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METHOD, AN APPARATUS AND A
COMPUTER PROGRAM PRODUCT FOR
OBJECT DETECTION

TECHNICAL FIELD

The present solution generally relates to computer vision
and artificial intelligence. In particular, the present solution
relates to a method and technical equipment for object
detection.

BACKGROUND

Many practical applications rely on the availability of
semantic information about the content of the media, such as
images, videos, etc. Semantic information 1s represented by
metadata which may express the type of scene, the occur-
rence of a specific action/activity, the presence of a specific
object, etc. Such semantic mformation can be obtained by
analyzing the media.

Semantically segmenting object from video remains an
open challenge with recent advances relying upon prior
knowledge supplied via interactive initialization or correc-
tion. Yet fully automatic semantic video object segmentation
remains useful 1in scenarios where the human 1n the loop 1s
impractical, such as video recognition or summarization or
3D modelling.

Semantic video object segmentation, which aims to rec-
ognize and segment objects 1 video according to known
semantic labels, has recently made much progress by incor-
porating middle- and high-level visual information, such as
object detection, which enables building an explicit seman-
tic notion of video objects. However, these approaches
typically fail to capture long-range and high-level contexts
and may therefore mtroduce significant errors due to chang-
ing object appearance and occlusions.

SUMMARY

Now there has been invented an improved method and
technical equipment implementing the method, by which the
problems can be at least alleviated. Various aspects of the
invention include a method, an apparatus, and a computer
readable medium comprising a computer program stored
therein, which are characterized by what 1s stated in the
independent claims. Various embodiments of the mmvention
are disclosed in the dependent claims.

According to a first aspect, there 1s provided a method
comprising receiving a video comprising video frames as an
input; generating set ol object proposals from the video;
generating object tracklets comprising regions appearing 1n
consecutive frames of the video, said regions corresponding
to object proposals with a predetermined level of confi-
dence; constructing a graph comprising the object proposals
and superpixels grouped from the pixels of the frame;
calculating a first cost function for superpixel likelihoods 1n
terms ol the object proposals 1n an object tracklet; calculat-
ing a second cost function for object proposal likelihoods 1n
terms of the superpixels in the frame; minimizing the first
and the second cost function with each other; computing
posterior probabilities of each superpixel; and assigning
cach superpixel with an object class with a maximum
posterior probability to constitute semantic object segmen-
tation.

According to an embodiment, the method further com-
prises determining, from said graph, links between pairs of
nodes of the graph.
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2

According to an embodiment, the method further com-
prises calculating a first weight for connections between
cach object proposal and its constituent superpixels.

According to an embodiment, the method further com-
prises calculating a second weight for connections between
spatially or temporally adjacent superpixels.

According to an embodiment, the method further com-
prises calculating a third weight for connections between
sequential connections between object proposals within the
same tracklet.

According to an embodiment, the first weight and the
second weight are used as weights in the first cost function.

According to an embodiment, the first weight and the
third weight are used as weights 1n the second cost function.

According to an embodiment, posterior probabilities of
cach superpixel are computed according to Bayes rule.

The second and third aspect of the invention relate to an
apparatus and a computer readable medium comprising a
computer program stored therein arranged to carry out the
method.

These and other aspects of the invention and the embodi-
ments related thereto will become apparent 1n view of the
detailed disclosure of the embodiments further below.

DESCRIPTION OF THE DRAWINGS

In the following, various embodiments of the invention
will be described in more detail with reference to the
appended drawings, in which

FIG. 1 shows a computer system suitable to be used in a
computer vision process according to an embodiment;

FIG. 2 shows an example of a Convolutional Neural
Network applicable 1n computer vision systems;

FIG. 3 shows a flowchart of a method according to an
embodiment;

FIG. 4 shows an example of a tracklets extracted from a
video sequence; and

FIG. § illustrates an undirected graph according to an
embodiment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

In the following, several embodiments of the mmvention
will be described in the context of computer vision. In
particular, the present embodiments are related to video
object detection, a purpose of which 1s to detect instances of
semantic objects ol a certain class 1 videos. Video object
detection has applications in many areas of computer vision,
for example, 1n tracking, classification, segmentation, cap-
tioning and surveillance.

FIG. 1 shows a computer system suitable to be used 1n
image processing, for example 1n computer vision process
according to an embodiment. The generalized structure of
the computer system will be explained 1n accordance with
the functional blocks of the system. Several tunctionalities
can be carried out with a single physical device, e.g. all
calculation procedures can be performed 1n a single proces-
sor 1if desired. A data processing system of an apparatus
according to an example of FIG. 1 comprises a main
processing unit 100, a memory 102, a storage device 104, an
iput device 106, an output device 108, and a graphics
subsystem 110, which are all connected to each other via a
data bus 112.

The main processing unit 100 1s a processing unit com-
prising processor circuitry and arranged to process data
within the data processing system. The memory 102, the
storage device 104, the mput device 106, and the output
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device 108 may include conventional components as rec-
ognmized by those skilled in the art. The memory 102 and
storage device 104 store data within the data processing
system 100. Computer program code resides in the memory
102 for implementing, for example, computer vision pro-
cess. The mput device 106 inputs data into the system while
the output device 108 receives data from the data processing,
system and forwards the data, for example to a display, a
data transmitter, or other output device. The data bus 112 1s
a conventional data bus and while shown as a single line 1t
may be any combination of the following: a processor bus,
a PCI bus, a graphical bus, an ISA bus. Accordingly, a
skilled person readily recognizes that the apparatus may be
any data processing device, such as a computer device, a
personal computer, a server computer, a mobile phone, a
smart phone or an Internet access device, for example
Internet tablet computer.

It needs to be understood that different embodiments
allow different parts to be carried out 1n different elements.
For example, various processes of the computer vision
system may be carried out 1n one or more processing
devices; for example, entirely 1n one computer device, or 1n
one server device or across multiple user devices. The
clements of computer vision process may be implemented as
a software component residing on one device or distributed
across several devices, as mentioned above, for example so
that the devices form a so-called cloud.

One approach for the analysis of data in general and of
visual data in particular 1s deep learning. Deep learning 1s a
sub-field of machine learning. Deep learming may nvolve
learning of multiple layers of nonlinear processing units,
cither 1n supervised or 1n unsupervised manner. These layers
form a hierarchy of layers, which may be referred to as
artificial neural network. Fach learned layer extracts feature
representations irom the mnput data, where features from
lower layers represent low-level semantics (1.e. more
abstract concepts). Unsupervised learning applications may
include pattern analysis (e.g. clustering, feature extraction)
whereas supervised learning applications may 1nclude clas-
sification of 1mage objects.

Deep learning techmniques allow for recognizing and
detecting objects 1n 1mages or videos with great accuracy,
outperforming previous methods. One difference of deep
learning 1mage recognition technique compared to previous
methods 1s learning to recognize 1mage objects directly from
the raw data, whereas previous techniques are based on
recognizing the image objects from hand-engineered fea-
tures (e.g. SIFT features). During the traiming stage, deep
learning techniques build hierarchical layers which extract
features of increasingly abstract level.

Thus, an extractor or a feature extractor may be used in
deep learning techniques. An example of a feature extractor
in deep learning techniques i1s the Convolutional Neural
Network (CNN), shown 1n FIG. 2. A CNN may be composed
of one or more convolutional layers with fully connected
layers on top. CNNs are easier to train than other deep neural
networks and have fewer parameters to be estimated. There-
tore, CNNs have turned out to be a highly attractive archi-
tecture to use, especially in 1mage and speech applications.

In FIG. 2, the mput to a CNN 1s an 1mage, but any other
media content object, such as video or audio file, could be
used as well. Each layer of a CNN represents a certain
abstraction (or semantic) level, and the CNN extracts mul-
tiple feature maps. The CNN 1n FIG. 2 has only three feature
(or abstraction, or semantic) layers C1, C2, C3 for the sake
of simplicity, but top-performing CNNs may have over 20
teature layers.
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The first convolution layer C1 of the CNN consists of
extracting 4 feature-maps from the first layer (1.e. from the
input 1mage). These maps may represent low-level features
found 1n the mput 1mage, such as edges and corners. The
second convolution layer C2 of the CNN, consisting of
extracting 6 feature-maps from the previous layer, increases
the semantic level of extracted features. Similarly, the third
convolution layer C3 may represent more abstract concepts
found 1n 1mages, such as combinations of edges and corners,
shapes, etc. The last layer of the CNN (fully connected
MLP) does not extract feature-maps. Instead, 1t may use the
feature-maps from the last feature layer 1n order to predict
(recognize) the object class. For example, 1t may predict that
the object 1n the 1mage 1s a house.

It 1s appreciated that the goal of the neural network 1s to
transform input data into a more usetful output. One of the
examples 1s classification, where 1input data 1s classified into
one ol N possible classes (e.g., classifying 1f an image
contains a cat or a dog). Another example 1s regression,
where mput data 1s transformed into a Real number (e.g.
determining the music beat of a song). Yet, another example
1s generating an 1mage irom a noise distribution.

Despite the significant performance improvement of
image object detection, video object detection brings up new
challenges on how to solve the object detection problem for
videos robustly and effectively. Semantic video object seg-
mentation, which aims to recognize and segment objects in
video according to known semantic labels, has recently
made much progress by incorporating middle- and high-
level visual information, such as object detection, which
cnables building an explicit semantic notion of video
objects. Such integration with object recognition and seg-
mentation not only facilitates a holistic object model, but
also provides a middle-level geometric representations for
delineating semantic objects. However, these existing detec-
tion-segmentation based approaches typically fail to capture
long-range and high-level contexts due to the lack of joint
modeling and inference of contexts and segmentation. They
typically directly employ local context, 1.e., detected object
proposals from independent frames associated in temporal
domain as constraints to enforce labelling consistence. How-
ever, object detections as well as temporal association may
contain significant errors due to changing object appearance
and occlusions.

The present embodiments relate to constructing a novel
graphical model which accounts for contextual information
at various scales. This multiple scale contextual information
may be represented by tracklets, object proposals and super-
pixels, where each of the nodes captures various spatial-
temporal contexts and semantics from coarse to fine granu-
larities.

FIG. 3 shows, 1n a simplified manner, the method for
video object detection according to an embodiment. The
method comprises receiving (300) a video comprising video
frames as an input; generating (302) set of object proposals
from the video; generating (304) object tracklets comprising
regions appearing in consecutive frames of the video, said
regions corresponding to object proposals with a predeter-
mined level of confidence; constructing (306) a graph com-
prising the object proposals and superpixels grouped from
the pixels of the frame; calculating (308) a first cost function
for superpixel likelihoods 1n terms of the object proposals 1n
an object tracklet; calculating (310) a second cost function
for object proposal likelihoods in terms of the superpixels 1n
the frame; minimizing (312) the first and the second cost
function with each other; computing (314) posterior prob-
abilities of each superpixel; and assigning (316) each super-
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pixel with an object class with a maximum posterior prob-
ability to constitute semantic object segmentation.

In the following, these steps are discussed in more
detailed manner.

Object proposals may be generated by computing a hier-
archical segmentation of an input video frame that 1is
received by the system. The mput video frame may be
obtained by a camera device comprising the computer
system of FIG. 1. Alternatively, the input video frame can be
received through a communication network from a camera
device that 1s external to the computer system of FIG. 1.

For generating the object proposals, a known object
detector, such as a fast R-CNN (Fast Region-based Convo-
lutional Neural Network), may be used. The Fast R-CNN
takes as input a video frame and a set of object proposals.
The network first processes the video frame with several
convolutional layers and max pooling layers to produce a
feature map. Then for each object proposal of the set of
object proposals a region of interest (Rol) pooling layer
extracts a fixed-length feature vector from the feature map.
Each feature vector 1s fed into a sequence of fully connected
layers that finally branch into two sibling output layers: one
that produces softmax probabilities, and one that produces
per-class bounding-box regression oflsets. Negative object
proposals are removed, and remaiming object proposals have
a predetermined level of (i.e. suflicient) confidence.

For each object class, tracklets are generated for example
by tracking object proposals with said predetermined level
of confidence. Herein, for example the methods described 1n
Kang, K., Ouyang, W., Li, H. and Wang, X.: “Object
detection from video tubelets with convolutional neural
networks”, mmn CVPR pp. 817-82, 2016, may be used for
generating tracklets, which may contain noisy detections,
1.€., Talse positive detections. Tracklets in this context refer
to a set ol object proposals that are extracted and associated
temporally from consecutive video frames. FIG. 4 shows
exemplars of tracklets extracted from a video sequence.

In the field of object detection, 1mages are often repre-
sented with a limited number of pixel groups rather than
individual pixels, thus decreasing significantly the number
of computation nodes with the image, as well as the com-
putational complexity. These pixel groups are generally
called superpixels.

For processing the contextual information at various
scales or level, an undirected graph G=(V, E) with super-
pixels and object proposals from tracklets as nodes V={X,
Y} respectively is formed. FIG. 5 shows an example such
graph. In the upper part of FIG. 5, the rectangles indicate
tracklets each comprising a set of object proposals repre-
sented by circles. The object proposals are retlected to the
graph (lower part of FIG. 5), as indicated by the lines. In the
graph, each frame 1s divided into a superpixel map com-
prising a plurality of superpixels, indicated by circles, of
equal size covering the area of the frame. On each frame,
there may be more than one overlapping or non-overlapping,
object proposals corresponding to multiple or the same
object instances. Thus, the one or more object proposals may
be reflected to the same superpixel, and from one object
proposal there may be a link to two or more superpixels.

FIGS. 4 and 5 show how the contextual imnformation 1s
provided on three levels. The tracklet level nodes encode
long-range contexts and higher-level semantic synergies.
The object proposal nodes enforce short-range dependencies
and local geometric representation, while the superpixel
nodes play the role as perceptually meaningiul atomic
regions to guarantee eflicient and accurate segmentation
despite that they are much less informative. The information
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flow across nodes of various granularities enables effective
inference which accounts for both bottom-up and top-down
semantic cues.

Simply enforcing the labeling of superpixels with higher-
level contextual mmformation quite often leads to mis-seg-
mentations due to the inaccurate contextual information.
However, the method steps of FIG. 3 and the embodiments
related thereto provide a novel soft label consistency con-
straint to allow the flexible labelling of nodes within the
same clique to some extent.

According to an embodiment, the method further com-
prises determining, from said graph, links between pairs of
graph nodes. Herein, the links between pairs of graph nodes
are defined as edges, denoted as E={E .., E.., E,.}. E.
may be referred to as a cross-context edge, E.. may be
referred to as a superpixel edge, and E,.,- may be referred to
as an object proposal edge. The existence of these edges 1s
determined based on the available multi-scale context cues
in the graph, as described below.

According to an embodiment, the method further com-
prises calculating a first weight for connections between
cach object proposal and 1ts constituent superpixels. The
connections between each object proposal and 1ts constituent
superpixels are added as cross-context edges E.,. Object
proposal comprises higher-level cues of object instances,
such as appearance and location information, and superpixel
preserves local contextual information while aligning with
intensity edges. The first weight w, ** on edge ¢, ~*EE*"

between superpixel x; and object proposal vy, 1s defined as

w. X¥— [xieym].e—(l—*p?"(xi Ym))

I

where [*] 1s the indicator function, and Pr(x.ly, ) 1s the
likelihood of observing x. given the probability density
function (PDF) of object proposal vy, . The probability den-
sity of object proposals may be estimated via any suitable
density estimation, for example using the fast kernel density
estimation disclosed 1n Yang, C., Duraiswami, R., Gumerov,
N., and Davis, L. “Improved Fast Gauss Transform and
Efficient Kernel Density Estimation.” 1n ICCYVY, vol. 1, p.
464.2003, applying it e.g. on CIE Lab color. The cross-
context edges transier the object instance level cues 1nto the
superpixels, and each object proposal can incorporate the
complementary iformation of local context cues.

According to an embodiment, the method further com-
prises calculating a second weight for connections between
spatially or temporally adjacent superpixels. All spatially or
temporally adjacent superpixels are connected to form
superpixel edges E... Spatial adjacency 1s based on the
superpixel neighborhood while the temporal adjacent super-
pixels are temporally connected by at least one optical flow
motion vector over consecutive frames. The second weight
for an edge eyﬂeiﬂ 1s defined to retlect both the local
appearance similarity and spatial/temporal distance as fol-
lows. Let N be the set of superpixels 1n the spatial and
temporal neighborhood of x,,

AJ 2 B
wﬁ'ﬂ:[‘xjeh Slret* (i haf)d (xioxf)

where v>(h,, h;) 1s the v* distance between L.1-normalized
CIE Lab color histograms h;h; of superpixels x; and x,
respectively, and d>(x,, X;) indicates the spatial or temporal
distance between x; and x . lemporal distance 1s measured
by the ratio of pixels within the two superpixels that are
connected by motion vectors over the union of two super-
pixels.

According to an embodiment, the method further com-
prises calculating a third weight for connections between

sequential connections between object proposals within the
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same tracklet. The sequential connections between propos-
als within the same tracklet forms object proposal edges E ..
As discussed above, sporadically inaccurate object propos-
als may lead to noisy higher level context information,
which 1n turn 1s propagated to superpixels. Nonetheless,
object proposals which constitute the same tracklet collec-
tively encode the dynamic intrinsic structure of objects, 1.¢.
not only accounting for the motion of object but also the
evolution of appearance over time. Object proposal edges
are defined as the sequential connections between proposals
within the same tracklet. These edges enable information
flowing within higher-level context cues to compensate the
local noisy information. The third weight for an edge
e 'EE._. between two object proposals y,_ and vy, is

defined as
_iy e N .00

W

K

where /N _7is the neighborhood of 'y, , in its tracklet, f* is the
[.2-normalized CNN {feature of proposal, and <*> indicates
the inner-product. The third weight exploits the higher-level
semantics in deep feature space.

For facilitating the joint inference of likelihoods for
superpixels and object proposals respectively, a first and a
second cost function may be defined as quadratic cost
function, thereby harnessing the complementary contextual
information to each other.

The superpixel likelihoods u, may be inferred by incor-
porating the object proposal likelihoods v; as higher-level
context cues in a principled manner By characterizing the
relationship between all nodes 1in the graph, the first qua-
dratic cost function J-* of superpixel likelihoods u, with

respect to a label 1 1s as follows. Let the diagonal element of
node degree matrix D*=diag([d,”, . . ., d,,"']) be defined as

X Y, AX

(1)

X _ X X X
Jy =Jdly+dp+Jdic

Ny Nx Nx
X (X 2 XX _ X )
= E ANd (i — )" + E wi” (i — Ti)” + glﬂdg (et;y — Uiy
i=1 =1

i =1

where A and & are parameters. The superpixel probability G,
1s the mitial likelihood with respect to label 1. The estimated
likelithood 11, of superpixel x, from object proposal likel:-
hood y_ £V, 1s define as the weighted average of 1ts corre-
sponding object proposal likelihoods,

where

In the first cost function, J Z’,UX and J, EX are the {fitting
constraint and smoothness constraint respectively, while
J Z,C‘X 1s the contextual constraint.

In the first cost tunction, J, .7 encourages superpixels to
have the initial likelihood, which is controlled by A~ mea-
suring how much the inferred likelihood should agree with
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the mitial likelihood. I, fX promotes the continuity of
inferred likelihood among adjacent nodes lying 1n a close
vicinity 1n the feature space. J E:CX facilitates the inference of
cach superpixel to be aware of higher-level context infor-
mation. As a result, object proposals 1n tracklet encode
richer semantics and intrinsic dynamics of the object, which
can be propagated to 1ts constituent superpixels during
inference.

In order to solve equation (1), the object proposal likeli-
hoods V; are also required to be estimated by referring to the
superpixel likelithoods U, in graph G. Similar to (1), the
second quadratic cost function J,* of object proposal likeli-
hoods VI 1s defined as follows. Let the diagonal element of
node degree matrix D*=diag([d,”, . . ., d,+']) be defined as

Y Ny, YY
dm _ZH:l Wmﬂ ”

(2)

Y Y y y
Jy =Jdjy+dip+Jdie

Ny Ny Ny
2: Y 4¥ — 42 z: YY 2 Yy o 42
— A dm (Ui — Upy ) + Won (Ut — Uy) + § |wdm(ﬂmi — Ut )
i=1 =1

m.n=1

where A" and 1 are parameters, ii_, is the initial likelihood
of object proposal m given label 1, and the estimated
likelihood 1, ; of the object proposal vy, , 1s defined by
incorporating local context cues, 1.e., superpixel likelihoods
U,. 0, 1s computed as the weighted average of 1ts constitu-
ent superpixel likelihoods:

Ny
_ YX
Umi = i Wil
i=1
where
XY
XY Woni
X yx
Z Wi

Similarly, the equation (2) consists of three terms, 1.e., J E:UY :
I, fy and J E:CY . In the second cost function, J E:UF 1s the fitting,
constraint that encourages each object proposal to have 1ts
initial likelihood. U, fF 1s the smoothness constraint which
promotes label continuity among object proposals in the
same tracklet to preserve the spatial-temporal coherence of
object. The third term J Z:CY 1s the contextual constraint which
collects local context cues in a bottom-up manner to refine
the object proposal likelihood V, using more locally infor-
mative superpixel likelihoods U,, since 1t cannot guarantee
that the object proposals are always extracted preserving
true object boundaries 1n natural 1imageries.

Since the first and second cost functions U, and V, are
complementary to each other, they are preferably minimized
simultaneously with each other. According to an embodi-
ment, the first and second cost functions are reformulated as
matrix forms with respect to the likelihoods U~[U,| .., and
VAu,lxx from the initial likelihoods U~=[0;]y ., and
VA0, x1 respectively,

JEX:(UE_ ﬁf) TDXAX(UJ— ﬁf)"‘ UIT(DX_ W) Uprtn(Up—-

PEVY DHU-PYT) (3)

J=V~V)' D' A (V~V(D"-WHV+p(V-PU) DY

(VP U) (4)
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where WXZ[WI:;H] Ny, and W =W, v, The contex-
tual dependencies between superpixels and their corre-
sponding object proposals in graph G are formulated by
P =[p, *1r XNy and‘PH:[p{mH] NNy The diagonal ele-
ments of N, xN, matrix A =diag([A™, . .., X*]) and N,xN .
and matrix A ,=diag([A, . .., A’]) are the parameters A™ and
A respectively.

By differentiating J* and J,* with respect to U, and V,
respectively, we have

]

aJ} X pX X ~ XY (%)
— =U(I* = PO+ AN U - Uy)+7(U = PP V) =0
dU,
aJ; 3 (0)
ﬁ =Vi(I" =P+ A (V= V) +y(Vi- P U) =0

{

where P*=D"'W* (or P'=D,_,W"), and I"* (or I") is iden-
tity matrix.

By denoting all likelihoods as Z,=[U,, V,] and 1mitial likeli-
hoods as Z,=[U,, V,], equations (5) and (6) can be jointly
transformed into

(—I-DINZ=TZ (7)

Denoting B=I-(I-1")II, equation (7) can be solved by a
sparse matrix inversion Z~=B'T'Z.

According to an embodiment, posterior probabilities of
cach superpixel are computed cording to Bayes rule. For
example, posterior probabilities of each superpixel with
respect to label 1 can then be computed following Bayes rule

plxi | )p(l) (8)

pllx) = — =

> plx [ )pl)

=1

Ui

L
Z Uiy
/=1

Each superpixel i1s finally assigned with the label corre-
sponding to the class with the maximum a posterior prob-
ability, which constitutes to the semantic object segmenta-
tion,

I; = argmaxp(!| x;)
.{

An apparatus according to an embodiment comprises
means for receiving a video comprising video frames as an
input;, means for generating set ol object proposals from the
video; means for generating object tracklets comprising
regions appearing in consecutive frames of the video, said
regions corresponding to object proposals with a predeter-
mined level of confidence; means for constructing a graph
comprising the object proposals and superpixels grouped
from the pixels of the frame; means for calculating a first
cost function for superpixel likelihoods m terms of the
object proposals 1n an object tracklet; means for calculating
a second cost function for object proposal likelihoods 1n
terms of the superpixels in the frame; means for minimizing,
the first and the second cost function with each other; means
for computing posterior probabilities of each superpixel; and
means for assigning each superpixel with an object class
with a maximum posterior probability to constitute semantic
object segmentation.

A skilled person appreciates that any of the embodiments
described above may be implemented as a combination with
one or more of the other embodiments, unless there i1s
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explicitly or implicitly stated that certain embodiments are
only alternatives to each other.

The various embodiments may provide advantages over
state of the art. The embodiments as described herein enable
to account for contextual cues at various scales or levels due
to three-fold graphical model of tracklets, object proposals
and superpixels. The embodiments enable to provide,
besides middle- and high-level visual information, but also
long-range and higher-level contextual information to the
semantic object segmentation process.

The various embodiments of the mnvention can be 1mple-
mented with the help of computer program code that resides
in a memory and causes the relevant apparatuses to carry out
the invention. For example, a device may comprise circuitry
and electronics for handling, receiving and transmitting data,
computer program code 1n a memory, and a processor that,
when running the computer program code, causes the device
to carry out the features of an embodiment. Yet further, a
network device like a server may comprise circuitry and
clectronics for handling, receiving and transmitting data,
computer program code 1 a memory, and a processor that,
when running the computer program code, causes the net-
work device to carry out the features of an embodiment.

It 1s obvious that the present invention 1s not limited solely

to the above-presented embodiments, but 1t can be modified
within the scope of the appended claims.

The mnvention claimed 1s:

1. A method, comprising:

recerving a video comprising video frames as an input;

generating a set of object proposals from the wideo,

wherein the generating of the set of object proposals
comprises determining that respective object proposals
of the set have at least a predetermined level of con-
fidence;

generating object tracklets comprising regions appearing,

in consecutive one of the video frames of the video,
said regions corresponding to the set of object propos-
als:;

constructing a graph comprising the set of object propos-

als and superpixels grouped from pixels of the video
frames;

calculating a first cost function for superpixel likelihoods

in terms of the corresponding object proposals 1 a
respective object tracklet of the generated object track-
lets;

calculating a second cost function for object proposal

likelihoods 1n terms of the superpixels in the video
frames;

minimizing the first and the second cost function with

each other;

computing posterior probabilities of the superpixels; and

assigning the superpixels with a respective object class

based on a maximum posterior probability of respective
posterior probabilities of the computed posterior prob-
abilities to constitute semantic object segmentation.

2. The method according to claim 1, further comprising
determining, from said graph, links between pairs of nodes
of the graph.

3. The method according to claim 2, further comprising
calculating a first weight for connections between a respec-
tive object proposal of the set of object proposals and its
constituent superpixels.

4. The method according to claim 3, further comprising
calculating a second weight for connections between spa-
tially or temporally adjacent superpixels.



US 10,778,988 B2

11

5. The method according to claim 3, further comprising
calculating a third weight for sequential connections
between object proposals within same object tracklet.

6. The method according to claam 4, wherein the first
weight and the second weight are used as weights 1n the first
cost function.

7. The method according to claim 5, wherein the first
weilght and the third weight are used as weights 1n the second
cost function.

8. The method according to claim 1, wherein the posterior
probabilities of the superpixels are computed according to
Bayes rule.

9. An apparatus comprising at least one processor, non-
transitory memory including computer program code, the

memory and the computer program code configured to, with
the at least one processor, cause the apparatus to:

receive a video comprising video frames as an nput;

generate a set of object proposals from the video, wherein

generating the set ol object proposals comprises deter-
mining that respective object proposals of the set have
at least a predetermined level of confidence;
generate object tracklets comprising regions appearing in
consecutive ones of the video frames of the video, said
regions corresponding to the set of object proposals;

construct a graph comprising the set of object proposals
and superpixels grouped from pixels of the video
frames;

calculate a first cost function for superpixel likelihoods in

terms of corresponding object proposals 1n a respective
object tracklet of the generated object tracklets;
calculate a second cost function for object proposal like-
lithoods 1n terms of the superpixels in the video frames;
minimize the first and the second cost function with each
other;

compute posterior probabilities of the superpixels; and

assign the superpixels with a respective object class based

on a maximum posterior probability of respective pos-
terior probabilities of the computed posterior probabili-
ties to constitute semantic object segmentation.

10. The apparatus according to claim 9, further compris-
ing computer program code configured to cause the appa-
ratus to determine, from said graph, links between pairs of
nodes of the graph.

11. The apparatus according to claim 10, further compris-
ing computer program code configured to cause the appa-
ratus to calculate a first weight for connections between a
respective object proposal of the set of object proposals and
its constituent superpixels.

12. The apparatus according to claim 11, further compris-
ing computer program code configured to cause the appa-
ratus to calculate a second weight for connections between
spatially or temporally adjacent superpixels.
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13. The apparatus according to claim 11, further compris-
ing computer program code configured to cause the appa-
ratus to calculate a third weight for sequential connections
between object proposals within same object tracklet.

14. The apparatus according to claim 12, wherein the first
weight and the second weight are used as weights 1n the first
cost function.

15. The apparatus according to claim 13, wherein the first
weilght and the third weight are used as weights in the second
cost function.

16. The apparatus according to claim 9, further compris-
ing computer program code configured to cause the appa-
ratus to compute the posterior probabilities of the superpix-
els according to Bayes rule.

17. A computer program product embodied on a non-
transitory computer readable medium, comprising computer
program code configured to, when executed on at least one
Processor, cause an apparatus to:

recerve a video comprising video frames as an input;

generate a set ol object proposals from the video, wherein

generating the set of object proposals comprises deter-
mining that respective object proposals of the set have
at least a predetermined level of confidence;
generate object tracklets comprising regions appearing in
consecutive ones of the video frames of the video, said
regions corresponding to the set of object proposals;

construct a graph comprising the set of object proposals
and superpixels grouped from pixels of the video
frames;

calculate a first cost function for superpixel likelihoods 1n

terms of corresponding object proposals 1n a respective
object tracklet of the generated object tracklets;
calculate a second cost function for object proposal like-
lithoods 1n terms of the superpixels in the video frames;
minimize the first and the second cost function with each
other;

compute posterior probabilities of the superpixels; and

assign the superpixels with a respective object class based

on a maximum posterior probability of respective pos-
terior probabilities of the computed posterior probabili-
ties to constitute semantic object segmentation.

18. The computer program product according to claim 17,
wherein the apparatus 1s further caused to determine, from
said graph, links between pairs of nodes of the graph.

19. The computer program product according to claim 18,
wherein the apparatus 1s turther caused to calculate a first
weilght for connections between a respective object proposal
of the set of object proposals and its constituent superpixels.

20. The computer program product according to claim 18,
wherein the apparatus 1s further caused to calculate a second
weight for connections between spatially or temporally
adjacent superpixels.
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