12 United States Patent
Bell et al.

US010789182B2

US 10,789,182 B2
*Sep. 29, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

SYSTEM AND METHOD FOR INDIVIDUAL
ADDRESSING

Applicant: Micron Technology, Inc., Boise, 1D
(US)

Inventors: Debra Bell, Shinjuku-ku (JP); Paul

Glendenning, Woodside, CA (US);

David R. Brown, Lucas, TX (US);

Harold B Noyes, Boise, ID (US)

Micron Technology, Inc., Boise, ID
(US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 16/726,523

Filed: Dec. 24, 2019

Prior Publication Data

US 2020/0133893 Al Apr. 30, 2020

Related U.S. Application Data

Continuation of application No. 16/400,739, filed on
May 1, 2019, now Pat. No. 10,521,366, which 1s a

(Continued)
Int. CL
GO6F 15/00 (2006.01)
GO6I’ 13/12 (2006.01)
(Continued)
U.S. CL
CPC GO6F 13/126 (2013.01); GO6l’ 13/287

(2013.01); GO6F 13/404 (2013.01); GO6F
1374022 (2013.01); GO6F 2213/2802 (2013.01)

46

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
3,849,762 A 11/1974 Fujimoto et al.
3,921,156 A 11/1975 Bar-Lev
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0476159 Al 3/1992
EP 0943995 A2 9/1999
(Continued)

OTHER PUBLICAITONS

Beesley, K. R.; Arabic Morphology Using Only Finite-State Opera-
tions; Xerox Research Centre Europe; pp. 50-57; 1998.

(Continued)

Primary Examiner — Cheng Yuan Tseng
(74) Attorney, Agent, or Firm — Fletcher Yoder, P.C.

(57) ABSTRACT

In one embodiment, a system includes a bus interface
including a first processor, an indirect address storage stor-
ing a number of indirect addresses, and a direct address
storage storing a number of direct addresses. The system
also includes a number of devices connected to the bus
interface and configured to analyze data. Each device of the
number of devices includes a state machine engine. The bus
interface 1s configured to recerve a command from a second

processor and to transmit an address for loading into the
state machine engine of at least one device of the number of
devices. The address includes a first address from the
number of indirect addresses or a second address from the
number of direct addresses.

20 Claims, 12 Drawing Sheets

.// (/‘ 80
— - -
| / AN
j
: G % T £d4
; \ /J w17
|
I 3 T
| 79 °g
kt E-t r
] ! y
|
! - - - g
34 \i -2 g =" /’ 36
STk STE
B9 b Detection Datection | %6
. el Call ./
B2 82
N T
- &)
~AM Bit HAM Bit
{255) ey 1
-~ 34
e 2 ‘L - /Bii e
-] -]
™ 8
* 5 9
_{,f ﬂ{}'\‘
FAM B FAM Hit
.
1) mo T
i - 1 1‘ - —Bi 1
- N4
FAah Bit FAM Git
-~ {G} {0} ™~
Al l Rij {/‘ k4
- Bit G

US 10,789,182 B2

Page 2

(51)

(56)

Related U.S. Application Data

continuation of application No. 16/192,509, filed on
Dec. 10, 2018, now Pat. No. 10,339,071, which 1s a
continuation of application No. 15/280,611, filed on

Sep. 29, 2016, now Pat. No. 10,268,602,

Int. CI.
GO6F 13/28
GO6F 13/40

4,011,547
4,014,000
4,123,695
4,153,897
4,204,193
4,414,685
4,748,674
5,014,327
5,022,004

5,028,821
5,159,672
5,216,748
5,257,361
5,287,523
5,291,482
5,300,830
5,331,227
5,357,512
5,371,878
5,377,129
5,459,798
5,615,237
5,659,551
5,723,984
5,752,073
5,754,878
5,790,531
5,793,990
5,805,842
5,881,312
5,890,548
5,950,741
6,011,407
6,016,361
6,034,963
6,041,405
0,052,766
6,058,469
6,151,644
0,240,003
0,279,128
0,295,234

6,301,632
6,317,427
0,302,808
6,400,996
6,557,097
6,606,699
0,614,703
6,625,740
0,633,443
0,636,483
6,640,262
6,697,979
6,700,404
0,880,087
6,906,938
6,944,710
6,977,897
7,010,639
7,039,735

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

S itV gV iV i 3 ol gV iV RV Vg b g iV g G i B i iV g gV g

WP RErEErEwr@wE WEW

3/1977
3/1977
10/1978
5/1979
5/1980
11/1983
5/1988
5/1991
6/1991

7/1991
10/1992
6/1993
10/1993
2/1994
3/1994
4/1994
7/1994
10/1994
12/1994
12/1994
10/1995
3/1997
8/1997
3/1998
5/1998
5/1998
8/1998
8/1998
9/1998
3/1999
4/1999
9/1999
1/2000
1/2000
3/2000
3/2000
4/2000
5/2000
11/2000
5/2001
8/2001
9/2001

10/2001
11/2001
3/2002
6/2002
4/2003
8/2003
9/2003
9/2003
10/2003
10/2003
10/2003
2/2004
3/2004
4/2005
6/2005
9/2005
12/2005
3/2006
5/2006

Kimmel
Uno et al.
Hale et al.
Yasuda et al.
Schroeder
Sternberg
Freeman
Potter et al.
Kurtze

tttttttttttttttt

Kaplinsky
Salmon et al.
Quenot et al.
Do1 et al.
Allison et al.
McHarg et al.
Hawes
Hawes
Khaira et al.
Coker
Molvig et al.
Bailey et al.
Chang et al.
Huott et al.
Sharpe-Geisler
Gray, III et al.
Asghar et al.
Ellebracht et al.
Jirgal et al.
Nagaraj et al.
Dulong

Ofek

Jones

New

Hongu et al.
Minami et al.
Green

Betker et al.
Baxter

Wu

McElroy
Arnold et al.

Schowe

Jaramillo
Augusta et al.
Silverbrook
Hollberg et al.
Clave et al.
Pechanek et al.
Pitts et al.
Datar et al.
Watanabe et al.
Pannell
Uppunda et al.
Vorbach et al.
Feng et al.
Carter
Kaginele
Regev et al.
Nelson et al.
[Larson et al.
Hunt et al.

tttttttttttttttt

GO6F 13/1631

365/189.07

GO6F 3/0607

365/189.12

7,089,352
7,146,043
7,176,717
7,276,934
7,305,047
7,358,761
7,366,352
7,392,229
7,428,722
7,487,131
7,487,542
7,499,464
7,725,510
7,774,286
7,804,719
7,890,923
7,899,052
7,917,684
7,970,964
8,015,530
8,020,131
8,005,249
8,140,780
8,146,040
8,159,900
8,209,521
8,239,600
8,255,597
8,281,395
8,294,490
8,402,188
8,530,890
8,593,175
8,648,621
8,680,888
8,725,961
8,782,624
8,938,590
9,058,465
9,063,532
9,075,428
9,118,327
9,235,798

2002/0186044
2003/0107996
2003/0142698
2003/0163615
2003/0226002
2004/0100980
2004/0125807
2004/0151211
2004/0184662
2005/0154916
2005/0251638
2006/0158219
2006/0195496
2006/0206875
2006/0257043
2006/0274001
2006/0288070
2007/0005869
2007/0075878
2007/0127482
2007/0150623
2007/0282833
2007/0283108
2008/0126690
2008/0129334
2008/0133874
2008/0140661
2008/0178031
2008/0256347
2008/0320053
2009/0198952

2009/0204734

20
20
20

10/0100691
10/0100714
10/0115173

20

10/0115347

B2
B2
B2

AN AN NSNS AN AAAAAAAAAAAAAAA A AN A A AN

8/2006
12/2006
2/2007
10/2007
12/2007
4/2008
4/2008
6/2008
9/2008
2/2009
2/2009
3/2009
5/2010
8/2010
9/2010
2/2011
3/2011
3/2011
6/2011
9/2011
9/2011
11/2011
3/201
3/201
4/201
6/201
8/201
8/201
10/201
10/201
3/201
9/201
11/201
2/201
3/201
5/201
7/201
1/201
6/201
6/201
7/201
8/201
1/201
12/2002
6/2003
7/2003
8/2003
12/2003
5/2004
7/2004
8/2004
9/2004
7/2005
11/2005
7/2006
8/2006
9/2006
11/2006
12/2006
12/2006
1/2007
4/2007
6/2007
6/2007
12/2007
12/2007
5/2008
6/2008
6/2008
6/2008
7/2008
10/2008
12/2008
8/2009
8/2009
4/201
4/201
5/201

5/201

o W R O T i WO N N N P T P T P T (N T (N T NS T (N T N T N T (N T N

oo OO

Regev et al.
Dapp et al.
Sunkavalli et al.
Young

Turner
Sunkavalli et al.
Kravec et al.
Harris et al.
Sunkavalli et al.
Harris et al.
Boulanger et al.
Ayrapetian et al.
Alicherry et al.
Harris

Chirania et al.
Elaasar

Hao et al.
Novyes et al.
Novyes

Sinclair et al.
Van Mau et al.
Harris et al.
Noyes

Janneck et al.
Moore et al.
Novyes et al.
Cervini

(Gotta et al.
Pawlowski
Kaviani

Noyes et al.
Trimberger
Noyes et al.
Noyes et al.
Brown et al.
Novyes

Brown et al.
Noyes et al.
Novyes et al.
Brown

Brown

Noyes et al.
Brown et al.
Agrawal et al.
Black et al.
Parhi

Yu

Boutaud et al.
Jacobs et al.
Liu et al.
Snider

Kravec et al.
Boulanger et al.
Boutaud et al.
Sunkavalli et al.
Vadi et al.
Ullmann et al.
Chiu

Guttag et al.
Vadi et al.
Balraj et al.
Furodet et al.
Harris et al.
Kravec et al.
McMillen
Isherwood et al.
Rajan et al.
Sunkavalli et al.
Capek et al.
Pandya
Dong-Han
Eickemeyer et al.
[)jima et al.
Khmelnitsky et al.
Strait et al.
Novyes et al.
Novyes et al.
Novyes et al.
Noyes

US 10,789,182 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0118425 5/2010 Rafaelof
2010/0138432 6/2010 Noyes
2010/0138575 6/2010 Noyes
2010/0138634 6/2010 Noyes
2010/0138635 6/2010 Noyes
2010/0145182 6/2010 Schmudt et al.
2010/0174887 7/2010 Pawlowski
2010/0174929 7/2010 Pawlowski
2010/0175130 7/2010 Pawlowski
2010/0185647 7/2010 Noyes
2010/0325352 12/2010 Schuette et al.
2010/0332809 12/2010 Noyes et al.

1/2011 Momma et al.
6/2011 Dlugosch et al.
6/2011 Noyes et al.
6/2011 Noyes et al.
6/2011 Kaminski et al.
8/2011 Schuette et al.

2011/0004578
2011/0145182
2011/0145271
2011/0145544
2011/0161620
2011/0208900

AN S AAAAAAAANAANAAAAAAA A AN AN AN A A A A A A A

2011/0258360 10/2011 Noyes
2011/0307233 12/2011 Tseng et al.
2011/0307433 12/2011 Dlugosch
2011/0307503 12/2011 Dlugosch
2011/0320759 12/2011 Craddock et al.
2012/0179854 7/2012 Noyes
2012/0192163 7/2012 Glendenning et al.
2012/0192164 7/2012 Xu et al.
2012/0192165 7/2012 Xu et al.
2012/0192166 7/2012 Xu et al.
2013/0154685 6/2013 Noyes
2013/0156043 6/2013 Brown et al.
2013/0159239 6/2013 Brown et al.
2013/0159670 6/2013 Noyes
2013/0159671 6/2013 Brown et al.
2013/0275709 10/2013 Gajapathy
2014/0025614 1/2014 Noyes et al.
2014/0025923 1/2014 Klein
2014/0225889 1/2014 Brown et al.
2014/0067736 3/2014 Noyes
2014/0204956 7/2014 Brown et al.
2014/0279776 Al1* 9/2014 Brown GO6F 15/7867

706/20

2014/0325494 Al 10/2014 Brown et al.

FOREIGN PATENT DOCUMENTS

JP 08087462 A 4/1996
JP 10069459 A 3/1998
JP 10111862 A 4/1998
JP 2000231549 A 8/2000
JP 2000347708 A 12/2000
KR 1020080097573 A 11/2008
WO Ww00065425 Al 11/2000
WO WOO0138978 Al 5/2001
WO WO003039001 Al 5/2003
WO W0O2005036750 Al 4/2005
WO Ww0O2011114120 Al 9/2011

OTHER PUBLICATIONS

Bird, S. et al.; One-Level Phonology: Autosegmental Representa-
tions and Rules as Finite Automata; Assoclation for Computational
Linguistics; University of Edinburgh; vol. 20; No. 1; pp. 55-90;
1994,

Bispo, J. et al.; Regular Expression Matching for Reconfigurable
Packet Inspection; IEEE International Conference on Field Pro-

grammable Technology; 2006.

Bispo, J. et al.; Synthesis of Regular Expressions Targeting FPGAs:
Current Status and Open Issues; IST/INESC-ID, Libson, Portugal;
pp. 1-12; 2007,

Brodie, B. et al.; A scalable Architecture for High-Throughput
Regular-Expression Pattern Matching; Exegy Inc.; pp. 1-12; 2006.
Clark, C.; Design of Efficient FPGA Circuits for Matching Complex

Patterns in Network Intrusion Detection Systems (Master of Science
Thesis); Georgia Institute of Technology; pp. 1-56; Dec. 2003.
Clark, C.; A Unified Model of Pattern-Matching Circuits for Field-
Programmable Gate Arrays [Doctoral Dissertation]; Georgia Insti-
tute of Technology; pp. 1-177; 2006.

Clark, C. et al.; Scalable Pattern Matching for High Speed Net-

works; Proceedings of the 12" Annual IEEE symposium on Field-
Programmable Custom Computing Machines (FCCM’04),Georgla
Institute of Technology; pp. 1-9; 2004.

Clark, C. et al.; A Unified Model of Pattern-Matching Circuit
Architectures; Tech Report GIT-CERCS-05-20;Georgia Institute of
Technology; pp. 1-17; 2005.

Fide, S.; String Processing in Hardware; Scalable Parallel and
Distributed Systems Lab; Proceedings of the 12 Annual IEEE

symposium on Field-Programmable Custom Computing Machines
(FCCM’04), School of Electrical and Computer Engineering; Geor-
gia Institute of Technology; pp. 1-9; 2004.

Fisk, M. et al.; Applying Fast String Matching to Intrusion Detec-

tion; Los Alamos National Laboratory; University of California San
Diego; pp. 1-21; 2002,

Korenek, J.; Tratlic Scanner-Hardware Accelerated Intrusion Detec-
tion System; http://www.liberouter.org/ ; 2006.

Kumar, S. et al.; Curing Regular Expressions matching Algorithms
from Insomnia, Amnesia, and Acaluia; Department of Computer
Science and Engineering; Washington University 1n St. Louis; pp.
117; Apr. 27, 2007,

Lipovski, G.; Dynamic Systolic Associative Memory Chip; IEEE;
Department of Electrical and Computer Engineering; University of
Texas at Austin; pp. 481-492; 1990.

Lin, C. et al.; Optimization of Pattern Matching Circuits for Regular
Expression on FPGA; IEEE Transactions on Very Large Scale
Integrations Systems; vol. 15, No. 12, pp. 1-6; Dec. 2007.
Schultz, K. et al.; Fully Parallel Integrated CAM/RAM Using
Preclassification to Enable Large Capacities; IEEE Journal on
Solid-State Circuits; vol. 31; No. 5; pp. 689-699, May 1996.
Shafai, F. et al.; Fully Parallel 30-MHz, 2.5-Mb CAM; IEEE Journal
of Solid-State Circuits, vol. 33; No. 11; pp. 1690-1696; Nov. 1998.
Sidhu, R. et al.; Fast Regular Expression Pattern Matching using
FPGAs; Department of EE-Systems; University of Southern Cali-
fornia; pp. 1-12; 2001.

Wada, T.; Multiobject Behavior Recognition Event Driven Selective
Attention Method; IEEE; pp. 1-16; 2000.

Yu, F.; High Speed Deep Packet Inspection with Hardware Support;
Electrical Engineering and Computer Sciences; University of Cali-
fornia at Berkeley; pp. 1-217; Nov. 22, 2006.

Freescale and Kaspersky® Accelerated Antivirus Solution Platform
for OEM Vendors; Freescale Semiconductors Document; pp. 1-16;
2007.

PCT/US2009/067534 International Search Report and Written Opin-
ion dated Apr. 26, 2010.

PCT/US2009/061649 International Search Report dated Feb. 15,
2010.

Tarwan Application No. 098144804 Oflice Action dated Nov. 4,
2013.

PCT/US2012/067992 International Search Report dated Mar. 28,
2013.

PCT/US2012/068011 International Search Report dated Apr. 15,
2013.

PCT/US2012/067999 International Search Report dated May 14,
2013.

PCT/US2012/067995 International Search Report dated May 17,
2013.

PCT/US2012/067988 International Search Report (Partial) dated
Jun. 24, 2014.

PCT/US2013/049744 International Search Report and Written Opin-
ion dated Oct. 22, 2013.

PCT/US2013/049748 International Search Report and Written Opin-
ion datd Oct. 22, 2013.

PCT/US2013/049755 International Search Report and Written Opin-
ion dated Oct. 24, 2013.

PCT/US2013/049753 International Search Report and Written Opin-
ion dated Nov. 7, 2013.

US 10,789,182 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

PCT/US2013/055434 International Search Report and Written Opin-

ion dated Nov. 29, 2013.

PCT/US2013/055438 International Search Report and Written Opin-
ion dated Nov. 29, 2013.

PCT/US2013/055436 International Search Report and Written Opin-
ion dated Dec. 9, 2013.

PCT/US2014/023589 International Search Report and Written Opin-
ion dated Jul. 24, 2014.

Soewito et al., “Self-Addressable Memory-Based FSM: A scalable
Intrusion Detection Engine”, IEEE Network, pp. 14-21; Feb. 2009.
Hurson A. R.; A VLSI Design for the Parallel Finite State Auto-
mation and Its Performance Evaluation as a Hardware Scanner;
International Journal of Computer and Information Sciences, vol.
13, No. 6; 1984.

Carpenter et al., “A Massively Parallel Architecture for a Self-

Organizing Neural Pattern Recognition Machine”, Academic Press,
Inc.; 1987.

Cong et al., “Application-Specific Instruction Generation for
Configurable Processor Architectures”, Computer Science Depart-
ment, University of California, ACM; 2004.

Glette et al., “An Online EHW Pattern Recognition System Applied
to Face Image Recognition”, University of Oslo, Norway; 2007.
Kawal et al., “An Adaptive Pattern Recognition Hardware with
On-chip Shift Register-based Partial Reconfiguration™, IEEE; 2008.
Kutrib et al., “Massively Parallel Pattern Recognition with Link
Features”, IFIG Research Report 0003; 2000,

Marculescu et al., Power Management of Multi-Core Systems:
Challenges, Approaches, and Recent Developments Tutorial at
ASPLOS, London, UK [online]; Mar. 4, 2012.

Vitanen et al.; Image Pattern Recognition Using Configurable Logic
Cell Array; New Advances 1n Computer Graphics; pp. 355-368;
1989.

Yasunaga et al., “Kernel-based Pattern Recognition Hardware: Its
Design Methodology Using Evolved Truth Tables”, IEEE, 2000.
U.S. Appl. No. 60/652,738, filed Feb. 12, 2005, Harris.

U.S. Appl. No. 61/788,364, filed Mar. 15, 2013, Brown et al.

* cited by examiner

U.S. Patent Sep. 29, 2020 Sheet 1 of 12 US 10,789,182 B2

b |
- .
- LA

6 - ﬁ(f

L Memory
=xternal

Storage | ! 2 L

Siate Machine
Cngine

+++

Network
neriace Devige | 20

L1
-
-
L1
-
-
L1
-
-
L1
-
-
L1
-
-
-
L L1
-
n -
L1
* *
+++++++++++++++++++++++++++++ * *
*
* *
*
* *
* * *
+]
* *
*
. * *
* *
+ "' _J
. * . *
X * w * *
*
* *
*
. * *
* *
* . * *
* LI}
[] * *
. N
Ar
+ hu
*
*
*
*
+

i |
27 - | 24
| FiG 4

ot
Levice

.S. Patent Sep. 29, 2020 Sheet 2 of 12 S 10,789,182 B2

k]
41

L 4
L 1 4 4
4

mr T T T
L

4 4. 4 4 4 4 9 4 9 /A F "

4

L 4
= a

L

. o

4

4

14

-,

L 4 4
P+ 4 4 4 4 4 4 4 41 9 9 1. 1 1

ok ok A b ok ok o sk ke B ke b e b b b bk [

r v T
4 4 4 9. =

L . . - -)

T - T X T T -
- ipiialyi-ige' o i e T T o T T F W B b b ok ok ok koo oh oo oA M oA kA
a u a F

L L 1 4 4 4
P4+ 4 4 4 4 4 4 4 4.9 1. 1. 9 =

- T T

4
4 5 4 4. 4. 4. 4 1 =

4 o 4 =

4

FoA + 4 4 4 4 4 4 4 9 7 4 9 1

d 4 d d 4 4 d

FoCF 4 4 4 4 4 97 4. 9 1

h o= of

o
s,

- =T TTTTTTTTTTTOEOESFRFT®T B B B

4

LAy
LR A |

[
E. F + 4 4 4. 4 4 4 4 4 1 4 .9 1. 1. 19

C 44 4 4 d 4 4 4 4 a0 d " = m
=T T 4 4 4 4 4 4 4 71 5 7 - p p &5

X
=y

r.+ 4 4 4 4 4 4 9 4 4. 9 1. %3 1 *=

.-.-1-.-
-

mod AW
4 .9 5 ¢/ "

T k4 dd 4 4
FoC k4. 4.4.4 4 4

Block

Popow d o dd Jd o d A

E. r = 4 41 4 4 4 4 9 4 4 4 9 1 9. 1

i e I ol e el Tl - MoR A R R L L R kA B B oA o d dd MM R LR Sl L

F
F
e
14
[
[
14
[

[
r
r
Ll
Ll
L]
F
Ll

T Tl il el e T I T e S Al Aol e et el S el o™i el Syl el Sl

L,
H

N
’ oy

'

FoCF 4 4 4 4 4 4 1. 1

4 -
Y
B b4 4 4 4 4 44
_i
-l

T T T,y

o ke ok ok P W ok b ol Mok oo ke ko RN AT T Y Y Y T

]

r.+ =4 4 4 4 4 4 4 1. 4 1 1 =

hd

F 1 4 1 1 4 J 1 d d Jdd

r = TTTTCFrCFr=-=-T7TT+*+TT=-"2"11rrr rTrTTTTT"-"=-TTTTTCFHrTI1TT=-TTTTTTTTTTT™==rr

*r*TT*TTTT-TTTT-TTAI1TAI11rcrrrrTTTTTTT—-—=-1—-—TF—TaTTTTTTTTTTTTTT=111113CF

T
F v,
L

+ .4 4 4. 4 4 4 4 1

<o
R

" - T wwTETTTTTTEEFEFETTEFET ™

P4+ 4 4 4 4 4 4 4 1. %7 4 1. 37 1. 1

36

L4 4 4 4. 4 4. 9 4 1

'y

U.S. Patent

Sep. 29, 2020

Sheet 3 of 12

r r T T T T T
r r T T T T T
T T TTTTOT
r T TTTTT

T T TTTTT

US 10,789,182 B2

r T T T T T T T
r T T T T T T T
T T TTTTTOT
r T TTTTTOT

T T TTTTTT

* ¥ ¥ ¥ T T T TT

38

-
-
-
-
L
-
-
-
-
-
-

4 4 4 4 4 4 4 4 4 4

T T TTTTTTTTTTTTTTTTTTTTTTT

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44944

T T TTTTTTTTTTTTTTTTTTTTT™TT

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-

-

T T TTTTTTTTTTTTTTTTTTT

rF T TTTTTTTTTTTTTTTTTT

4 4 4 4 4 4444444444444
1 4 4 4 4 4 4 444449494

4

4
14 4 4 4 4 4 4 44 4444

E O
- T TTTOTT

T T TTTTTTTTTTTTTTTTTT

T T T TTTTTTTTTTTTTTTTTT

T T TTTTTTTTTTTTTTTT T T

4 4 4 4 4 4 444444444494 444
14 44 4 44 4444444494949 49494949494949494949+49+4

- T TTT™TT

T T TTTTTTTTTTTTTTTT T T

T T T T T TTTTTTTTTTTTT T T

4 4 4 4 4 4 4 4444444944494 494
1 4 4 4 4 444449494949 4949449494494944949449+49+4

Bioc
Switch

4

4

4 4 4 4 4 4 4 4 4 4 4 4444444444444

4 4 4 4 4 4 4 4 4 4 44 4444444449449 4494494949494949494949494949494944949494949494949449494494949494944949449494494944949494949 4494944494494 449494

T T TTITTTT

U.S. Patent Sep. 29, 2020 Sheet 4 of 12 US 10,789,182 B2

T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

rTTTTTTT TTTTTTTT

* T T T T T T r T T T T TT

T T TTTTT T T TTTTT

8
\ !

B

F (s 4

r T *r T T TT T T

US 10,789,182 B2

Sheet 5 of 12

Sep. 29, 2020

U.S. Patent

& & @

P N N N N N N L R T B O L N O O O R O O N L L

ok g om ol omom oy homomoh oy bk koW

&
&

ool ok omh o F G o 'po ol chohoylyomom i kh

L e e M N T I L L e L I I I T . P L B e P o I P I I M e L L T e e e P e R T e i T T I e P I D I P L L T O L e T I I I T L O L L A I L L P D L L L L L R L L P e |

LI I O L S I o O L I L L e

4 F F F F F F FAFFFF PRSP

..fl..l

$

Y+ rr frFrg f prrppepdrerrryryrr fFrd s b d
™
"~
[L]
N NN s F A F
. -
L L r -« Fr F r
gl
4
4 La
-
>
! n
4 * |]
3]]
P Fr o 4 - .l.n.u_..h
] Ly
] F]
[ol
e |
r

= F F F F FFAd - FFFF F AT FFFF AT A RS

U9

Lodw h k% % % %Lk ochd o oh Lokl hd hh ol ek kR R LAk kR SRR RS SLLAA AR d L ek chhhdhh Lk hh Ak h R LAk kYRR R L AR YL d ok kLA ok ok kYRR LAh R A ek ok h

F F1T TR W R R AW R YW R FFR T WYY YRR AS AW Y FRTOREASYYEFAYTYREEYEYFREFEAS Y YR YYLYTESOYRY YRR ST ARWYRETAAE AW PR YRR FLAE AR R FRANEEY WYY ST RAERYLTYROSORRW W RETRN

L S B PN I N I T T N . T O

lce
UESIN0E

L B B N NN L LN N N

rd A4 s rFrF-rg o FrFrreayYyrrFrFrfd o
[l -
o o
L] -
1 -,
I. -
X -
] *
44 o
o4 ol
W, a
Fy a
o -
- - ,
. L
r -
] L]
...... -
[y o
L] -
1 -,

P F F F F F F A T F-F FFFF P ATFF S FPTTEES

43 R
2

& & B F A% %% % % EFAAESY SR F

MG

HO0lH
B

R

&+ F F F PP IFAFF S FPTEA-F S

iy

R S i i i e b d A b W W kb podd J Rk bk Jod e gk b pd b kW g bodddhd W b pdd koo ok ddd b fokbd d b how o podd o gop o how o b b b ko koW dabd g ow W kb o Bk bk pddd s b podd bW podd J oo b pdad hud hwg ppd g bk patd b bk pobdd bbb pd ok d pobkoddd kb paddhod Wk dod kW W R i il el o

f 8 8 F 8 FFFrFr+ s 888808 F 80 FFFPPFPFFFeFF FFFLFFFF P FEFTFFSE S E PRI S ST

L T O T I I T T N I T T T e I T N T T DA N N N I T N e i o I O T T T S T N N . DA A D I D o D A O o O O T T DA N O e D I i A I A A A O

x-

#.ﬂl k-3

L N N I N N T R R B L L B O N B O L Y O T

4 =k

hoh AW

L)
* fFAFFFP
L)
L

[S N SN

L

ok A A A A ad d m kO

[N

LU

L

* F 4 8 F FFFF AT ST

LR IR I I I I L I T T I B B I L L I L L B T
B L A% % % % % %% Ad TSSO ATESY YRR

valice
LEHOO

(91 0]
10 (N0IC

e

-
&

&

&

P FFFF S FA P F PSR FAT

- (Y

B =y 4 3 % FROE R EE S &SR FRFT AESSFETER S FEFEYR S EFTF R hh %R R RN 4R R & EE RN 4 h R LR EHY LR EEFEHY FSEE S FFLETEFFSETF TR S LS FFCREES S LA T FEEAE AL WS FERETEEFFFERAE

L N N R L N N LN O N O N N O O T L L N O L T N O O O L O LN N N N B N N N NN N N L N O N L N LB O L L O N O L L R

-

4
-
L]
-
LI I N
LI A N A I T L L L L

[8
%
L L BN B)
L]
L]
L]
B F R " %R YRR AR R REFETR

LI B N B B BB AN UL DL B BB
A T W % "% % F KT R AR O

[N BN N B NN N LB o BN BN BN | N BN BN NN NN [B B

I Fa AR

L) om
30 N0,

“ -

Py

LI L DL R N]
- R N %L AR

L B LI)

L]
L]
L]
b

% % F TR R YR OROYOFLSYRARERRY ORI
R R TR Y R AR NAEdE T YRR R AA

* FF A FFFFFFA P FFFFF AT FFF T

i s

LT E W %R OF A RS YRR LA W RN A AR Y

LEE B L B B L B N O D B B BN BN B R L N D B BRI N BB B

LI B B L B R
T W "R ¥ W R

L'
[
" -

L howw o od w ok oad d A

3
v

", -
e G1EL 288 YR -

ok dd d m

LI I I R R

R W T Y %W ERY T YRR NE

T % LTk R %R A e %R W ETF RS EELTE R Y EEETEEAESY YT LTAEETEY YRS T LR YT A LTRSS AL RS EATE R %YW AT RS EEETEATAAETELTAAEYT SRR YLRY
N i i T T T T e T I A T Y e A e T S A e T A S A T A i i e e i T S T e T T e A i e T T A T T T T e e S e T T e e e

® %D

" 'wm s %l EE T TR A Y R EE TSR OR AR TS WA
T h %" R %W FF AT YRR Y F A AT YRR R AR RN

A
ror b g o m f p F F o oy F ko o d

]

._.__.__.._.;_1.;_.;.Ll__.111.1.....‘.‘._..—_-_111h b LI L o IR I O L R I L

£ uoum THM
0 5 ¥I0IG
ST

4 Lol kb

u

T % R AW RE AT TR R RN W YRR

W %L T YRR YL RY WY RORELRR YRR

LI I N R D R N R T N I B N R N AR W B]

o F FFEFFFFFFF A A o F FFFEFEFFF PSS T T4 * FFFF PR S

Y
x .)

%

U.S. Patent Sep. 29, 2020 Sheet 6 of 12 US 10,789,182 B2

RAM Bit
{295}

RAM Bit
(255)

RAM Bif
)

RAM Bif
)

U.S. Patent Sep. 29, 2020 Sheet 7 of 12 S 10,789,182 B2

o

i (s

U.S. Patent Sep. 29, 2020 Sheet 8 of 12 US 10,789,182 B2

FrOgranming

- Finite Slate
intariace Vachine
Data -
Lallics
; inpui

Programiming

ot Finite Slale
nterface .
Nata Maching
ot Lattice
G, 7
f,.-:ﬁf}fl
- 100
ey

Finite State 7
Machine Latlice #
(FSM A)

Finite Stals
Machine Latlice
(FSM 1)

Finite Siate
Machine Lattice
oM B)

Finite Slate
. B
Machine Lattics nout

(FSM C)

Fil, 7A

U.S. Patent Sep. 29, 2020 Sheet 9 of 12 US 10,789,182 B2

Reguiar
Lxpression npul

ll

111

L
.

Syntaxires

. Convert

e o o oo s e 2 - Avtomalion

116 Oplimize bewmrrccecmeme e "

Optimiza
Automaion

L]
-

Convert o
Netlislis)

Netist

120 Piat‘ﬁ U DUS U GRS R R s o o o v o oy

Netiist with Position

b

Netiist with Position
and inderconnechon

L
r SRR Ly A R cheast CHCNL ek KRt GRS KO R EoRCE R e et LA

Output
(Loadabie FSM)

1 F

Process FIOW s i~

Nata Flow «en FIG. 8

US 10,789,182 B2

Sheet 10 of 12

Sep. 29, 2020

U.S. Patent

¢ AIDILSIN
IOIIaA
o,

m b kowh bk b komow ok ko hhowl homoh o kowhobohobokw

{354

r ® oy rd dmom mw bd g w e g koaomomom

L

F RSP FA PP T

W AJOLUSIA

L o
Ff F FFEFFFF PRSP F T Ff Ff F o FF S FF AP PP ST PP PP P APPSR PSPPSR ST P FA PSP PP PP AT APPSR PP PR AP PP FF PSPPSR F FF-FrFFrFr PSP PP FPFFPFFESF R FTRT

_ i
PR SN SINSeY Udle

Foa d d g kA W ¥ oaodod o A W Foaod d o b d p m oW ow o om hom bk owr s mow bk ow o d koW Fowr baomw gy rarddh o powrodaaw gy wwr donom @ fow oo aopg wow ok bdod oo powraog hogow pododow g poared Z e g bod o omomow g ow g oW omowr roa b om ok Fodod oW & d - T Ok r aroa W r Y wox s omom d proa Wk Mo ko oam oo g - W ow ok odod o

ARSI SUSET JOBA B1BIR (45

& % % F A5 &8 A FETEAE SN

S o o F FF A o & F FFFF

- F F FFFT # F - FFFF

[N B NS N NN NN NN NN NN LN NN NN NN # f F AL PP SFTEF SRS PSP RS ST APPSR ESA AT RFS A 4 PSP FPASTESA SR ASF P SA AR

s F & F A FALF
i

CETRY 74
0 B0MET-HEH

£31G M)
SO THEH

LI N I P D T L I - I I O TP N - . I .

JBng wding
eI OS] JOI08A SIS

*

SYnE AJCLIBI
Y08 91E1S

L

= % & &% F TR AR OF AR R AN L AN

L I I R I I NI I I I L O I I L I IO IO I N

o F FFF FEFFFFEEFFFF PRSP F FATFFFF RS

8 Jelng ¥ Jelng
$S8001 4 58900

FaAartrilpgaprsdsddarrrapgd Fltapadeserarradeasarprpsddsbirrsadapdasdssaprssdpps

IO8A
JISA

.
r.
+
*
*

& % % %A R TR LRESORTRSCETEAN

L]
L
L]
-
L
L
L]
L
L
+
-
L
L]
L]
L
L
-
L]
L
L]
,

4+ = % % % % F W R d %% OF RS SRS FRES S REEFAS TS YW RS Y YR OFTTF RS YR ERA

SOBLEIU] JBYNY

b SSE00 PUE SN M)

*
‘l1..'.1l‘l1.1.-1\“lqillil-—.ﬁiiiiii.‘.ill‘lq.i.llilii.il M“ i. -
. L

ah

o F FFEFFFF FA PSP

‘.. _ _ _ _ _‘.T_f

* [
[

| LONONRSU pug JOSS AN

A Buiuueifol

[NN E S NN EEES BB NN EELS BB BN NEEEEBEESNEEEBNE.BENELNK,

I I . L N . I I L L T . . . N

r

A ok % % % Lok b %% RAE RS RN AAREN
L L N NN D B B B L B B

L R

JFFr A F A F S A AR EFF S FF TS F AP F S F T AT LA N A I P,

" F s RSN TR

+ Ff P F TP PSSP PP R T

L]

(524G MZE)
O3 ispang ndy:

sibey

-

W 1ogng
SHENS |

SINSEM

(S9}AT YZE)
W Sayng ndu

ENts
OIS

q Jeyng
SAEE f SISO

R IDAUOTS

L I I e N A N N N N N

-
Lob e e oa bom e d gk g A .‘L.‘.‘._.1.__.‘._.....__._.11.....-...._l..‘.‘.-.‘._.-..l.‘....._.____.-..l.‘t.-__.-...__...—_1.1.‘.‘.-.‘__.1..—_...-.__.......1.._.....-___._.1.._..‘L.__.._1.1.‘.‘.__._..____.1.‘.‘.-.__.__1.1.‘.-.__._.11‘.‘.._._....1.1.‘.-.-._.__1.‘.‘ ._.11.‘.-.‘___1.1.‘.‘.__.-._.11.._..._.-.-__._...1.‘.‘.‘.._-.1.1.__.-
] ‘_! !l.
_ " Ll * K [
.Jt.h..-.l_ 3 Ll)
- - “ r r
)
-
vw r o, uf. .““ o]
. i . -t _.-.1
....‘..1 5 5 5 5 5 5 L

Ll hE %YL Y TR REY TR E RS, Y T LREY WYL h A T LA LA R YR

L L N T . B R O O L L L L

e PP O T T L T T L T LT Y

4 L ok d b wow ok d b bhdohorkddwytdddw i m & b mrd by g ddwwd b dd d d =gk rd b4 J kg ridaxsdirb =

YN

T r b d m w4 L bk d bhwwchiddwwh

abeims

]

RS
t bl ora ok

L LA S a4 RR

Uit

L L b & + + + i r b + F + L Fa4h F o
+ & =+ A+

1R

+ 4+ 4+ &+~ F 4+ + F kb4t

}. mwww .t .
MRt I B [} ;

L A N A e N N L N O A N N L A - - N N L N N I N I A N A - A A T I A - A e A e L N I - e N - - -

ok - h ok F F A F

ok od gy ok oA sk kd J ke g ok A bk gd Ak kA bk Fd o d e kd bk kg kd g dkkd sk Fkd g s b d ko kb d kW kg Bk g kA sk kd s kg kd kA hod ok kd d sk okd ko kddd kb okd ko kdd ke kkdd &k Fkd J ke kkdd bk kd Jdh e kA sk kd s kA s oA W ok k pd ko kA kW ko akd ko ko gpdd ek Fokd sk pdd e o ko ko d AWk kakd ko P opd ke ok kd d ko pdod ks d

1.¢ J..____.
A
L Y

I T N e o e A e A S A M A O L L L L L L L L L T L L OO R

L N I N N I N N T N N L L L LT T R T Y

4 S0 ¥
IO

U.S. Patent

| ISSUE AN INDIRECT ACTION

Sep. 29, 2020 Sheet 11 of 12 US 10,789,182 B2

RECEIVE READ

- COMMANLD FROM THE HOST

+
+*
&+
-+

AS SET?

AL TIVAT”
ROW ADDRESS IN THE IAD

TRAN%\/‘HT Tk
NDIREC T COLUMN ADDRESS

EXECUTE RE#\D FRUM THE
NDIREL T COLUMN ADDRESS

INCREMENT
THE ADDRESS OF THE IAS

Fi 16

163

. 81T OF THE ~.NG

- 166

- 168

BEHAVIOR |

~174

EXE?UTE§
OTHER |

U.S. Patent

| ISSUE AN INDIRECT ACTION

. BIT OF THE |

Sep. 29, 2020

RECEIVE WRITE 182
COMMAND FROM HOST

- 183

+* ++ ,
[]
|t> '

AS SET?

ACTIVATE 186
ROW ADDRESS IN THE IAS

TRAN%‘HT Tk gt
NDIREC T COLUMN ADDRESS

CXECUTE THE WRITE 1O THE (- 190
NDIREL T COLUMN ADDRESS

NCREMENT 100
THE ADDRESS OF THE 1AS

FiG i

Sheet 12 of 12

BEHAVIOR |

US 10,789,182 B2

~ 194

EXECUTE |
OTHER |

US 10,789,182 B2

1

SYSTEM AND METHOD FOR INDIVIDUAL
ADDRESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application 1s a continuation of U.S. appli-
cation Ser. No. 16/400,739, entitled “A System and Method

for Individual Addressing,” and filed May 1, 2019, now U.S.
Pat. No. 10,521,366, which 1ssued Dec. 31, 2019, which 1s
a continuation of U.S. application Ser. No. 16/192,509,
entitled “A System and Method for Individual Addressing,”
and filed Dec. 10, 2018, now U.S. Pat. No. 10,339,071
issued Jul. 2, 2019, which 1s a continuation of U.S. appli-
cation Ser. No. 15/280,611, entitled “A System and Method
for Individual Addressing,” and filed Sep. 29, 2016, now
U.S. Pat. No. 10,268,602 which 1ssued on Apr. 23, 2019, the
entirety of which 1s incorporated by reference herein for all
pUrposes.

BACKGROUND

Field of Invention

Embodiments of the invention relate generally to elec-
tronic devices and, more specifically, in certain embodi-
ments, to a method for individual addressing in parallel
devices of electronic devices used for data analysis.

Description of Related Art

Complex pattern recognition can be ineflicient to perform
on a conventional von Neumann based computer. A biologi-
cal brain, 1n particular a human brain, however, 1s adept at
performing pattern recogmtion. Current research suggests
that a human brain performs pattern recognition using a
series of hierarchically organized neuron layers in the neo-
cortex. Neurons in the lower layers of the hierarchy analyze
“raw signals” from, for example, sensory organs, while
neurons 1n higher layers analyze signal outputs from neurons
in the lower levels. This hierarchical system in the neocor-
tex, possibly 1in combination with other areas of the brain,
accomplishes the complex pattern recognition that allows
humans to perform high level functions such as spatial
reasoning, conscious thought, and complex language.

In the field of computing, pattern recognition tasks are
increasingly challenging. Ever larger volumes of data are
transmitted between computers, and the number of patterns
that users wish to identily 1s increasing. For example, spam
or malware are often detected by searching for patterns 1n a
data stream, e.g., particular phrases or pieces of code. The
number of patterns increases with the variety of spam and
malware, as new patterns may be implemented to search for
new variants. Searching a data stream for each of these
patterns can form a computing bottleneck. Often, as the data
stream 1s received, 1t 1s searched for each pattern, one at a
time. The delay before the system 1s ready to search the next
portion of the data stream increases with the number of
patterns. Thus, pattern recognition may slow the receipt of
data.

Hardware has been designed to search a data stream for
patterns, but this hardware oiften 1s unable to process
adequate amounts of data in an amount of time given. Some
devices configured to search a data stream do so by distrib-
uting the data stream among a plurality of circuits. The
circuits each determine whether the data stream matches a
portion of a pattern. Often, a large number of circuits operate

10

15

20

25

30

35

40

45

50

55

60

65

2

in parallel, each searching the data stream at generally the
same time. The system may then further process the results
from these circuits, to arrive at the final results. These
“intermediate results”, however, can be larger than the
original input data, which may pose 1ssues (e.g., scheduling
inefliciency and/or reduced throughput) for the system. The
ability to use a cascaded circuits approach, similar to the
human brain, offers one potential solution to this problem.
However, there has not been a system that effectively allows
for performing pattern recognition 11 a manner more coms-
parable to that of a biological brain. Development of a
system that performs pattern recognition comparable to the
biological brain 1s desirable.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example of system having a state
machine engine, according to various embodiments;

FIG. 2 1llustrates an example of an FSM lattice of the state
machine engine of FIG. 1, according to various embodi-

ments;

FIG. 3 illustrates an example of a block of the FSM lattice
of FIG. 2, according to various embodiments;

FI1G. 4 illustrates an example of a row of the block of FIG.
3, according to various embodiments;

FIG. 4A 1llustrates a block as 1n FIG. 3 having counters 1in
rows of the block, according to various embodiments of the
imnvention;

FIG. 5 1llustrates an example of a Group of Two of the row
of FIG. 4, according to embodiments;

FIG. 6 illustrates an example of a fimite state machine
graph, according to various embodiments;

FIG. 7 illustrates an example of two-level hierarchy
implemented with FSM lattices, according to wvarious
embodiments;

FIG. 7A 1llustrates a second example of two-level hier-
archy implemented with FSM lattices, according to various
embodiments;

FIG. 8 illustrates an example of a method for a compiler
to convert source code 1nto a binary file for programming of
the FSM lattice of FIG. 2, according to various embodi-
ments;

FIG. 9 illustrates a state machine engine, according to
various embodiments;

FIG. 10 1llustrates a flow chart of a method for reading
from an indirect address in the state machine engine; and

FIG. 11 illustrates a flow chart of a method for writing to
an indirect address 1n the state machine engine.

DETAILED DESCRIPTION

Turning now to the figures, FIG. 1 illustrates an embodi-
ment of a processor-based system, generally designated by
reference numeral 10. The system 10 may be any of a variety
of types such as a desktop computer, laptop computer, pager,
cellular phone, personal organizer, portable audio playver,
control circuit, camera, etc. The system 10 may also be a
network node, such as a router, a server, or a client (e.g., one
of the previously-described types of computers). The system
10 may be some other sort of electronic device, such as a
copier, a scanner, a printer, a game console, a television, a
set-top video distribution or recording system, a cable box,
a personal digital media player, a factory automation system,
an automotive computer system, or a medical device. (The
terms used to describe these various examples of systems,
like many of the other terms used herein, may share some

US 10,789,182 B2

3

referents and, as such, should not be construed narrowly in
virtue of the other items listed.)

In a typical processor-based device, such as the system 10,
a processor 12, such as a microprocessor, controls the
processing of system functions and requests in the system
10. Further, the processor 12 may comprise a plurality of
processors that share system control. The processor 12 may
be coupled directly or indirectly to each of the elements in
the system 10, such that the processor 12 controls the system
10 by executing instructions that may be stored within the
system 10 or external to the system 10.

In accordance with the embodiments described herein, the
system 10 includes a state machine engine 14, which may
operate under control of the processor 12. The state machine
engine 14 may employ any one of a number of state machine
architectures, including, but not limited to Mealy architec-
tures, Moore architectures, Finite State Machines (FSMs),
Deterministic FSMs (DFSMs), Bit-Parallel State Machines
(BPSMs), etc. Though a variety of architectures may be
used, for discussion purposes, the application refers to
FSMs. However, those skilled 1n the art will appreciate that
the described techniques may be employed using any one of
a variety of state machine architectures.

As discussed further below, the state machine engine 14
may include a number of (e.g., one or more) finite state
machine (FSM) lattices (e.g., core of a chip). For purposes
of this application the term “lattice” refers to an organized
framework (e.g., routing matrix, routing network, frame) of
clements (e.g., Boolean cells, counter cells, state machine
clements, state transition elements). Furthermore, the “lat-
tice” may have any suitable shape, structure, or hierarchical
organization (e.g., grid, cube, spherical, cascading). Fach
FSM lattice may implement multiple FSMs that each receive
and analyze the same data in parallel. Further, the FSM
lattices may be arranged 1n groups (e.g., clusters), such that
clusters of FSM lattices may analyze the same nput data 1n
parallel. Further, clusters of FSM lattices of the state
machine engine 14 may be arranged 1n a hierarchical struc-
ture wherein outputs from state machine lattices on a lower
level of the hierarchical structure may be used as inputs to
state machine lattices on a higher level. By cascading
clusters of parallel FSM lattices of the state machine engine
14 1n sernies through the hierarchical structure, increasingly
complex patterns may be analyzed (e.g., evaluated,
searched, etc.).

Further, based on the hierarchical parallel configuration of
the state machine engine 14, the state machine engine 14 can
be employed for complex data analysis (e.g., pattern recog-
nition or other processing) 1 systems that utilize high
processing speeds. For instance, embodiments described
herein may be incorporated 1 systems with processing
speeds of 1 GByte/sec. Accordingly, utilizing the state
machine engine 14, data from high speed memory devices or
other external devices may be rapidly analyzed. The state
machine engine 14 may analyze a data stream according to
several criteria (e.g., search terms), at about the same time,
¢.g., during a single device cycle. Each of the FSM lattices
within a cluster of FSMs on a level of the state machine
engine 14 may each receive the same search term from the
data stream at about the same time, and each of the parallel
FSM lattices may determine whether the term advances the
state machine engine 14 to the next state 1in the processing
criterion. The state machine engine 14 may analyze terms
according to a relatively large number of criteria, e.g., more
than 100, more than 110, or more than 10,000. Because they
operate in parallel, they may apply the criteria to a data
stream having a relatively high bandwidth, e.g., a data

5

10

15

20

25

30

35

40

45

50

55

60

65

4

stream of greater than or generally equal to 1 GByte/sec,
without slowing the data stream.

In one embodiment, the state machine engine 14 may be
configured to recognize (e.g., detect) a great number of
patterns 1n a data stream. For instance, the state machine
engine 14 may be utilized to detect a pattern 1n one or more
of a variety of types of data streams that a user or other entity
might wish to analyze. For example, the state machine
engine 14 may be configured to analyze a stream of data
received over a network, such as packets received over the
Internet or voice or data recerved over a cellular network. In
one example, the state machine engine 14 may be configured
to analyze a data stream for spam or malware. The data
stream may be recerved as a serial data stream, 1n which the
data 1s received 1n an order that has meaning, such as 1n a
temporally, lexically, or semantically significant order.
Alternatively, the data stream may be received 1n parallel or
out of order and, then, converted into a serial data stream,
¢.g., by reordering packets received over the Internet. In
some embodiments, the data stream may present terms
serially, but the bits expressing each of the terms may be
received 1n parallel. The data stream may be recerved from
a source external to the system 10, or may be formed by
interrogating a memory device, such as the memory 16, and
forming the data stream from data stored 1n the memory 16.
In other examples, the state machine engine 14 may be
configured to recognize a sequence of characters that spell a
certain word, a sequence of genetic base pairs that specily a
gene, a sequence of bits 1n a picture or video file that form
a portion of an 1mage, a sequence of bits 1n an executable file
that form a part of a program, or a sequence of bits 1n an
audio file that form a part of a song or a spoken phrase. The
stream of data to be analyzed may include multiple bits of
data 1n a binary format or other formats, e.g., base ten,
ASCII, etc. The stream may encode the data with a single
digit or multiple digits, e.g., several binary digits.

As will be appreciated, the system 10 may include
memory 16. The memory 16 may include volatile memory,

such as Dynamic Random Access Memory (DRAM), Static
Random Access Memory (SRAM), Synchronous DRAM

(SDRAM), Double Data Rate DRAM (DDR SDRAM),
DDR2 SDRAM, DDR3 SDRAM, etc. The memory 16 may
also 1nclude non-volatile memory, such as read-only
memory (ROM), PC-RAM, silicon-oxide-nitride-oxide-sili-
con (SONOS) memory, metal-oxide-mtride-oxide-silicon
(MONOS) memory, polysilicon floating gate based memory,
and/or other types of flash memory of various architectures
(e.g., NAND memory, NOR memory, etc.) to be used 1n
conjunction with the volatile memory. The memory 16 may
include one or more memory devices, such as DRAM
devices, that may provide data to be analyzed by the state
machine engine 14. As used herein, the term “provide” may
generically refer to direct, input, insert, 1ssue, route, send,
transfer, transmit, generate, give, make available, move,
output, pass, place, read out, write, etc. Such devices may be
referred to as or include solid state drives (SSD’s), Multi-
mediaMediaCards (MMC’s), SecureDiagital (SD) cards,
CompactFlash (CF) cards, or any other suitable device.
Further, 1t should be appreciated that such devices may
couple to the system 10 via any suitable interface, such as
Universal Serial Bus (USB), Peripheral Component Inter-
connect (PCI), PCI Express (PCI-E), Small Computer Sys-
tem Interface (SCSI), IEEE 1394 (Firewire), or any other
suitable interface. To facilitate operation of the memory 16,
such as the flash memory devices, the system 10 may
include a memory controller (not 1illustrated). As will be
appreciated, the memory controller may be an independent

US 10,789,182 B2

S

device or it may be integral with the processor 12. Addi-
tionally, the system 10 may include an external storage 18,
such as a magnetic storage device. The external storage may
also provide mput data to the state machine engine 14.

The system 10 may include a number of additional
clements. For instance, a compiler 20 may be used to
configure (e.g., program) the state machine engine 14, as
described in more detail with regard to FIG. 8. An 1nput
device 22 may also be coupled to the processor 12 to allow
a user to 1input data mto the system 10. For instance, an input
device 22 may be used to mput data into the memory 16 for
later analysis by the state machine engine 14. The nput
device 22 may include buttons, switching elements, a key-
board, a light pen, a stylus, a mouse, and/or a voice recog-
nition system, for instance. An output device 24, such as a
display may also be coupled to the processor 12. The display
24 may include an LCD, a CRT, LEDs, and/or an audio
display, for example. They system may also include a
network interface device 26, such as a Network Interface
Card (NIC), for interfacing with a network, such as the
Internet. As will be appreciated, the system 10 may include
many other components, depending on the application of the
system 10.

FIGS. 2-5 1llustrate an example of a FSM lattice 30. In an
example, the FSM lattice 30 comprises an array of blocks
32. As will be described, each block 32 may include a
plurality of selectively couple-able hardware elements (e.g.,
configurable elements and/or special purpose elements) that
correspond to a plurality of states 1n a FSM. Similar to a state
in a FSM, a hardware element can analyze an input stream
and activate a downstream hardware element, based on the
input stream.

The configurable elements can be configured (e.g., pro-
grammed) to implement many different functions. For
instance, the configurable elements may include state tran-
sition elements (STEs) 34, 36 (shown i FIG. 5) that
function as data analysis elements and are hierarchically
organized into rows 38 (shown 1n FIGS. 3 and 4) and blocks
32 (shown i FIGS. 2 and 3). The STEs each may be
considered an automaton, e.g., a machine or control mecha-
nism designed to follow automatically a predetermined
sequence of operations or respond to encoded instructions.
Taken together, the STEs form an automata processor as
state machine engine 14. To route signals between the
hierarchically organized STEs 34, 36, a hierarchy of con-
figurable switching elements can be used, including inter-
block switching elements 40 (shown in FIGS. 2 and 3),
intra-block switching elements 42 (shown 1n FIGS. 3 and 4)
and intra-row switching elements 44 (shown 1n FIG. 4).

As described below, the switching elements may include
routing structures and buflers. A STE 34, 36 can correspond
to a state of a FSM implemented by the FSM lattice 30. The
STEs 34, 36 can be coupled together by using the configu-
rable switching elements as described below. Accordingly, a
FSM can be implemented on the FSM lattice 30 by config-
uring the STEs 34, 36 to correspond to the functions of states
and by selectively coupling together the STEs 34, 36 to
correspond to the transitions between states 1n the FSM.

FI1G. 2 illustrates an overall view of an example of a FSM
lattice 30. The FSM lattice 30 includes a plurality of blocks
32 that can be selectively coupled together with configurable
inter-block switching elements 40. The inter-block switch-
ing elements 40 may include conductors 46 (e.g., wires,
traces, etc.) and bullers 48, 50. In an example, builers 48 and
50 are included to control the connection and timing of
signals to/from the inter-block switching elements 40. As
described further below, the buflers 48 may be provided to

10

15

20

25

30

35

40

45

50

55

60

65

6

bufler data being sent between blocks 32, while the buflers
50 may be provided to bufller data being sent between
inter-block switching elements 40. Additionally, the blocks
32 can be selectively coupled to an mput block 32 (e.g., a
data mput port) for receiving signals (e.g., data) and pro-
viding the data to the blocks 32. The blocks 32 can also be
selectively coupled to an output block 54 (e.g., an output
port) for providing signals from the blocks 32 to an external
device (e.g., another FSM lattice 30). The FSM lattice 30
can also include a programming interface 56 to configure
(e.g., via an 1mage, program) the FSM lattice 30. The image
can configure (e.g., set) the state of the STEs 34, 36. For
example, the image can configure the STEs 34, 36 to react
in a certain way to a given input at the mput block 52. For
example, a STE 34, 36 can be set to output a high signal
when the character ‘a’ 1s received at the mput block 52.

In an example, the mput block 52, the output block 54,
and/or the programming interface 56 can be implemented as
registers such that writing to or reading from the registers
provides data to or from the respective elements. Accord-
ingly, bits from the image stored in the registers correspond-
ing to the programming interface 56 can be loaded on the
STEs 34, 36. Although FIG. 2 illustrates a certain number of
conductors (e.g., wire, trace) between a block 32, mput
block 52, output block 34, and an inter-block switching
clement 40, 1t should be understood that in other examples,
fewer or more conductors may be used.

FIG. 3 illustrates an example of a block 32. Ablock 32 can
include a plurality of rows 38 that can be selectively coupled
together with configurable intra-block switching elements
42. Additionally, a row 38 can be selectively coupled to
another row 38 within another block 32 with the inter-block
switching elements 40. A row 38 includes a plurality of
STEs 34, 36 organized into pairs of configurable elements
that are referred to herein as groups of two (GOTs) 60. In an
example, a block 32 comprises sixteen (16) rows 38.

FIG. 4 1llustrates an example of a row 38. A GOT 60 can
be selectively coupled to other GOTs 60 and any other
clements (e.g., a special purpose element 58) within the row
38 by configurable intra-row switching elements 44. A GOT
60 can also be coupled to other GOTs 60 in other rows 38
with the intra-block switching element 42, or other GOTs 60
in other blocks 32 with an iter-block switching element 40.
In an example, a GOT 60 has a first and second 1nput 62, 64,
and an output 66. The first input 62 1s coupled to a first STE
34 of the GOT 60 and the second mput 64 1s coupled to a
second STE 36 of the GOT 60, as will be further illustrated
with reference to FIG. 3.

In an example, the row 38 includes a first and second
plurality of row interconnection conductors 68, 70. In an
example, an input 62, 64 of a GOT 60 can be coupled to one
or more row interconnection conductors 68, 70, and an
output 66 can be coupled to one or more row 1nterconnection
conductor 68, 70. In an example, a first plurality of the row
interconnection conductors 68 can be coupled to each STE
34, 36 of cach GOT 60 within the row 38. A second plurality
of the row 1nterconnection conductors 70 can be coupled to
only one STE 34, 36 of each GOT 60 within the row 38, but
cannot be coupled to the other STE 34, 36 of the GOT 60.
In an example, a first half of the second plurality of row
interconnection conductors 70 can couple to first half of the
STEs 34, 36 within a row 38 (one STE 34 from each GOT
60) and a second half of the second plurality of row
interconnection conductors 70 can couple to a second half of
the STEs 34, 36 within a row 38 (the other STE 34, 36 from
cach GOT 60), as will be better illustrated with respect to
FIG. 5. The limited connectivity between the second plu-

US 10,789,182 B2

7

rality of row interconnection conductors 70 and the STEs 34,
36 1s referred to herein as “parity”. In an example, the row
38 can also include a special purpose element 58 such as a
counter, a configurable Boolean logic element, look-up
table, RAM, a field configurable gate array (FPGA), an
application specific integrated circuit (ASIC), a configurable
processor (€.g., a microprocessor), or other element for
performing a special purpose function.

In an example, the special purpose element 38 comprises
a counter (also referred to herein as counter 58). In an
example, the counter 38 comprises a 12-bit configurable
down counter. The 12-bit configurable counter 58 has a
counting input, a reset mput, and zero-count output. The
counting input, when asserted, decrements the value of the
counter 58 by one. The reset input, when asserted, causes the
counter 38 to load an imitial value from an associated
register. For the 12-bit counter 38, up to a 12-bit number can
be loaded in as the imitial value. When the value of the
counter 58 1s decremented to zero (0), the zero-count output
1s asserted. The counter 58 also has at least two modes, pulse
and hold. When the counter 58 1s set to pulse mode, the
zero-count output 1s asserted when the counter 58 reaches
zero. For example, the zero-count output 1s asserted during
the processing of an immediately subsequent next data byte,
which results in the counter 58 being oflset in time with
respect to the input character cycle. After the next character
cycle, the zero-count output 1s no longer asserted. In this
manner, for example, 1n the pulse mode, the zero-count
output 1s asserted for one input character processing cycle.
When the counter 58 1s set to hold mode the zero-count
output 1s asserted during the clock cycle when the counter 58
decrements to zero, and stays asserted until the counter 58
1s reset by the reset iput being asserted.

In another example, the special purpose element 38 com-
prises Boolean logic. For example, the Boolean logic may be
used to perform logical functions, such as AND, OR,
NAND, NOR, Sum of Products (SoP), Negated-Output Sum
of Products (NSoP), Negated-Output Product of Sume
(NPoS), and Product of Sums (PoS) functions. This Boolean
logic can be used to extract data from terminal state STEs
(corresponding to terminal nodes of a FSM, as discussed
later herein) in FSM lattice 30. The data extracted can be
used to provide state data to other FSM lattices 30 and/or to
provide configuring data used to reconfigure FSM lattice 30,
or to reconfigure another FSM lattice 30.

FIG. 4A 1s an 1illustration of an example of a block 32
having rows 38 which each include the special purpose
clement 58. For example, the special purpose elements 58 1n
the block 32 may include counter cells 38A and Boolean
logic cells 538B. While only the rows 38 1n row positions 0
through 4 are illustrated 1n FIG. 4A (e.g., labeled 38A
through 38E), each block 32 may have any number of rows
38 (e.g., 16 rows 38), and one or more special purpose
clements 58 may be configured in each of the rows 38. For
example, 1n one embodiment, counter cells S8A may be
configured 1n certain rows 38 (e.g., in row positions 0, 4, 8,
and 12), while the Boolean logic cells 38B may be config-
ured in the remaining of the 16 rows 38 (e.g., 1n row
positions 1, 2, 3,5, 6,7,9,10, 11, 13, 14, 15, and 16). The
GOT 60 and the special purpose clements 38 may be
selectively coupled (e.g., selectively connected) in each row
38 through intra-row switching elements 44, where each row
38 of the block 32 may be selectively coupled with any of
the other rows 38 of the block 32 through intra-block
switching elements 42.

In some embodiments, each active GOT 60 in each row 38
may output a signal indicating whether one or more condi-

10

15

20

25

30

35

40

45

50

55

60

65

8

tions are detected (e.g., a search result 1s detected), and the
special purpose element 58 1n the row 38 may receive the
GOT 60 output to determine whether certain quantifiers of
the one or more conditions are met and/or count a number
of times a condition 1s detected. For example, quantifiers of
a count operation may include determining whether a con-
dition was detected at least a certain number of times,
determining whether a condition was detected no more than
a certain number of times, determining whether a condition
was detected exactly a certain number of times, and deter-
mining whether a condition was detected within a certain
range of times.

Outputs from the counter 538A and/or the Boolean logic
cell 58B may be communicated through the intra-row
switching elements 44 and the itra-block switching ele-
ments 42 to perform counting or logic with greater com-
plexity. For example, counters S8A may be configured to
implement the quantifiers, such as asserting an output only
when a condition 1s detected an exact number of times.
Counters 58A 1n a block 32 may also be used concurrently,
thereby increasing the total bit count of the combined
counters to count higher numbers of a detected condition.
Furthermore, 1n some embodiments, different special pur-
pose elements 58 such as counters 38A and Boolean logic
cells 588 may be used together. For example, an output of
one or more Boolean logic cells 58B may be counted by one
or more counters 58A 1n a block 32.

FIG. § illustrates an example of a GOT 60. The GOT 60
includes a first STE 34, a second STE 36, and intra-group
circuitry 37 coupled to the first STE 34 and the second STE
36. For example, the first STE 34 and the second STE 36
may have inputs 62, 64 and outputs 72, 74 coupled to an OR
gate 76 and a 3-to-1 multiplexer 78 of the intra-group

circuitry 37. The 3-to-1 multiplexer 78 can be set to couple
the output 66 of the GOT 60 to either the first STE 34, the

second STE 36, or the OR gate 76. The OR gate 76 can be
used to couple together both outputs 72, 74 to form the
common output 66 of the GOT 60. In an example, the first
and second STE 34, 36 exhibit parity, as discussed above,
where the mput 62 of the first STE 34 can be coupled to
some ol the row interconnection conductors 68 and the input
64 of the second STE 36 can be coupled to other row
interconnection conductors 70 the common output 66 may
be produced which may overcome parity problems. In an
example, the two STEs 34, 36 within a GOT 60 can be
cascaded and/or looped back to themselves by setting either
or both of switching elements 79. The STEs 34, 36 can be
cascaded by coupling the output 72, 74 of the STEs 34, 36
to the mput 62, 64 of the other STE 34, 36. The STEs 34, 36
can be looped back to themselves by coupling the output 72,
74 to their own mput 62, 64. Accordingly, the output 72 of
the first STE 34 can be coupled to neither, one, or both of the
iput 62 of the first STE 34 and the mnput 64 of the second
STE 36. Additionally, as each of the mputs 62, 64 may be
coupled to a plurality of row routing lines, an OR gate may
be utilized to select any of the mputs from these row routing
lines along mputs 62, 64, as well as the outputs 72, 74.

In an example, each state transition eclement 34, 36
comprises a plurality of memory cells 80, such as those often
used 1n dynamic random access memory (DRAM), coupled
in parallel to a detect line 82. One such memory cell 80
comprises a memory cell that can be set to a data state, such
as one that corresponds to either a high or a low value (e.g.,
a 1 or 0). The output of the memory cell 80 1s coupled to the
detect line 82 and the input to the memory cell 80 recerves
signals based on data on the data stream line 84. In an
example, an input at the mnput block 52 1s decoded to select

US 10,789,182 B2

9

one or more of the memory cells 80. The selected memory
cell 80 provides 1ts stored data state as an output onto the
detect line 82. For example, the data received at the mput
block 52 can be provided to a decoder (not shown) and the
decoder can select one or more of the data stream lines 84.
In an example, the decoder can convert an 8-bit ACSII
character to the corresponding 1 of 256 data stream lines 84.

A memory cell 80, therefore, outputs a high signal to the
detect line 82 when the memory cell 80 1s set to a high value
and the data on the data stream line 84 selects the memory
cell 80. When the data on the data stream line 84 selects the
memory cell 80 and the memory cell 80 1s set to a low value,
the memory cell 80 outputs a low signal to the detect line 82.
The outputs from the memory cells 80 on the detect line 82
are sensed by a detection cell 86.

In an example, the signal on an input line 62, 64 sets the
respective detection cell 86 to either an active or iactive
state. When set to the 1nactive state, the detection cell 86
outputs a low signal on the respective output 72, 74 regard-
less of the signal on the respective detect line 82. When set
to an active state, the detection cell 86 outputs a high signal
on the respective output line 72, 74 when a high signal 1s
detected from one of the memory cells 80 of the respective
STE 34, 36. When 1n the active state, the detection cell 86
outputs a low signal on the respective output line 72, 74
when the signals from all of the memory cells 82 of the
respective STE 34, 36 are low.

In an example, an STE 34, 36 includes 256 memory cells
80 and each memory cell 80 1s coupled to a diflerent data
stream line 84. Thus, an STE 34, 36 can be programmed to
output a high signal when a selected one or more of the data
stream lines 84 have a high signal thereon. For example, the
STE 34 can have a first memory cell 80 (e.g., bit 0) set high
and all other memory cells 80 (e.g., bits 1-255) set low.
When the respective detection cell 86 is in the active state,
the STE 34 outputs a high signal on the output 72 when the
data stream line 84 corresponding to bit 0 has a high signal
thereon. In other examples, the STE 34 can be set to output
a high signal when one of multiple data stream lines 84 have
a high signal thereon by setting the appropriate memory
cells 80 to a high value.

In an example, a memory cell 80 can be set to a high or
low value by reading bits from an associated register.
Accordingly, the STEs 34 can be configured by storing an
image created by the compiler 20 into the registers and
loading the bits 1n the registers into associated memory cells
80. In an example, the 1mage created by the compiler 20
includes a binary image of high and low (e.g., 1 and 0) bits.
The 1image can configure the FSM lattice 30 to implement a
FSM by cascading the STEs 34, 36. For example, a first STE
34 can be set to an active state by setting the detection cell
86 to the active state. The first STE 34 can be set to output
a high signal when the data stream line 84 corresponding to
bit 0 has a high signal thereon. The second STE 36 can be
mitially set to an inactive state, but can be set to, when
active, output a high signal when the data stream line 84
corresponding to bit 1 has a high signal thereon. The first
STE 34 and the second STE 36 can be cascaded by setting
the output 72 of the first STE 34 to couple to the input 64 of
the second STE 36. Thus, when a high signal 1s sensed on
the data stream line 84 correspondmg to bit 0, the first STE
34 outputs a high signal on the output 72 and sets the
detection cell 86 of the second STE 36 to an active state.
When a high signal 1s sensed on the data stream line 84
corresponding to bit 1, the second STE 36 outputs a high
signal on the output 74 to activate another STE 36 or for
output from the FSM lattice 30.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an example, a single FSM lattice 30 1s implemented on
a single physical device, however, 1n other examples two or
more FSM lattices 30 can be implemented on a single
physical device (e.g., physical chip). In an example, each
FSM lattice 30 can include a distinct data iput block 52, a
distinct output block 54, a distinct programming interface
56, and a distinct set of configurable elements. Moreover,
cach set of configurable elements can react (e.g., output a
high or low signal) to data at their corresponding data input
block 52. For example, a first set of configurable elements
corresponding to a first FSM lattice 30 can react to the data
at a first data input block 52 corresponding to the first FSM
lattice 30. A second set of configurable elements correspond-
ing to a second FSM lattice 30 can react to a second data
input block 52 corresponding to the second FSM lattice 30.
Accordingly, each FSM lattice 30 includes a set of configu-
rable elements, wherein diflerent sets of configurable ele-
ments can react to diferent mput data. Sitmilarly, each FSM
lattice 30, and each corresponding set of configurable ele-
ments can provide a distinct output. In some examples, an
output block 54 from a first FSM lattice 30 can be coupled
to an mput block 52 of a second FSM lattice 30, such that
input data for the second FSM lattice 30 can include the
output data from the first FSM lattice 30 in a hierarchical
arrangement ol a series of FSM lattices 30.

In an example, an 1mage for loading onto the FSM lattice
30 comprises a plurality of bits of data for configuring the
configurable elements, the configurable switching elements,
and the special purpose elements within the FSM lattice 30.
In an example, the image can be loaded onto the FSM lattice
30 to configure the FSM lattice 30 to provide a desired
output based on certain inputs. The output block 54 can
provide outputs from the FSM lattice 30 based on the
reaction of the configurable elements to data at the data input
block 52. An output from the output block 54 can include a
single bit indicating a search result of a given pattern, a word
comprising a plurality of bits indicating search results and
non-search results to a plurality of patterns, and a state
vector corresponding to the state of all or certain configu-
rable elements at a given moment. As described, a number
of FSM lattices 30 may be included in a state machine
engine, such as state machine engine 14, to perform data
analysis, such as pattern-recognition (e.g., speech recogni-
tion, 1mage recognition, etc.) signal processing, 1maging,
computer vision, cryptography, and others.

FIG. 6 illustrates an example model of a finite state
machine (FSM) that can be implemented by the FSM lattice
30. The FSM lattice 30 can be configured (e.g., pro-
grammed) as a physical implementation of a FSM. A FSM
can be represented as a diagram 90, (e.g., directed graph,
undirected graph, pseudograph), which contains one or more
root nodes 92. In addition to the root nodes 92, the FSM can
be made up of several standard nodes 94 and terminal nodes
96 that are connected to the root nodes 92 and other standard
nodes 94 through one or more edges 98. A node 92, 94, 96
corresponds to a state in the FSM. The edges 98 correspond
to the transitions between the states.

Each of the nodes 92, 94, 96 can be 1n either an active or
an 1nactive state. When 1n the inactive state, a node 92, 94,
96 does not react (e.g., respond) to mput data. When 1n an
active state, a node 92, 94, 96 can react to input data. An
upstream node 92, 94 can react to the mput data by activat-
ing a node 94, 96 that 1s downstream from the node when the
input data matches criteria specified by an edge 98 between
the upstream node 92, 94 and the downstream node 94, 96.
For example, a first node 94 that specifies the character ‘b’
will activate a second node 94 connected to the first node 94

US 10,789,182 B2

11

by an edge 98 when the first node 94 1s active and the
character ‘b’ 1s recerved as iput data. As used herein,
“upstream” refers to a relationship between one or more
nodes, where a first node that 1s upstream of one or more
other nodes (or upstream of itself 1n the case of a loop or
teedback configuration) refers to the situation in which the
first node can activate the one or more other nodes (or can
activate 1tself 1n the case of a loop). Sitmilarly, “downstream”™
refers to a relationship where a first node that 1s downstream
of one or more other nodes (or downstream of itself 1n the
case of a loop) can be activated by the one or more other
nodes (or can be activated by 1tself in the case of a loop).
Accordingly, the terms “upstream”™ and “downstream™ are
used herein to refer to relationships between one or more
nodes, but these terms do not preclude the use of loops or
other non-linear paths among the nodes.

In the diagram 90, the root node 92 can be itially
activated and can activate downstream nodes 94 when the
input data matches an edge 98 from the root node 92. Nodes
94 can activate nodes 96 when the mput data matches an
edge 98 from the node 94. Nodes 94, 96 throughout the
diagram 90 can be activated 1n this manner as the mput data
1s received. A terminal node 96 corresponds to a search
result of a sequence of iterest 1n the input data. Accord-
ingly, activation of a terminal node 96 indicates that a
sequence of mterest has been received as the input data. In
the context of the FSM lattice 30 implementing a pattern
recognition function, arriving at a terminal node 96 can
indicate that a specific pattern of interest has been detected
in the mput data.

In an example, each root node 92, standard node 94, and
terminal node 96 can correspond to a configurable element
in the FSM lattice 30. Each edge 98 can correspond to
connections between the configurable elements. Thus, a
standard node 94 that transitions to (e.g., has an edge 98
connecting to) another standard node 94 or a terminal node
96 corresponds to a configurable element that transitions to
(e.g., provides an output to) another configurable element. In
some examples, the root node 92 does not have a corre-
sponding configurable element.

As will be appreciated, although the node 92 1s described
as a root node and nodes 96 are described as terminal nodes,
there may not necessarily be a particular “start” or root node
and there may not necessarily be a particular “end” or output
node. In other words, any node may be a starting point and
any node may provide output.

When the FSM lattice 30 1s programmed, each of the
configurable elements can also be 1n either an active or
inactive state. A given configurable element, when 1nactive,
does not react to the iput data at a corresponding data input
block 52. An active configurable element can react to the
input data at the data input block 52, and can activate a
downstream configurable element when the mput data
matches the setting of the configurable element. When a
configurable element corresponds to a terminal node 96, the
configurable element can be coupled to the output block 54

to provide an indication of a search result to an external
device.

An 1mmage loaded onto the FSM lattice 30 via the pro-
gramming 1nterface 56 can configure the configurable ele-
ments and special purpose elements, as well as the connec-
tions between the configurable elements and special purpose
clements, such that a desired FSM 1s implemented through
the sequential activation of nodes based on reactions to the
data at the data input block 52. In an example, a configurable
clement remains active for a single data cycle (e.g., a single

10

15

20

25

30

35

40

45

50

55

60

65

12

character, a set of characters, a single clock cycle) and then
becomes 1nactive unless re-activated by an upstream con-
figurable element.

A terminal node 96 can be considered to store a com-
pressed history of past search results. For example, the one
or more patterns of mput data required to reach a terminal
node 96 can be represented by the activation of that terminal
node 96. In an example, the output provided by a terminal
node 96 1s binary, for example, the output indicates whether
a search result for a pattern of interest has been generated or
not. The ratio of terminal nodes 96 to standard nodes 94 in
a diagram 90 may be quite small. In other words, although
there may be a high complexity in the FSM, the output of the
FSM may be small by comparison.

In an example, the output of the FSM lattice 30 can
comprise a state vector. The state vector comprises the state
(e.g., activated or not activated) of configurable elements of
the FSM lattice 30. In another example, the state vector can
include the state of all or a subset of the configurable
clements whether or not the configurable elements corre-
sponds to a terminal node 96. In an example, the state vector
includes the states for the configurable elements correspond-
ing to terminal nodes 96. Thus, the output can include a
collection of the indications provided by all terminal nodes
96 of a diagram 90. The state vector can be represented as
a word, where the binary indication provided by each
terminal node 96 comprises one bit of the word. This
encoding of the terminal nodes 96 can provide an eflective
indication of the detection state (e.g., whether and what
sequences of interest have been detected) for the FSM lattice
30.

As mentioned above, the FSM lattice 30 can be pro-
grammed to 1implement a pattern recognition function. For
example, the FSM lattice 30 can be configured to recognize
one or more data sequences (e.g., signatures, patterns) in the
input data. When a data sequence of interest 1s recognized by
the FSM lattice 30, an indication of that recognition can be
provided at the output block 54. In an example, the pattern
recognition can recognize a string of symbols (e.g., ASCII
characters) to, for example, 1dentify malware or other data 1in
network data.

FIG. 7 illustrates an example of hierarchical structure 100,
wherein two levels of FSM lattices 30 are coupled 1n series
and used to analyze data. Specifically, in the illustrated
embodiment, the hierarchical structure 100 includes a first
FSM lattice 30A and a second FSM lattice 30B arranged 1n
series. Bach FSM lattice 30 includes a respective data input
block 52 to receive data mput, a programming interface
block 56 to receive configuring signals and an output block
54.

The first FSM lattice 30A 1s configured to receive input
data, for example, raw data at a data mput block. The first
FSM lattice 30A reacts to the input data as described above
and provides an output at an output block. The output from
the first FSM lattice 30A 1s sent to a data input block of the
second FSM lattice 30B. The second FSM lattice 30B can
then react based on the output provided by the first FSM
lattice 30A and provide a corresponding output signal 102 of
the hierarchical structure 100. This hierarchical coupling of
two FSM lattices 30A and 30B 1n series provides a means to
provide data regarding past search results in a compressed
word from a first FSM lattice 30A to a second FSM lattice
30B. The data provided can eflectively be a summary of
complex matches (e.g., sequences of interest) that were
recorded by the first FSM lattice 30A.

FIG. 7A illustrates a second two-level hierarchy 100 of
FSM lattices 30A, 30B, 30C, and 30D, which allows the

US 10,789,182 B2

13

overall FSM 100 (inclusive of all or some of FSM lattices
30A, 308, 30C, and 30D) to perform two independent levels
of analysis of the mnput data. The first level (e.g., FSM lattice
30A, FSM lattice 30B, and/or FSM lattice 30C) analyzes the
same data stream, which includes data mputs to the overall
FSM 100. The outputs of the first level (e.g., FSM lattice
30A, FSM lattice 30B, and/or FSM lattice 30C) become the
iputs to the second level, (e.g., FSM lattice 30D). FSM
lattice 30D performs further analysis of the combination the
analysis already performed by the first level (e.g., FSM
lattice 30A, FSM lattice 30B, and/or FSM lattice 30C). By
connecting multiple FSM lattlces 30A, 30B, and 30C
together, increased knowledge about the data stream input
may be obtained by FSM lattice 30D.

The first level of the hierarchy (implemented by one or
more of FSM lattice 30A, FSM lattice 30B, and FSM lattice
30C) can, for example, perform processing directly on a raw
data stream. For example, a raw data stream can be received
at an mput block 52 of the first level FSM lattices 30A, 30B,

and/or 30C and the configurable elements of the first level
FSM lattices 30A, 30B, and/or 30C can react to the raw data
stream. The second level (implemented by the FSM lattice
30D) of the hierarchy can process the output from the first
level. For example, the second level FSM lattice 30D

receives the output from an output block 54 of the first level
FSM lattices 30A, 30B, and/or 30C at an mput block 52 of

the second level FSM lattice 30D and the configurable
clements of the second level FSM lattice 30D can react to
the output of the first level FSM lattices 30A, 30B, and/or
30C. Accordingly, 1n this example, the second level FSM
lattice 30D does not receive the raw data stream as an nput,
but rather receives the indications of search results for
patterns of interest that are generated from the raw data
stream as determined by one or more of the first level FSM
lattices 30A, 30B, and/or 30C. Thus, the second level FSM
lattice 30D can implement a FSM 100 that recognizes
patterns in the output data stream from the one or more of
the first level FSM lattices 30A, 30B, and/or 30C. However,
it should also be appreciated that the second level FSM
lattice 30D can additionally receive the raw data stream as
an iput, for example, 1n conjunction with the indications of
search results for patterns of interest that are generated from
the raw data stream as determined by one or more of the first
level FSM lattices 30A, 30B, and/or 30C. It should be
appreciated that the second level FSM lattice 30D may
receive mputs from multiple other FSM lattices 1n addition
to recerving output from the one or more of the first level
FSM lattices 30A, 30B, and/or 30C. Likewise, the second
level FSM lattice 30D may receirve iputs from other
devices. The second level FSM lattice 30D may combine
these multiple inputs to produce outputs. Finally, while only
two levels of FSM lattices 30A, 30B, 30C, and 30D are
illustrated, 1t 1s envisioned that additional levels of FSM
lattices may be stacked such that there are, for example,
three, four, 10, 100, or more levels of FSM lattices.

FIG. 8 illustrates an example of a method 110 for a
compiler to convert source code into an i1mage used to
configure a FSM lattice, such as lattice 30, to implement a
FSM. Method 110 includes parsing the source code nto a
syntax tree (block 112), converting the syntax tree into an
automaton (block 114), optimizing the automaton (block
116), converting the automaton into a netlist (block 118),
placing the netlist on hardware (block 120), routing the
netlist (block 122), and publishing the resulting image
(block 124).

In an example, the compiler 20 includes an application
programming interface (API) that allows software develop-

10

15

20

25

30

35

40

45

50

55

60

65

14

ers to create images for implementing FSMs on the FSM
lattice 30. The compiler 20 provides methods to convert an
iput set of regular expressions in the source code nto an
image that 1s configured to configure the FSM lattice 30. The
compiler 20 can be mmplemented by instructions for a
computer having a von Neumann architecture. These
istructions can cause a processor 12 on the computer to
implement the functions of the compiler 20. For example,
the instructions, when executed by the processor 12, can
cause the processor 12 to perform actions as described 1n
blocks 112, 114, 116, 118, 120, 122, and 124 on source code
that 1s accessible to the processor 12.

In an example, the source code describes search strings
for 1dentifying patterns of symbols within a group of sym-
bols. To describe the search strings, the source code can
include a plurality of regular expressions (regexes). A regex
can be a string for describing a symbol search pattern.
Regexes are widely used 1n various computer domains, such
as programming languages, text editors, network security,
and others. In an example, the regular expressions supported
by the compiler include criteria for the analysis of unstruc-
tured data. Unstructured data can include data that 1s free
form and has no indexing applied to words within the data.
Words can include any combination of bytes, printable and
non-printable, within the data. In an example, the compiler
can support multiple different source code languages for
implementing regexes icluding Perl, (e.g., Perl compatible
regular expressions (PCRE)), PHP, Java, and .NET lan-
guages.

At block 112 the compiler 20 can parse the source code to
form an arrangement of relationally connected operators,
where different types of operators correspond to different
functions implemented by the source code (e.g., different
functions 1mplemented by regexes in the source code).
Parsing source code can create a generic representation of
the source code. In an example, the generic representation
comprises an encoded representation of the regexes in the
source code 1n the form of a tree graph known as a syntax
tree. The examples described herein refer to the arrangement
as a syntax tree (also known as an “abstract syntax tree”) 1n
other examples, however, a concrete syntax tree as part of
the abstract syntax tree, a concrete syntax tree in place of the
abstract syntax tree, or other arrangement can be used.

Since, as mentioned above, the compiler 20 can support
multiple languages of source code, parsing converts the
source code, regardless of the language, 1nto a non-language
specific representation, e.g., a syntax tree. Thus, further
processing (blocks 114, 116, 118, 120) by the compiler 20
can work from a common nput structure regardless of the
language of the source code.

As noted above, the syntax tree includes a plurality of
operators that are relationally connected. A syntax tree can
include multiple different types of operators. For example,
different operators can correspond to different functions
implemented by the regexes 1n the source code.

At block 114, the syntax tree 1s converted 1into an automa-
ton. An automaton comprises a software model of a FSM
which may, for example, comprise a plurality of states. In
order to convert the syntax tree into an automaton, the
operators and relationships between the operators in the
syntax tree are converted 1nto states with transitions between
the states. Moreover, 1n one embodiment, conversion of the
automaton 1s accomplished based on the hardware of the
FSM lattice 30.

In an example, input symbols for the automaton include
the symbols of the alphabet, the numerals 0-9, and other
printable characters. In an example, the mput symbols are

US 10,789,182 B2

15

represented by the byte values O through 255 inclusive. In an
example, an automaton can be represented as a directed
graph where the nodes of the graph correspond to the set of
states. In an example, a transition from state p to state q on
an 1mmput symbol o, 1.e. 0(p, o), 1s shown by a directed
connection from node p to node g. In an example, a reversal
of an automaton produces a new automaton where each
transition p—q on some symbol a 1s reversed g—p on the
same symbol. In a reversal, start states become final states
and the final states become start states. In an example, the
language recognized (e.g., matched) by an automaton 1s the
set of all possible character strings which when 1nput
sequentially into the automaton will reach a final state. Each
string 1n the language recognized by the automaton traces a
path from the start state to one or more final states.

At block 116, after the automaton 1s constructed, the
automaton 1s optimized to reduce its complexity and size,
among other things. The automaton can be optimized by
combining redundant states.

At block 118, the optimized automaton 1s converted nto
a netlist. Converting the automaton 1nto a netlist maps each
state of the automaton to a hardware element (e.g., STEs 34,
36, other elements) on the FSM lattice 30, and determines
the connections between the hardware elements.

At block 120, the netlist 1s placed to select a specific
hardware element of the target device (e.g., STEs 34, 36,
special purpose elements 38) corresponding to each node of
the netlist. In an example, placing selects each specific
hardware element based on general input and output con-
straints for the FSM lattice 30.

At block 122, the placed netlist 1s routed to determine the
settings for the configurable switching elements (e.g., inter-
block switching elements 40, intra-block switching elements
42, and intra-row switching elements 44) in order to couple
the selected hardware elements together to achieve the
connections describe by the netlist. In an example, the
settings for the configurable switching elements are deter-
mined by determiming specific conductors of the FSM lattice
30 that will be used to connect the selected hardware
clements, and the settings for the configurable switching
clements. Routing can take into account more specific
limitations of the connections between the hardware ele-
ments than can be accounted for via the placement at block
120. Accordingly, routing may adjust the location of some of
the hardware elements as determined by the global place-
ment 1n order to make appropriate connections given the
actual limitations of the conductors on the FSM lattice 30.

Once the netlist 1s placed and routed, the placed and
routed netlist can be converted into a plurality of bits for
configuring a FSM lattice 30. The plurality of bits are
referred to herein as an 1image (e.g., binary image).

At block 124, an 1mage 1s published by the compiler 20.
The 1mage comprises a plurality of bits for configuring
specific hardware elements of the FSM lattice 30. The bats
can be loaded onto the FSM lattice 30 to configure the state
of STEs 34, 36, the special purpose clements 58, and the
configurable switching elements such that the programmed
FSM lattice 30 implements a FSM having the functionality
described by the source code. Placement (block 120) and
routing (block 122) can map specific hardware elements at
specific locations 1n the FSM lattice 30 to specific states 1n
the automaton. Accordingly, the bits in the image can
configure the specific hardware elements to implement the
desired function(s). In an example, the 1mage can be pub-
lished by saving the machine code to a computer readable
medium. In another example, the 1image can be published by
displaying the image on a display device. In still another

10

15

20

25

30

35

40

45

50

55

60

65

16

example, the 1mage can be published by sending the image
to another device, such as a configuring device for loading
the 1image onto the FSM lattice 30. In yet another example,
the image can be published by loading the image onto a FSM
attice (e.g., the FSM lattice 30).

In an example, an 1mage can be loaded onto the FSM
lattice 30 by either directly loading the bit values from the
image to the STEs 34, 36 and other hardware elements or by
loading the 1mage 1nto one or more registers and then writing
the bit values from the registers to the STEs 34, 36 and other
hardware elements. In an example, the hardware elements
(e.g., STEs 34, 36, special purpose elements 58, configu-
rable switching elements 40, 42, 44) of the FSM lattice 30
are memory mapped such that a configuring device and/or
computer can load the image onto the FSM lattice 30 by
writing the 1image to one or more memory addresses.

Method examples described herein can be machine or
computer-implemented at least 1n part. Some examples can
include a computer-readable medium or machine-readable
medium encoded with instructions operable to configure an
clectronic device to perform methods as described in the
above examples. An implementation of such methods can
include code, such as microcode, assembly language code,
a higher-level language code, or the like. Such code can
include computer readable 1nstructions for performing vari-
ous methods. The code may form portions of computer
program products. Further, the code may be tangibly stored
on one or more volatile or non-volatile computer-readable
media during execution or at other times. These computer-
readable media may include, but are not limited to, hard
disks, removable magnetic disks, removable optical disks
(e.g., compact disks and digital video disks), magnetic
cassettes, memory cards or sticks, random access memories
(RAMSs), read only memornes (ROMs), and the like.

Referring now to FIG. 9, an embodiment of the state
machine engine 14 (e.g., a single device on a single chip) 1s
illustrated. As previously described, the state machine
engine 14 1s configured to receive data from a source, such
as the memory 16 over a data bus. In the illustrated embodi-
ment, data may be sent to the state machine engine 14
through a bus interface, such as a double data rate (DDR)
bus interface 130. The bus interface 130 may be of type
double data rate three (DDR3), double data rate four
(DDR4), or the like. The DDR bus interface 130 may be
capable of exchanging (e.g., providing and receiving) data at
a rate greater than or equal to 1 GByte/sec. Such a data
exchange rate may be greater than a rate that data 1s analyzed
by the state machine engine 14. As will be appreciated,
depending on the source of the data to be analyzed, the bus
interface 130 may be any suitable bus interface for exchang-
ing data to and from a data source to the state machine
engine 14, such as a NAND Flash interface, peripheral
component mterconnect (PCI) interface, gigabit media inde-
pendent interface (GMMI), etc. As previously described, the
state machine engine 14 includes one or more FSM lattices
30 configured to analyze data. Each FSM lattice 30 may be
divided into two half-lattices. In the 1llustrated embodiment,

cach half lattice may include 24K STEs (e.g., STEs 34, 36),
such that the lattice 30 includes 48K STEs. The lattice 30
may comprise any desirable number of STEs, arranged as
previously described with regard to FIGS. 2-5. Further,
while only one FSM lattice 30 i1s illustrated, the state
machine engine 14 may include multiple FSM lattices 30, as
previously described.

Data to be analyzed may be received at the bus interface
130 and provided to the FSM lattice 30 through a number of
buffers and bufler interfaces. In the illustrated embodiment,

US 10,789,182 B2

17

the data path includes input buflers 132, an instruction bufler
133, process butlers 134, and an inter-rank (IR) bus and
process bufler interface 136. The mput buflers 132 are
configured to receive and temporarily store data to be
analyzed. In one embodiment, there are two input buflers
132 (input buller A and input builer B). Data may be stored
in one of the two data iput bullers 132, while data 1s being
emptied from the other input bufler 132, for analysis by the
FSM lattice 30. The bus mterface 130 may be configured to
provide data to be analyzed to the input buflers 132 until the
input buifers 132 are full. After the mput butlers 132 are full,
the bus interface 130 may be configured to be free to be used
for other purpose (e.g., to provide other data from a data
stream until the mput builers 132 are available to receive
additional data to be analyzed). In the 1illustrated embodi-
ment, the mput builers 132 may be 32 KBytes each. The
instruction bufler 133 1s configured to receive instructions
from the processor 12 via the bus interface 130, such as
istructions that correspond to the data to be analyzed and
instructions that correspond to configuring the state machine
engine 14.

The IR bus and process builer interface 136 may facilitate
providing data to the process builer 134. The IR bus and
process buller interface 136 can be used to ensure that data
1s processed by the FSM lattice 30 in order. The IR bus and
process buller interface 136 may coordinate the exchange of
data, timing data, packing instructions, etc. such that data 1s
received and analyzed correctly. Generally, the IR bus and
process buller interface 136 allows the analyzing of multiple
data sets 1n parallel through a logical rank of FSM lattices
30. For example, multiple physical devices (e.g., state
machine engines 14, chips, separate devices) may be
arranged 1n a rank and may provide data to each other via the
IR bus and process buller interface 136. For purposes of this
application the term “rank™ refers to a set of state machine
engines 14 connected to the same chip select. In the 1llus-
trated embodiment, the IR bus and process builer interface
136 may include a 32 bit data bus. In other embodiments, the
IR bus and process bufler interface 136 may include any
suitable data bus, such as a 128 bit data bus.

In some 1instances, because physical devices 1n a rank
share a common DDR bus interface 130, the same internal
address of different physical devices included 1n a rank may
be accessed with a read or write command from the pro-
cessor 12 (e.g., host). However, oftentimes desired data 1s
located at diflerent addresses 1n memory (e.g., the event
vector memory 150, the half lattice 30, the state vector
memory buller 144, or the like) from physical device (e.g.,
chip, the state machine engine 14) to physical device 1n a
rank. Thus, for scheduling efliciency and improved through-
put, it may be desireable to perform concurrent reads or
concurrent writes to different internal addresses of different
physical devices included 1n a rank or in different ranks.

Accordingly, some embodiments of the present disclosure
may include an Indirect Address Storage (IAS) 131 that
allows for accessing unique addresses on different physical
devices with reduced DDR bus cycles. The IAS 131 may be
a non-transitory, tangible computer readable medium (e.g.,
medium), a register, a bufler, or the like. The IAS 131 may
be included and used by the DDR bus interface 130. The IAS
131 may be accessible with standard DRAM commands and
the IAS 131 may be akin to an extended address space of the
DDR bus mterface 130. The IAS 131 may be imitially set up
by the processor 12 and may be written with unique row and
column addresses (e.g., diflerent addresses than the
addresses provided by a direct address storage 140 (DAS)).
After set up, the use of the IAS 131 may be transparent to

10

15

20

25

30

35

40

45

50

55

60

65

18

the processor 12. In other words, the processor 12 may 1ssue
DRAM commands as normal to the DDR bus interface 130,
but the DDR bus interface 130 controls which address of
memory (e.g., the event vector memory 150, the half lattice
30, the state vector memory bufller 144, or the like) 1s
selected by using Indirect Actions 1ssued by a processor 135
internal to the DDR bus interface 130. In some embodi-
ments, the processor 135 may be located external from the
DDR bus interface 130, such as 1n the state machine engine
14. Further, after activation and initial setup of the addresses
in the IAS 131, a selected indirect address of the IAS 131
may be automatically incremented in subsequent DDR bus
cycles. It should be noted that, in some embodiments, the
IAS 131 may be accessible via direct memory access
(DMA) independent of the processor 12.

As may be appreciated, adding the IAS 131 to each
physical device (e.g., state machine engine 14, chip) may
allow for accessing different memory addresses on different
physical devices. That 1s, 1n some embodiments, different
memory addresses on diflerent physical devices 1n a rank
may be accessed during the same DDR bus cycle. Thus, the
use of the IAS 131 and a multiplexer (MUX) 137 may allow
for controlling which area of any memory included in the
state machine engine 14 1s provided. The MUX 137 may be
a two to one MUX that outputs one of two input addresses
to be preloaded 1n each of the state machine engines 14 in
a rank prior to or in conjunction with a command from the
processor 12 being executed. This may prevent reading or
writing extraneous data because the disclosed techniques are
capable of reading from or writing to different addresses 1n
different physical devices during a single DDR bus cycle,
which may reduce the number of total DDR bus cycles
executed to read the desired data or write the desired data.

To 1illustrate, 1n instances where just the DDR bus inter-
face address space (e.g., 1n the DAS 140) 1s available,
numerous DDR bus cycles would need to be executed to
access diflerent addresses on different chips because just one
address could be accessed on all of the physical devices
during each bus cycle due to the shared direct address space
provided by the DDR bus interface 130. Instead, as dis-
cussed further below, an indirect mode of operation that uses
the IAS 131 and the Indirect Action can access diflerent
desired addresses on different physical devices with one
command from the processor 12 and the same DDR bus
cycle. For example, a first address can be used to program
a change 1n a symbol response memory (e.g., programs the
STEs 34, 36 with the desired symbols to respond to during
analysis) included 1 the FSM lattice 30 on one physical
device during one DDR bus cycle and a second address can
be used to program the same change in the symbol response
memory included 1n the FSM lattice 30 of a second physical
device during the same DDR bus cycle. Thus, the disclosed
techniques may allow for the same data to be written to or
read from different memory locations 1n separate physical
devices with reduced DDR bus cycles.

Further, the disclosed techniques may also allow for
determining whether a particular physical device 1s going to
respond to a command or not and/or whether an indirect
address included 1n the IAS 131 or a direct address included
in the DAS 140 1s accessed for each physical device. In some
embodiments, the physical devices may respond to an Indi-
rect Action based on whether an enable bit 1s set. The enable
bit may be implemented 1n a number of different ways. For
example, 1n one embodiment, the enable bit may be part of
the IAS 131. An advantage to including the enable bit as part
of the TIAS 131 1s that just one write command from the
processor 12 or the processor 135 may be used to set the

US 10,789,182 B2

19

indirect addresses of the IAS 131 and the enable bit of the
IAS 131. In another embodiment, the enable bit may be a
mode register bit included 1n the DDR bus interface 130.
Additionally or alternatively, a different register bit of the
DDR bus mterface 130 may be used as the enable bit to
allow for use of the TAS 131. In another embodiment, the
cnable bit may use a high order address bit similar to
auto-precharge. In another embodiment, the enable bit may
be a bit included 1n a control register of the DDR bus
interface 130. In some embodiments, the enable bit may be
set (e.g., 1) and deselected (e.g., 0) via the processor 135 of
the DDR bus interface 130 or via the processor 12. The
cnable bit may control whether the indirect address 1n the
IAS 131 1s transmitted by the MUX 137.

Further, the Indirect Action may be 1ssued by the proces-
sor 135 of the DDR bus interface 130 and may control the
MUX 137 to switch to an output of the IAS 131 (e.g., when
the Indirect Action includes a certain bit set to 1). The
Indirect Action may also control the MUX 137 to switch to
an output of the DAS 140 (e.g., when the Indirect Action
includes a certain bit set to 0). Further, the processor 1335
may control the MUX 137 to switch between transmitting an
output of the IAS 131 and the DAS 137. In some embodi-
ments, the Indirect Action may be stored mn an address
location included 1n the IAS 131, and the processor 135 may
access the Indirect Action address 1n the IAS 131 to 1ssue the
Indirect Action. It should be noted that the enable bit,
Indirect Action, the IAS 131, and/or the MUX 137 may
allow for at least three different modes of operation. In a first
mode of operation (e.g., direct mode of operation), the MUX
137 1s set to the DAS 140 of the DDR bus interface 130 that
includes one or more direct addresses and the MUX 137
transmits the direct address output by the DAS 140 for
loading by the state machine engine 14 (e.g., via the IR bus
and process bufller interface 136). In a second mode of
operation (e.g., indirect mode of operation), the enable bit 1s
set (e.g., 1) and an Indirect Action 1s 1ssued that causes the
MUX 137 to switch to transmitting the output from the IAS
131 (e.g., indirect address space) for loading by the state
machine engine 14 (e.g., via the IR bus and process bufler
interface 136). In a third mode of operation, the enable bit
1s deselected (e.g., 0) and an Indirect Action 1s i1ssued that
causes the MUX 137 to switch to transmitting the output
from the IAS 131, which may provide an artificial (e.g.,
“dummy”) address or ignore the Indirect Action and do
nothing. Thus, each physical device in a rank may be loaded
with the direct address from the DAS 140 or the indirect
address from the IAS 131 at which to perform the command
from the 1nstruction builter 133 or the processor 12, or each
physical device 1n a rank may 1gnore the Indirect Action or
load a dummy address at which to perform the command. As
may be appreciated, such techniques may allow some physi-
cal devices to concurrently read from or write to different
memory addresses on different physical devices, while also
allowing some physical devices to 1gnore (e.g., not execute)
certain commands.

For example, the MUX 137 may be mnitially set to output
the direct address from the DAS 140 to a first physical
device out of eight total physical devices 1n a rank. The
processor 135 may set the enable bit in the IAS 131 and 1ssue
the Indirect Action to cause the MUX 137 to switch to
transmit the indirect address output from the IAS 131 to a
second physical device out of the eight total physical devices
in the rank. Further, the processor 135 may deselect the
enable bit and 1ssue the Indirect Action so that the other six
physical devices load a dummy address or 1gnore the Indi-
rect Action. When the DDR bus interface 130 receives a

10

15

20

25

30

35

40

45

50

55

60

65

20

command from the instruction bufler 133 or the processor
12, the first physical device may read to or write from the
loaded direct address based on the command, the second
physical device may read to or write from the loaded indirect
address (different than the direct address) based on the
command, and, at the same time, the other six physical
devices may 1gnore the Indirect Action output and, thus, the
command. It should be noted, that all eight of the physical
devices may alternatively execute the same command during
the same DDR bus cycle.

In some embodiments, the indirect mode of operation
may be triggered when the processor 135 sets the enable bit
included 1n the IAS 131 and issues the Indirect Action that
causes the MUX 137 to switch to outputting the indirect
address from the IAS 131. An “action” may refer to an
activity completed during a DDR bus cycle as used herein.
The actions may 1include data transfers to or from the buflers
of the state machine engine 14 and reads or writes to or from
the registers of the state machine engine 14. In contrast, an
“instruction” 1s a segment ol code that may be decoded and
executed by a processor of the state machine engine 14.
Further, instructions are typically executed based on a
scheduling algorithm, such as first i first out (FIFO).
Actions may be beneficial over 1nstructions as they are not
decoded and may improve scheduling efliciency by using
the DDR bus cycles (e.g., not dependent on FIFO or the
like). In some embodiments, the actions may be 1nitiated by
the host.

When the Indirect Action 1s 1ssued by the processor 135
and the enable bit 1s set, the multiplexer (MUX) 137 may
switch to transmitting the indirect address from the IAS 131
so the mdirect address may be loaded to the state machine
engine 14 (e.g., via the IR bus and process buller interface
136) during the DDR bus cycle. For example, when the
enable bit 1s set, the Indirect Action may cause the MUX 137
to switch to transmitting the indirect address for activate,
write, read, and/or precharge commands by outputting the
indirect address to the IR bus and process bufler interface
136. However, when the enable bit 1n the IAS 131 1s not set
(c.g., deselected) and the Indirect Action 1s 1ssued by the
processor 133, the Indirect Action may be 1gnored (e.g., not
executed), the dummy address may be provided to the MUX
137 by the IAS 131, or some other behavior may be
executed. Thus, setting the enable bit may also set which
address the MUX 137 outputs for loading into the state
machine engine 14 (e.g., via the IR bus and process bufler
interface 136). In this way, the addresses (e.g., direct,
indirect, or artificial) may be transmitted to the state machine
engine 14 for loading so that the same command from the
host processor 12 may be read from or write to potentially
different addresses of state machine engines 14 concurrently
in the same DDR bus cycle.

In some embodiments, the IAS 131 may be accessed with
normal activate, write, read, and/or precharge DRAM com-
mands from the processor 12. As previously discussed, the
IAS 131 1s a reserved address space for indirect addresses
and 1s set up by the processor 12 or the processor 135 of the
DDR bus interface 130. The processor 12 or the processor
135 may write the IAS 131 with unique indirect row and
indirect column addresses. The IAS 131 may store the
indirect addresses (e.g., indirect row and indirect column
address), the enable bit, and/or an Indirect Action address.

It should be appreciated that using the Indirect Action and
setting/deselecting the enable bit in the IAS 131 may allow
for reading data from or writing data to diflerent addresses
in different physical devices 1n a rank with a single burst of
data. That 1s, the disclosed techniques may load different

US 10,789,182 B2

21

addresses 1n the state machine engines 14 and read the same
instruction (e.g., command from the processor 12 or the
instruction bufler 133) into the different addresses for con-
current reads and/or writes to the different addresses based
on the mstruction. For example, diflerent state vectors may
be read from diflerent addresses in diflerent state vector
memory builers 144 of different state machine engines 14 by
using the IAS 131 durning the same DDR bus cycle. Accord-
ingly, using the disclosed techniques may setup accessing
different addresses on different physical devices with
reduced DDR bus cycles, which may improve scheduling
clliciency and data throughput.

In the illustrated embodiment, the state machine engine
14 also includes a de-compressor 141 to aid 1n providing
state vector data through the state machine engine 14. The
de-compressor 141 may decompress any state vector data
that 1s compressed and passing through the state machine
engine 14. In some instances, compressing the state vector
data may minimize the bus utilization time. The de-com-
pressor 141 can also be configured to handle state vector
data of varying burst lengths. The de-compressor 141 may
be used to decompress results data after analysis by the FSM
lattice 30, configuration data, or the like. In one embodi-
ment, the de-compressor 141 may be disabled (e.g., turned
ofl) such that data flowing to and/or from the de-compressor

41 1s not modified.

As previously described, an output of the FSM lattice 30
can comprise a state vector. The state vector comprises the
state (e.g., activated or not activated) of the STEs 34, 36 of
the FSM lattice 30 and the dynamic (e.g., current) count of
the counter 58. The state machine engine 14 includes a state
vector system 142 having a state vector cache memory 143,
a state vector memory builer 144, a state vector intermediate
input bufler 146, and a state vector intermediate output
butler 148. The state vector system 142 may be used to store
multiple state vectors of the FSM lattice 30 and to provide
a state vector to the FSM lattice 30 to restore the FSM lattice
30 to a state corresponding to the provided state vector. For
example, each state vector may be temporarily stored in the
state vector cache memory 143. For example, the state of
cach STE 34, 36 may be stored, such that the state may be
restored and used 1n further analysis at a later time, while
freeing the STEs 34, 36 for turther analysis of a new data set
(e.g., search terms). Like a typical cache, the state vector
cache memory 143 allows storage of state vectors for quick
retrieval and use, here by the FSM lattice 30, for instance.
In the 1illustrated embodiment, the state wvector cache
memory 143 may store up to >12 state vectors.

As will be appreciated, the state vector data may be
exchanged between different state machine engines 14 (e.g.,
chips) 1n a rank. The state vector data may be exchanged
between the different state machine engines 14 for various
purposes such as: to synchronize the state of the STEs 34, 36
of the FSM lattices 30 of the state machine engines 14, to
perform the same functions across multiple state machine
engines 14, to reproduce results across multiple state
machine engines 14, to cascade results across multiple state
machine engines 14, to store a history of states of the STEs
34, 36 used to analyze data that 1s cascaded through multiple
state machine engines 14, and so forth. Furthermore, it
should be noted that within a state machine engine 14, the
state vector data may be used to quickly configure the STEs
34, 36 of the FSM lattice 30. For example, the state vector
data may be used to restore the state of the STEs 34, 36 to
an 1nitialized state (e.g., to prepare for a new nput data set),
or to restore the state of the STEs 34, 36 to prior state (e.g.,
to continue searching of an interrupted or “split” mput data

10

15

20

25

30

35

40

45

50

55

60

65

22

set). In certain embodiments, the state vector data may be
provided to the bus interface 130 so that the state vector data
may be provided to the processor 12 (e.g., for analysis of the
state vector data, reconfiguring the state vector data to apply
modifications, reconfiguring the state vector data to improve
clliciency of the STEs 34, 36, and so forth).

For example, 1n certain embodiments, the state machine
engine 14 may provide cached state vector data (e.g., data
stored by the state vector system 142) from the FSM lattice
30 to an external device. The external device may receive the
state vector data, modily the state vector data, and provide
the modified state vector data to the state machine engine 14
for configuring the FSM lattice 30. Accordingly, the external
device may modily the state vector data so that the state
machine engine 14 may skip states (e.g., jump around) as
desired.

The state vector cache memory 143 may receive state
vector data from any suitable device. For example, the state
vector cache memory 143 may receive a state vector from
the FSM lattice 30, another FSM lattice 30 (e.g., via the IR
bus and process bufler interface 136), the de-compressor
141, and so forth. In the illustrated embodiment, the state
vector cache memory 143 may receive state vectors from
other devices via the state vector memory builer 144.
Furthermore, the state vector cache memory 143 may pro-
vide state vector data to any suitable device. For example,
the state vector cache memory 143 may provide state vector
data to the state vector memory bufler 144, the state vector
intermediate input bufler 146, and the state vector interme-
diate output builer 148.

Additional butlers, such as the state vector memory butler
144, state vector intermediate input bufler 146, and state
vector mtermediate output bufler 148, may be utilized in
conjunction with the state vector cache memory 143 to
accommodate rapid retrieval and storage of state vectors,
while processing separate data sets with interleaved packets
through the state machine engine 14. In the illustrated
embodiment, each of the state vector memory builer 144, the
state vector intermediate mput bufler 146, and the state
vector intermediate output buller 148 may be configured to
temporarily store one state vector. The state vector memory
builer 144 may be used to receive state vector data from any
suitable device and to provide state vector data to any
suitable device. For example, the state vector memory butler
144 may be used to receive a state vector from the FSM
lattice 30, another FSM lattice 30 (e.g., via the IR bus and
process buller interface 136), the de-compressor 141, and
the state vector cache memory 143. As another example, the
state vector memory buller 144 may be used to provide state
vector data to the IR bus and process builer interface 136
(e.g., for other FSM lattices 30), the compressor 140, and the
state vector cache memory 143.

Likewise, the state vector intermediate mput bufler 146
may be used to receive state vector data from any suitable
device and to provide state vector data to any suitable
device. For example, the state vector intermediate input
bufler 146 may be used to receive a state vector from an
FSM lattice 30 (e.g., via the IR bus and process builler
interface 136), the de-compressor 141, and the state vector
cache memory 143. As another example, the state vector
intermediate input bufler 146 may be used to provide a state
vector to the FSM lattice 30. Furthermore, the state vector
intermediate output butler 148 may be used to receive a state
vector from any suitable device and to provide a state vector
to any suitable device. For example, the state vector inter-
mediate output builer 148 may be used to receive a state
vector from the FSM lattice 30 and the state vector cache

US 10,789,182 B2

23

memory 143. As another example, the state vector interme-
diate output builer 148 may be used to provide a state vector
to an FSM lattice 30 (e.g., via the IR bus and process bufler
interface 136) and the compressor 140.

Once a result of interest 1s produced by the FSM lattice
30, an event vector may be stored 1n a event vector memory
150, whereby, for example, the event vector indicates at least
one search result (e.g., detection of a pattern of interest). In
some embodiments, the event vector can then be sent to an
event builer 152 for transmission over the bus interface 130
to the processor 12, for example. The event vector memory
150 may include two memory elements, memory element A
and memory element B, each of which contains the results
obtained by processing the input data in the corresponding
input bullers 132 (e.g., mput buller A and 1nput bufler B). In
one embodiment, each of the memory elements may be
DRAM memory elements or any other suitable storage
devices. In some embodiments, the memory elements may
operate as 1nitial bullers to bufler the event vectors received
from the FSM lattice 30, along results bus 151. For example,
memory element A may recerve event vectors, generated by
processing the mput data from input budl

er A, along results
bus 151 from the FSM lattice 30. Similarly, memory element
B may receive event vectors, generated by processing the
input data from input buller B, along results bus 151 from
the FSM lattice 30.

In one embodiment, the event vectors provided to the
results memory 150 may indicate that a final result has been
found by the FSM lattice 30. For example, the event vectors
may indicate that an entire pattern has been detected. Alter-
natively, the event vectors provided to the results memory
150 may indicate, for example, that a particular state of the
FSM lattice 30 has been reached. For example, the event
vectors provided to the results memory 150 may indicate
that one state (1.e., one portion of a pattern search) has been
reached, so that a next state may be mitiated. In this way, the
event vector 150 may store a variety of types of results.

In some embodiments, IR bus and process buller interface
136 may provide data to multiple FSM lattices 30 for
analysis. This data may be time multiplexed. For example,
if there are eight FSM lattices 30, data for each of the eight
FSM lattices 30 may be provided to all of eight IR bus and
process buller interfaces 136 that correspond to the eight
FSM lattices 30. Each of the eight IR bus and process buller
interfaces 136 may receive an entire data set to be analyzed.
Each of the eight IR bus and process bufler interfaces 136
may then select portions of the entire data set relevant to the
FSM lattice 30 associated with the respective IR bus and
process buller interface 136. This relevant data for each of
the eight FSM lattices 30 may then be provided from the
respective IR bus and process bufler interfaces 136 to the
respective FSM lattice 30 associated therewith.

The event vector 150 may operate to correlate each
received result with a data input that generated the result. To
accomplish this, a respective result indicator may be stored
corresponding to, and 1n some embodiments, 1n conjunction
with, each event vector received from the results bus 151. In
one embodiment, the result indicators may be a single bit
flag. In another embodiment, the result indicators may be a
multiple bit flag. If the result indicators may include a
multiple bit tlag, the bit positions of the flag may indicate,
for example, a count of the position of the mput data stream
that corresponds to the event vector, the lattice that the event
vectors correspond to, a position 1n set of event vectors, or
other 1dentitying information. These results indicators may
include one or more bits that identily each particular event
vector and allow for proper grouping and transmission of

10

15

20

25

30

35

40

45

50

55

60

65

24

event vectors, for example, to compressor 140. Moreover,
the ability to identily particular event vectors by their
respective results indicators may allow for selective output
of desired event vectors from the event vector memory 150.
For example, only particular event vectors generated by the
FSM lattice 30 may be selectively latched as an output.
These result indicators may allow for proper grouping and
provision ol results. Moreover, the ability to i1dentily par-
ticular event vectors by their respective result indicators
allow for selective output of desired event vectors from the
result memory 1350. Thus, only particular event vectors
provided by the FSM lattice 30 may be selectively provided
to the event buller 152.

Additional registers and builers may be provided in the
state machine engine 14, as well. In one embodiment, for
example, a buller may store information related to more than
one process whereas a register may store information related
to a single process. For instance, the state machine engine 14
may 1nclude control and status registers 154. In addition, a
program buller system (e.g., restore bullers 156) may be
provided for mitializing the FSM lattice 30. For example,
initial (e.g., starting) state vector data may be provided from
the program bufler system to the FSM lattice 30 (e.g., via the
de-compressor 141). The de-compressor 141 may be used to
decompress configuration data (e.g., state vector data, rout-
ing switch data, STE 34, 36 states, Boolean function data,
counter data, match MUX data) provided to program the
FSM lattice 30.

Similarly, a repair map buller system (e.g., save bullers
158) may also be provided for storage of data (e.g., save
maps) for setup and usage. The data stored by the repair map
bufler system may include data that corresponds to repaired
hardware elements, such as data 1dent1fy1ng which STEs 34,
36 were repaired. The repair map builer system may receive
data via any suitable manner. For example, data may be
provided from a “fuse map” memory, which provides the
mapping of repairs done on a device during final manufac-
turing testing, to the save buflers 158. As another example,
the repair map bufler system may include data used to
modily (e.g., customize) a standard programming file so that
the standard programming file may operate in a FSM lattice
30 with a repaired architecture (e.g., bad STEs 34, 36 1n a
FSM lattice 30 may be bypassed so they are not used). As
illustrated, the bus interface 130 may be used to provide data
to the restore bullers 156 and to provide data from the save
buflers 158. As will be appreciated, the data provided to the
restore bullers 156 may be compressed. In some embodi-
ments, data 1s provided to the bus interface 130 and/or
received from the bus iterface 130 via a device external to
the state machine engine 14 (e.g., the processor 12, the
memory 16, the compiler 20, and so forth). The device
external to the state machine engine 14 may be configured
to recerve data provided from the save buflers 158, to store
the data, to analyze the data, to modily the data, and/or to
provide new or modified data to the restore buflers 156.

The state machine engine 14 includes a lattice program-
ming and 1nstruction control system 159 used to configure
(e.g., program) the FSM lattice 30 as well as provide
inserted instructions, as will be described in greater detail
below. In some embodiments, the processor 135 may be
included 1n the lattice programming and instruction control
system 159. As illustrated, the lattice programming and
instruction control system 139 may receive data (e.g., con-
figuration instructions) from the instruction bufler 133.
Furthermore, the lattice programming and instruction con-
trol system 159 may receive data (e.g., configuration data)
from the restore buflers 156. The lattice programming and

US 10,789,182 B2

25

instruction control system 159 may use the configuration
instructions and the configuration data to configure the FSM
lattice 30 (e.g., to configure routing switches, STEs 34, 36,
Boolean cells, counters, match MUX) and may use the
inserted 1nstructions to correct errors during the operation of
the state machine engine 14. The lattice programming and
instruction control system 139 may also use the de-com-
pressor 141 to de-compress data.

FIG. 10 illustrates a flow chart of a method 160 for

reading from an indirect address 1n the state machine engine
14. Although the following description of the method 160 1s
described with reference to the host 12, the processor 135,
the DDR bus interface 130, and the state machine engine 14,
it should be noted that the method 160 may be performed by
other components included in the system 10. Additionally,
although the following method 160 describes a number of
operations that may be performed, 1t should be noted that the
method 160 may be performed 1n a variety of suitable orders
and all of the operations may not be performed. In some
embodiments, the method 160 may be partially or wholly
implemented 1n hardware components. Additionally or alter-
natively, the method 160 may be implemented as computer
instructions stored on a memory and executed by a proces-
sor. It should be understood that the method 160 may occur
after the host 12 or the processor 135 sets up the indirect row
and indirect column addresses and/or sets/deselects the
enable bit of the IAS 131.

Referring now to the method 160, the DDR bus interface
130 may receive a read command from the host processor 12
(block 162). The processor 135 of the DDR bus interface
130 may 1ssue an Indirect Action (block 163) by accessing
the address of the Indirect Action in the IAS 131. The
Indirect Action may cause the MUX 137 to switch to
transmitting the output of the IAS 131. It should be noted
that, in some embodiments, the Indirect Action may not be
issued by the processor 135 and the MUX 137 may be set to
transmit the direct address from the DAS 140 of the DDR
bus imterface 130 1n one or more of the state machine
engines 14 in a rank. When the Indirect Action 1s 1ssued, the
IAS 131 may determine whether the enable bit 1s set (block
164). It the enable bit 1s set, then the processor 135 may
activate the indirect row address 1n the IAS 131 (block 166),
i not already activated, during the activate command of the
Indirect Action. Also, when the enable bit 1s set, the Indirect
Action may cause the MUX 137 to switch to transmit a
desired indirect column address for loading in the state
machine engine 14 (block 168). In some embodiments, the
processor 12 may 1ssue the Indirect Action to the DDR bus
interface 130. Once the desired indirect column address 1s
loaded, the state machine engine 14 may execute the read
command from the loaded indirect column address (block
170). Further, the accessed indirect address 1n the IAS 131
may be automatically incremented (block 172). Any subse-
quent read commands sent by the processor 12 to the DDR
bus itertace 130 or from the instruction bufler 133 are made
from the internally incremented indirect addresses.

If the enable bit 1s not set 1n the IAS 131, then the DDR
bus mterface 130 may execute some other action or behavior
(block 174). For example, when the enable bit 1s not set, the
Indirect Action may be 1gnored (e.g., not executed) or the
IAS 131 may provide artificial or “dummy” addresses to the
MUX 137, which transmits the dummy addresses for load-
ing into the state machine engine 14 (e.g., via the IR bus and
process buller interface 136). As may be appreciated, the
method 160 may be performed by other state machine
engines 14 included m a rank such that different state

5

10

15

20

25

30

35

40

45

50

55

60

65

26

machine engines 14 1n the rank provide access to different
indirect addresses or direct addresses with reduced DDR bus
cycles.

FIG. 11 1llustrates a flow chart of a method 180 for writing,
to an indirect address i1n the state machine engine 14.
Although the following description of the method 180 1s
described with reference to the host 12, the processor 135,
the DDR bus interface 130, and the state machine engine 14,
it should be noted that the method 180 may be performed by
other components included in the system 10. Additionally,
although the following method 180 describes a number of
operations that may be performed, 1t should be noted that the
method 180 may be performed 1n a variety of suitable orders
and all of the operations may not be performed. In some
embodiments, the method 180 may be partially or wholly
implemented 1n hardware components. Additionally or alter-
natively, the method 180 may be implemented as computer
instructions stored on a memory and executed by a proces-
sor. It should be understood that the method 180 may occur

alter the host 12 or the processor 135 sets up the indirect row
and indirect column addresses and/or sets/deselects the
cnable bit of the IAS 131.

Referring now to the method 180, the DDR bus interface
130 may recerve a write command from the host processor
12 (block 182). The processor 135 of the DDR bus interface
130 may 1ssue an Indirect Action (block 183) by accessing,
the address of the Indirect Action in the IAS 131. The
Indirect Action may cause the MUX 137 to switch to
transmitting the indirect address from the IAS 131. It should
be noted that, 1n some embodiments, the Indirect Action may
not be 1ssued by the processor 135 and the MUX 137 may
be set to transmit the direct address from the DAS 140 for
loading 1nto one or more of the state machine engines 14 1n
a rank. When the Indirect Action 1s 1ssued, the IAS 131 may
determine whether the enable bit 1s set (block 184). If the
enable bit 1s set, then the processor 135 may activate the
indirect row address 1n the IAS 131 (block 186), if not
already activated, during the activate command of the Indi-
rect Action. Also, when the enable bit 1s set, the Indirect
Action may cause the MUX 137 to transmit the desired
indirect column address for loading into the state machine
engine 14 (block 188). In some embodiments, the processor
12 may 1ssue the Indirect Action to the DDR bus interface
130. Once the desired indirect column address 1s loaded, the
state machine engine 14 may execute the write command to
the indirect column address (block 190). Further, the
accessed 1ndirect address may be automatically incremented
(block 172). Any subsequent write commands sent by the
processor 12 to the DDR bus interface 130 or from the
instruction bufler 133 are made to the internally incremented
indirect addresses. That 1s, using the IAS 131 may entail
using sequential imdirect addresses.

If the enable bit 1s not set in the IAS 131, then the DDR
bus interface 130 may execute some other action or behavior
(block 194). For example, when the enable bit 1s not set, the
Indirect Action may be ignored (e.g., not executed) or the
IAS 131 may provide artificial or “dummy’” addresses to the
MUX 137, which transmits them to the state machine engine
14 for loading. As may be appreciated, the method 180 may
be performed by other state machine engines 14 included in
a rank such that different state machine engines 14 1n the
rank provide access to different indirect addresses or the
direct addresses with reduced DDR bus cycles.

While the invention may be susceptible to various modi-
fications and alternative forms, specific embodiments have
been shown by way of example 1n the drawings and have
been described in detail herein. However, 1t should be

US 10,789,182 B2

27

understood that the invention 1s not intended to be limited to
the particular forms disclosed. Rather, the mvention 1s to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention as defined by the
following appended claims.

What 1s claimed 1s:

1. A system, comprising:

a rank of state machine engines (SMEs) configured to be
selected via a common chip select signal, wherein each
state machine engine (SME) of the rank of SMEs 1s
configured to analyze data via a plurality of configu-
rable elements disposed 1n common locations in each
SME of the rank of SMFs; and

a host coupled to the rank of SMEs and configured to
transmit a command to the rank of SMEs 1n a bus cycle,
wherein a first SME of the rank of SMEs 1s configured
to execute the command 1n conjunction with a first
address referencing a first location of the common
locations 1n the bus cycle, wherein a second SME of the
rank of SMEs 1s configured to execute the command in
conjunction with a second address referencing a second
location of the common locations differing from the
first location of the common locations in the bus cycle.

2. The system of claim 1, wherein a third SME of the rank
of SMEs 1s configured to ignore the command in conjunc-
tion with the second address referencing the second location
of the common locations differing from the first location of
the common locations 1n the bus cycle.

3. The system of claim 1, wherein a third SME of the rank
of SMEs 1s configured to execute the command 1n conjunc-
tion with a third address as a dummy address differing from
the address referencing the second location of the common
locations and diflering from the first location of the common
locations 1n the bus cycle.

4. The system of claim 3, comprising an indirect address
storage (IAS) coupled to the rank of SMEs and configured

to store and transmit the second address to the second SME
of the rank of SMEs.

5. The system of claim 4, wherein the IAS 1s configured
to store and transmit the third address to the third SME of the
rank of SMEs.

6. The system of claim 1, comprising a direct address
storage (DAS) coupled to the rank of SMEs and configured
to store and transmit the first address to the first SME of the
rank of SME:s.

7. The system of claim 1, wherein the host 1s configured
to select the rank of SMEs via transmission of the common
chip select signal.

8. A method, comprising:

selecting a rank of state machine engines (SMEs) wherein

cach state machine engine (SME) of the rank of SMEs
1s configured to analyze data via a plurality of configu-
rable elements disposed 1n common locations in each
SME of the rank of SMEs via a common chip select
signal;

receiving a command at the rank of SMEs 1n a bus cycle;

executing the command via a first SME of the rank of

SMESs 1n conjunction with a first address referencing a
first location of the common locations in the bus cycle;
and

executing the command via a second SME of the rank of

SMEs 1n conjunction with a second address referencing
a second location of the common locations differing
from the first location of the common locations 1n the
bus cycle.

10

15

20

25

30

35

40

45

50

55

60

28

9. The method of claim 8, comprising 1gnoring the com-
mand via a third SME of the rank of SMEs in conjunction
with the second address referencing the second location of
the common locations differing from the first location of the
common locations 1n the bus cycle.

10. The method of claim 8, comprising executing the
command via a third SME of the rank of SMEs 1n conjunc-
tion with a third address as a dummy address differing from
the address referencing the second location of the common

locations and diflering from the first location of the common
locations 1n the bus cycle.

11. The method of claim 10, comprising storing and
transmitting the second address to the second SME of the
rank of SMEs via an indirect address storage (IAS) coupled
to the rank of SMEs.

12. The method of claim 11, comprising storing and
transmitting the third address to the third SME of the rank
of SMEs via the IAS.

13. The method of claim 8, comprising storing and
transmitting the first address to the first SME of the rank of
SMEs via a direct address storage (DAS) coupled to the rank

of SMEs.
14. The method of claim 8, comprising transmitting a

common chip select signal from a host to select the rank of
SMEs.

15. A system, comprising:
a rank of state machine engines (SMEs), wherein each
state machine engine (SME) of the rank of SMEs 1s

configured to analyze data via a plurality of configu-

rable elements disposed in common locations 1n each
SME of the rank of SMEs;

a direct address storage (DAS) coupled to the rank of

SMEs and configured to store and transmit a first
address referencing a first location of the common

locations to a first SME of the rank of SMEs 1n a bus
cycle; and

an indirect address storage (IAS) coupled to the rank of

SMEs and configured to store and transmit a second
address referencing a second location of the common
locations to a second SME of the rank of SMEs 1n the
bus cycle.

16. The system of claim 15, wherein the first SME of the
rank of SMEs 1s configured receive the first address and
execute a command 1n conjunction with the first address 1n
the bus cycle.

17. The system of claim 16, wherein the second SME of
the rank of SMEs 1s configured receive the second address
and execute the command 1n conjunction with the second
address 1n the bus cycle.

18. The system of claim 17, wherein a third SME of the
rank of SMEs 1s configured to ignore the command in
conjunction with the second address referencing the second
location of the common locations differing from the first
location of the common locations 1n the bus cycle.

19. The system of claim 17, wherein the IAS 1s configured
to store and transmit a third address referencing a dummy
location differing from each of the first location and the
second location of the common locations to a third SME of
the rank of SMEs 1n the bus cycle.

20. The system of claim 17, comprising a host coupled to

the IAS, wherein the host 1s configured to 1nitially configure
the IAS.

	Front Page
	Drawings
	Specification
	Claims

