliminates the
need to be sending the whole database record 2120 or
key/value data 2130 back and forth to synchronize data
between sites 1628 and 1630. Timestamp exchange process
2300 has been developed to expire a record (entry) or sync
the timestamps between primary and secondary data centers
such as site 1628 and site 1630. Timestamp exchange
process 2300 has significantly reduced the CPU and network
overhead involved in keeping the timestamps in sync
between primary and secondary data centers for online
caching system 1610. Timestamp exchange process 2300
climinates ‘thrashing’ by only syncing the timestamp when
one side or the other expires, and by deleting when both
sides have expired.

Thus, using timestamp exchange process 2300, first server
1618 deletes database record 2120 1n response to determin-
ing that both a) first timestamp 2150 of first database record
2120 and stored 1n first online storage 1620 has expired, and

US 10,803,015 B2

27

b) second timestamp 2151 of second database record 2121
and stored 1n second online storage 1642 has expired. First
timestamp 2150 1s expired when first timestamp 2150 1ndi-
cates that first TTL 2160 has expired—been exceeded. First
timestamp 2150 indicates that first TTL 2160 has been
exceeded when the diflerence between first timestamp 2150

and the current absolute time 1s larger than first TTL 2160.
When the different 1s exceeded, first database record 2120

has expired—exceeded 1ts time to live. Second timestamp

2131 1s expired when second timestamp 2151 indicates that
second TTL 2161 has expired—been exceeded. When sec-

ond TTL 2161 has been exceeded, second database record

2121 has expired—exceeded 1ts time to live.
If both first and second timestamps 21350 and 2151 has

expired, both first and second database records 2120 and
2121 are deleted. If first timestamp 21350 1s expired but
second timestamp 21351 has not expired, first timestamp

2150 1s replaced with second timestamp 2151, and both

database records 2120 and 2121 are kept.

FI1G. 24 1llustrates a method 2400 of processing a caching,
service request from a client. FIG. 24 includes an act 2410
of caching a first database record 1n a first online storage.
The first database record includes a key/value data associ-
ated with the caching service request and a first timestamp.

Method 2400 also includes an act 2420 of caching a
second database record in a second online storage. The
second database record 1s also associated with the caching
service request, and includes the key/value data and a second
timestamp. In some embodiments, the first online storage 1s
located at a first site, and the second online storage in located
at a second site at a location different than the first site.

Method 2400 also includes an act 2430 of replacing, by a
first server communicatively coupled to the first online
storage, the first timestamp with the second timestamp 1n
response to determining that the first timestamp has expired
and the second timestamp has not expired.

In some embodiments, method 2400 1includes sending, by
the first server, the caching service request to the second
SErver.

In some embodiments, method 2400 includes determin-
ing, by the first server, that the first timestamp has expired.
In some embodiments, determining that the first timestamp
has expired includes subtracting the first timestamp from the
current absolute time and comparing the resulting value to a
first time-to-live (TTL) value. The first TTL value 1s asso-
ciated with the first database record. If the difference
between the first timestamp and the current absolute time 1s
greater than the first TTL value, the first TTL value has been
exceeded and the first timestamp has expired. If the difler-
ence between the first timestamp and the current absolute
time 1s less than the first TTL value, the first timestamp has
not expired.

In some embodiments, method 2400 includes determin-
ing, by the second server, that the second timestamp has
expired. In some embodiments, method 2400 includes deter-
mimng, by the second server, that the second timestamp has
not expired. In some embodiments, determining whether the
second timestamp has expired includes subtracting the sec-
ond timestamp from the current absolute time and compar-
ing the resulting value to a second time-to-live (1TL) value.
The second TTL value 1s associated with the second data-
base record. If the difference between the second timestamp
and the current absolute time 1s greater than the second T'TL
value, the second TTL wvalue has been exceeded, and the
second timestamp has expired. If the difference between the
second timestamp and the current absolute time 1s less than

10

15

20

25

30

35

40

45

50

55

60

65

28

the second TTL value, the second TTL wvalue has not been
exceeded, and the second timestamp has not expired.

In some embodiments, method 2400 includes sending a
timestamp update request from the first server to the second
server. In some embodiments, method 2400 includes send-
ing, by the second server, the second timestamp to the first
server. If the first timestamp has expired but the second
timestamp has not expired, the second server sends the
second timestamp to the first server, and the first server
replaces the first timestamp with the second timestamp (act
2430).

In some embodiments, method 2400 includes deleting the
first database record and the second database record in
response to determining that both the first timestamp and the
second timestamp have expired. I both the first and the
second timestamps are expired, first and the second database
records are deleted. In some embodiments, method 2400
includes receiving, by the first server, an indication that the
second timestamp has expired from the second server. 11 the
second server determines that the second timestamp has
expired, the second server sends the indication that the
second timestamp has expired to the first server.

The embodiments and examples set forth herein were
presented 1n order to best explain the present invention and
its practical application and to thereby enable those of
ordinary skill in the art to make and use the invention.
However, those of ordinary skill 1n the art will recognize that
the foregoing description and examples have been presented
for the purposes of illustration and example only. The
description as set forth 1s not mntended to be exhaustive or to
limit the invention to the precise form disclosed. Many
modifications and variations are possible 1 light of the
teachings above.

The mnvention claimed 1s:

1. An online caching system comprising;:

a first server resident at a first site, wherein the first server
1s communicatively coupled to a client, and wherein the
first server processes a caching service request from the
client;

a first online storage communicatively coupled to the first
server, wherein the first server stores a first database
record comprising a key/value data 1n the first online
storage;

a second server resident at a second site, wherein the
second server 1s commumnicatively coupled to the first
server by a dark port, wherein the dark port i1s not
available to the client for communication; and

a second online storage communicatively coupled to the
second server, wherein the second server stores a
second database record comprising the key/value data
in the second online storage;

wherein the first server deletes the first database record 1n
response to determining that both a) a first timestamp of
the first database record and stored in the first online
storage has expired, and b) a second timestamp of the
second database record and stored 1n the second online
storage has expired.

2. The online caching system of claim 1, wherein the
second server deletes the second database record in response
to determining that both a) the first timestamp has expired,
and b) the second timestamp has expired.

3. The online caching system of claim 1, wherein the first
server and the second server are each operable 1n either an
active/active mode, or an active/standby mode.

4. The online caching system of claim 1, wherein the
key/value data 1s associated with the caching service request.

US 10,803,015 B2

29

5. The online caching system of claim 1, wherein the
second server stores the second database record in the
second online storage in response to receiving the caching
service request from the first server.

6. A method of processing a caching service request from
a client, the method comprising:

caching a first database record 1n a first online storage,

wherein the first database record comprises a key/value
data associated with the caching service request and a
first timestamp;
caching a second database record in a second online
storage, wherein the second database record comprises
the key/value data and a second timestamp;

determining, by the first server, that the first timestamp
has expired;
sending a timestamp update request from the first server
to the second server via a dark port, wherein the dark
port 1s not available to the client for commumnication;

receiving, by the first server, an indication that the second
timestamp has expired; and

deleting the first database record and the second database

record 1n response to determining that both the first
timestamp and the second timestamp have expired.

7. The method of claim 6, further comprising sending, by
the first server, the caching service request to the second
Server.

10

15

20

25

30

	Front Page
	Drawings
	Specification
	Claims

