

US010798829B2

(12) United States Patent

Doyle et al.

(54) IMPLEMENTING BACKDRILLING ELIMINATION UTILIZING ANTI-ELECTROPLATE COATING

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(70) I.... M. 441. ... C. D. J. C1. 4C 11 NAN

(72) Inventors: **Matthew S. Doyle**, Chatfield, MN (US); **Joseph Kuczynski**, North Port, FL (US); **Phillip V. Mann**, Rochester, MN (US); **Kevin M. O'Connell**,

Rochester, MN (US)

(73) Assignee: International Business Machines Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/821,042

(22) Filed: Nov. 22, 2017

(65) Prior Publication Data

US 2018/0098438 A1 Apr. 5, 2018

Related U.S. Application Data

- (63) Continuation of application No. 15/217,019, filed on Jul. 22, 2016, now Pat. No. 9,872,399.
- (51) Int. Cl.

 H05K 1/02 (2006.01)

 H05K 1/11 (2006.01)

 (Continued)
- (52) **U.S. Cl.**CPC *H05K 3/425* (2013.01); *H05K 1/034* (2013.01); *H05K 1/115* (2013.01); *H05K 3/423* (2013.01);

(Continued)

(10) Patent No.: US 10,798,829 B2

(45) **Date of Patent:** Oct. 6, 2020

(58) Field of Classification Search

CPC .. H05K 1/02; H05K 1/03; H05K 1/09; H05K 1/11; H05K 1/18; H05K 3/00; H05K 3/36;

(Continued)

(56) References Cited

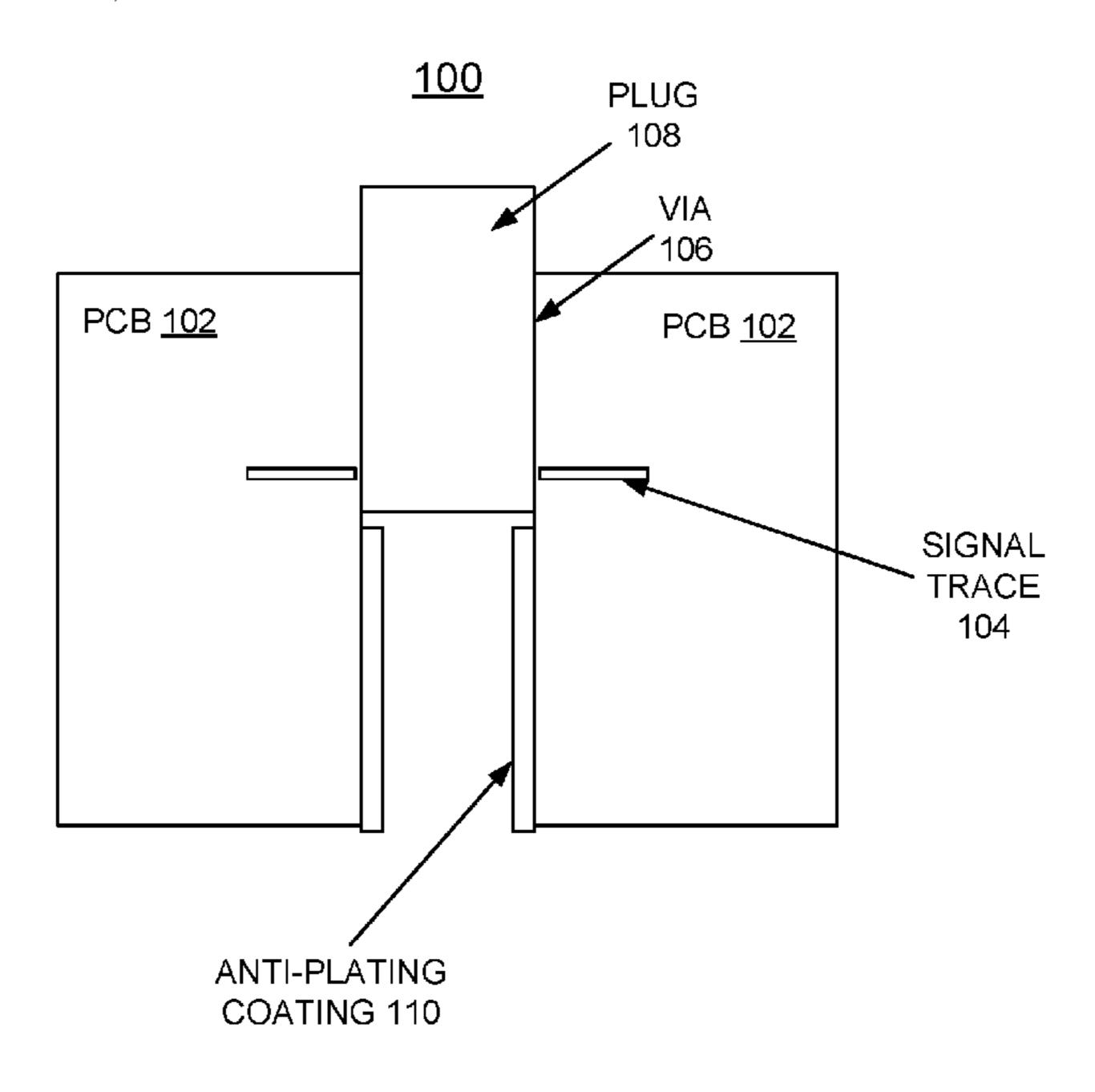
U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

CN	10510706394 A1	11/2015
CN	105200473 A1	12/2015
CN	105338758 A1	2/2016

OTHER PUBLICATIONS

Appendix P List of Patents and Patent Applications Treated as Related Jan. 24, 2018.


(Continued)

Primary Examiner — Xiaoliang Chen (74) Attorney, Agent, or Firm — Nathan M. Rau

(57) ABSTRACT

A method and structure are provided for implementing enhanced via creation without creating a via barrel stub. The need to backdrill vias during printed circuit board (PCB) manufacturing is eliminated. After the vias have been drilled, but before plating, a plug is inserted into each via and the plug is lowered to a depth just below a desired signal trace layer. A thin anti-electroplate coating is applied onto the walls of the via below the signal trace. Then the plugs are removed and a standard board plating process for the PCB is performed.

5 Claims, 3 Drawing Sheets

US 10,798,829 B2 Page 2

(51)	Int. Cl. <i>H05K 3/</i>	<i>00</i>		(2006.01)	2003/0165776 2003/0167793		9/2003 9/2003	Yasunami et al. Honda F25B 39/02
	H05K 3/			(2006.01)	2002/0106525		10/2002	62/500
	H05K 3/			(2006.01)	2003/0186537		10/2003	Yamanaka et al. Sugiura G03G 9/09708
	H01L 21	/311		(2006.01)	2005,01505 15	111	10,2005	430/108.6
	H01L 23	3/48		(2006.01)	2003/0198894			Mizutani et al.
	H05K 1/	<i>03</i>		(2006.01)	2003/0203305			Yasunami et al.
(52)					2004/0033438 2004/0218917			Hamada et al. Mizutani B41J 2/32
\ /	CPC .	H05K	X 2201/0	15 (2013.01); H05K 2203/143				396/322
(2013.01)			2005/0014092			Hasegawa et al.		
(58)	Field of	Clas	sification	n Search	2005/0038261 2005/0079420			Maewawa et al. Cho H01M 4/0402
	CPC H05K 3/42; H05K 3/46; H05K 1/34; H05K					711	1/2003	429/231.95
			-	5K 1/115; H05K 1/257; H05K	2005/0117251			Matono et al.
			,	5K 3/308; H05K 3/423; H05K	2006/0003252			Hirayama et al.
		3/4	25; H05	K 3/429; H01L 21/311; H01L	2006/0127652 2006/0199390			Kanaya et al. Dudnikov, Jr H05K 1/0257
	LICDC	4	74/050	23/48				438/700
	USPC	J	,	255, 260, 264, 266, 257, 262;	2007/0184254	A1*	8/2007	Matsuno B05D 7/16
			29/ /45	5, 852, 846; 438/700; 428/137, 428/209	2008/0029855	A 1	2/2008	Chang 428/215
	See anni	icatio	n fila fo	r complete search history.	2008/0029833			Miyakawa G03G 5/14704
	See appi	icano	on the to	r complete search mistory.				430/66
(56)			Referen	ces Cited	2008/0227000	A1*	9/2008	Honda G03G 9/0823
()					2008/0241745	A 1	10/2008	Shirakawa et al. 430/48
	J	J.S. I	PATENT	DOCUMENTS				Dudnikov, Jr H05K 1/0257
	A 603 372	A *	7/1086	Abadie G01N 27/225				174/266
•	4,003,372	Λ.	7/1900	257/467	2009/0035585	A1*	2/2009	Wakaki B29C 45/0001
	4,675,694			Bupara	2009/0053632	Δ1*	2/2009	428/446 Ishii G02B 5/201
	5,082,730	A *	1/1992	Takeda B41M 5/44	2007/0033032	711	2,2007	430/48
	5.114.904	A *	5/1992	260/DIG. 17 Kawakami B41M 5/38228	2009/0169806	A1*	7/2009	Lo G02B 26/005
	5,111,501		3, 1992	428/447	2000/0172522	A 1	7/2000	428/119
	5,184,478	A *	2/1993	Kutsuna F25B 39/02	2009/0173532 2010/0044095		2/2010	Sugane Kuczynski H05K 1/115
	5,206,084	A *	4/1003	Tokodo P41M 5/41			_, _ v _ v	174/266
	3,200,084	A	4/1993	Takeda B41M 5/41 428/336	2010/0044096	A1*	2/2010	Kuczynski H05K 1/115
	5,227,285	A *	7/1993	Hattori G03C 1/81	2010/0126009	A 1	5/2010	174/266 Li et al.
			= (400.4	430/510	2010/0120009			Nakatani H01L 27/3246
	5,326,686	A *	7/1994	Katoh G03C 1/7614 430/517				257/40
	5,766,821	A *	6/1998	Muramatsu G03C 1/7614	2010/0222196	A1*	9/2010	Ito B01L 3/5021
	, ,			430/264	2012/0160556	Δ1	6/2012	494/27 Kim et al.
	5,798,559 .			Bothra et al.	2012/0100330			Minegishi et al.
	5,879,851	A	3/1999	Takahashi G03F 7/322 430/149	2012/0234587			Nakamura H05K 1/115
	5,891,598	A *	4/1999	Miyabe G03G 7/0006	2012/0226522		0/2012	174/260
				428/332	2012/0236523 2013/0029141			Yasuo et al. Tanaka C09J 183/04
	6,147,249			Watanabe et al.	2013/0029141	AI	1/2013	428/337
	6,280,898 6,284,429			Hasegawa et al. Kinsho et al.	2013/0092617	A1*	4/2013	Kashihara B01D 61/58
	6,399,274			Kinsho et al.				210/321.63
	6,420,085			Nishi et al.	2013/0092618	A1*	4/2013	Kashihara B01D 61/58
	6,458,696 6,524,765		10/2002 2/2003	Oross Nishi et al.	2013/0277097	Δ1	10/2013	210/321.69 Maeng
	6,511,783			Uenishi	2013/02/7037			Hsu et al.
	6,667,145			Nishi et al.	2014/0011949	A1*	1/2014	Asami G03G 8/00
	6,673,512 [6,703,131]			Uenishi et al. Kayanoki C08J 7/06	2014/0014401		1/2014	524/558
	0,705,151	Dī	3/2007	428/425.5	2014/0014401			Liao et al. Shinada B01D 67/0095
	6,887,646			Fujiwara et al.	2014/004/720	AI	2/2014	34/218
	7,586,047 7,794,799			Hayashi et al. Kim B01J 19/0046	2014/0163124	A1*	6/2014	Kurashina B01D 67/0009
	1,124,133 .	DI.	<i>31 L</i> U1U	427/2.11	AA446			521/92
	8,815,215	B2 *	8/2014	Prencipe A61C 19/066	2014/0190733	Al*	7/2014	Dudnikov, Jr H05K 3/429 174/264
	0.701.000	Da *	10/2017	424/53 Hose 1/115	2014/0220783	A 1	8/2014	Koumura et al.
				Iketani H05K 1/115 Kanna et al.	2014/0251663			Iketani H05K 1/115
				Segit D21H 13/16	004460555		A (A A A A A	174/255
	1012		0/000	442/377	2014/0262455	Al*	9/2014	Iketani H05K 3/429
	2/0136980 3/0049913			Sasaki et al. Gaku et al.	2014/0335028	A1*	11/2014	174/255 Prencipe A61C 19/066
	3/0049913 3/0054287			Yasunami et al.	201 1/ 0333020		11, 201 ⁻ T	424/53
2003	3/0075708	A 1		Kodama	2015/0021069	A1	1/2015	Chiu et al.

References Cited (56)

U.S. PATENT DOCUMENTS

2015/0147565 A1	* 5/2015	Popovici C23C 14/083
		428/319.1
2015/0181724 A1	* 6/2015	Iketani H05K 3/429
		29/852
2016/0021762 A1	* 1/2016	Kallman H05K 3/429
		174/266
2016/0278207 A1	* 9/2016	Pen H05K 1/115
2016/0278208 A1	* 9/2016	Pen H05K 1/115
2016/0360624 A1	* 12/2016	Kuwako H05K 3/022
2016/0372276 A1	12/2016	Han et al.
2017/0048974 A1	* 2/2017	Shiina H05K 3/46

OTHER PUBLICATIONS

PTFE Deposition: View by MNX MEMS & Nanotechnology Exchange, https://www.mems-exchange.org/catalog/P33T2/ 2016.

^{*} cited by examiner

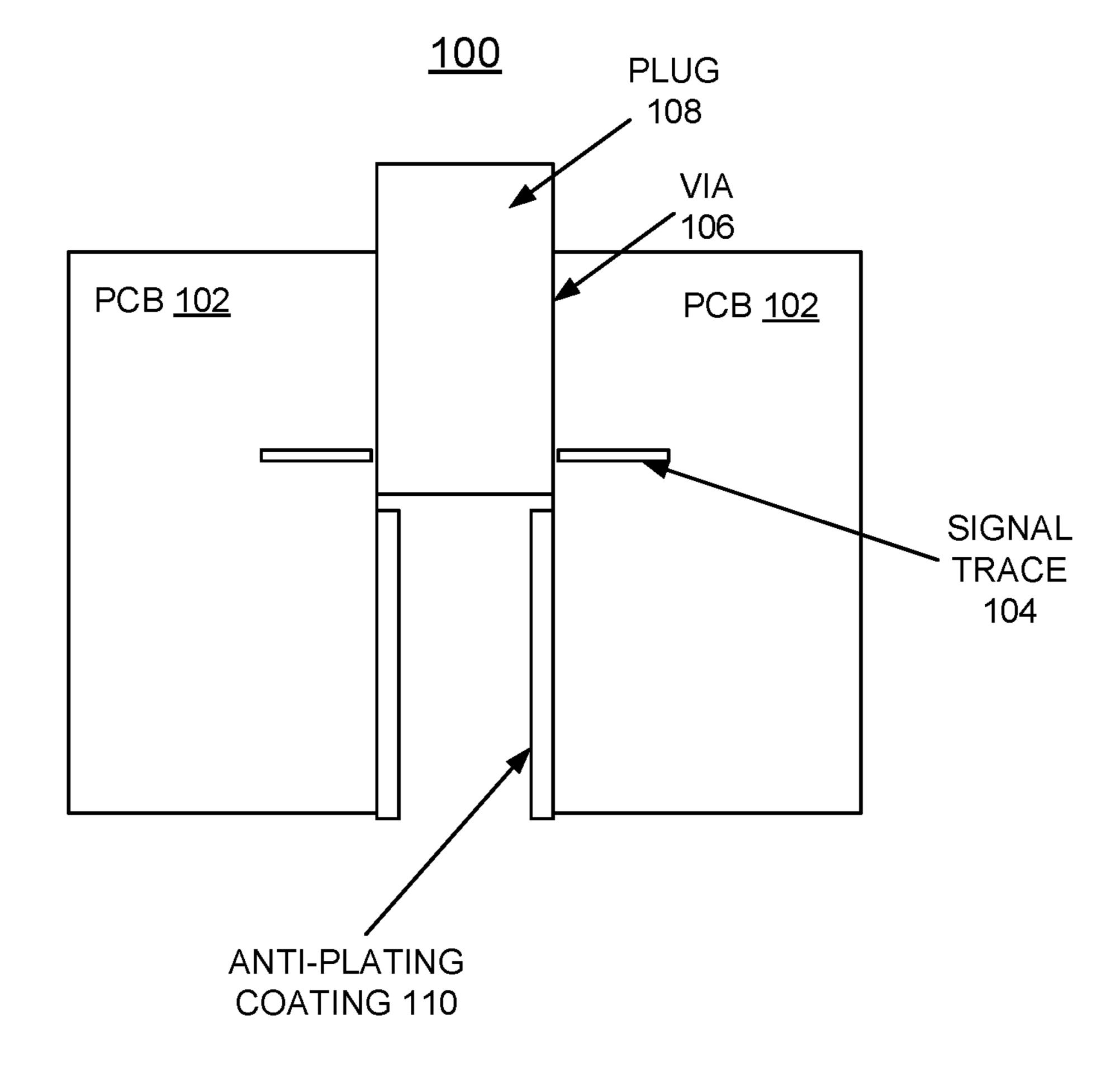


FIG. 1

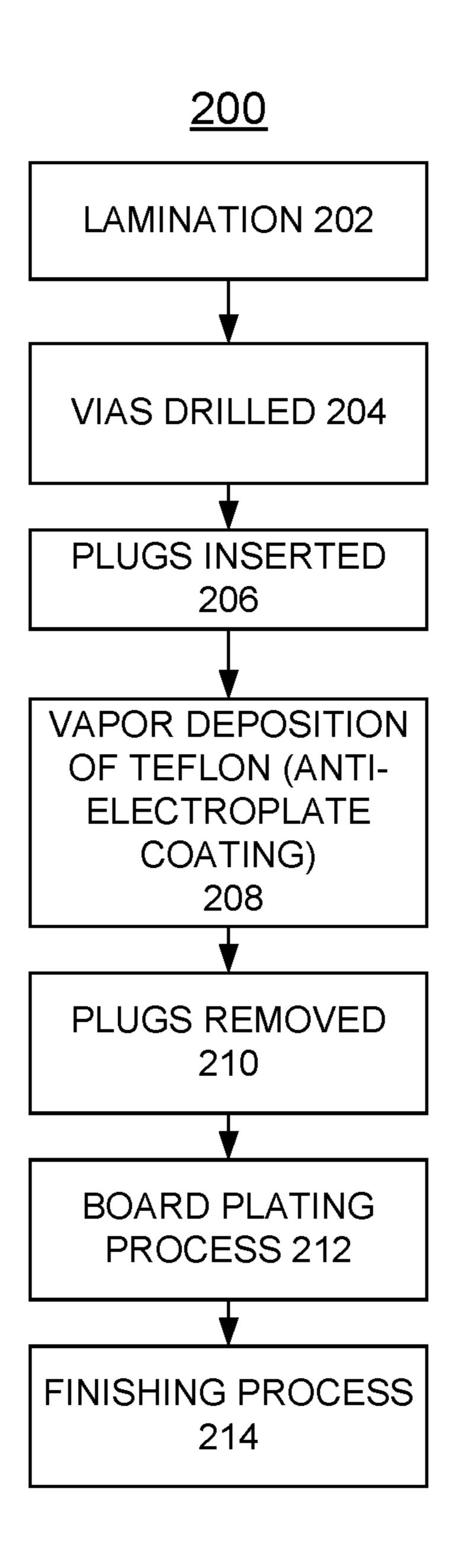


FIG. 2

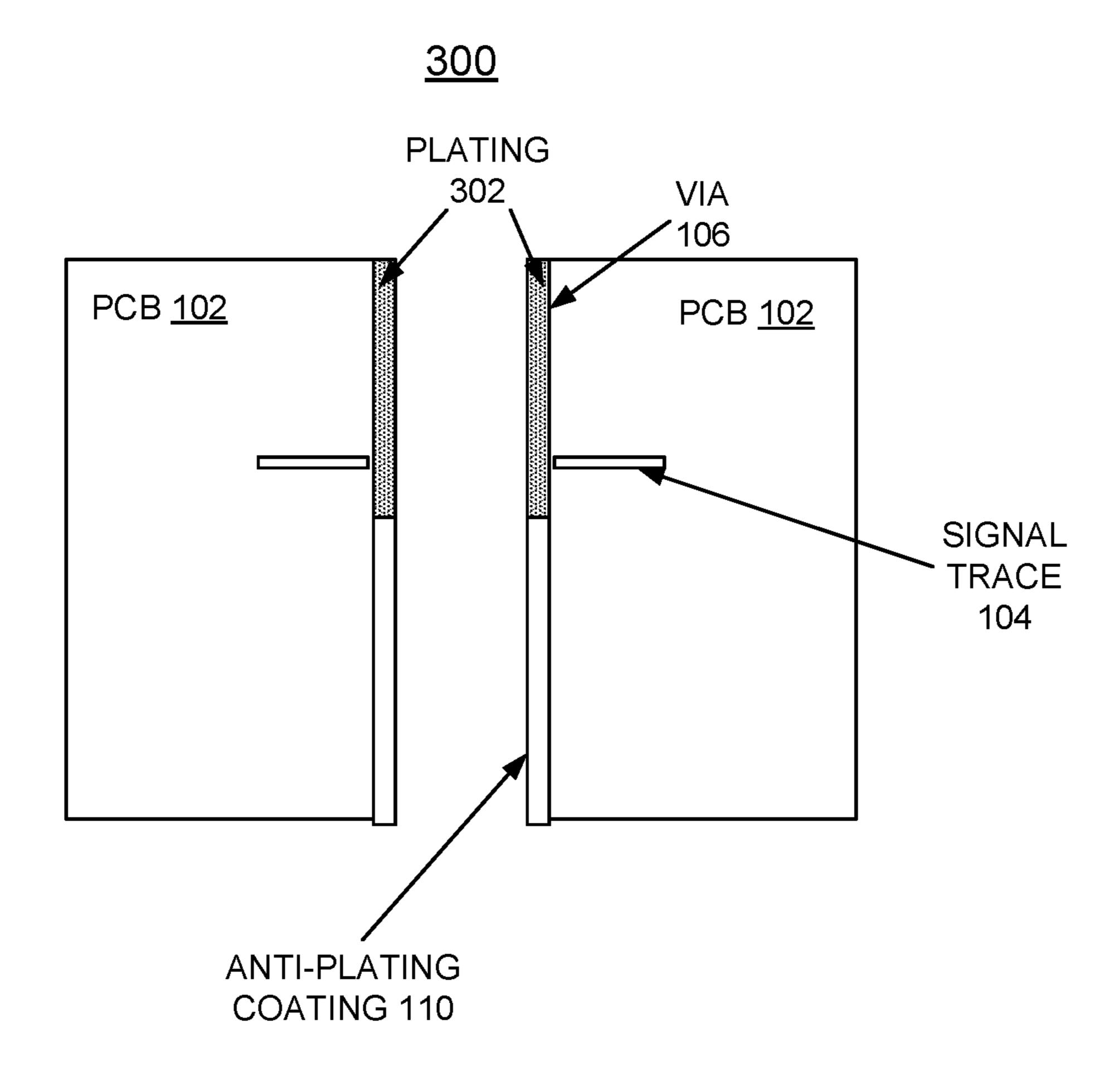


FIG. 3

1

IMPLEMENTING BACKDRILLING ELIMINATION UTILIZING ANTI-ELECTROPLATE COATING

This application is a continuation application of Ser. No. 5 15/217,019 filed Jul. 22, 2016.

FIELD OF THE INVENTION

The present invention relates generally to the data processing field, and more particularly, relates to a method and structure for implementing manufacture of a printed circuit board (PCB) with enhanced via creation without creating a via barrel stub, eliminating the need to back-drill.

DESCRIPTION OF THE RELATED ART

The computer hardware development industry has reached a point wherein many computer interfaces are of sufficient switching speed as to require signal routing layer change vias to be back-drilled to remove via barrel stubs. Backdrilling is a conventional technique used to remove the via barrel stub. Without removal of the unnecessary section or length of a via barrel, some amount of the propagating signal is reflected away from the intended receiver, thereby significantly reducing the amount of total energy effectively transferred from driver to receiver.

While there are known processes to mechanically remove these stubs, once back-drilled, it is no longer possible to probe those locations on the printed circuit board (PCB), cost of the PCB increases substantially, and success of the process is statistically less than ideal. These facts significantly complicate our ability to manufacture cost-effective PCBs, measure high-speed interfaces in the lab during system bring-up and model-to-hardware correlation activities, and maximize the electrical performance of our computer interfaces. When system errors occur in the field, the field engineer cannot measure and confirm function at these PCB via locations while at the customer's site.

A need exists for a method and structure for implementing via creation that eliminates creation of a via barrel stub, eliminating the need to back-drill, reducing PCB cost, and maximizing interface margin.

As used in the following description and claims, the term 45 printed circuit board (PCB) should be understood to broadly include a printed wiring board or other substrate, an interconnect substrate, and various substrates including a plurality of insulator layers, and internal conductive traces.

SUMMARY OF THE INVENTION

Principal aspects of the present invention are to provide a method and structure for implementing manufacture of a printed circuit board (PCB) with enhanced via creation 55 without creating a via barrel stub, eliminating the need to back-drill. Other important aspects of the present invention are to provide such method and structure substantially without negative effects and that overcome many of the disadvantages of prior art arrangements.

In brief, a method and structure are provided for implementing enhanced via creation without creating a via barrel stub. The need to backdrill during printed circuit board (PCB) manufacturing is eliminated. After the vias have been drilled, but before plating, a plug is inserted into each via 65 and the plug is lowered to a depth just below a desired signal trace layer. A thin anti-electroplate coating is applied onto

2

the walls of the via below the signal trace. Then the plugs are removed and a board plating process for the PCB is performed.

In accordance with features of the invention, the antielectroplate coating includes, for example, a Teflon coating or a polytetrafluoroethylene (PTFE) coating, Teflon is a trade name for PTFE.

In accordance with features of the invention, the Teflon coating is applied, for example, using vapor deposition onto the walls of the via below the signal trace.

In accordance with features of the invention, the coating prevents the plating from creating via barrel stubs, thus eliminating the need to backdrill each via after the plating process.

In accordance with features of the invention, eliminating back-drilling improves yield and late fail discoveries, both of which can improve cost and reliability of boards.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention together with the above and other objects and advantages may best be understood from the following detailed description of the preferred embodiments of the invention illustrated in the drawings, wherein:

FIG. 1 illustrates an example structure for manufacturing a printed circuit board (PCB) with enhanced via creation without creating a via barrel stub, eliminating the need to back-drill in accordance with the preferred embodiment;

FIG. 2 is a flow chart illustrating example steps for implementing a structure embodying the enhanced via creation without creating a via barrel stub in accordance with the preferred embodiment; and

FIG. 3 illustrates an example structure for manufacturing a printed circuit board (PCB) with enhanced via creation without creating a via barrel stub, eliminating the need to back-drill in accordance with the preferred embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings, which illustrate example embodiments by which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

In accordance with features of the invention, a method and structure are provided for implementing enhanced via creation without creating a via barrel stub. The need to backdrill vias during printed circuit board (PCB) manufacturing is eliminated. After the vias have been drilled, but before plating, a plug is inserted into each via and the plug is lowered to a depth just below a desired signal trace layer. A thin anti-electroplate coating is applied onto the walls of

the via below the plug and the signal trace. Then the plugs are removed and a board plating process for the PCB is performed.

Having reference now to the drawings, in FIG. 1, there is shown an example structure generally designated by refer- 5 ence character 100 for manufacturing a printed circuit board (PCB) with enhanced via creation without creating a via barrel stub, eliminating the need to back-drill in accordance with the preferred embodiment.

Structure 100 includes a printed circuit board (PCB) 102 having an internal conductive or signal trace **104**. PCB **102** includes an insulator substrate or insulator layers, with one or more internal conductive traces 104. Structure 100 includes a via 106 extending through the printed circuit board (PCB) 102 and the internal conductive trace 104. 15 Structure 100 includes an anti-electroplate coating 110 covering the walls of the via 106 below the signal trace 104. The anti-electroplate coating 110 eliminates via barrel stub creation during a PCB plating process during PCB manufacturing. The anti-electroplate coating 110 is a chemically 20 resistant polymer and is hydrophobic. The anti-electroplate coating 110 has a selected thickness, for example, in a range between 0.2 μ m and 0.5 μ m.

The anti-electroplate coating 110 includes, for example, a polytetrafluoroethylene (PTFE) coating (e.g., trade name 25 Teflon), that is applied for example, using vapor deposition onto the walls of the via 106 below the signal trace 104.

"PTFE Deposition: View" by MNX MEMS & Nanotechnology Exchange, detailing example vapor deposition of Teflon, is provided at: https://www.mems-exchange.org/ catalog/P3372/

The PTFE coating 110 prevents the PCB plating process from creating via barrel stubs, thus eliminating the need to backdrill each via after the plating process. Eliminating of which can improve cost and reliability of boards.

In accordance with features of the invention, the printed circuit board (PCB) 102 and via 106 are formed generally including standard PCB manufacturing processes, including via drilling and plating. However, the step of back-drilling 40 at the end is removed and the PCB process of the invention provides that after the vias 106 have been drilled, but before plating, a small plug 108 is inserted into each via 106 extending to a defined depth just below the desired signal trace layer 104. A thin coating 110 of Teflon is then applied 45 using vapor deposition onto the walls of the via 106 below the signal trace 104, and then the plugs 108 are removed. The PCB 102 is then sent through the normal plating process. The coating 110 prevents the plating from taking hold, thus eliminating the need to backdrill each via after the 50 ing: plating process.

Referring now to FIG. 2, there is shown a flow chart illustrating example steps generally designated by reference character 200 for implementing a structure embodying the enhanced via creation without creating a via barrel stub in 55 accordance with the preferred embodiment starting at a block 202.

As indicated at a block 202, a lamination is formed defining the PCB **102** and at least one internal conductive traces 104.

As indicated at a block **204**, vias **106** are drilled. Conventional via drilling is performed.

As indicated at a block 206, the plugs 108 are inserted into the via 106, with the plugs extending from a top or first surface to a depth below the signal trace 104. The plugs 108 65 optionally are configured as sprayers (like fuel injectors) to apply the Teflon coating applied to the walls of the via 106

below plugs 108. Optionally, individual plugs 108 having a specified length are pushed flush with one side of the PCB 102, then moved or poked out from the other PCB side. Optionally, individual plugs 108 are mechanically inserted to a specific depth, the retracted. Optionally, an array of plugs 108, typically of differing lengths extending from a plate are all inserted at once, the removed.

As indicated at a block 208, the anti-electroplate coating 110 is applied to the walls of the via 106 below plugs 108 and the signal trace 104, for example, by vapor deposition of Teflon.

As indicated at a block 210, the plugs 108 are removed from the vias 106 after the anti-electroplate coating 110 is applied.

As indicated at a block 212, the PCB plating process is performed, using a conventional plating process.

As indicated at a block **214**, conventional PCB finishing processes are performed, advantageously eliminating the need to backdrill each via after the plating process.

Referring now to FIG. 3, there is shown an example resulting structure generally designated by reference character 300 resulting from manufacturing a printed circuit board (PCB) with enhanced via creation without creating a via barrel stub, eliminating the need to back-drill in accordance with the preferred embodiment. Structure 300 shows the plugs 108 removed from the vias 106 after the antielectroplate coating 110 is applied.

Structure 300 includes the printed circuit board (PCB) 102 having the internal conductive or signal trace 104. Structure 100 includes the via 106 extending through the printed circuit board (PCB) 102 and the internal conductive trace 104. Structure 300 includes the anti-electroplate coating 110 covering the walls of the via 106 below the signal trace 104. Structure 300 includes a plating 302 applied back-drilling improves yield and late fail discoveries, both 35 during the PCB plating process that is performed using a conventional plating process.

> In accordance with features of the invention, the alternative method for via creation eliminates creation of the via barrel stub. Since the via barrel stub is not created, the need to back-drill is eliminated, reducing PCB cost and maximizing interface margin.

> While the present invention has been described with reference to the details of the embodiments of the invention shown in the drawing, these details are not intended to limit the scope of the invention as claimed in the appended claims.

What is claimed is:

- 1. A structure for implementing enhanced via creation during printed circuit board (PCB) manufacturing compris
 - a printed circuit board (PCB);
 - said printed circuit board (PCB) having an internal conductive signal trace;
 - a single through hole defining a via formed by via drilling, said via having a single uniform diameter extending through the printed circuit board (PCB) and said via extending through the internal conductive signal trace;
 - an anti-electroplate coating covering the walls of said via spaced below the internal conductive signal trace; said anti-electroplate coating formed of a chemically resistant polymer;
 - said anti-electroplate coating chemically resistant polymer having a selected thickness of approximately 0.2 μm;
 - a via plating formed on walls of said via, said via plating extending above said anti-electroplate coating on walls of said via and extending on walls of said via through

and below the internal conductive signal trace; said via plating electrically connected to the internal conductive signal trace; and

said anti-electroplate coating preventing via plating from taking hold in the structure on the walls of said via 5 spaced below the internal conductive signal trace, eliminating via barrel stub creation during PCB manufacturing;

wherein said anti-electroplate coating is applied below a plug in said via, said plug used during printed circuit 10 board (PCB) manufacturing.

- 2. The structure as recited in claim 1, wherein said anti-electroplate coating includes a hydrophobic polymer applied by vapor deposition.
- 3. The structure as recited in claim 1, wherein said PCB manufacturing PCB includes forming said via coating applied by conventional plating processes being performed after forming said anti-electroplate coating.
- 4. The structure as recited in claim 1, wherein said anti-electroplate coating includes a hydrophobic polymer 20 applied by vapor deposition.
- 5. The structure of claim 1, wherein said anti-electroplate coating includes a polytetrafluoroethylene (PTFE) coating applied by vapor deposition.

* * * *

25

6