12 United States Patent
Nordin

US010789097B2

US 10,789,097 B2
Sep. 29, 2020

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND SYSTEMS OF SCHEDULING
COMPUTER PROCESSES OR TASKS IN A
DISTRIBUTED SYSTEM

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

Applicant: Nasdag Technology AB, Stockholm

Inventor:

Assignee:

Notice:

Appl. No.

Filed:

US 2018/0232255 Al

(SE)

Jonas Nordin, Sigtuna (SE)

NASDAQ TECHNOLOGY AB,

Stockholm (SE)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 79 days.

: 15/896,857

Feb. 14, 2018

Prior Publication Data

Aug. 16, 2018

Related U.S. Application Data
Provisional application No. 62/459,722, filed on Feb.

16, 2017.

Int. CL

GO6I’ 9/46 (2006.01)

GO6I 9/48 (2006.01)
(Continued)

U.S. CL

CPC

GO6F 9/4881 (2013.01); GOGF 9/45558
(2013.01); GO6F 9/5027 (2013.01):

(Continued)

Field of Classification Search
GO6F 9/45558; GO6F 9/455; GO6F 9/54;
GO6F 9/546; GO6F 9/4881; GO6F 9/5088:

CPC

(Continued)

103n
L

Controller Node
104

110
,,J

e
[Cron loh }——7/

106
J
SQS

SUGRL

.

Repository ™ 108
[
FTP Site (-l | Controller Process

112

—

Database

__—«—/

124A S
R

~ Instance-§) CHeartBeat}
124C N ——

~(Controiler) { J-Status j

(56) References Cited
U.S. PATENT DOCUMENTS
5,278,982 A 1/1994 Daniels et al.
9,189,641 B2 11/2015 Syben
(Continued)
FOREIGN PATENT DOCUMENTS
CN 105024879 A 11/2015
WO 2011031459 A2 3/2011
(Continued)

OTHER PUBLICATIONS

Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority, or the
Declaration in International Application No. PCT/SE2018/050152
dated Apr. 18, 2018 (15 pages).

(Continued)

Primary Examiner — Emerson C Puente

Assistant Examiner — Zhi Chen
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A cloud computer system 1s provided that includes a plu-
rality of computer devices and a database. The plurality of
computer devices execute a plurality of virtual machines,
with one of the virtual machines serving as a controller node
and the remainder serving as worker instances. The control-
ler node 1s programmed to accept a request to initiate a
distributed process that includes a plurality of data jobs,
determine a number of worker instances to create across the
plurality of computer devices, and cause the number of
worker mstances to be created on the plurality of computer
devices. The worker nstances are programmed to create a
unique message queue lfor the corresponding worker
instance, and store a reference for the unique message queue
that was created for the corresponding worker to the data-
base. The controller node retrieves the reference to the
unique message queues and posts jobs to the message

queues for execution by the worker instances.

20 Claims, 4 Drawing Sheets

Instance 1 |116A
{ Worker J
1
_116R
“] 118
Instance 2 -
.[Wﬂrker 18 Report
9 J‘ Generator
é
Instance 3
Worker /116C
3 -
s
120
L

US 10,789,097 B2

Page 2
51 Int. CL 2015/0212892 Al 7/2015 L1 et al.
(51)
GO6F 9/50 (20060) 2015/0263900 Al * 9/2015 Polyakov **************** HO41. 67/10
) 709/203
ggg ﬁgis 88(1)2'8:; 2015/0339572 AL* 11/2015 Achin oo GO6N 5/02
.Ul 706/46
HO4L 1226 (2006.01) 2015/0381505 Al* 12/2015 Sundararaman HO41, 47/25
HO4L 12/24 (2006.01) 370/235
2016/0094413 Al* 3/2016 Jain woveoovveeeonn.. HO4L. 41/5019
(52) U.S. CL 200/976
CPC 201 f ng 2/05;)1‘389%2;32031)3 gi)t?FHﬁ;/j; 2016/0104242 Al 4/2016 Melton
(2013.01); (2013.01); 2016/0154662 AL* 6/2016 ChOL oo GOGF 9/45558
41/0896 (2013.01);, HO4L 43/10 (2013.01); 718/1
GO6LE 2009/4557 (2013.01); GO6F 2009/45562 2016/0283599 Al 9/2016 Zonabend
(2013.01); GO6F 2209/548 (2013.01) 2016/0292011 AL* 10/2016 Colson GO6F 9/5044
(58) Field of Classification Search gggigggigg i 1?%82 Iizrieetllil*et .
CPC GO6F 9/5005; GO6F 9/5011; GOG6F 9/5027; 2018/0004559 Al* 1/2018 Geml GO6F 9/45558
GO6F 9/5061; GO6F 2009/45562; GO6F 2018/0165173 Al 6/2018 Lin et al.
2009/4557: GO6F 2209/548 2018/0232462 Al 872018 Nordin

(56)

2005/0289540
2008/0002703

2008/0104608 Al
2009/0037498 Al
2012/0011100 Al
2013/0283266

2014/0064056

20
20

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2 *
Al

Al*

9,400,728
9,838,277

Al*

Al*

15/0032590
| 5/0073970

20

> 22

| 5/0095260

7/2016
12/2017

12/2005

1/2008

5/2008
2/2009
1/2012

10/2013

3/2014

1/201
3/201

4/201

5
5
5

Pattnaik GO6F 11/3006

Raney HO4L 43/028

Nguyen et al.

Tripatht HO4L 12/42
370/392

Hyser et al.

Mukherjee et al.

Yamane et al.

Basetoooeeenin GOO6F 9/485

718/1

Sakata HO04L 41/00
370/216

Fay et al.

Merold et al.

Ma et al.

FOREIGN PATENT DOCUMENTS

WO 2012/049613 4/2012
WO 2013/061217 5/2013
WO 2016/146846 9/2016

OTHER PUBLICATTONS

International Search Report in Application No. PCT/SE2018/

050151, dated Jun. 5, 2018 (6 pages).

Written Opinion of the International Searching Authority, in Appli-
cation No. PCT/SE2018/050151, filed Jun. 5, 2018 (9 pages).
Nunes et al., AIITTS: Adaptive Just-In-Time Transaction Schedul-
ing, IFIP International Federation for Information Processing, LNCS
vol. 7891, pp. 57-70, 2013.

Nonfinal Office Action for U.S. Appl. No. 15/896,875, 16 pages.
dated Jan. 21, 2020.

* cited by examiner

jeaglieay [-92UBelSU|) 44)

aveT _
. vHeT
over e

US 10,789,097 B2

01
-
Cop
° 91T . -
@ € oUBISU| j
m $$9204d J49]|0JIU0D) s |
|
] |
= 7 80T | | Alolisoday
= J01BI2UI5) E soc
3 10day — _
& 7 90UP1SU| B _ s
=3 ST1
7 g9TT of e
‘ 20T _
13940
R Vrll
I 2ouelsu| — e .

U.S. Patent

US 10,789,097 B2

Sheet 2 of 4

Sep. 29, 2020

U.S. Patent

9|qEL qOf

SJ3UeISUu|

)74

ric

Aianp

CLC

(14N ananp
‘@auelsu|) SHIMN

0L
SOS @1ea.)

80(¢

ananp - 2ouelsuy
NJOM | - IDYJOM

VLl

19)JOMN 91834D

4014

orll

sanany
104

HEM

13]]0J1U0)

() 1y

4014

80T

481"

uoJ?d

Z '3

paysiul

91¢

(pus) @1epdn

US 10,789,097 B2

\

LE

ARS

(14e1s) @21epdn

.4

S OT¢
e,

>

i

)

—

g |

—

g |

=

g

=

7.

3|geL

2o3URISU|

qof

drcl

U.S. Patent

Y40/ F

80t 31N29X3
90¢ peay [40}3
. E [
00¢
SIUESU] anany qof 19]]041U0
1310 X 10U
DAl Il Vit

801

¢ "81

US 10,789,097 B2

Sheet 4 of 4

Sep. 29, 2020

U.S. Patent

E

o0% (s)aonaQ
90BLIBIU| JJOM]SN

0LY (s)101depy
Induj Jasn

0% (s)eomeq
AOWaN

80 (s)aoeualu|
Aeldsiq

0¥
(S)Jossaooid

92Inag bunndwo)

=hll\t-Tq
Ae|dsiq

US 10,789,097 B2

1

METHODS AND SYSTEMS OF SCHEDULING
COMPUTER PROCESSES OR TASKS IN A
DISTRIBUTED SYSTEM

CROSS REFERENCE(S) TO RELATED
APPLICATION(S)

This application claims priority to U.S. Provisional Appli-
cation No. 62/459,722, filed Feb. 16, 2017, the entire
contents of which are hereby incorporated by reference. This
application also incorporates by reference U.S. Provisional
Application No. 62/459,711, filed Feb. 16, 2017 and an
application titled “SYSTEMS AND METHODS OF RET-
ROSPECTIVELY DETERMINING HOW SUBMITTED
DATA TRANSACTION REQUESTS OPERATE

AGAINSTADYNAMIC DATA STRL"_CT'JRE” filed on the
same date of the instant application.

TECHNICAL OVERVIEW

The technology described relates to scheduling computer
processes or tasks for computer processes. More particu-
larly, the technology described relates to scheduling com-
puter processes, tasks, or jobs 1n a distributed environment,
such a cloud-based computer system.

INTRODUCTION

Cloud computing technology provides for shared process-
ing and data resources (collectively computing resources).
This technology allows for provisiomng of computing
resources on an on-demand basis where client computers
can use one to thousands of hardware processors. Individu-
als and organizations find the flexibility of this technology
attractive for handling data processing that can use a large
amount of computing resources.

While cloud computing systems may be used to provide
an arbitrary number of processing instances (e.g., virtual or
physical machines), the actual provisioning of tasks to such
resources 1s typically a static or manual operation. For
example, 1 50 different virtual machines are created for
analyzing weather data, a static configuration will need to be
developed that details how those 30 different wvirtual
machines are to be used for the weather analysis process.
Static configurations may work 1n certain implementations
when the mcoming data and number of virtual machines 1s
relatively constant (e.g., the same amount, same type, etc. .
. .), but may break down when the amount or type of
incoming data 1s (hughly) variable. In other words, while one
may be able to create an arbitrary number of instances 1n a
cloud-computing environment, to elflectively use those
machines, the overall process must know how to commu-
nicate with those virtual machines to instruct them as to what
10b to perform.

Thus, new techniques for managing or scheduling tasks or
10bs 1n a distributed, dynamic environment, such as a cloud
computing environment (¢.g., where there may be an arbi-
trary number of servers available), are needed. Techniques
for providing data or information to an arbitrary number of
servers and/or the job processes of those servers 1s also
needed.

SUMMARY

In certain example embodiments, a cloud computer sys-
tem (system) 1s provided. The system includes a plurality of
computer devices coupled via an electronic data communi-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

cations network, with each of the plurality of computer
devices having at least one hardware processor and elec-
tronic data storage. Each device 1s configured to host at least
one virtual machine instance with at least one of the virtual
machine instances configured as a controller instance (e.g.,
a controller node). The system includes a database acces-
sible by each of the virtual machine mstances. The controller
instance 1s programmed to accept a request to initiate a
distributed process that includes a plurality of data jobs and
determine a number of worker instances to create across the
plurality of computer devices. Once determined, the con-
troller instance causes a number of worker instances to be
created on the plurality of computer devices (e.g., on the
cloud computer system). Fach of the created worker
instances, as part of a initialization process, creates their
own unique message queue and communicates with the
database to store a reference to the message queue 1n the
database. The controller node 1s further programmed to read
the references to the message queues from the database and
publish the data jobs to the messages queues.

This Summary 1s provided to introduce a selection of
concepts that are further described below 1n the Detailed
Description. This Summary 1s intended neither to i1dentily
key features or essential features of the claimed subject
matter, nor to be used to limit the scope of the claimed
subject matter; rather, this Summary 1s intended to provide
an overview of the subject matter described 1n this docu-
ment. Accordingly, 1t will be appreciated that the above-
described features are merely examples, and that other
features, aspects, and advantages of the subject matter
described herein will become apparent from the following
Detailed Description, Figures, and Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages will be better and
more completely understood by referring to the following
detailed description of example non-limiting 1llustrative
embodiments 1n conjunction with the drawings of which:

FIG. 1 shows an example system creating and scheduling
multiple different processing instances and corresponding
jobs for those instances;

FIG. 2 shows a signal diagram of how the system in FIG.
1 1s mtialized according to certain example embodiments;

FIG. 3 shows how jobs are submitted to worker istances
during a report generation phase according to certain
example embodiments; and

FIG. 4 shows an example computing device that may be
used 1n some embodiments to implement features described
herein.

DETAILED DESCRIPTION

In the following description, for purposes of explanation
and non-limitation, specific details are set forth, such as
particular nodes, functional entities, techniques, protocols,
etc. 1n order to provide an understanding of the described
technology. It will be apparent to one skilled 1n the art that
other embodiments may be practiced apart from the specific
details described below. In other instances, detailed descrip-
tions of well-known methods, devices, techmques, etc. are
omitted so as not to obscure the description with unneces-
sary detail.

Sections are used 1n this Detailed Description solely in
order to orient the reader as to the general subject matter of
cach section; as will be seen below, the description of many

US 10,789,097 B2

3

features spans multiple sections, and headings should not be
read as aflecting the meaning of the description included in
any section.

Overview

Certain example embodiments described herein relate to
cloud computing architecture and systems. In certain
examples, a cloud computer system includes hundreds or
thousands of diflerent physical computers (e.g., an example
computer system 1s shown in FIG. 4). When clients and
users use the processing resources of a cloud computer
system, they create worker instances (also referred to as
processing instances or instances) that can then execute
tasks (e.g., jobs that handle data—or data jobs) as directed
by the users/clients. In certain examples, the worker
instances are a combination of virtual machines imple-
mented by the underlying processing resources of the cloud
computer system and the set of tasks or jobs that those
virtual machines are programmed to execute. The virtual
machines may be system virtual machines (e.g., that repli-
cate the functionality of a “real” computer system and are
thus fully virtualized) or process based virtual machines
(e.g., that may execute computer programs in a platform
independent manner). The worker instances may be created
and destroyed as new 1nstances are needed and the jobs that
the 1nstances are tasked with are completed.

In certain example embodiments, a cloud computer sys-
tem that can create and destroy an arbitrary number of
worker instances 1s provided. Each of the worker instances
1s assigned one or more jobs that receive input data, process
the mput data, and generate output (e.g., in the form of
output data or a report of the output data). In certain example
embodiments, a controller node (e.g., an instance of the
cloud computer system tasked with controller functions) 1s
tasked with creating, destroying, and/or controlling worker
instances that will perform jobs based on 1nput data. The
controller node 1s programmed to request the creation of the
arbitrary number of worker instances. Each of the worker
instances then creates a corresponding mput queue (e.g.,
where the respective worker instance will read input data
from). Each worker instance also writes the location of the
correspondingly created queue (e.g., a reference to that
queue, such as a URL) and/or a pointer or other reference to
the worker instance to a database. The creation of the worker
instance and 1ts subsequent communication with the data-
base may be collectively referred to as the initiation phase of
the worker instance. During the initiation phase, the con-
troller periodically queries the database until all of the
requested worker 1nstances have populated the details of
their respective instance and queue reference. Once the
controller node has retrieved the references to the respective
queues (e.g., the URLSs) of the worker instances, 1t may then
task the worker 1instances with jobs by publishing jobs to the
queues associated with the worker instances.

In many places 1n this document, including but not limited
to 1n the below descriptions of FIGS. 1-4, software modules
and actions performed by software modules are described.
This 1s done for ease of description; 1t should be understood
that, whenever 1t 1s described i1n this document that a
solftware module performs any action, the action 1s 1n
actuality performed by underlying hardware elements (such
as a processor and a memory device) according to the
instructions that comprise the soitware module. Further
details regarding this are provided below in, among other
places, the description of FIG. 4.

Description of FIG. 1:

FIG. 1 shows an example cloud computer system for

creating and scheduling multiple different processing

10

15

20

25

30

35

40

45

50

55

60

65

4

instances (sometimes also referred to as “worker 1instances”™
or just “instances”) and corresponding jobs for those
instances. Cloud computer system 100 includes two main
components. The first 1s the conftroller node (sometimes
referred to as a controller instance herein) 102 and the
second 1s worker 1nstances 116 A, 116B, and 116C that are
dynamically created 1in response to a request by the control-
ler node 102.

Controller node 102 1s a virtual machine (or virtual
container, or other virtual environment) instance that oper-
ates on one of a plurality of hardware computer nodes 1037
that make up hardware computing resources of the cloud
computer system 100. In certain examples, each of hardware
computer nodes 103» are physical servers or computers
(e.g., as shown 1n FIG. 4) that are coupled together via an
clectronic data communications network (e.g., gigabit Eth-
ernet or other types of data communications technology)

The controller node 102 includes a controller process 108
that includes processing logic (e.g., a computer program) for
requesting the creation of new worker instances, handling
incoming data, distributing jobs, controlling the progression
of the overall process and the progression of each job being
performed by the cloud computing system 100 and the
instances thereof, and the like.

Each worker instance 116A-116C 1s a combination of a
virtual machine (e.g., an imstance or container) and a process
or thread (the worker) that 1s executing within that virtual
machine. Thus, the instance and the executing worker are
referred to as a worker 1nstance that 1s able to process jobs
and data posted to the corresponding queues 114A-114C.
The worker instances are stateless immutable 1nstances and
wait until work (e.g., a job) 1s assigned to them using their
respective queues 114A-114C. In certain example embodi-
ments, the work 1s communicated to the queues 1n the form
of JavaScript Object Notation (JSON) objects, which 1s a
data-interchange format that can be human readable, but also
casily parsed by a computer. Other types of data formats
may also be used.

An example cloud computer system may be Amazon Web
Services (AWS) cloud computer system that provides diif-
ferent types of instances depending on the processing
requirements. In certain examples, each instance 1s sup-
ported by underlying processing resources (e.g., such as the
computer system shown in FIG. 4). In certain examples,
multiple different instances share the same underlying pro-
cessing resources (e.g., are handled by the same computer
device). In certain examples, the underlying hardware can be
dedicated to a single 1mstance. It will be appreciated that the
flexibility of a cloud computer system architecture provides
for a variety of different schemes for handling instances that
are used to complete tasks or jobs.

In certain example embodiments, all of the mstances (e.g.
the worker 1nstances and the controller instances) share a
common system i1mage (e.g., that 1s used across all of the
different instances—including the controller node——created
on the cloud computer system). Of the instances, the con-
troller node 1s a long running instance and the worker
instances are created and terminated by the controller pro-
cess 108 on the controller node. In certain example embodi-
ments, the controller instance autoscales to a group size of
1. This ensures the cloud computing system 100 will always
have one instance of the controller instance running. In
certain examples, when a newly created instance 1s started,
it 1s passed (e.g., as part of its startup) the user data which
indicates what role (controller or worker) that instance 1s to
have. If the instance i1s marked as a controller node, the
controller process may be started. However 1f the istance 1s

US 10,789,097 B2

S

a worker instance, then a service for a worker process 1s
started. This type of deployment architecture may make 1t
casier as only one image for the instances needs to be
created.

The controller node 102 includes or stores a cron job 104,
which 1s a script or process configured to run at predefined
time periods (e.g., every night at 11 PM). In this example,
the cron job 104 1s used to signal the mitiation of the process
that takes input for a given date that produces reports for the
data for that date. The cron job communicates to the
controller process 108 via queue 106. In certain examples,
the queue 1s 1mplemented using a simple queue service
(SQS) that 1s part of AWS.

Also included i the system 100 1s an SQRL repository
that provides for authentication and authorization services
for users or clients that interact with the system 100. SQRL
1s an open standard for secure quick reliable login function-
ality for websites and the like. FTP site 112 1s a storage area
for storing reports and/or other output generated by using the
system 100. Users can then access the FTP site 112 and
retrieve the data (e.g., a generated report).

Report Generator 118 may be another instance (or part of
the controller instance) that generates a finalized report from
the data processed and output from the worker instances. For
example, each worker instance may return or output a data
l1st, and the report generator 118 may generate a report (e.g.,
in PDF form or a web page) from the outputted lists with
charts and the like to wvisually show the result of the
processing. The results of the report generator 118 and/or the
output from the worker instances 116 A-116C may be stored
in intermediate storage 120. Database 122 and/or interme-
diate storage 120 may be used for storing data (e.g., in bulk
form) processed by instances 116. In certain example imple-
mentations, database 122 1s a dynamoDB that 1s available as
part of cloud computer system oflered by Amazon Web
Services (AWS) and the intermediate storage 120 15 S3
storage of AWS.

The database 122 may include multiple different database
tables. A controller table 124 A records or keeps track of the
status of the controller and the overall status of a process
(e.g., 1n the case that a report 1s being generated, 1t may keep
track of the overall state of the report). Table 124 A may
include the following columns shown 1n Table 1 below:

TABLE 1
Field Description
Id The instance identifier for the controller
(currently only supports one).
Date The reporting date for the currently executing

report.

Has the initialization phase been completed
(e.g., all instances started and initial

jobs published)

Has the sqrl file been published to S3.

Has the raw data version of the reports
completed.

Have the customer facing reports been
published to the external FTP (e.g., 112).
Have the worker instances been shut

down and the instance table been cleaned up.

Init Completed

Sqrl__completed
Reported_ completed

Reports_ Published

Shutdown__Completed

Another table 124B (the job status table) may be used to
record what phase a certain process 1s 1. In certain
examples, for parallel overall processes, 1t may keep track of
how many jobs there are and how many have been com-
pleted. In certain examples, there 1s one row per date and
overall process. Table 124B may include the following
columns shown 1n Table 2 below:

10

15

20

25

30

35

40

45

50

55

60

65

6

TABLE 2
Field Description
Date Date for which the report phase executed.
Report The name of the report being generated.
Phase The phase of the report currently bemng executed.
Total Total number of jobs that makes up this phase.
Started How many of the jobs have started. If this number 1s greater
than the finished amount it means some jobs are failing
and are being retried.
Finished How many jobs have been completed.

Another table 124C (the instance job table) may be used
to record what job an instance (e.g., a worker 1nstance) 1s

executing, when 1t started and when 1t finished. Table 124C
may include the following columns shown 1n Table 3 below:

TABLE 3

Field Description

Instance An instance i1d (e.g., an AWS 1nstance 1d)
Queue_ URL URL of the queue for this worker instance

Job Job message associated with the most current execution.
Started Timestamp when the job started executing.
Finished Timestamp when the job finished executing.

An example job message may include the following
values: 1) “command”: “reportct]” (the command parameter
specifles the type of work to do), “report”™: “mola” (the
report parameter specifies the specific type of work to do),
“phase”: “report” (the phase parameter specifies which
phase the report 1s current in—each report can have more
than one phase), “partition”: 1 (the partition parameter
specifies how the data should be sliced), “date”: “07202016”
(the data parameter specifies the what day the data should be
processed for).

Another table 124D may keep track of heartbeats from the
worker istances 116A-116C. The following columns may
be mncluded as shown 1n Table 3 below:

TABLE 4
Field Description
Instance An instance 1d (e.g., an AWS instance 1d)
Last_ hb YYYY-mm-dd HH:MM:SS of when the instance

last reported a timestamp

Description of FIG. 2:

FIG. 2 shows a signal diagram of how the system in FIG.
1 1s mtialized according to certain example embodiments.

At 202, the it phase 202 of the controller process 108 1s
triggered by cron job 102 that posts a message to the SQS
that 1s associated with the controller process 108. An
example message posted to the SQS of the controller process
may 1include the following fields and data: 1) “type”:
“report”’; and 2) “date”: “07202106.” The posting of the
message via a cron job automates the starting of the process,
along with automatically triggering the subsequent genera-
tion of the worker instances and jobs that are pushed to those
instances. The message generated by the cron job and
pushed to the queue may contain the date of the data that the
process (e.g., a report process) will be analyzing. In response
to this message, the controller process 108 initializes the

system 1n preparation for runmng the jobs. As noted herein,
the jobs may be all part of a larger task or process (e.g., a
process that 1s to be distributed, 1n the form of the jobs,

US 10,789,097 B2

7

across the nodes of system 100) that may be, for example,
to generate or run a report on an existing dataset.
One type of job may include the retrospective analysis

process shown and described i1n co-pending application
entitled “SYSTEMS AND METHODS OF RETROSPEC-

TIVELY DETERMINING HOW SUBMITTED DATA
TRANSACTION REQUESTS OPERATE AGAINST A
DYNAMIC DATA STRUCTURE,” U.S. application Ser.
No. 15/896,8735, the entire contents of which are hereby
incorporated by reference. With such a job a client can
request a report for missed opportunities and each imndividual
job that 1s tasked to a different worker instance may be
associated with a different ticker symbol (e.g., where the
data operated on by a worker instance includes a data
structure to be analyzed for an order book for a given ticker).
One worker instance may run the retrospective process for
ticker symbol AAA and other for BBB. The output from
these multiple different worker instances may be combined
into a report that 1s shown to the client (as shown 1 FIG. 5
of the above-noted co-pending application).

At 204, the controller process 108 begins starting worker
instances 106. In certain examples this i1s done by invoking
the appropriate API to the cloud computing system 100 to
generate a requested number of worker 1nstances. In certain
examples, the controller process 108 may also dynamically
determine the number of worker instances that are to be
spawned based on the amount of processing that the jobs to
be accomplished are expected to take. In other words, the
number of worker instances that are needed for a given
execution of the controller may be highly variable from one
iteration to another (e.g., from one day to another). Thus, the
controller process 108 may request the creation of 10 worker
instances (or fewer) or the creation of 1000 worker 1instances
(or more) depending on the amount of work that a given
10b(s) are expected to take. In certain example embodiments,
the number of 1nstances may be controlled via a configura-
tion (e.g., a configuration file).

Once the creation of the worker instances have been
initiated (or the request to create those instances has been
acknowledged), then the controller waits at 206 until the
worker 1nstances have been created. This may include
having the controller process 108 query database 122 to
determine 1 and when the worker instances 116 have
successiully registered themselves as described 1n connec-
tion with 208 and 210.

At 208, cach newly created worker instance 208 creates
its own corresponding work queue (e.g., an SQS) that may
be unique for that queue. The work queue 114 1s generally
how data (e.g., a job) 1s communicated to each respective
worker instance. In certain examples, the work queues are
identified within the cloud computer environment by unique
URLs. Once the work queue 114 1s created and known, then
the worker instance 116 writes or otherwise communicates
with database 122 to write both the name of the correspond-
ingly created work queue (e.g., a reference to that queue)
and a reference to the corresponding work instance. This
information 1s communicated to the instance job table 124C
at 210 where that information 1s stored for future retrieval.

In certain examples, the processing for 208 and 210
occurs during an initialization phase for the worker instance.
For example, an “mit()” function that i1s called with the
worker instance 1s first started. In any event, during this
period the controller process 108 continues to wait at 206.
The waiting may include successive queries to the job
instance table to determine 1f the worker instances have
reported their respective information. Once such informa-
tion 1s written to the job table, at 212, the controller process

5

10

15

20

25

30

35

40

45

50

55

60

65

8

queries the database 122 to get references to the work queues
(e.g., the URL) and/or associated worker instances. With this
list the controller process 108 begins posting/submitting
10obs to the work queues 114 at 214. In certain example
embodiments, the process of posting jobs to the work queues
1s performed 1n a round robin manner.

Description of FIG. 3:

FIG. 3 shows how jobs are submitted to worker istances
during a report generation phase according to certain
example embodiments.

At 300, the controller process 108 updates the job status
table 1248 of the database 122 with the total number of jobs
for the phase and the phase name.

At 302, the controller process submits jobs as needed to
by distributing them over the available job queues 114 (e.g.,
by using a round robin algorithm).

At 304, the worker instances read their respective queues,
and at 306 the job that was submitted to the queue is
executed by the worker instance. In accordance with starting
the job at 306, the corresponding worker instance updates, at
308, the instance information in the instance job table to
indicate what job the worker 1s runming and when that job
was started by the worker 1nstance.

The processing for the received job 1s carried out at 312.
Once the worker instance has completed the job, 1t updates
the finished column 1n the job status table for the corre-
sponding job at 316 and updates or sets the finished time 1n
the job i1nstance table.

In certain example embodiments, when a worker instance
fails (e.g., there 1s no heartbeat within an amount of time
such as, 30 seconds, 1 minute, 10 minutes, 1 hour, or a day
or more), the controller runs a script that migrates all jobs
from that worker instances to other job queues (or starts the
process ol creating additional worker instances). This
includes unfinished jobs that the worker instances was
executing as well as any pending jobs 1n the work queue for
that instance. In other words, 11 a worker instance does not
report i1ts heartbeat and the last report 1s outside of a given
threshold amount, the controller may migrate jobs previ-
ously assigned to that process to another worker instance.

In certain examples embodiments, the controller process
may include a script (or the functionality therein) called
report_controller.py. This script controls start and stop of the
cluster (e.g., all of the instances—including the controller
instance) and report jobs. When not invoked with the “-1nit”
flag, the following 1s done: 1) Verily heartbeats from the
worker instances; 2) check if any report has completed its
current phase and 1f so, post a job for the next phase; 3) 1f
all reports have finished their work, execute the publish job
and shut down the worker 1nstances.

In certain example embodiments, the following script
may execute on each worker instances: worker_agent.py.
This script has two functions: 1) run a thread that updates the
heartbeat table 124D to indicate that the worker 1nstance 1s
still alive; and 2) read messages from the SQS and execute
them using the reportctl.py script discussed below.

In certain example embodiments, a reportctl.py script may
execute on each worker instance and execute a specific
phase and partition of a report job. The script may take the
following arguments: 1) report (indicates a given report that
1s to be run for the data); 2) phase (the phase of the report
cycle that 1s to be executed; 3) date (Date to run the report
for, either a date on ‘mmddyyyy’ format or ‘today’ for the
current business day (mutually exclusive with the sqrlfile
argument)—the script may fetch a sqrlfile i no date 1is
present; 4) source (the source path of the report files to
process); 5) target (Directory that files that are produced by

US 10,789,097 B2

9

the report phase are written to); 6) sqrliile (can specity a
sgrlfile 1nstead of a date); 7) partition (Run a report for a
specific partition—The partition 1s a number that represents
a predefined symbol range with —1 being the default to
indicate no partitioning); 8) symbol (Run a report for only
one symbol—such as a ticker symbol); 9) publishType
(Choose from which phase to publish data: report, convert,
post, clientlile).

Description of FIG. 4

FIG. 4 1s a block diagram of an example computing
device 400 (which may also be referred to, for example, as
a “computing device,” “computer system,” or “‘computing
system”) according to some embodiments. In some embodi-
ments, the computing device 400 includes one or more of the
following: one or more processors 402; one or more memory
devices 404; one or more network interface devices 406; one
or more display interfaces 408; and one or more user mput
adapters 410. Additionally, in some embodiments, the com-
putmg device 400 1s connected to or includes a display
device 412. As will explained below, these elements (e.g.,
the processors 402, memory devices 404, network interface
devices 406, display interfaces 408, user input adapters 410,
display device 412) are hardware devices (for example,
clectronic circuits or combinations of circuits) that are
configured to perform various different functions for the
computing device 400.

In some embodiments, each or any of the processors 402
1s or includes, for example, a single- or multi-core processor,
a microprocessor (e.g., which may be referred to as a central
processing unit or CPU), a digital signal processor (DSP), a
microprocessor 1n association with a DSP core, an Applica-
tion Specific Integrated Circuit (ASIC), a Field Program-
mable Gate Array (FPGA) circuit, or a system-on-a-chip
(SOC) (e.g., an mtegrated circuit that includes a CPU and
other hardware components such as memory, networking
interfaces, and the like). And/or, in some embodiments, each
or any ol the processors 402 uses an instruction set archi-
tecture such as x86 or Advanced RISC Machine (ARM). As
explained herein, multiple computer systems may collec-
tively form a cloud computer system and each one of the
computer systems 1s configured to host one or more virtual
machines (which are also referred as instances herein)

In some embodiments, each or any of the memory devices

404 1s or includes a random access memory (RAM) (such as
a Dynamic RAM (DRAM) or Static RAM (SRAM)), a flash

memory (based on, e.g., NAND or NOR technology), a hard
disk, a magneto-optical medium, an optical medium, cache
memory, a register (e.g., that holds istructions), or other
type of device that performs the volatile or non-volatile
storage of data and/or instructions (e.g., soltware that 1s
executed on or by processors 402). Memory devices 404 are
examples of electronic data storage and/or non-transitory
computer-readable storage media.

In some embodiments, each or any of the network inter-
face devices 406 includes one or more circuits (such as a
baseband processor and/or a wired or wireless transceiver),
and implements layer one, layer two, and/or higher layers
for one or more wired communications technologies (such
as Ethernet (IEEE 802.3)) and/or wireless communications
technologies (such as Bluetooth, WiF1 (IEEE 802.11), GSM,
CDMA2000, UMTS, LTE, LTE-Advanced (LTE-A), and/or
other short-range, mld-range and/or long-range wireless
communications technologies). Transceivers may comprise
circuitry for a transmitter and a receiver. The transmitter and
receiver may share a common housing and may share some
or all of the circuitry 1n the housing to perform transmission
and reception. In some embodiments, the transmitter and

10

15

20

25

30

35

40

45

50

55

60

65

10

receiver ol a transceiver may not share any common cir-
cuitry and/or may be 1in the same or separate housings.

In some embodiments, each or any of the display inter-
taces 408 1s or includes one or more circuits that receive data
from the processors 402, generate (e.g., via a discrete GPU,
an 1mtegrated GPU, a CPU executing graphical processing,
or the like) corresponding image data based on the received
data, and/or output (e.g., a High-Definition Multimedia
Interface (HDMLI), a DisplayPort Interface, a Video Graphics
Array (VGA) mterface, a Digital Video Interface (DVI), or
the like), the generated 1image data to the display device 412,
which displays the image data. Alternatively or additionally,
in some embodiments, each or any of the display interfaces
408 1s or includes, for example, a video card, video adapter,
or graphics processing unit (GPU).

In some embodiments, each or any of the user input
adapters 410 1s or includes one or more circuits that receive
and process user mput data from one or more user mput
devices (not shown 1n FI1G. 4) that are included 1n, attached
to, or otherwise 1n communication with the computing
device 400, and that output data based on the received mput
data to the processors 402. Alternatively or additionally, 1n
some embodiments each or any of the user mput adapters
410 1s or includes, for example, a PS/2 interface, a USB
interface, a touchscreen controller, or the like; and/or the
user input adapters 410 facilitates mput from user input
devices (not shown in FIG. 4) such as, for example, a
keyboard, mouse, trackpad, touchscreen, etc.

In some embodiments, the display device 412 may be a
Liquid Crystal Display (LCD) display, Light Emitting Diode
(LED) display, or other type of display device. In embodi-
ments where the display device 412 1s a component of the
computing device 400 (e.g., the computing device and the
C 1splay device are included 1n a unified housing), the display
device 412 may be a touchscreen display or non-touchscreen
display. In embodiments where the display device 412 1is
connected to the computing device 400 (e.g., 1s external to
the computing device 400 and communicates with the
computing device 400 via a wire and/or via wireless com-
munication technology), the display device 412 1s, for
example, an external monitor, projector, television, display
screen, etc.

In various embodiments, the computing device 400
includes one, or two, or three, four, or more of each or any
of the above-mentioned elements (e.g., the processors 402,
memory devices 404, network interface devices 406, display
interfaces 408, and user iput adapters 410). Alternatively or
additionally, in some embodiments, the computing device
400 1includes one or more of: a processing system that
includes the processors 402; a memory or storage system
that includes the memory devices 404; and a network
interface system that includes the network interface devices
406.

The computing device 400 may be arranged, 1n various
embodiments, in many different ways. As just one example,
the computing device 400 may be arranged such that the
processors 402 include: a mult1 (or single)-core processor; a
first network interface device (which implements, for
example, WikF1, Bluetooth, NFC, etc. . . .); a second network
interface device that implements one or more cellular com-
munication technologies (e.g., 3G, 4G LTE, CDMA, etc. . .
.); memory or storage devices (e.g., RAM, flash memory, or
a hard disk). The processor, the first network interface
device, the second network interface device, and the
memory devices may be integrated as part of the same SOC
(e.g., one mtegrated circuit chip). As another example, the
computing device 400 may be arranged such that: the

US 10,789,097 B2

11

processors 402 include two, three, four, five, or more multi-
core processors; the network interface devices 406 include a
first network interface device that implements Ethernet and
a second network interface device that implements WiFi
and/or Bluetooth; and the memory devices 404 include a
RAM and a flash memory or hard disk.

As previously noted, whenever it 1s described in this
document that a software module or soltware process per-
forms any action, the action 1s 1n actuality performed by
underlying hardware elements according to the instructions
that comprise the software module. Consistent with the
foregoing, in various embodiments, each or any combination
of the controller node/instances 102, worker instances 116,
controller process 108, database 122, cloud computer system
100, hardware computer nodes 103%, work queues 114, each
of which will be referred to individually for clarity as a
“component” for the remainder of this paragraph, are imple-
mented using an example of the computing device 400 of
FIG. 4 (or a plurality of such devices). In such embodiments,
the following applies for each component: (a) the elements
of the 400 computing device 400 shown 1n FIG. 4 (i.e., the
one or more processors 402, one or more memory devices
404, one or more network interface devices 406, one or more
display interfaces 408, and one or more user input adapters
410), or appropriate combinations or subsets of the forego-
ing) are configured to, adapted to, and/or programmed to
implement each or any combination of the actions, activities,
or features described herein as performed by the component
and/or by any software modules described herein as
included within the component; (b) alternatively or addi-
tionally, to the extent 1t 1s described herein that one or more
software modules exist within the component, in some
embodiments, such software modules (as well as any data
described herein as handled and/or used by the software
modules) are stored in the memory devices 404 (e.g., in
various embodiments, 1n a volatile memory device such as
a RAM or an mstruction register and/or in a non-volatile
memory device such as a tlash memory or hard disk) and all
actions described herein as performed by the software
modules are pertormed by the processors 402 1n conjunction
with, as appropnate, the other elements 1n and/or connected
to the computing device 400 (1.e., the network interface
devices 406, display interfaces 408, user input adapters 410,
and/or display device 412); (c) alternatively or additionally,
to the extent it 1s described herein that the component
processes and/or otherwise handles data, in some embodi-
ments, such data 1s stored 1n the memory devices 404 (e.g.,
in some embodiments, 1n a volatile memory device such as
a RAM and/or 1n a non-volatile memory device such as a
flash memory or hard disk) and/or 1s processed/handled by
the processors 402 1n conjunction, as appropriate, the other
clements 1n and/or connected to the computing device 400
(1.e., the network interface devices 406, display interfaces
408, user mput adapters 410, and/or display device 412); (d)
alternatively or additionally, 1n some embodiments, the
memory devices 402 store instructions that, when executed
by the processors 402, cause the processors 402 to perform,
in conjunction with, as appropriate, the other elements 1n
and/or connected to the computing device 400 (1.e., the
memory devices 404, network interface devices 406, display
interfaces 408, user input adapters 410, and/or display
device 512), each or any combination of actions described
herein as performed by the component and/or by any soft-
ware modules described herein as included within the com-
ponent.

Consistent with the preceding paragraph, as one example,
in an embodiment where an instance of the computing

10

15

20

25

30

35

40

45

50

55

60

65

12

device 400 1s used to implement controller node 102, the
memory devices 404 could load the files associated with the
controller process, and/or store the data described herein as
processed and/or otherwise handed off to work queues 114.
Processors 402 could be used to operate the controller
process 108.

The hardware configurations shown in FIG. 4 and
described above are provided as examples, and the subject
matter described herein may be utilized 1n conjunction with
a variety of different hardware architectures and elements.
For example: 1n many of the Figures in this document,
individual functional/action blocks are shown; in various
embodiments, the functions of those blocks may be imple-
mented using (a) individual hardware circuits, (b) using an
application specific integrated circuit (ASIC) specifically
configured to perform the described functions/actions, (c)
using one or more digital signal processors (DSPs) specifi-
cally configured to perform the described functions/actions,
(d) using the hardware configuration described above with
reference to FIG. 4, (e) via other hardware arrangements,
architectures, and configurations, and/or via combinations of
the technology described 1n (a) through (e).

Technical Advantages of Described Subject Matter

When working 1n a cloud based environment it can be
technically advantageous 1f the techniques allow a given
task or process to be able to dynamically scale up and down
depending on the workload that 1s needed at a given point 1n
time (e.g., the workload may dramatically vary from day-
to-day). Such techniques should also advantageously be able
to reprocess data in cases where one of the worker nodes
fails at some point in the processing. Specifically, 1f one
nodes of the cloud systems fails the outstanding (or 1ncom-
plete) work for that nodes should be redistributed to other
nodes.

In certain example embodiments, the subject matter
described herein provides for a dynamic and flexible tech-
nique of handling varnable computer-based processing
requirements mm a cloud computer system. In a typical
scenar1o, a configuration file or the like keeps a list of
possible worker instances (and their respective message
queues). However, if the nature of the processing to be
carried out varies from day to day, then that same configu-
ration file will need to be updated (usually manually) to
account for the changing availability of instances that can be
used for processing. In certain example embodiments, once
a worker instance 1s started by a controller instance, the
worker instance seli-registers with a database. The control-
ler instance may then see that all of the worker instances that
it spawned are ready (e.g., by querying the database). The
controller instance can then retrieve the references to the
message queues for the individual worker instances and
begin publishing jobs to the queues. This allows the con-
troller to not only create an arbitrary number of worker
instances, but to also automatically submit jobs to those
instances without having to manually set a reference to the
queues for each of the worker instances.

The technical features described herein improve the reli-
ability and flexibility in handling large scale and vanable
processing problems i1n a cloud or distributed computing
context.

Selected Terminology

Whenever 1t 1s described in this document that a given
item 1s present in “some embodiments,” “various embodi-
ments,” “certain embodiments,” “certain example embodi-
ments, “some example embodiments,” “an exemplary
embodiment,” or whenever any other similar language 1s
used, i1t should be understood that the given item 1s present

2L

US 10,789,097 B2

13

in at least one embodiment, though 1s not necessarily present
in all embodiments. Consistent with the foregoing, when-
ever 1t 1s described 1n this document that an action “may,”
“can,” or “could” be performed, that a feature, element, or
component “may,” “can,” or “could” be included in or is
applicable to a given context, that a given item “may,”
“can,” or “could” possess a given attribute, or whenever any
similar phrase involving the term “may,” “can,” or “could”
1s used, 1t should be understood that the given action,
feature, element, component, attribute, etc. 1s present 1n at
least one embodiment, though 1s not necessarily present 1n
all embodiments. Terms and phrases used 1n this document,
and vanations thereof, unless otherwise expressly stated,
should be construed as open-ended rather than limiting. As
examples of the foregoing: “and/or” includes any and all
combinations of one or more of the associated listed 1tems
(c.g., a and/or b means a, b, or a and b); the singular forms
“a”, “an” and “the” should be read as meaning “at least one,”
“one or more,” or the like; the term “example” 1s used
provide examples of the subject under discussion, not an
exhaustive or limiting list thereof; the terms “comprise” and
“include” (and other conjugations and other variations
thereol) specily the presence of the associated listed 1tems
but do not preclude the presence or addition of one or more
other 1tems; and if an 1tem 1s described as “optional,” such
description should not be understood to indicate that other
items are also not optional.

As used herein, the term “non-transitory computer-read-
able storage medium” includes a register, a cache memory,
a ROM, a semiconductor memory device (such as a
D-RAM, S-RAM, or other RAM), a magnetic medium such
as a flash memory, a hard disk, a magneto-optical medium,
an optical medium such as a CD-ROM, a DVD, or Blu-Ray
Disc, or other type of device for non-transitory electronic
data storage. The term “non-transitory computer-readable
storage medium” does not include a transitory, propagating
clectromagnetic signal.

Additional Applications of Described Subject Matter

Although process steps, algorithms or the like, including
without limitation with reference to FIGS. 1-3, may be
described or claimed in a particular sequential order, such
processes may be configured to work 1n different orders. In
other words, any sequence or order of steps that may be
explicitly described or claimed 1n this document does not
necessarily indicate a requirement that the steps be per-
formed 1n that order; rather, the steps of processes described
herein may be performed 1n any order possible. Further,
some steps may be performed simultaneously (or in parallel)
despite being described or implied as occurring non-simul-
taneously (e.g., because one step 1s described after the other
step). Moreover, the illustration of a process by its depiction
in a drawing does not imply that the illustrated process 1s
exclusive of other variations and modifications thereto, does
not imply that the 1llustrated process or any of its steps are
necessary, and does not imply that the illustrated process 1s
preferred.

Although various embodiments have been shown and
described in detail, the claims are not limited to any par-
ticular embodiment or example. None of the above descrip-
tion should be read as implying that any particular element,
step, range, or function i1s essential. All structural and
functional equivalents to the elements of the above-de-
scribed embodiments that are known to those of ordinary
skill in the art are expressly incorporated herein by reference
and are imtended to be encompassed. Moreover, 1t 1s not
necessary for a device or method to address each and every
problem sought to be solved by the present invention, for it

10

15

20

25

30

35

40

45

50

55

60

65

14

to be encompassed by the invention. No embodiment, fea-
ture, element, component, or step in this document 1s
intended to be dedicated to the public.

The mvention claimed 1s:

1. A cloud computer system comprising;

a plurality of computer devices coupled together via an
electronic data communications network, each of the
plurality of computer devices having at least one hard-
ware processor and a storage system, where at least one
of the plurality of computer devices 1s configured as a
controller node;

a database stored on electronic data storage;

the controller node being programmed to:
accept a request to 1nitiate a distributed process that

includes a plurality of data jobs,
determine a number of worker instances to create
across the plurality of computer devices, and
cause, for the determined number of worker instance, a
plurality of worker instances to be created on the
plurality of computer devices;
cach one of the plurality of worker instances being
programmed to:
create a unique message queue for the corresponding
worker instance, and

submit, to the database for storage therein, a reference
for the unique message queue that was created for
the corresponding worker instance;
the controller node 1s further programmed to:
retrieve each one of the references to the unique mes-
sage queues for the plurality of created worker
instances, and

use the references to the unique message queues to
publish the plurality of data jobs to corresponding
ones of the unique message queues; and

wherein each one of the plurality of worker instances 1s
further programmed to read at least one data job
contained 1n a corresponding unique message queue
and process the read at least one data job.

2. The cloud computer system of claim 1, wherein each
one of the plurality of worker istances 1s further pro-
grammed to:

during processing ol a corresponding data job, report a
heartbeat signal to the database that indicates that the
corresponding worker instance 1s working.

3. The cloud computer system of claim 2, wherein the

controller node 1s further programmed to:

determine, based on stored heart beat signals of the
plurality of worker instances, that a last update for the
heartbeat signal for a first worker instance 1s longer
than a threshold time; and

in response to determination that the first worker instance
has not updated its heartbeat signal, publish the data
10b(s) that were published to the unique message queue

of the first worker instance to another unique message
queue that 1s associated with another worker instance.

4. The cloud computer system of claim 1, wherein the
creation of the unique message queue and the submission of
the reference are both executed during an initialization
function for each corresponding worker instance.

5. The cloud computer system of claim 1, wherein the
controller node 1s further programmed to:

poll the database to determine when the reference for the
unique message queue ol each corresponding worker
instance has been stored to the database.

6. The cloud computer system of claim 1, wherein the data

jobs are published to the unique message queues using a
round-robin process.

US 10,789,097 B2

15

7. The cloud computer system of claim 1, wherein each
one of the plurality of worker instances 1s further pro-
grammed to:

store, to the database and 1n association with the reference

for the unique message queue, an instance i1dentifier
that uniquely identifies the created worker instance.
8. The cloud computer system of claim 1, wherein each
one of the plurality of worker instances 1s shutdown or
destroyed upon completion of the distributed process.
9. The cloud computer system of claim 8, wherein the
distributed process 1s a process to generate at least one report
based on an mnput data set.
10. The cloud computer system of claim 1, wherein the
database 1ncludes a first table and each newly created worker
instances 1s further programmed to submit a request that
generates a new record for the first table with at least the
following columns: 1) an instance 1dentifier for the worker
instance, 2) the reference for the unique message queue, 3)
a job message that corresponds to a currently executing job
tor the worker 1nstance, 4) a timestamp for a start time of the
job, and 35) a timestamp for the completion of the job.
11. A method of operating a cloud computer system that
includes a plurality of computer devices coupled together
via an electronic data communications network, each of the
plurality of computer devices having at least one hardware
processor and a storage system, where at least one of the
plurality of computer devices 1s configured as a controller
node, the method comprising:
on the controller node, accepting a request to 1nitiate a
distributed process that includes a plurality of data jobs;

on the controller node, determining a number of worker
instances to create across the plurality of computer
devices:

on the controller node, requesting, for the determined

number of worker instance, a plurality of worker
instances to be created on the plurality of computer
devices:

on each one of the plurality of worker instances that are

executing 1n response to the request from the controller

node:

(a) generating a unique message queue for the corre-
sponding worker 1nstance, and

(b) submitting, to a database of the cloud computer
system for storage therein, a reference for the unique
message queue that was created for the correspond-
ing worker instance;

on the controller node, retrieving, from the database, each

one of the references to the unique message queues for
the plurality of created worker instances;
on the controller node, using the references to the unique
message queues to publish the plurality of data jobs to
corresponding ones of the unique message queues; and

on each one of the plurality of worker instances, reading
at least one data job contained 1n a corresponding
unique message queue and subsequently processing the
at least one data job.

12. The method of claim 11, further comprising:

on each worker instance and at least during processing of

a corresponding data job, reporting a heartbeat signal to
the database that indicates that the corresponding
worker 1nstance 1s working.

13. The method of claim 12, further comprising:

determining, based on stored heart beat signals of the

plurality of worker instances, that a last update for the
heartbeat signal for a first worker instance 1s longer
than a threshold time; and

10

15

20

25

30

35

40

45

50

55

60

65

16

in response to determination that the first worker instance
has not updated 1ts heartbeat signal, publishing the data
10b(s) that were published to the unique message queue
of the first worker instance to another unique message
queue that 1s associated with another worker instance.

14. The method of claim 11, wherein the creation of the
unique message queue and the submission of the reference
are both executed during an initialization process for each
corresponding worker instance.

15. The method of claim 11, further comprising:

polling the database to determine when the reference for

the unique message queue of each corresponding
worker 1nstance has been stored to the database.

16. The method of claim 11, wherein the data jobs are
published to the unique message queues using a round-robin
process.

17. The method of claim 11, further comprising:

on each of the worker 1nstances, storing, to the database,

an mstance 1dentifier that umquely 1dentifies the created
worker instance with the reference for the unique
message queue.

18. A non-transitory storage medium storing instructions
for use with a cloud computer system that includes a
plurality of computer devices coupled together via an elec-
tronic data communications network, each of the plurality of
computer devices having at least one hardware processor
and a storage system, where at least one of the plurality of
computer devices 1s configured as a controller node, the
stored 1nstructions comprising instructions configured to:

accept a request to iitiate a distributed process that

includes a plurality of data jobs;

determine a number of worker instances to create across

the plurality of computer devices;

cause, for the determined number of worker instance, a

plurality of worker instances to be created on the
plurality of computer devices;

as part of each worker instance, create a unique message

queue for the corresponding worker instance;

as part of each worker instance, submut, to the database for

storage therein, a reference for the unique message
queue that was created for the corresponding worker
instance;

as part of the controller instance, retrieve each one of the

references to the unique message queues for the plu-
rality of created worker instances;

as part of the controller instance, use the references to the

unique message queues to publish the plurality of data
jobs to corresponding ones ol the unique message
queues; and

as part ol each worker instance, read at least one data job

contained 1n a corresponding unique message queue
and process the read at least one data job.

19. The non-transitory storage medium of claim 18,
wherein the stored 1nstructions comprise further instructions
that are configured to:

during processing ol a corresponding data job, report a

heartbeat signal to the database that indicates that the
corresponding worker instance 1s working;

determine, based on stored heart beat signals of the

plurality of worker instances, that a last update for the
heartbeat signal for a first worker instance 1s longer
than a threshold time; and

in response to determination that the first worker instance
has not updated its heartbeat signal, publish the data
j0b(s) that were published to the unique message queue
of the first worker instance to another unique message
queue that 1s associated with another worker instance.

US 10,789,097 B2
17

20. The non-transitory storage medimum of claim 19,
wherein the creation of the unique message queue and the
submission ol the reference are both executed during an

iitialization function for each corresponding worker
instance. 5

18

	Front Page
	Drawings
	Specification
	Claims

