US010789173B2

a2y United States Patent (10) Patent No.: US 10,789,173 B2

Loreskar et al. 45) Date of Patent: Sep. 29, 2020
(54) INSTALLING OR UPDATING SOFTWARE (56) References Cited
USING ADDRESS LAYOUT VARYING B
PROCESS U.S. PATENT DOCUMENTS
7,657,886 Bl1* 2/2010 Chenoovvviinin GO6F 8/65
(71) Applicant: Trustonic Limited, Cambridge (GB) 711/202
7,770,165 B2* 82010 Olson GO6F 9/44589
. . 717/168
(72) Inventors: Chris Loreskar, Cambridge (GB); 8,621,169 B2* 12/2013 Whitehouse GO6F 8/65
Nicholas Schutt, Cambridge (GB); T11/165
Thomas Nyman, Cambridge (GB) 9,147,070 B2* 9/2015 Panchenko GO6F 21/14
2010/0070549 Al1* 3/2010 Nagara] GO6F 7/58
: . . . : 708/254
(73) Assignee: Trustonic Limited, Cambridge (GB) 2016/0299765 AL* 10/2016 WesSie .oooorivvvoo.. GOGF 9/4401

(Continued)
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PURI ICATIONS
U.S.C. 154(b) by 20 days.

Segal, Mark E., and Ophir Frieder. “Dynamically updating distrib-
uted software: supporting change in uncertain and nustrustful

environnnents.”;Proceedings. Conference on Software Maintenance-
1989. IEEE, 1989.pp. 254-261 (Year: 1989).*
(22) Filed: Nov. 16, 2018 (Continued)

(21) Appl. No.: 16/192,920

(65) Prior Publication Data Primary Examiner — Satish Rampuria
US 2019/0155743 A1 Mav 23. 2019 (74) Attorney, Agent, or Firm — Nixon & Vandervhe P.C.
ay 23,

(57) ABSTRACT

(30) Foreign Application Priority Data A method 1s provided for installing or updating software on

an electronic device 2 comprising processing circuitry 4 and
Nov. 20, 2017 (GB) oo, 1719209.7 memory access circuitry 10 to control access to at least one
memory unit 6, 8 in response to physically-addressed
(51) Int. Cl. memory access requests 1ssued by the processing circuitry

GO6F 12/10 (2016.01) speciiying physical addresses from a physical address space.
GO6F 12/14 (2006.01) The method comprises performing an address layout varying
GO6F 21/57 (2013.01) process comprising: obtaining at least one seed value; 1n
(52) U.S. CL dependepce on the at least one seed value, selecting one of
CPC GOGF 12/10 (2013.01); GO6F 12/14 & Plurality ol soltware address layouts lor code or data

(2013.01): GOG6F 12/1408 (2013.01); GO6F associated ?Hi'[h the gofhvarej cach software address ltayout
21/575 (2013.01); GOGF 2212/1041 (2013.01): corrgspondmg to a different layout (:thhe code or d:-fl’[a 1n ’Ehe
’ GOGE 2212/1057 (2013.01)” physical address space; and triggering the electronic device

to write the code or data associated with the software to

locations of said at least one memory unit corresponding to

(58) Field of Classification Search

CPC i GO6F 12/10; GO6F 12/14 the selected software address layout.

USPC e, 717/168-178

See application file for complete search history. 18 Claims, 8 Drawing Sheets
50

obtain code/data o be |
instaiied/updated |
obtain at least one |
seed value 5

select software address.
AN layout depending on at
least one seed value

52

| Update PA references
56~1 Incode/data to correspand
| with selected software address
' layout

© wite codefdata to locations
in memory corresponding o selected
software address layout

' update expected authentication value

50\: for program authentication function
1o correspond with selected software
| address layout

nnnnnnnnnnnnnnnnnnnn

US 10,789,173 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2017/0286674 Al
2019/0114401 Al*

10/2017 Gathala et al.
4/2019 De ovviiiiiiiiininn, GO6F 21/125

OTHER PUBLICATIONS

Kallahalla, Mahesh, et al. “SoftUDC: A software-based data center
for utility connputing.”;Computer;37.11 (2004): pp. 38-46. (Year:
2004).*

Ruckebusch, Peter, et al. “Gitar: Generic extension for internet-of-
things architectures enabling dynamic updates of network and
application nnodules.”;Ad Hoc Networks;36 (2016): pp. 127-151.
(Year: 2016).*

Basdere, Bahadir, and Guenther Seliger. “Disassembly factories for
electrical and electronic products to recover resources in product

and material cycles.” Environmental science & technology 37.23
(2003): pp. 5354-5362. (Year: 2003).*

Whittaker, Steve, and Heinrich Schwarz. “Meetings of the board:
The impact of scheduling medium on long term group coordination

in software development.” Computer Supported Cooperative Work
(CSCW) 8.3 (1999): pp. 175-205. (Year: 1999).%

Niunimaki, Jaakko, and Jar1 Forsstrom. “Approaches for certifica-
tion of electronic prescription software.” International journal of

medical informatics 47.3 (1997): pp. 175-182. (Year: 1997).*
Combined Search and Examination Report for GB Application No.
1719209.7 dated May 8, 2018, 6 pages.

Extended European Search Report for EP Application No. 18206846.0
dated Apr. 12, 2019, 9 pages.

K. Braden et al, “Leakage-Resilient Layout Randomization for
Mobile Devices” NDSS *16, Feb. 21-24, 2016, pp. 1-15.

P. Larsen et al, “SoK: Automated Software Diversity” 2014 IEEE
Symposium on Security and Privacy, May 18, 2014, pp. 276-291.
A. Holler et al, “Patterns for Automated Software Diversity to

Support Security and Reliability” EuroPloP 15, Jul. 8-12, 2015, pp.
1-13.

* cited by examiner

S. Patent Sep. 29, 2020 Sheet 1 of 8 S 10,789,173 B2

L N N R

+ + + + + + F F F F F F A+ FFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFFE A FF + + + F+ + +F F F F F A+ FFFFEFFFEFEFEFEFFEFEFEFEFEFEFEFEFEFEEFEEF

instruction telchy
decods

+ + + + + F F F FFFFFFFFEFFEFEFEFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEEFEFEFEEFEEFE

DFOCESSINgG
0QIC

+ + + F + +F F F F FFFFFFFEFFFEFEFEFEFFEFEFFEFEFEFEFEFEFEEFEEF

+

+ +
+ + +
+

registers

+ + *+ + + F + + F F FFFFFFFFEFFEFEFFEFEFFEEFEFF

+ + + *+ + + + + + F F F F A FFFFFEFFFEFFF

+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+

* + F ¥ F F F FFFFFFFFFFFFFEFEFFFF
+* + F ¥ F + ¥ FFFFFFFFFEFFEEFEFF T

+ + + + + F + + F A FFFFEFFEFEFEFEFEEFE A+

address
generating
Uit

* + F + + F F FFFFFFFAFFFEFEFFEFEFFEFEFFEFEEFEFFEFEFFFFH

+
+++++++++++++++++++++++++++

FA-gefining
operands

+
+++++++++++++++++++

+ + + F ¥ F F F FFFFFFFFFFFEFEFEFEFFF

* + F + + F F FFFFFFFFFFFEFFFEFFEFEFEFEFEEFFEFEFFFFH

oad/store
Unit

+ + + + + + + + + + + + + +t +r + +t T

+ + + + + + + + + + + + + + +F + F + F F F FF F A+ FFFFFEFFAFEFFFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFE A F A F

+ + + + ¥ F F F FFFFFFFFE T
+ + + + + + o+

+*
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ + + + F FFFFFFFFFFFEFFEFEFFEAFEFFEFEFEFEAFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEEAFEFEFEFEFEFEFEFEFEFEEFEEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEEEFEFEEFEFEE R

+ + + + + + + + + + + + + + ++ + +tF+F A+ttt ettt ottt ettt ettt sttt sttt ottt sttt ottt ottt ottt sttt ettt ottt sttt ottt ottt sttt sttt ottt ottt

+
+

+
+

+
i+

+ * + + + + + Ft+t ottt ettt ottt ottt ottt ottt

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+ + + + + + + + + + + + + + + + +

+ + + F + +F + F FFF o+ F A FFEFEFFEFEFEFEFEFEE A FFFEFEFFEFEFEFEE A FFFFEFEFEFEFEFEFE A FFE A FEFFEFEFEEFE A FFEFEFEFEFE A F A EFEFEFEEFEFE A FFFF

+
+
+

+

+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

+ + + ¥ + + + + + F+ +++ ottt

memory
ontrolier

+ 4+ &+ + + + + + + + + + + + + + F F FFFFEFFFEFEFEFEFEF T

+ + + + + + + ++ + ++ ottt

MEemory
ontrolier

+ + + + + + + + + + +F + + F + +F F FFFFFFEFEFFEFEFEEFEFEEFEEEE+E+

+ + + + + + + + + + + + + + + + + +
* koot
* + + + + + +
* + + ¥ +F + F FF o FFFFFFF

+
+

+ + + + + + + ¥ + + + F + o+

+ + + + + + + + + + &+ + o+

+
+

* + *+ + + + + + + + + F F F A+ FFEFFFEFFEFFFEFEFFEAFEFEFEFEFEF A + + + + + + + + + + + + + + + + F + + F +F +F F F FFF A FFAFFAFEFF A

-lash

+ + + + + + + + + + + + + + + + +
* koot
* + kbt
* + + ¥ +F + F FF o FFFFFFF

o L C T

S. Patent

Sep. 29, 2020 Sheet 2 of 8

* + + + + +F F F F A+ FFEFFFEFFFEFFEFEFFFEFFEFEFFFEFEFFEFFEFEFFFEFFEFEFFEFEFFFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFFEFFEFEFEFE

2080 JoBC

Secure World O/S

+* + + F ¥ + F F F FFFFFF

+ + + + F F F FFFFFFFFEFFFFEFFEFFEFEFEFFEFFFEFEFEFEFEFFEFEFEFEFEFFEEFFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFEFEFEEFEFEEFEFEFF

Normal World O/5

+ + + + + + * + + ++ +Ft ottt ottt ottt ettt ottt ottt ottt ottt ottt

Normal World Storage

LA N N N B N B RSB BB EEBEBEBEEBEEBERBERBEEBEBERBEBEEREBEEREBEEEBERBEERBEBEBEEBEEBEBREBEEBEEEBEEBEBEERBEBEBEBEBEBEBEREEBEBEBEBEEEEIEIMNIEIEZS.ELLE.,:

Secure Storags

S CH

+ + F ¥ + F ¥ FFFFFFFFEFFEFEFFEFFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEAFFEFEFEFEFEFEFEFEAFFEFEFEFEFEAFFEFEFFEFEFEFEFEAFFEFEFFEFEAFFEFEAFFFEFEFEFEAFFEFEFEFFEAFEFEFEAFFEFFFF
* + + F F FFFFFFFFFFEFEFFEFEFFFEFEFEFEFEFEFEFFEFFFEFEFFEFEFEFEFEFEFEFFEFEFFFEFEFEFEFEEFEFEFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFFEFFFEFEFFEFEFEFEFFEFEFEFEFEFEFFEFEFEFEFEFFEFFE S FF

* + F + F FFFFFFFFFFEFEFFEFEFEFEFEFFEFEFFEFFEFEFEEFEFEFFEFFEFEFEEFEFEFEFEFEEFEFEEFEEFEEFEFEEFEEFEFEFEFFEFEFEFEFEFFEFEFEEFEFEFEEFEEFEFEFEFEFEEFEFEE R

ZoB0 JoBC

ok ko ok bk ko ok ko ko kb ko ko kk ok ko ko kb ko ko ko k bk ko ko ko ko ko ko

+ +

Secure World OFS

* + + + + F F F F A+ FFEFFFEFFFEFFFEFEFEFEFFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEEFEFEFEFEEFE

Fadaing

* + + + + + F A+ FFEFFFEFFFFFFEFFEFEFFEFEFFEFEFEFFEFFFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFEFEFE

Normal World O/S

+

+ + + + + + + +

+*

Normal World Storage

+ + + + F F F FFFFFFFFEFFFFEFFEFFEFEFEFFEFFFEFEFEFEFEFFEFEFEFEFEFFEEFFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFEFEFEEFEFEEFEFEFF

Secure storage

* + F + F FFFFFFFFFFFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEEFEFEEFFEEFEFEFEFEFEFEFEFEEFEFEFEFFEEFEFEEFEFEEFEFEEFEFFEEFEEEFEFEEFFEFFFFF

i, 3

* + + F F FFFFFFFFFEFFEFFEFEFEFFEFFEFEFEFEFEFFEFEFEFEFEEFEFEFFEFEFEFEFEFFEFFEEFEFEEFFEEFFEEFFE
+* + F ¥ + F F FFFFFFFFEFFFEFFEFEFFEFEFEFEFEEFEFEFEFEFEFEFEFEEFEFEFEFEFEFFEFEFEFEFEEFEFEEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEEFEFEFFEFEEFEFEEFEFEFEFEFEEFEFEFEFEFEEFFFF

Ox 0000

Ox 1000

Ox 2000

Ux3000

Ox4000

00000

Ox 1000

0x 2080

%3000

0x4000

S 10,789,173 B2

S. Patent Sep. 29, 2020 Sheet 3 of 8 S 10,789,173 B2

+ + +
+*
+ +
+
+* +*
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ H +
+ +
+ +
+ +
+ +
+ +
+ +
+* +*
+ +
+ +
+ + +
" ++ + + "
+ + . +
+ + + +
+ +
+ +
+ +
+ +
+ +
+ +
+ + +
- +*
++ + + "
+ + + + + + + F + ++ Rt
+ + + + F FFFFFFFFEFFEAFEFFEFEFFEAFEFEFEFEFEFEFEFFEAFFEFEFEFFEAFEFEFEFEEFEFEFEFEAFEFEFEFEFEFEAFEFFEAFEFEFEFEFEFEFEFEFEFEFEFEFFFFHF . +
+ - +
+ - +-I- L N N N N N I I I I I I I I O N N I I I A N I I I A I O I N N N T I I B A I I B N N U N N N N N e -I-+ +
+ +
+ + +
+ + +
+ + +
+ + +
* +* +*
+ +
+ +
+ +
. . iy i + +
+ +
+ +
+ +
+ + + +
+ + +
+ + + +
+ + + ¥ + +
+ + + + + +
+ " +++ . . . +
+* +*
+ + +
+ +
+ + + +
+ + +
+ + + +
+ + + +
+ + + + +
+ + + + + + + F o FFFFF A F A FFFFEFFFFFEFEFEFEE A FEFE A FFEFEFFEFE . ++ . + - - +
+ + + *
o+ + + + * + + *+ + + Ft+ ++t+t ottt ottt ottt ottt ottt ottt ottt +
++ * + F F+ F FFFFFFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEEFFEEFFEF + + + + "
+ * + * +
. + . + A + +* + *+ + + F + + F F FFFFFEFFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEEFE T .
+ + + + +
+ + + +
+ + + + +
+ +* +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + + + +
+ + + + +
+ + + +
* + ++ + + *
+ ' +
+ + + +
+ + + +
+ + + + +
+ + + +
+ + +
+ +
+ + + +
+ + +
+ + + +
+ + + +
. . + + + + .
LI B B B N N N R NS BB R BB EEEEEBEEEBEEBEBEEBEEBEESEBEREREBEEBEREREBEREBELEBEEREBEIEBIREEBIEIEIEIEIEEIEIESIZI, A o + ++ + + .
+ + + + + + +
+ + + +
H + +
+ + +
+ +
+ + + +
+ +
+ + + +
+ + +
+ +
+ +
+ + +
+
+ +
+ + H H
+ H +
+
+ + + +
+ +
+ + + + + +
+ + i+ + + +
+ + . +
+ l + - ++ + + + + + + + ++ + ++ +
+ +
+ + +
+ +
+ +
+ + +
+ +
+ +
+ + +
+ +
+ + + + +
+ ¥ + + + +F F F FFFFFEFFFFFFEFFEFEFFEFEFEFEFEAFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFFFF + + "
+ + +
+ + *
+ + + + + + + + + F+t F++ Attt ottt ottt ottt ettt + - - +
+ +
+ + +
+ + +
+ +
+ + +
-+ + +
+ +
+ + +
+ +
+ +
+ +
+ +
+ - - +
+ . * + + F F FFFFFFFFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFFFEFEFEFEFEFEFEFEFFEEFFEEFFEEFFEFEFEFEFEEFEFEEFFF +
+ +
+ * +
. + + + + + + + + ++ +++ Attt .
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ - - +
+ + + + + F FFFFFFFFEFFEAFEFFEFEFFEAFEFEFEFEFEFEFEFFEAFFEFEFEFFEAFEFEFEFEEFEFEFEFEAFEFEFEFEFEFEAFEFFEAFEFEFEFEFEFEFEFEFEFEFEFEFFFFHF . . +
+ +
+ + + + + "
++ + + + + + + + + + Ft+ +++ ottt ottt ottt ettt ottt ottt + + .
+ +
+ +
+ E +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ + + +
" +++++ - + + + *+ + + F + + F F F FFFFFFFEFFFEFEFFEFEFEFEFEFEFEFFEFEFEFEEFEEFEFEEEEEEEEET "
+ +
+ . +
+ . 2 - + + + + + + + + + + + + + +t +t + +t +tF+F Sttt ++ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ + + + +
+ + + + + + + + + + + + + + +F + F + F + +F F F FFFFFFFFFFAFFAFAFEFFEFFFAFEAFFFEFFEAFEFFEFEFFEFEFEFEAFEFEFEFEFFEFEFFEFE S F + + "
+ +
+
H + +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ . . +
+ +
: + +
+ +
+ + +
+ + + +
+
+ +
. +
+ +
. +
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ * +
+ * + + + + ++ + Attt ottt ottt ottt + + * + + F + ++ ottt

. 4

S. Patent Sep. 29, 2020 Sheet 4 of 8 S 10,789,173 B2

LI B B B B N N R R R B EE R RN BB EEBEEBEEEBEEEBEREIBEINEBEBNENEIENEIEIEZLLE.]I

Paddinc

+ +

0x0000 0x0060

+ + + + + F + + F o FFFFFEFFEFEFF

0x1000 0x1060

+
+ 4+ + + + + + + + + +F + + F + FFFFFEFFES

+

+* + F ¥ + F ¥ FFFFFEFFFEFEFFEFEFEFEFEFFFF

+ + + + F FFFFFFFFFFFEFFAFFAFEFEFEFEFEFFEAFEFFEFEFFEAFEFEAFEFEFEFEFEFEFEFEFEFEFEF A F

0x2000 0x2060

+* + + ¥ F F F FFFFFFFFFEFFFEFFFFF

+

layout
variation

+
+ + + + + + F + F F F F A+ FFFFFFFFFEFFEFFFEFEFEFEFEFFFEFEFEFEFEFEFEFEFEFEFEFEEFEAFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFEEFEEEFEFET

+ + + + + + * + +++ F++ ottt ottt ettt ot

+ + + + + + F F o+ FFF A FFE A FFEF A FFEFFFEFFEFFE A FFF A F

0x3000 0x3060

+ + F F FF o F A FEF

+ + + + + + + F + +t F+Ft+t +t At EE

* + + F F F F FFFFFFFAFEFFEAFEFAFEAFFAFEAFEFFEAFEFEFEFEFEFEFEFEAFEAFFEAFEAFEFFEAFEFEFEAFEFEAFEFEFEFEAFEEAFEAFEFEFEFEFEFEAFEEFEEFEEFEFEFEFEFEFEFEFFFFH
* + + F F F F FFFFFFFAFEFFEAFEFAFEAFFAFEAFEFFEAFEFEFEFEFEFEFEFEAFEAFFEAFEAFEFFEAFEFEFEAFEFEAFEFEFEFEAFEEAFEAFEFEFEFEFEFEAFEEFEEFEEFEFEFEFEFEFEFEFFFFH

L N N N N N N N N N NN N N NN N NN N N NN NN NN NN R N NN NN NN NN NN R N NN NN N NN NN NN R NN NN

FiG. 5

+ + + + + + + F + + + +F F F F A+ FFFFFFFFEFFFEFFEFEFFFEAFFEFEFFEFEAFFEFEAFFEFEFEFE ST
+ + + + + + * + ++t+t A+ttt ottt

+ + + + + + F F o+ FFF A FFE A FFEF A FFEFFFEFFEFFE A FFF A F

OXOOOO + + + + + + *+ + + F + +t +Ft+t +r+tr ettt ottt EE OXOO !0

0x1000 0x1040

+ + + ¥ + + *F + + Ft+ t+F Attt F

0x2000 0x2090

4()
0x30C0

|ay0ul + + + ¥ + + *+ + + Ft+ t+F Attt

+

++++++++++++++++
+
+
+
+
+
+
+

LI B B A N N N N R N RN R EEEEEE B E BB EEBEEBEEEBEREEBEREBEERENEIEIRERINEBEIEEIEIEIEIINELE.]

+ +

+ + + & + + + + + +F +F + + +

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

* + + * F o+ FFFFFFFAFFFEAFEFAFEAFEFAFEFEFEFEAFEFEAFEAFEFEFEFEFEAFEAFEFEAFEEFEEF

+ + + + + + F + F F F F o FFFEFFFEFFFEFFFEFFEFEFFFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFE A+

+ * + + * + + F+ ++ ottt

+ + + + + + + + + + + + +

FiG. 6

U.S. Patent

Sep. 29, 2020 Sheet 5 of 8

58~

- ypdate expected authentication value
60\\!

50~ obtain code/data to be |
L installed/updated |

52~ obtain at least one
f seed value

+

| select software address |
N layout depending on at |
| least one seed vaiue |

update PA references
in code/data to correspond
with selected soltware address
layout

++

write code/data o iocations
N memaory corresponding o selected
sottware adaress layout

for program authentication function
to correspond with selected software
address iayout

US 10,789,173 B2

U.S. Patent Sep. 29, 2020 Sheet 6 of 8 US 10,789,173 B2

LB B B N R R B R B EEEBEEEEEEBNEERNEIEIENIEINEZIEJIDZSEZIEH:EZH:M,.I

DIOCESSING

~102
circuiiry

slectronic

+
+ +++++ + + + + + + + + + + + + + + ++ +t +t +F+t Attt ottt ottt ettt ettt ottt

device

+* + F + + F F FFFFFFFFEFFFFF A FF

+ + *+ + + F + + F + +F F F FFFFFEFFFEFEFFEFFEFEAFEFEFEFEFEEFEFEEEFEEF

+* + F ¥ +F F F FFFFFEFFFEFFEFEFFFEAFFEFEFFEFEAFFEFEAFFEFEFEFEEAFFEFF

+ + + + + + + F F F FFFFFFEFFFEFFEFEFFEFEAFEFEFEFEFEAFEFEEAFEFEFEAFEFEEAFEFEEFEEEFEFEEF

$i0rage

* + + F F FFFFFFFFFFFFFFFFFEFFFEFFEFEFEFFEFFFFFF

+ + + + + F ¥ + F F F o+

* + + F F FFFFFFFFFFFEFEFEFEFFFEFFEFEFFEFEFEFEFEEFFEAFFEFEFEFEFFEAFFEFEAFFEFEFEFEFEAFFFEFEFFEFEFEFEAFE
* + + + + ok F ok F o FE A FF A FFFFFFFE

+ + *+ + + F ¥ + F F F F A+ FFFFEFFFEFFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEEFEFEEEFEEEFEEFEEFEEEEEEEEEEEEF

FiG. 8

112
110

Normal world -V assisted security

+* + + ¥ F + + F F FFFFFFAFFFEFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFFFEFFEFEFFFEFFEFEFFEFEFFEFFFFAF

+ + + + + + + + + + + + + + + +F o+ +* + *+ + + + ¥ +F F F FFFFFEFFFE T + + *+ + + F + + F F FFFFFEFFFEFFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEEEFEFEEEEEEEEEEEEFE T

i Trusieg component

* + F ¥ + F ¥ FFFFFFFFEFFFEFFEFEFFFEFEFEFEFEFEFEFFEFEFEFEFEEFEFEFEFFEFEFEFEEFFEEFEFEFFFFFF

+* + + ¥ F + ¥ F + F F FFFFFFF
+* + F ¥ + F ¥ F FFFFFFFFF
+ + + + + + + + + + + + + + + + +

114~

+ + + F + F F FF o FFFEFFFFFF +* + F ¥ F F F FFFFFFFFEFFF T

Device OS5

+ + + + + + F F FFFFFFFFFFFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFFEFEFEFFEFEFFEFEFEFEFEFFFFFH

+* + + ¥ F + ¥ F + F F FFFFFFF

+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+

* + F ¥ + F ¥ FFFFFFFFEFFFEFFEFEFFFEFEFEFEFEFEFEFFEFEFEFEFEEFEFEFEFFEFEFEFEEFFEEFEFEFFFFFF

LN N NN N N N NN N NN N NN N NN N NN N NN N NN N NN N NN NN N NN N NN NN NN NN NN NN NN

* + F ¥ +F F F FFFFFFFFEFFFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEEFFEFEFEFEEFEFEEFEFEEFEFEFEFEF R
L L I DL DAL DO L DO DAL DN DO DOL N DO DOK DL DO DOL NN DO DOL DAL DO DOE DN DO DOL DOL DO BON DOE DO DOL DOE DAL DOE DL DOK DOL DOE DO BOL DOT DO BOL DAL BON DAL BOL BOK B BN

* + F ¥+ F FFFFFFFEFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEEFFEFEFEFEFEFEFEFEFEFEEFFEFEFEEFEFE

+* + + + + F F F FFFFFFFFFFFEAFFFEFFEFEFFEFEAFFEFEFFEFEFFEFEAFFFEFEFFEAFFEFEFFEFEFFFEAFFEFEFEFEFEAFEFEEFFEFFFEAF + + + + + + ¥ F +F F FFFFFFFFFEFEFFEFEFFEFEFFEFEFFEFFEFEFFFEFFFEFFFEFFEFEFFEFEFFFEFFEFEFFFEFFFEFEFEEFFEFFFFAH

+ + + + + + + + + + + + + + + + F + + F + + F +F F F F FFF A FAFAFFAFEAAFAF A FFAFEFFEAEFFEFEFFEFEFAFF

++-I-++-I-+++++-I-+++++-I-++-I-+++++-I-++++++++++++++++++++++++++++++ e w

+ + F + + F F FFFFFFFFFFFFFFFFEEFEEFEEFEEFEFEFFEFFFF

i, 9

+ + + F+ + + F + + F F FFFFFF

U.S. Patent Sep. 29, 2020 Sheet 7 of 8 US 10,789,173 B2

100
electronic J
device ¢ server
=~ - Drepare .
152 3\ U‘Z)dai g I + S/iw update file

1501 with default
PR software address
SV layout
- obtain seed(s)

N\ seiect soltware agaress iayout
08S€ed 0N seed

06~

++++++ upgate FA

references in code/data

58 -
write codergata to memory
jocations corresponding o
selecled layout

o0

(undate expected authentication
vaiue)

FiG. 10

U.S. Patent Sep. 29, 2020 Sheet 8 of 8 US 10,789,173 B2

100
electronic /
device ¢ carver
160
4 Oblain coge/
data o
he instalieg/
updated on
alectronic device
obfain seed(s} -+
seiect sofiware i o2
address layoul based 54
0N 8880

generate s/w update
fiie accorging io
selected softwars - 56
address {ayout

| e
162 ﬁansml‘i j g}&t ﬁ —

- 164
58 p

—~ write code/data of update file
{0 memory iocations starting
at predetermined pnysical adgress

++++++ (Lpdate expecied authentication
vailie)

FiG. 11

US 10,789,173 B2

1

INSTALLING OR UPDATING SOFTWARE
USING ADDRESS LAYOUT VARYING
PROCESS

This application claims priority to GB Patent Application
No. 1719209.7 filed 20 Nov. 2017, the entire contents of

which 1s hereby incorporated by reference.
The present technique relates to the field of electronic
devices.

With the increasing development of the Internet of Things
(Io'T), 1t 1s becoming more common for many relatively low
power and resource-constrained electronic devices to be
connected to the Internet. For example such IoT-type
devices may include sensors which provide sensor informa-
tion such as temperature data or proximity information
indicating whether a user 1s present, which can be used for
controlling everyday systems such as heating, air condition-
ing or street lighting for example, or may include controllers
or actuators for controlling such systems based on captured
sensor data. Such devices connected to the Internet may pose
a major threat 1f they can be subverted by remote attackers
for malicious purposes, for example being used as remote-
controlled hosts in botnets or as an attack vector against a
larger system that the devices are part of. Often, such an
attack may exploit a flaw that exists 1n the configuration of
a vulnerable device that can be exploited for malicious
purposes. Such flaws may typically be reproduced 1n all
devices that share that vulnerable software version or device
configuration. This would allow exploits which have been
developed against one device to be reproduced for any
device that shares the vulnerable configuration.

At least some examples provide a method for installing or
updating software on an electronic device comprising pro-
cessing circultry and memory access circuitry to control
access to at least one memory unit 1n response to physically-
addressed memory access requests 1ssued by the processing
circuitry specifying physical addresses from a physical
address space;

the method comprising performing an address layout
varying process comprising:

obtaining at least one seed value;

in dependence on the at least one seed value, selecting one

of a plurality of software address layouts for code or
data associated with the software, each software
address layout corresponding to a different layout of the
code or data associated with the software 1n the physi-
cal address space; and

triggering the electronic device to write the code or data

associated with the software to locations of said at least
one memory unit corresponding to the selected soft-
ware address layout.

At least some examples provide a computer program for
controlling a data processing apparatus to perform the
method described above. A storage medium may store the
computer program. The storage medium may be a non-
transitory storage medium.

At least some examples provide an apparatus comprising
processing circuitry, and a storage medium which stores a
computer program for controlling the processing circuitry to
perform the method described above.

Further aspects, features and advantages of the present
technique will be apparent from the following description of
examples, which 1s to be read in conjunction with the
accompanying drawings, in which:

FIG. 1 schematically illustrates an example of an elec-
tronic device;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 shows an example of a software address layout for
program code or data associated with software installed on
the electronic device;

FIG. 3 shows an example of an altered software address
layout 1n which a start address of a portion of code or data
1s oflset from a base address by an amount dependent on a
seed value;

FIG. 4 shows an example of varying the order 1n which
respective portions of the code or data are arranged 1n the
soltware address layout;

FIGS. § and 6 show two examples of combining the
techniques of FIGS. 3 and 4 to provide further variation in
the software address layout for the code or data of a given
piece of software;

FIG. 7 1s a flow diagram 1illustrating a method of per-
forming an address layout varying process;

FIG. 8 shows use of the electronic device 1n conjunction
with a server which provides a software update file for
installing or updating a piece of software on the device;

FIG. 9 illustrates an example of a hardware architecture
providing a secure operating environment and a normal
operating environment;

FIG. 10 1llustrates an example in which the electronic
device performs the address layout varying process; and

FIG. 11 shows an example where the server performs the
address layout varying process.

Some attacks against electronic devices may rely on
knowledge of the particular memory addresses used to
identily portions of the code or data associated with software
installed on the device. One possible defence against such
attacks may be to use address space layout randomisation
(ASLR), which randomises the base addresses of each
program section placed 1n virtual memory, by changing the
virtual-to-physical address mappings used by the processor
to refer to the code and data 1n physical memory. ASLR may
typically be performed at runtime so that each time the
software 1s run, the virtual addresses used to refer to parts of
the program code and data are different, making an attack
against an individual electronic device more diflicult. How-
ever, for many Internet of Things or embedded devices
where resources are extremely constrained, it 1s relatively
common for such smaller devices to operate directly on
physical addresses without providing a memory manage-
ment unit (MMU) or translation lookaside bufler (TLB) to
support virtual-to-physical address translation. Therefore,
such ASLR techmiques are not usable for many IoT-type
processing devices.

An electronic device has processing circuitry and memory
access circuitry which controls access to at least one
memory unit in response to physically-address memory
access requests 1ssued by the processing circuitry speciiying
physical addresses from a physical address space. In the
technique discussed below, an address layout varying pro-
cess 1s performed for the electronic device (either performed
by the device 1tsell, or by another device such as a server).
The address layout varying process comprises obtaining at
least one seed value, and 1n dependence upon the at least one
seed value, selecting one of a plurality of software address
layouts for code or data associated with software to be
installed or updated on the device. Each software address
layout corresponds to a diflerent layout of the code and/or
data associated with the software in the physical address
space of the device. The electronic device 1s triggered to
write the code or data associated with the software to
locations of the at least one memory unit which correspond
with the selected software address layout.

US 10,789,173 B2

3

With thus approach, the locations at which respective
portions of code or data are located within the physical
memory can be varied based on the seed value. It may seem
that this does not provide particularly strong protection
against attacks on an individual device since unlike ASLR
performed at run time, the opportunity to vary the actual
physical locations at which the code or data are written may
be relatively limited, for example on 1nstallation or updating,
of software, rather than on each run time. However, the
present techmque recognises that in fact there 1s still a
benelit to varying the physical addresses used to store the
code or data associated with the software. This 1s because
when a population of electronic devices 1s provided sup-
porting the address layout varying process as discussed
above, then 1 each device uses a seed value which varies
from device to device, different devices may have different
software address layouts, so that 1t 1s less likely that a
runtime attack based on the knowledge of the physical
address location of a particular piece of code or data can
aflect large device populations. An attack relying on fixed
addresses can be used to exploit some devices with an
identical solitware configuration, but by dividing the device
population 1into smaller subsets with different software
address layouts for the code or data, this increases the
resistance of the population of devices as a whole against
such attacks, reducing the size of a class break to a smaller
s1ze 1n a controllable manner.

While the address layout varying process may modity the
software address layout, which defines which physical
addresses are used to store particular portions of the program
code and/or data, the memory map defining which physical
addresses are mapped to particular regions of memory
storage provided in hardware may remain unchanged.

In some examples, the address layout varying process
described above can be used on an electronic device which
does support virtual-to-physical address translation, e.g. a
device comprising a MMU or TLB. In such devices the
physical address varying layout process could be used
alongside wvirtual ASLR as discussed above to provide
turther security.

However, the address layout varying process may be
particularly useful for electronic devices in which the pro-
cessing circultry comprises address generating circuitry to
generate non-translated physical addresses for the physi-
cally-addressed memory access requests in response to
physical-address-defining operands which are specified by
memory access instructions executed by the processing
circuitry. Hence, in devices which lack a MMU or TLB
providing address translation functionality, the address lay-
out varying process discussed above can be particularly
useiul to provide a population of devices with resistance
against attacks relying on fixed addresses.

Also, the address layout varying process may be particu-
larly useful for electronic devices which execute software
directly from execute-in-place storage (e.g. NOR flash
memory), rather than copying the software to RAM, because
for devices using execute-mn-place storage, ASLR would be
impractical as the code would be executed directly without
virtual-to-physical address translation. Hence, in some
examples the processing circuitry may perform execute-in-
place (XIP) execution of the software from the at least one
memory unit.

The address layout varying process may include updating
at least one reference to a physical address in the code or
data associated with the software to correspond with the
selected software address layout. While some address ret-
erences 1n the code or data may be relative addresses which

10

15

20

25

30

35

40

45

50

55

60

65

4

do not need to be updated when the physical location of the
code or data 1s updated (as the relative ofiset between the
reference and the target address may have remained the
same), there may be some absolute physical address refer-
ences 1n the code or data which would need to change 11 the
physical location of the target of those address references
changes. Also, some relative addresses may also need to be
updated, e.g. 1f the order of respective portions of program
code or data changes, the relative oflset of a target address
in one portion with respect to an address reference made
from another portion may change. Hence, by updating at
least one reference to a physical address 1n the code or data
(which could be an absolute reference or a relative refer-
ence) to correspond with the selected software address
layout, the code or data can continue to function correctly
even 1f 1ts physical locations are varied by the address layout
varying process.

There may be different ways of varying the software
address layout based on the seed value. In one example the
address layout vanation may comprise selecting one of a
number of potential address offsets based on at least one
seed value. In the selected software address layout, a start
address of a region of the physical address space used to
store at least part of the code or data associated with the
software may be oflset from a base address by the selected
address offset. Hence, in diflerent devices different seed
values can be used and so the code or data in each device
may be off:

set from the base address by different amounts, so
that 1t 1s harder for an attacker to predict the physical address
at which a given piece of code 1s stored 1n any given device
of the population.

Another way of varying the software address layout may
be to provide at least two soltware address layouts which
correspond to diflerent orders 1n which respective portions
of the code or data associated with the software are arranged
within the software address layout. Hence, the address
layout varying process may for example include swapping
the order of different portions of the code or data, so that the
population of devices can be divided into smaller sub-groups
which have the code or data arranged 1n different orders. For
example this can be useful for code written 1n a modular
manner where there are certain distinct portions of the code
or data which can easily be separated from one another and
reordered.

In some examples the two techniques discussed above can
be combined. For example, when reordering the portlons of
the code or data, the overall block of code or data comprising
the reordered portions could also be offset from a start
address by an address oflset selected based on the seed
value. Alternatively, within each of the reordered portions a
turther offset could be applied to offset that portion relative
to a corresponding start address.

The at least one seed value 1s used as the source of entropy
for distinguishing the address layouts used by difierent
devices. In some examples, a single seed value may control
the address layout varying process. Alternatively, two or
more seed values may be used to control the address layout
varying process, with each seed value influencing a different
part ol the address layout vanation (e.g. one seed value
controlling the selection of the order of the code or data
portions and another seed value controlling the address
oflset, or different seed values controlling different oflsets
apphed to different portions of the code or data).

The address layout varying process could be used for any
soltware to be installed or updated on the electronic device.
However 1t can be particularly useful when the software

comprises device firmware for the electronic device. The

US 10,789,173 B2

S

device firmware may provide the software code for control-
ling certain low level functions of the device such as
controlling hardware units, or may provide the operating
system for the electronic device. If an attacker can exploit
vulnerabilities in the device firmware, then there may be
more significant consequences than 1f an application running,
on top of the firmware 1s compromised. Hence, by applying
the address layout varying process to the device firmware,
this can reduce the likelihood that an attacker can mount a
significant attack on a large population of devices.

In some embodiments, the software may comprise mono-
lithic software which comprises a single software image
providing all the software functionality to be executed by the
clectronic device. For a microcontroller or relatively low-
capability Internet of Things type device, all the software to
be executed on the device (including any operating system
as well as application-type functionality or programs to
execute under control of the operating system) i1s often
bundled together as a single monolithic software 1mage,
which 1s all updated or installed as one umit. Such devices
can be more vulnerable to attacks relying on fixed address
locations of particular pieces of code or data, as the physical
addresses at which pieces of code or data are installed may
be predetermined by the software update file provided by a
server (rather than the operating system on the device
selecting the location at which to install the code or data),
and so would normally be the same for each device 1n a
batch. By performing the address layout varying process as
discussed above, 1t 1s less likely that such an attack can aflect
a large fraction of a population of devices.

The address layout varying process can be performed at
different times. The address layout varying process can be
performed when first installing the software on the elec-
tronic device. For example the address layout varying pro-
cess could be performed as part of the manufacture process
of the electronic device when the software (e.g. device
firmware) 1s first being injected into the device. Also, the
address layout varying process could be performed at later
instances of mstalling software. Alternatively or 1n addition,
the address layout varying process could be performed when
updating software on the electronic device. For example
when a firmware update 1s applied, the opportunity could be
taken to also vary the address layout of the updated firm-
ware.

In some cases the address layout varying process could
also be performed when booting the electronic device. This
could allow more frequent varnation of the software address
layouts so that further protection can be provided against an
attack on an individual electronic device. The vanation at
boot time may however be limited to varying code or data
which 1s readable or writeable at boot time, and may not be
able to vary the location of read only code or data associated
with the software. Hence the boot time variation may be
more limited than the install or update time variation. The
frequency with which the boot time variation 1s applied
could depend on the type of memory used to store the
code/data. For example, 11 flash memory 1s used, performing
frequent address layout variation could risk wearing out the
flash memory more quickly, so the frequency of the address
layout varniation could be reduced to balance the risk of wear
out against the need for security. On the other hand read/
write data not stored 1n flash or a type of memory at risk of
wear out could have 1ts physical address location changed
more frequently to improve security.

A value which 1s likely to vary from device to device or
from time to time (to provide sutlicient entropy) can be used
as the at least one seed value. As discussed above 1n some

10

15

20

25

30

35

40

45

50

55

60

65

6

cases multiple seed values may be used. For example, the
seed value could comprise a random or pseudo random
number, which could be generated at the time of performing
the address layout varying process either by a hardware
random number generator or pseudo random number gen-
erator within the electronic device 1tself or securely mjected
from the outside by an external device. The random number
generator or pseudo random number generator could 1tself
use a seed value derived from some property of the device,
such as a device-specific identifier or hardware property of
the electronic device as discussed below, to generate the
seed used for the address layout varying process.

Also, the seed value could comprise an 1dentifier associ-
ated with the electronic device. For example the identifier
could be a device-specific 1dentifier identifying the particu-
lar hardware device, or an i1dentifier associated with the
device such as a mobile handset device identifier or IMEI,
a MAC address of the device, or any other identifier which
1s likely to be unique or substantially unique to the electronic
device (1t 1s not necessary to be completely unique as long
as 1t 1s reasonably likely that a significant number of the
clectronic device 1n the population will have different values
for the identifier).

In another example the seed value can be based on at least
one hardware property of the electronic device. For example
the seed value could be derived from random hardware
characteristics of the electronic device, such as the resistance
of certain conducting elements of the device or the capaci-
tance between certain elements. For example the electronic
device could have a physical uncloneable function (PUF)
circuit which generates an output dependent on certain
hardware characteristics of the device which are likely to
vary from device to device and are dithicult to predict in
advance of manufacturing the device as they may depend on
random process variation arising during the manufacture of
the device.

Also, 1n some cases the seed value(s) may not be gener-
ated by the electronic device, but may be provided by a
further device other than the electronic device. While pro-
tection of the seed value could be more secure i 1t 1s
generated mnside the device, sometimes the electronic device
may not have the capability for generating the seed value
itself. For example 1f the address layout varying process 1s
performed when first installing the soitware on the elec-
tronic device when the device 1s in the factory, the manu-
facturing process for making the device may not yet be
complete and there may not yet be a reliable source of
entropy 1n the device which could generate a seed value
which 1s sufliciently likely to vary from device to device in
a way which provides the desired diversification of the
soltware address layout across a population of devices. In
this case, it may be preferred for the manufacturing equip-
ment to securely mject a random or pseudo random seed
value mto the electronic device rather than using a seed
value generated by the device 1tsell.

Regardless of the particular form of seed value used, by
using a seed value which 1s relatively likely to vary from
device to device, the population of devices as a whole can
be made more robust against the consequences of attack
since 1t 1s less likely that a successiul attack can aflect large
fractions of the population.

Some e¢lectronic devices may support a soltware authen-
tication function in which authenticity of the software 1s
checked by comparing a calculated authentication value,
which 1s obtained as a function of the code or data stored in
a given region of the physical address space, with an
expected authentication value. For example the software

US 10,789,173 B2

7

authentication function may be mvoked as part of a secure
boot process so that the software on the device can be
checked to detect tampering of the solftware before that
software 1s actually run. For example the expected authen-
tication value may be certified by a trusted provider (such as
the party that wrote the software) and the authentication
value may be calculated as a hash of the contents of a certain
block of physical address space so that the comparison
between the calculated authentication value and the
expected authentication value can detect 11 some of the code
has been modified. However, 11 the address layout varying,
process 1s applied to such an electronic device, then the
variation in the physical addresses at which different por-
tions of code or data are stored may lead to the authentica-
tion value calculated as part of the software authentication
function being different depending on the selected software
address layout. This could lead to a mismatch in the
expected authentication value and the calculated authent-
cation value even 1f the code or data has not otherwise been
modified other than the reordering or relocation of the code
within the physical address space. Hence, to allow such
software authentication functions to operate correctly, the
address layout varying process may also comprise updating
the expected authentication value to correspond with the
selected software address layout for the software. For
example, after the code or data has been written to the
memory locations corresponding to the newly selected soft-
ware address layout, the expected authentication value could
be re-computed and stored to permit comparisons against a
calculated authentication value when the software authenti-
cation function 1s later executed.

Some soltware authentication functions may mvolve veri-
fication of a signature provided by a trusted source of the
soltware. I the software address layout of the software 1s
varied and the expected authentication value re-calculated
on the electronic device, the electronic device may not have
the proper key which would enable the correct signature to
be generated. Hence, 1n some cases the electronic device
may implement a separate authentication mechanism for
veritying that a recomputed authentication value was com-
puted by a trusted source on the device itself. For example,
the trusted component responsible for recomputing the
authentication value could generate a signature based on a
secret key for verifying that the recomputed authentication
value can be trusted.

Alternatively, instead of recomputing the expected
authentication value, following the address layout varying
process, unrolling information could be stored specifying
how to unroll the changes made to the software address
layout so that the original software address layout can be
reconstructed from the actual software address layout result-
ing from the address layout varying process. During the
software authentication function, the calculated authentica-
tion value may then be calculated based on the reconstructed
software address layout and compared with the original
expected authentication value that was expected for the
original address layout before any varniation was applied.
Also, any signature associated with the original address
layout can be verified. The unrolling information may be
signed by the electronic device and the signature verified
betfore performing the unrolling during software authentica-
tion, to guard against circumvention of the software authen-
tication function by injecting false unrolling information not
generated by the device itsell during the address layout
varying process.

Alternatively, 1f the software authentication function per-
forms separate verification of signatures/authentication val-

10

15

20

25

30

35

40

45

50

55

60

65

8

ues for two or more portions of the program code/data, then
rearranging the order of portions would not affect the
matching between the calculated and expected authentica-
tion values for each portions. Hence, for some implemen-
tations of the software authentication function and software
address layout vanation. It may not be necessary to adapt the
soltware authentication function regardless of the software
address layout which 1s selected.

In some examples, the address layout varying process
may be performed by the electronic device 1tself. Hence, the
clectronic device may receive an update file which specifies
the code or data to be installed or updated, and 1n response
a component executed by the electronic device may control
the device to obtain the seed value, select the software
address layout to be used and write the code or data to
memory according to the selected software address layout.

In some examples, the electronic device may have a
hardware architecture which provides a secure operating
environment and a normal operating environment, 1n which
code or data associated with the secure operating environ-
ment are protected from access by code executed in the
normal operating environment. In this case 1t can be usetul
to have the address layout varying process controlled by
code executed 1n the secure operating environment. This can
provide some additional protection, for example protecting
against an attacker being able to detect the seed value used
for the address layout varying process so 1t could be less
likely that an attacker can deduce or control the software
address layout which was selected for a given device.

In other examples the address layout varying process may
not be performed on the electronic device 1tself, but could
itsell be performed by a server. The server could generate a
soltware update file comprising the code or the data asso-
ciated with the software which 1s arranged according to the
selected software address layout, having previously selected
the software address layout for a given electronic device
according to a seed value. The server can then transmit the
generated software update file to the electronic device to
trigger the electronic device to write the code or data to
locations of the at least one memory unit corresponding to
the selected software address layout. In this case, the elec-
tronic device 1tself could simply 1nstall the received code or
data at some fixed physical address location within 1ts
physical address space but the server may have generated
the software update file so that the physical locations of code
or data are varied and different devices are sent different
soltware update files with different software address layouts.
In the case where the software address layout variation 1s
controlled by applying oflsets as discussed above, the server
could include some padding in the soiftware update file so
that some dummy data will be written to parts of the physical
address space by the electronic device so that the actual code
or data will start from a different physical address depending
on the size of the padding region of dummy data included by
the server 1n the software update file.

FIG. 1 schematically illustrates an example of an elec-
tronic device 2 comprising a processor 4 (e.g. a central
processing unit or CPU), and at least one memory unit 6, 8
for storing data or code to be accessed by the processor. For
example, two or more different memory umts may be
provided, for example volatile random access memory
(RAM) 6 and non-volatile memory 8, e.g. flash memory. It
will be appreciated that different types of memory technol-
ogy could be used for the various memory units and that 1n
some examples multiple units of the same type could be
provided. Each memory unit has a corresponding memory
controller 10 which acts as memory access circuitry to

US 10,789,173 B2

9

control access to the memory unit based on physically
addressed memory access requests 1ssued by the processor
4. The access requests specily physical addresses which
directly 1dentify corresponding locations in one of the
memory units 6, 8. While FIG. 1 shows a separate memory
controller 10 for each memory unit, in other examples a
single memory controller could control access to multiple
memory units. A bus 12 1s provided to exchange memory
access transactions between the processor 4 and the memory
controllers 10. While not shown 1n FIG. 1 for conciseness,
the bus may also be connected to other master devices, such
as a further processor (e.g. another CPU or graphics pro-
cessing unit), or a display controller, or to slave devices such
as peripheral input/output units etc. It will be appreciated
that FIG. 1 1s a simplified representation of an electronic
device which does not show all possible components of the
device. Depending on the purpose of the device the device
could also comprise other elements, such as sensors for
detecting sensor data, e.g. temperature or pressure sensors,
control actuators for controlling some physical system such
as a heating system or lighting system, user input elements
for accepting user mput, and/or a communications umt for
communicating with external devices over a network.

In this example the processor 4 has no hardware capabil-
ity for wvirtual-to-physical address translation. Hence,
instruction fetch and decode circuitry 14 fetches and
decodes 1instructions fetched from a cache or memory and
1ssues those 1nstructions to one or more execution units for
execution. For example the execution umits may include
processing logic 16 for preforming data processing opera-
tions, such as arithmetic or logical operations, or a load/store
unit 18 for controlling load operations to load data from the
memory system to registers 20 or store data from the
registers of the CPU 4 to memory.

The CPU 4 has an address generating unit 22 which
generates the addresses to be used for load/store operations.
While the address generating unit 22 1s shown as a separate
unit from the processing logic 16 and the load/store unit 18
in the example of FIG. 1, 1n other embodiments the address
generating unit 22 could be considered part of the processing
logic 16 1tself, or part of the load/store unit 18. The address
generating unit generates the physical addresses to be used
for memory access transactions depending on physical-
address-defining operands which are specified by load/store
instructions decoded by the instruction decoder 14. For
example, the mstructions may specily a base address and an
oflset, and the address generator unit 22 may add the offset
to the base address to 1dentily the physical address to be used
for a corresponding load or store operation.

In some processors, the operands defined by the load/store
write mstructions may represent virtual addresses and so the
address generating unit may output a virtual address which
does not directly identily corresponding locations in the
memory unit 6, 8. A memory management unit (MMU) or
translation lookaside buflier (TLB) may then translate those
virtual addresses into physical addresses which are then
output to the memory system. However, for many IoT-class
devices which are relatively power- and resource-con-
strained, the overhead or providing an MMU or TLB may
not be justified. Often some IoT-class devices may be
intended only to execute a very limited set of processing
functions, and the code executed by the device may be
carefully controlled by a single provider so that 1t 1s less
likely that arbitrary user-selected code 1s installed, making 1t
teasible to ensure that diflerent pieces of code executed by
the processor 4 do not specity overlapping addresses which
require address translation in order to map them onto

10

15

20

25

30

35

40

45

50

55

60

65

10

different portions of the physical address space of the
memory system. Hence, in embodiments such as shown in
FIG. 1, the device lacks an MMU and TLB and instead the
address generating umt 22 directly generates physical
addresses 1n response to the operands of the load/store
instructions so that no address translation functionality is
provided 1n hardware.

Firmware for resource constrained embedded devices 1s
typically developed 1n C and other memory unsate program-
ming languages, which may leave the devices susceptible to
memory corruption vulnerabilities. Even 11 a device employs
modern platform security measures, such as secure boot,
hardware Root of Trust, device attestation, and lightweight
hardware security architectures, such memory corruption
vulnerabilities may leave the device firmware susceptible to
runtime exploitation such as code-reuse attacks. The risk of
such runtime exploitation 1s exacerbated in Internet con-
nected devices by the attack surface exposed to remote
attackers. Traditional software security measures, such as
module or thread-level i1solation can limit the eflects of
exposure to certain software components of the device, but
compromise of privileged software on the device would
allow a remote attacker to take control of a device, causing
it to misbehave. As an example, vulnerable IoT devices are
prominent 1 several botnets used to mount distributed
denial of service attacks.

One defence against modern runtime exploitation of
native software 1n PC’s, mobile devices and other general
purpose computing platforms 1s Address Space Layout Ran-
domization (ASLR). ASLR operates by randomizing the
base addresses of each program section placed in virtual
memory, including the program 1mage, program data, heap,
stack, shared libraries Process Environment Block/Thread
Environment Block (Windows) and Virtual Dynamic Shared
Object (Linux). The randomization 1s typically performed
on the virtual address space assigned to the program instance
upon program execution, making the memory layout of the
executed program instance subtly different. As such, ASLR
relies on the presence of a Memory Management Unit
(MMU), as well as software support 1n the operating system
kernel and the program loader. Some ASLR schemes also
perform re-randomization of the memory layout at runtime
in order to lessen the impact of information disclosure, e.g.
leaked pointer addresses, that may be used by an attacker to
infer the randomized memory layout and thus eflectively
bypass ASLR-based defences. Such runtime re-randomiza-
tion typically requires some form of inline instrumentation
of the randomized binaries to enable self-adjustment of
memory addresses stored by the program at runtime (seli-
randomization).

This proposal outlines a technique for address layout
variation (binary diversification) of soitware images target-
ing resource constrained embedded devices that lack virtual
address space mapping provided by an MMU, for prevent-
ing runtime attacks affecting large device populations. An
attack relying on fixed addresses can be used to exploit all
devices with an 1identical software configuration, e.g. a
particular software version. By dividing the device popula-
tion into smaller subsets which are resistant against a
particular configuration of the attack, the number of vulner-
able devices can be lowered according to specific factors
(see below). While thus approach will not necessarily thwart
a sophisticated and motivated attacker trying to break a
specific device, it reduces the size of a class break to a
smaller size in a controllable manner.

The firmware of applicable embedded devices typically
consists of a distinct monolithic binary placed at a fixed

US 10,789,173 B2

11

address 1n non-volatile storage, such as execute-in-place
flash memory. The firmware program 1s either linked to be
aware ol the address the storage appears at 1n the system, or
1s position-independent. On devices that support secure
boot, the initial bootstrap code 1s contained 1 dedicated
read-only memory, (e.g. ROM, EPROM) on the System-on-
Chip (SoC) and cannot be changed. The nitial bootstrap
code verifies the integrity of the next code stage (in e.g.
tflash) before executing 1t. The process 1s repeated for each
subsequent firmware binary to ensure the integrity of the
device’s full software. On devices that employ hardware
security architectures, one or more of the stages operate 1n

’s “‘secure state”. The secure state firmware 1s

the processor’s
strongly 1solated from the “normal state” firmware, which

executes later 1n the boot chain. FIG. 2 depicts an example

layout of the non-volatile program storage of such an
embedded device. The Normal World O/S depicts the

device’s normal state firmware. The Secure Word O/S
depicts the device’s secure state firmware. 2SBC and 3SBC
depicts the initial boot firmware’s second and third boot
stages (3SBC might optionally be omitted).

As the starting address of the Normal World O/S 1n the
example 1 FIG. 2 1s fixed at address 0x2000, any exploit
targeting a device with thus particular software configuration
would also be applicable to other device’s sharing the same
soltware configuration. In order to prevent an attack against
this particular software setup, without altering the Normal
World O/S itself, a trusted component 1n the 1solated Secure
World O/S can alter the placement of the Normal World O/S
during manufacturing, boot time, or during software update
procedure. The re-arrangement occurs in three steps:

1. Determine random target memory layout

2. Alter Normal World O/S firmware 1mage location

3. Alter relocation entries in the Normal World O/S to

ensure correct operation 1 new layout

Two complementary strategies for diversification of the
memory layout are described below:

1. Full-image relocation

2. Image binary re-juggling

Full-Image Relocation

The location of the Normal World O/S 1mage 1s chosen at
random from a fixed window. FIG. 3 depicts a diversified
memory layout after full-image relocation. The Normal
World O/S now starts at memory address O0x2080 (1nstead of
0x2000). The area marked “Padding” depicts the relocation
window (128 bytes in the example). As the space reserved
for the relocation window typically must be left unused the
additional memory overhead of full-image relocation
depends on the size of the relocation window. A larger
relocation windows allows for more possible memory lay-
outs after diversification. For instance, assuming a Normal
World O/S 1mage aligned at a 2 bytes boundary, a 128 byte
relocation windows allows for 64 unique memory layouts.
Applied to a device population of 1 million devices, this
would break the population 1into 64 device pools of 15,625
devices each (assuming a uniform completely uniform dis-
tribution of devices between pools). Thus, an attacker tar-
geting a device at random has a V4 (or 1.56%) probability
of guessing the correct memory layout of the targeted device
without additional information.

In addition, the software component responsible for per-
tforming the diversification adjusts the relocation entries 1n
the Normal World O/S 1mage accordingly to adjust for the
new oflset. For instance, for Position Independent Code
produced by the GNU Compiler Collection, relocation infor-
mation exists i two sections of the binary image: Global

10

15

20

25

30

35

40

45

50

55

60

65

12

set Table (GOT) and Procedure Linkage Table (PLT).
‘ected entry 1in the GOT

OfF
During full-image relocation, each at
and PLT 1s adjusted.

Binary Re-Juggling

In binary re-juggling, the binary diversification procedure
(or “address layout varying process” re-orders individual
sections of the program image when placed 1n memory
(persistent as well as RAM). FIG. 4 shows a portion of a
typical Executable and Linkable (ELF) format, however 1t 1s
appreciated that ELF merely depicts an executable format
which might be used on a target device. The technique

described here would equally apply to other formats as well.
An ELF 1mage consists of several smaller pieces (sections).
The piece of soltware responsible for flashing the image to
the device (and at updates), juggles around (switches the
order of) the pieces of the 1mage that it can and updates the
references within 1t accordingly.

For instance, the .text section might be relocated to
physically reside after the .rodata when the software 1image
1s persisted on the device’s flash. Note that in FIG. 4 only a
few sections are depicted 1n the flash memory box, whilst
more might exist (such as the GOT table). The solution
becomes stronger (introduces more entropy) as more and
more sections are re-organized in the flash. Similarly, the
.data section and/or the .bss section (as well as heap and
stack) might be randomly situated in RAM upon execution.
The destination address in RAM for the stack, heap and
other read/write data can be randomized at every boot (in
contrast to the read only sections which are persisted once
the 1mage 1s updated), or even at mitialization time of a
particular software module. Thus, although the depiction
implies the read/write data sections are modified once, 1n
reality they can change more often, depending on how the
device 1s configured.

These small alterations, yield extra entropy towards the
pool of addressable device when the software later executes.
Depending on how the 1images 1s re-organized, fixed oflsets
within exploits would not work anymore.

Combining the eflects of the full-image relocation and
binary-rejuggling techniques can provide further entropy
(randomness) in the address space variation. Image reloca-
tion could be utilized within the binary-rejuggling equally,
although 1t would create even further amounts of unused
space 1n the system 1f the various parts of the aflected
soltware 1mages were padded.

Hence, as shown 1n FIGS. 5 and 6 the examples of FIGS.
3 and 4 can be combined. For example, as shown 1n FIG. 5,
in addition to performing the binary re-juggling of FIG. 4 to
change the order 1n which the respective portions A, B, C,
D of code or data are arranged in the physical address space,
an oflset (padding) 40 can also be applied to the start address
of the overall block of code or data as a whole. Hence 1n this
case all of the portions of code shown 1 FIG. 5 would be
oflset 1n the physical address space relative to the default
position by a variable offset selected based on the seed value
used for the randomisation. Note that padding the start of the
first portion B ahead by, say, 0x60 bytes means that the start
addresses for subsequent portions D, A, C are also moved on
by 0x60 bytes.

Alternatively as shown 1n FIG. 6 the offset can be applied
individually to each respective portion of the code or data
with diflerent amounts of padding applied to different por-
tions, for example selected based on a number of different
seed values (e.g. a new random number for each offset and
cach decision made for the layout variation). This can
provide further entropy and variation between the address

US 10,789,173 B2

13

layout used i different devices to further reduce the fraction
of the population of devices which share the same software
configuration.

When the device 1s to be manufactured, the device may be
programmed initially at the factory. In order to add some
diversification, the Normal World O/S 1image can thus be left
to be altered by the Secure World O/S. Because this happens
so early 1 a device’s lifetime a reliable source of entropy
may be unavailable. Thus, when the software address layout
varying process 1s performed during the manufacture pro-
cess, the probing/production station may optionally also
inject a random seed into the batch of devices being flashed
in order for them to able to produce uniformly distributed
configurations for randomization.

Due to the image being re-arranged or otherwise trans-
formed during the update stages, secure boot would break
when the binary needs to be loaded, hence the device would
be bricked. To rectity that situation, the device would
typically use a HMAC based solution (device specific key)
and re-protect the software image with a MAC that 1s used
instead at boot time for verification as part of the secure boot
chain and simply discard of any previous signature protect-
ing the binary.

Thus, the stages of update are the following:

1. Verily payload (i.e. 1s the update genuine)

2. Re-arrange the binary as described above

3. Re-protect software image with a new HMAC (recom-

puting an excepted authentication value to be compared
with a hash of a region of physical memory during an
authentication function performed 1n the secure boot
pProcess)

4. Write the diversified software update to persistent

storage

5. Reboot.

FIG. 7 1s a flow diagram illustrating a method of per-
forming an address layout varying process. At step 30 the
code or data to be installed or updated 1s obtained, for
example within a software update file which could be
installed by reading the update file from a disk or storage
medium, or by downloading the updated file over the
internet. At step 32 at least one seed value 1s obtained. The
seed value can be any value which has a reasonable prob-
ability of varying from device to device. For example the
seed value could be a random value, a device i1dentifier
associated with the electronic device 1n which the software
1s to be updated, a hardware-dependent value derived from
a hardware property of the device, or a seed value njected
from an external device. At step 34 a software address layout
1s selected from a number of candidate address layouts
depending on the at least one seed value selected at step 52.
For example the different software address layouts could
vary 1n terms of the order 1n which respective portions of the
code or data appear 1n physical address space and/or vary 1n
terms of the size of the offset used for a given portion of code
or data relative to some default base address. At step 56 any
absolute physical address references in the code or data, and
il necessary some relative physical address references, are
updated to correspond with the selected software address
layout so that the code or the data will still function correctly
once 1ts physical address locations have changed. At step 58
the electronic device 1s controlled to write the code or data
to locations 1n memory corresponding to the selected soft-
ware address layout (having already updated the physical
address references 1n the code or data at step 56). Optionally,
at step 60 an expected authentication value used for a
software authentication function (such as a secure boot
process as discussed above) 1s updated to correspond to the
selected software address layout. For example, the authen-
tication hash may be recomputed based on the updated
physical address region used to install the software code or

10

15

20

25

30

35

40

45

50

55

60

65

14

data. Alternatively, at step 60 unrolling information speci-
tying how to reconstruct the original address layout of the
software from the varied address layout could be stored
(protected by a signature generated by the device), to enable
a software authentication function to reconstruct the original
address layout when performing a software authentication
function. In devices which do not provide such software
authentication functions step 60 could be omitted.

As shown 1 FIG. 8, the electronic device 2 may 1n some
examples obtain the software update file by downloading 1t
over the Internet from a server 100 which comprises pro-
cessing circuitry 102 and storage circuitry 104 storing
soltware or data to be used by the processing circuitry 102.
In this case, the address layout varying process discussed
above could be implemented at the electronic device or at
the server 100.

In cases where the process 1s controlled by the electronic
device 4, 1n some 1implementation the device may support a
hardware architecture which provides a normal execution
environment 110 and a secure execution environment 112 as
shown 1 FIG. 9. The secure execution environment 112
provides a trusted execution environment (TEE) which 1s
protected by various hardware architecture features (e.g. an
MMU, bus protocol modifications for distinguishing secure
and non-secure memory accesses, hardware policing of
transitions between the normal and secure execution envi-
ronments, etc.) which may protect code or data associated
with a secure execution environment 112 from access by
code running 1n the normal execution environment 110. An
example of a hardware architecture providing such parti-
tioning between the normal and secure execution environ-
ments 1s the TrustZone® architecture provided by ARM®
Limited of Cambridge UK. It will be appreciated that other
architectures could also be used. In systems having such a
secure execution environment 112, the address layout vary-
ing process could be controlled by a trusted component 114
executing within the secure execution environment, 1n order
to protect against potential attacks intercepting the seed
value used for the address layout variation or determine
which layout has been used. However this 1s not essential
and other systems which do not have such an architecture
may use our component running in a normal execution
environment control address layout variation.

FIG. 10 shows an example where the address layout
varying process 1s performed at the electronic device. In this
case the server 100 may prepare a software update file which
provides the code or data to be installed or updated for a
given piece of software arranged according to some default
software address layout (step 150). At step 152 the server
transmits the software update file to the electronic device 2.
In response to receiving the software update file, the elec-
tronic device 2 performs steps 52, 54, 56 and 58 of FIG. 7
(and optionally step 60 as well), 1n order to select the
software address layout based on the obtained seed value
and write the code or data to memory locations correspond-
ing to the selected layout. In this case, the electronic device
may apply the ofisets or the reordering of the code or data
depending on the selected software address layout. This
approach allows a server to provide the same software
update file to each electronic device of a population, reduc-
ing the complexity at the server end. Also as the server 1s
unaware of which particular software software address lay-
out was used by any given electronic device, then this can
be more secure 1n some scenarios.

However, as shown 1n FIG. 11 1t 1s also possible for the
address layout varying process to be performed at the server.
In this case the server may obtain the code or data to be
installed or updated on the electronic device at step 160.
Also, the server may need to know what 1s already 1nstalled

on the device and what memory 1s available, so can gather

US 10,789,173 B2

15

information on the current memory usage on the device from
the device 2 1tself. Then the server may perform steps 52, 54
and 56 of FIG. 7 at the server end, to obtain the seed
value(s), select software address layout based on the seed
value(s), and generate a software update file according to the
selected software address layout. The server may perform
step 58 of FIG. 7 by transmitting the generated software
update file to the electronic device 2 at step 162 which then
triggers the device 2 to write the code or data to the memory
location starting at the predetermined physical address at
step 164. Step 60 shown 1n FIG. 7 may still be performed at
the electronic device 2 1f necessary. Alternatively the
expected authentication value could be provided to the
clectronic device 2 by the server 100.

With the approach shown 1n FIG. 11, the electronic device
2 does not need to have a component capable of reordering
the code or data of the software and can simply install the
soltware update file to some fixed physical address location.
In cases where the address layout variation 1s performed as
shown in FIG. 4 then the generated software update file
created by the server may have the code or data in different
orders for different devices. In cases where oflsets are
applied as shown i FIG. 3 then the server may include
dummy data or padding within the software update file, so
that when this 1s written to the corresponding locations in
memory starting from some fixed detault physical address,
different electronic devices 2 will offset the start of the real
code or data by diflerent amounts, creating diversification in
the software address layouts used by different devices 2.

Hence, an address layout varying process (diversification)
could be performed off-device at a remote server that
prepares soltware updates for the device population. Com-
munication between the server and device may be confiden-
tial to prevent disclosing information about a particular
device’s memory layout to a man-in-the-middle attacker
who could subsequently leverage such information to mount
a targeted attack against a specific device.

In some cases, the address layout varying process could
also be split between the device and the server, with some
steps performed at the device and other steps performed at
the server.

In the present application, the words “configured to . . . ™
are used to mean that an element of an apparatus has a
configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the
apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device
may be programmed to perform the function. “Configured
to” does not imply that the apparatus element needs to be
changed 1n any way 1n order to provide the defined opera-
tion.

Although illustrative embodiments of the invention have
been described 1n detail herein with reference to the accom-
panying drawings, 1t 1s to be understood that the mmvention
1s not limited to those precise embodiments, and that various
changes and modifications can be eflected therein by one
skilled 1n the art without departing from the scope and spirit
of the mvention as defined by the appended claims.

The invention claimed 1s:

1. A method for installing or updating software on an
clectronic device comprising processing circuitry and
memory access circuitry to control access to at least one
memory unit in response to physically-addressed memory
access requests 1ssued by the processing circuitry speciiying
physical addresses from a physical address space;

10

15

20

25

30

35

40

45

50

55

60

65

16

the method comprising performing an address layout

varying process comprising;:

obtaining at least one seed value;

in dependence on the at least one seed value, selecting
one of a plurality of software address layouts for
code or data associated with the software, each
soltware address layout corresponding to a different
layout of the code or data associated with the soft-
ware 1n the physical address space; and

triggering the electronic device to write the code or data
associated with the software to locations of said at
least one memory unit corresponding to the selected
soltware address layout;

wherein the address layout varying process comprises

selecting one of a plurality of address oflsets 1n depen-

dence on the at least one seed value, and 1n the selected

soltware address layout, a start address of a region of

the physical address space used to store at least part of

the code or data associated with the software 1s oflset

from a base address by the selected address ofl;

set.

2. The method of claim 1, wherein the processing circuitry
comprises address generating circuitry to generate non-
translated physical addresses for said physically-addressed
memory access requests in response to physical-address-
defining operands specified by memory access instructions
executed by the processing circuitry.

3. The method of claim 1, wherein the processing circuitry
1s configured to perform execute-in-place execution of the
soltware from the at least one memory unit.

4. The method of claim 1, wherein the address layout
varying process comprises updating at least one reference to
a physical address 1n the code or data associated with said
soltware to correspond with the selected software address
layout.

5. The method of claim 1, wherein at least two of the
plurality of software address layouts correspond to diflerent
orders 1n which respective portions of the code or data
associated with the software are arranged within the soft-
ware address layout.

6. The method of claim 1, wherein the software comprises
device firmware for the electronic device.

7. The method of claim 1, wherein the software comprises
monolithic software providing all the software functionality
to be executed by the electronic device.

8. The method of claim 1, wherein the address layout
varying process 1s performed when installing the software
on the electronic device.

9. The method of claim 1, wherein the address layout
varying process 1s performed when updating the soitware on
the electronic device.

10. The method of claim 1, wherein the address layout
varying process 1s performed when booting the electronic
device.

11. The method of claim 1, wherein the at least one seed
value comprises at least one of:

a random or pseudorandom number;

an 1dentifier associated with the electronic device;

at least one hardware property of the electronic device;

and

a seed value provided by a further device other than the

clectronic device.

12. The method of claim 1, wherein the electronic device
supports a software authentication function in which authen-
ticity of the software 1s checked by comparing a calculated
authentication value, which 1s obtained as a function of the
code or data stored 1n a given region of the physical address
space, with an expected authentication value; and

US 10,789,173 B2

17

the address layout varying process comprises updating the
expected authentication value to correspond with the
selected software address layout for the software.

13. The method of claim 1, wherein the address layout
varying process 1s performed by the electronic device.

14. The method of claim 13, wherein the electronic device
has a hardware architecture providing a secure operating,
environment and a normal operating environment, 1n which
code and data associated with the secure operating environ-
ment are protected from access by code executed in the
normal operating environment; and

the address layout varying process 1s controlled by code

executed 1n the secure operating environment.

15. The method of claim 1, wherein the address layout
varying process 1s performed by a server, which generates a
soltware update file comprising the code or data associated
with the software arranged according to the selected soft-
ware address layout, and transmits the generated software
update file to the electronic device to trigger the electronic
device to write the code or data associated with the software
to locations of said at least one memory unit corresponding,
to the selected software address layout.

16. A computer program for controlling a data processing
apparatus to perform the method of claim 1.

10

15

20

17. A storage medium storing the computer program of 25

claim 16.
18. An apparatus comprising:
processing circuitry; and
a storage medium storing a computer program for con-
trolling the processing circuitry to perform the method
of claim 1.

30

18

	Front Page
	Drawings
	Specification
	Claims

