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USING AN ARTIFICIAL NEURAL NETWORK
FOR COMBUSTION PHASING CONTROL IN
A SPARK IGNITED INTERNAL
COMBUSTION ENGINE

FIELD

The present application generally relates to spark 1gnition
(SI) engines and, more particularly, to techniques for using
an artificial neural network (ANN) for combustion phasing
control 1n an SI engine.

BACKGROUND

A spark 1gnition (SI) engine combusts a mixture of air and
tuel (e.g., gasoline) within cylinders to drive pistons that
generate drive torque at a crankshaftt. The air 1s drawn 1nto
the engine through an induction system and provided to the
various cylinders via intake valves that are actuated by lobes
of an intake camshaft. The air/fuel mixture 1s compressed by
the pistons within the cylinders and the compressed air/fuel
mixture 1s 1gnited by a spark provided by respective spark
plugs. Exhaust gas resulting from combustion 1s expelled
from the cylinders via respective exhaust valves that are
actuated by lobes of an exhaust camshait. The spark timing
with respect to the respective piston strokes aflects the
quality of combustion. It 1s therefore important to accurately
determine and control the spark timing because poor com-
bustion quality due to maccurate spark timing could result in
decreased fuel economy and/or engine knock.

Conventional combustion phasing control techniques for
SI engines use an empirical approach where multiple cali-
bration tables and surfaces are utilized to determine the
desired spark timing. This requires a substantial calibration
effort and increased processor throughput. Further, for SI
engines having a variable valve control (VVC) system, these
empirical calibrations incur an accuracy penalty at ofl-
nominal camshait positions, due to superposition method-
ology. Accordingly, while such SI combustion phasing con-
trol systems do work for their intended purpose, there
remains a need for improvement 1n the relevant art.

SUMMARY

According to one example aspect of the invention, a
calibration system for a spark i1gnition (SI) engine of a
vehicle 1s presented. In one exemplary implementation, the
calibration system comprises dynamometer sensors config-
ured to measure dynamometer data for the engine and a
computing system configured to: receive the dynamometer
data for the SI engine, artificially weight the engine dyna-
mometer data in high engine load regions to obtain weighted
engine dynamometer data, generate training data for an
artificial neural network (ANN) using the weighted engine
dynamometer data, train a plurality of ANNs using the
generated tramning data, filter the plurality of trained ANNs
based on their maximum error to obtain a filtered set of
trained ANNSs, perform a statistical analysis on each of the
filtered set of trained ANNs including determining a set of
statistical metrics for each of the filtered set of tramned
ANNs, select one of the filtered set of trained ANNs having,
a best combination of error at high engine loads and the set
of statistical error metrics, and generate an ANN calibration
using the selected one of the filtered set of trained ANNs.

In some 1implementations, the computer system 1s further
configured to output the generated ANN calibration to a
controller of the SI engine. In some 1mplementations, receipt
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of the generated ANN calibration causes the controller to
store the generated ANN calibration and use the generated
ANN calibration for combustion phasing control to at least
one of decrease engine knock and increase fuel economy. In
some 1mplementations, the use of the generated ANN cali-
bration involves the controller: receiving, from camshaft
position sensors, measured positions of intake and exhaust
camshafts of the SI engine, receiving, from an air charge
sensor, a measured air charge provided to each cylinder of
the SI engine, recerving, from an engine speed sensor, a
measured engine speed indicative of a rotational speed of a
crankshaft of the SI engine, using the generated ANN
calibration, determining at least one of a desired base spark
timing and a desired maximum brake torque (MBT) spark
timing based on the measured intake and exhaust camshaft
positions, the measured air charge, and the measured engine
speed, and controlling a spark system of the SI engine based
on at least one of the desired base and MBT spark timings.
In some 1mplementations, the controller does not generate
and output empirically calibrated surfaces for determining
the base or MBT spark timings.

In some implementations, generating the training data for
includes using the weighted engine dynamometer data and a
mathematical method, wherein the generated training data
includes more data points than the weighted engine dyna-
mometer data. In some implementations, the set of statistical
error metrics comprises at least one of a sum of squares due
to error (SSE) and a root-mean-square error (RMSE). In
some i1mplementations, each of the plurality of trained
ANNs defines two hidden layers, twelve neurons per hidden
layer, a Bayesian regularization backpropagation training
function, and a hyperbolic tangent sigmoid transfer function.

According to another example aspect of the invention, a
calibration method for an SI engine of a vehicle 1s presented.
In one exemplary implementation, the method comprises:
receiving, by a calibration system, dynamometer data for the
engine, artificially weighting, by the calibration system, the
engine dynamometer data in high engine load regions to
obtain weighted engine dynamometer data, generating, by
the calibration system, training data for an ANN using the
weighted engine dynamometer data, training, by the cali-
bration system, a plurality of ANNs using the generated
training data, filtering, by the calibration system, the plural-
ity of trained ANNs based on their maximum error to obtain
a filtered set of trained ANNs, performing, by the calibration
system, a statistical analysis on each of the filtered set of
trained ANNs including determining a set of statistical
metrics for each of the filtered set of trained ANNSs, select-
ing, by the calibration system, one of the filtered set of
trained ANNs having a best combination of error at high
engine loads and the set of statistical error metrics, and
generating, by the calibration system, an ANN calibration
using the selected one of the filtered set of trained ANNs.

In some implementations, the method further comprises
outputting, by the calibration system and to a controller of
the SI engine, the generated ANN calibration. In some
implementations, receipt of the generated ANN calibration
causes the controller to store the generated ANN calibration
and use the generated ANN calibration for combustion
phasing control to at least one of decrease engine knock and
increase fuel economy. In some implementations, the use of
the generated ANN calibration mvolves the controller:
receiving, from camshait position sensors, measured posi-
tions of intake and exhaust camshaits of the SI engine,
receiving, Irom an air charge sensor, a measured air charge
provided to each cylinder of the SI engine, receiving, from
an engine speed sensor, a measured engine speed indicative
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ol a rotational speed of a crankshait of the SI engine, using
the generated ANN calibration, determining at least one of
a desired base spark timing and a desired MB'T spark timing
based on the measured intake and exhaust camshaft posi-
tions, the measured air charge, and the measured engine
speed, and controlling a spark system of the SI engine based
on at least one of the desired base and MBT spark timings.
In some implementations, the controller does not generate
and output empirically calibrated surfaces for determining
the base or MBT spark timings.

In some 1mplementations, generating the training data for
includes using the weighted engine dynamometer data and a
mathematical method, wherein the generated training data
includes more data points than the weighted engine dyna-
mometer data. In some implementations, the set of statistical
error metrics comprises at least one of SSE and RMSE. In
some i1mplementations, each of the plurality of trained
ANNs defines two hidden layers, twelve neurons per hidden
layer, a Bayesian regularization backpropagation training
function, and a hyperbolic tangent sigmoid transier function.

Further areas of applicability of the teachings of the
present disclosure will become apparent from the detailed
description, claims and the drawings provided heremafter,
wherein like reference numerals refer to like features
throughout the several views of the drawings. It should be
understood that the detailed description, including disclosed
embodiments and drawings referenced therein, are merely
exemplary in nature intended for purposes of illustration
only and are not mtended to limit the scope of the present
disclosure, its application or uses. Thus, variations that do
not depart from the gist of the present disclosure are
intended to be within the scope of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example spark ignition (SI)
engine according to the principles of the present disclosure;

FIG. 2 1s a functional block diagram of an example
artificial neural network (ANN) traiming/calibration archi-
tecture according to the principles of the present disclosure;
and

FIG. 3 1s a flow diagram of an example combustion
phasing control method for an SI engine according to the
principles of the present disclosure.

DETAILED DESCRIPTION

As previously discussed, there remains a need for accurate
combustion phasing control in spark 1gnition (SI) engines
that do not require substantial empirically calibrated sur-
taces. Such empirical based techniques are also 1naccurate at
certain operating conditions, such as off-nominal camshatit
positions when valve lift and/or valve timing 1s adjusted by
a variable valve control (VVC) system. Accordingly, SI
engine combustion phasing control techniques are presented
that use a tramned feed-forward artificial neural network
(ANN) to model both base and maximum brake torque
(MBT) spark timing based on only four inputs: intake and
exhaust camshatt positions, an air charge being provided to
cach cylinder of the SI engine, and engine speed. The ANN
1s also trained using dynamometer data for the SI engine that
1s artificially weighted for high load regions where accuracy
of spark timing 1s critical.

Referring now to FIG. 1, a diagram of an example vehicle
100 comprising an SI engine 104 (hereinafter, “engine
104”). The engine 104 draws air into an intake manifold 108
through an induction system 112 that 1s regulated by a
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throttle valve 116. A mass air flow (MAF) and/or manmfold
absolute pressure (IMAP) sensor 120 (also referred to as *“air

charge sensor 120”’) measures air flow/pressure indicative of
an air charge being provided to each of a plurality of
cylinders 124 of the engine 104. While eight cylinders are
shown, 1t will be appreciated that the engine 104 could
include any suitable number of cylinders. Intake valves 128
regulate the flow into the respective cylinders 124. The
intake valves 128 are actuated by lobes of an intake camshatt
132, which 1s also connected to a VVC system 136 that 1s
configured to adjust the actuation of the intake valves 128 by
the intake camshait 132 to adjust intake valve lift and/or
timing. Camshait position sensor 134 measures a position of
the intake camshaft 132. The air charge for each cylinder 1s
combined with fuel (e.g., gasoline) from a fuel system 140
(via direct or port fuel imjection) and the air/fuel mixture 1s
compressed by respective pistons (not shown) within the
cylinders 124. The compressed air/fuel mixture 1s then
ignited by spark provided by a spark system 144 (e.g., one
or more spark plugs for each respective cylinder 124).

The combustion of the compressed air/fuel mixture drives
the pistons, which in turn rotatably turn a crankshaft 148
thereby generating drive torque. Engine speed sensor 150
measures a rotational speed of the crankshait 148. The drive
torque at the crankshaft 148 1s then transierred to a driveline
152 of the vehicle 100 via a transmission 156. Exhaust gas
resulting from combustion 1s expelled from the cylinders
124 via respective exhaust valves 160 that regulate the flow
out of the respective cylinders 124. The exhaust valves 160
are actuated by lobes of an exhaust camshait 164, which 1s
also connected to the VVC system 136. Similar to the intake
valves/camshatt, the VVC system 136 1s configured to adjust
exhaust valve lift and/or timing. Camshaft position sensor
166 measures a position of the exhaust camshait 164. The
exhaust gas expelled from the cylinders 124 is then treated
by an exhaust system 168 to eliminate or mitigate emissions
before being released into the atmosphere. Non-limiting
example components of the exhaust system 168 include an
exhaust manifold and a three-way catalytic converter.

A controller 172 controls operation of the engine 104. The
controller 172 1s configured to receive mput from one or
more iput devices 174 as well as the various sensors 120,
134, 150, and 166. One non-limiting example of the one or
more mput devices 174 1s an accelerator pedal. For example,
a driver of the vehicle 100 could provide imput via the
accelerator pedal, which 1s indicative of a torque request.
The controller 172 then controls the engine 104 (e.g.,
airflow, fuel, and spark) to achieve the torque request. A
remote calibration system 176 that 1s not part of the vehicle
100 comprises a computer system that interacts with a
dynamometer 180 (e.g., dynamometer sensors), which could
be part of or separate from the calibration system 176, to
obtain dynamometer data for the engine 104, which 1is
utilized to generate an ANN calibration that 1s provided as
input to the controller 172 and then utilized for combustion
phasing control. The term “obtain™ as used herein refers to
all of the generated ANN calibration being transmitted to the
controller 172 for storage in 1ts memory and subsequent
retrieval for usage.

ANN Design

The ANN 1s designed such that 1t 1s capable of accurately
controlling spark in an SI engine. This design process
involves the selection of various parameters, such as, but not
limited to, input/output type and quantity, number of hidden
layers, number of neurons per layer, and training/transfer
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functions. In one exemplary implementation, the optimal
ANN design 1s four mputs (air charge, engine speed, and
intake/exhaust camshait positions), two outputs (base and
MBT spark timing), two hidden layers, twelve neurons per
layer, a Bayesian regularization backpropagation training
function (also known as “trainbr’”), and a hyperbolic tangent
sigmoid transter function (also known as “tansig”). It will be
appreciated, however, that this 1s merely one exemplary
ANN design and that these parameters could vary depending
on the specific vehicle/engine application. For example only,
another suitable training function, such as a Levenberg-
Marquardt backpropagation training function (also known
as “trainlm™), and/or another suitable transfer function, such
as rectified linear units (also known as “Rel.u”), could be
utilized. Other suitable types and/or quantities of inputs
and/or outputs could also be utilized.

ANN Training/Calibration

Referring now to FIG. 2, a functional block diagram of an
example ANN training architecture 200 1s 1illustrated. At
204, engine dynamometer (“dyno”) data 1s gathered and 1s
then artificially weighted at 208. This artificial weighting
involves artificially weighting the dyno data at higher engine
loads because accurate spark control 1s critical at these
operating ranges. For example, an over advanced spark at
very high engine loads could cause engine damage at certain
conditions. At 212, training data i1s generated using the
weilghted engine dyno data. For example, a large quantity of
training data (e.g., 10,000 to 40,000 data points) could be
generated from the smaller quantity of engine dyno data
(e.g., 1000 to 2000 data points) using any suitable math-
ematical method. For example only, this could include
running simulations using the existing dyno data to generate
additional training data. This 1s performed because ANN
training requires a large number of training samples to
reduce the risk of overfitting. In addition, a large quantity of
training data ensures that each ANN sees every possible
engine operating condition in the training phase so that they
do not extrapolate into unknown regions in real-world
applications. At 216, the ANN 1s trained multiple times to
obtain a plurality of trained ANNS.

At 220, maximum error filtering of the trained ANNs 1s
performed to obtain a desired number of trained ANNs. For
example only, the desired number of trained ANNs could be
five. This maximum error filtering involves discarding any
trained ANNs having a maximum error (e.g., either base or
MBT spark timing) greater than an error threshold. At 224,
a statistical analysis of the remaining trained ANNs 1is
performed. The set of statistical error metrics include, for
example only, a sum of squares due to error (SSE),
a root-mean-square error (RMSE), and an error distribution
(e.g., across a 1full range of engine loads). At 228, the best
performing trained ANN (based on the set of statistical
error metrics) 1s then selected based on the statistical error
metric(s). For example only, this could be the tramned ANN
that has the best combined performance (SSE and RMSE) in
addition to lower error at high engine loads. At 232, the
selected trained ANN 1s utilized to generate an ANN cali-
bration for use by the controller 172 of the engine 104. This
could include, for example, loading the ANN calibration into
a memory of the controller 172 for subsequent spark control.

Calibrated ANN Implementation

Referring now to FIG. 3, a flow diagram of an example
combustion phasing control method 300 for an SI engine
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(e.g., engine 104) 1s 1llustrated. This method 300 1s 1imple-
mented by the controller 172 of the engine 104 after the
generation of the ANN calibration at 232 1n FIG. 2. At 304,
the controller 172 receives the measured camshait positions
from camshait position sensors 134, 166. At 308, the con-
troller 172 receives the measured air charge based on
measurements from air flow/pressure sensor 120. At 312, the
controller 172 receives a measured engine speed from
engine speed sensor 150. At 316, the controller 172 uses the
measured parameters as inputs to the calibrated ANN to
determine base and MB'T spark timing. At 320, the controller
172 then controls combustion (e.g., timing of spark provided
by spark system 144) using at least one of the base and MBT
spark timings. The method 300 then ends or returns to 304.

It will be appreciated that the term “controller” as used
herein refers to any suitable cont of device(s) that is/are
configured to perform at least a portion of the techniques of
the present disclosure. Non-limiting examples include an
application-specific mtegrated circuit (ASIC), one or more
processors and a non-transitory memory having instructions
stored thereon that, when executed by the one or more
processors, cause the controller to perform a set of opera-
tions corresponding to at least a portion of the techniques of
the present disclosure. The one or more processors could be
either a single processor or two or more processors operating
in a parallel or distributed architecture. It should also be
understood that the mixing and matching of features, ele-
ments, methodologies and/or functions between various
examples may be expressly contemplated herein so that one
skilled 1n the art would appreciate from the present teachings
that features, elements and/or functions of one example may
be incorporated into another example as appropriate, unless
described otherwise above.

What 1s claimed 1s:

1. A calibration system for a spark ignition (SI) engine of
a vehicle, the calibration system comprising:

dynamometer sensors configured to measure dynamom-

cter data for the SI engine; and

a computing system configured to:

receive the dynamometer data for the SI engine,

artificially weight the dynamometer data in high engine
load regions to obtain weighted engine dynamometer
data,

generate training data for an artificial neural network
(ANN) using the weighted engine dynamometer
data,

train a plurality of ANNs using the generated traiming
data,

filter the plurality of trammed ANNs based on their
maximum error to obtain a filtered set of trained
ANNSs,

perform a statistical analysis on each of the filtered set
of trained ANNs 1including determiming a set of
statistical metrics for each of the filtered set of
trained ANNS,

select one of the filtered set of trained ANNs having a
best combination of error at high engine loads and
the set of statistical metrics, and

generate an ANN calibration using the selected one of
the filtered set of tramned ANNS.

2. The calibration system of claim 1, wherein the com-
puting system 1s further configured to output the generated
ANN calibration to a controller of the SI engine.

3. The calibration system of claim 2, wherein receipt of
the generated ANN calibration causes the controller to store
the generated ANN calibration and use the generated ANN
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calibration for combustion phasing control to at least one of
decrease engine knock and increase fuel economy.

4. The calibration system of claim 3, wherein the use of
the generated ANN calibration involves the controller:

receiving, from camshaift position sensors, measured posi-

tions of intake and exhaust camshaits of the SI engine;
receiving, from an air charge sensor, a measured air
charge provided to each cylinder of the SI engine;
receiving, from an engine speed sensor, a measured
engine speed indicative of a rotational speed of a
crankshaft of the SI engine;

using the generated ANN calibration, determining at least

one of a desired base spark timing and a desired
maximum brake torque (MBT) spark timing based on
the measured intake and exhaust camshait positions,
the measured air charge, and the measured engine
speed; and

controlling a spark system of the SI engine based on at

least one of the desired base and MBT spark timings.

5. The calibration system of claim 4, wherein the con-
troller does not generate and output empirically calibrated
surfaces for determiming the base or MBT spark timings.

6. The calibration system of claim 1, wherein generating
the training data includes using the weighted engine dyna-
mometer data and a mathematical method, wherein the
generated training data includes more data points than the
weighted engine dynamometer data.

7. The calibration system of claim 1, wherein the set of
statistical metrics comprises at least one of a sum of squares
due to error (SSE) and a root-mean-square error (RMSE).

8. The calibration system of claim 1, wherein each of the
plurality of trained ANNs defines two hidden layers, twelve
neurons per hidden layer, a Bayesian regularization back-
propagation tramning function, and a hyperbolic tangent
sigmoid transfer function.

9. A calibration method for a spark 1ignition (SI) engine of
a vehicle, the method comprising:

receiving, by a calibration system, dynamometer data for

the SI engine;

artificially weighting by the calibration system, the dyna-

mometer data in high engine load regions to obtain
weighted engine dynamometer data;

generating, by the calibration system, training data for an

artificial neural network (ANN) using the weighted
engine dynamometer data;

training, by the calibration system, a plurality of ANNs

using the generated training data;

filtering, by the calibration system, the plurality of trained

ANNs based on their maximum error to obtain a
filtered set of trained ANNSs;

performing, by the calibration system, a statistical analy-

s1s on each of the filtered set of trained ANNs including
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determining a set of statistical metrics for each of the
filtered set of trained ANNSs;
selecting, by the calibration system, one of the filtered set

of trained ANNs having a best combination of error at
high engine loads and the set of statistical metrics; and

generating, by the calibration system, an ANN calibration

using the selected one of the filtered set of tramned
ANNE.

10. The calibration method of claim 9, further comprising
outputting, by the calibration system and to a controller of
the SI engine, the generated ANN calibration.

11. The calibration method of claim 10, wherein receipt of
the generated ANN calibration causes the controller to store
the generated ANN calibration and use the generated ANN
calibration for combustion phasing control to at least one of
decrease engine knock and increase fuel economy.

12. The calibration method of claim 11, wherein the use
of the generated ANN calibration involves the controller:

recerving, ifrom camshait position sensors, measured posi-

tions of intake and exhaust camshaits of the SI engine;
recerving, from an air charge sensor, a measured air
charge provided to each cylinder of the SI engine;
recerving, from an engine speed sensor, a measured
engine speed indicative of a rotational speed of a
crankshaft of the SI engine;

using the generated ANN calibration, determining at least

one of a desired base spark timing and a desired
maximum brake torque (MBT) spark timing based on
the measured intake and exhaust camshait positions,
the measured air charge, and the measured engine
speed; and

controlling a spark system of the SI engine based on at

least one of the desired base and MBT spark timings.

13. The calibration method of claim 12, wherein the
controller does not generate and output empirically cali-
brated surfaces for determining the base or MBT spark
timings.

14. The calibration method of claim 9, wherein generating
the training data includes using the weighted engine dyna-
mometer data and a mathematical method, wherein the
generated training data includes more data points than the
weighted engine dynamometer data.

15. The calibration method of claim 9, wherein the set of
statistical metrics comprises at least one of a sum of squares
due to error (SSE) and a root-mean-square error (RMSE).

16. The calibration method of claim 9, wherein each of the
plurality of trained ANNs defines two hidden layers, twelve
neurons per hidden layer, a Bayesian regularization back-
propagation tramning function, and a hyperbolic tangent
sigmoid transfer function.
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