12 United States Patent

Xing et al.

US010776289B2

(10) Patent No.: US 10,776,289 B2
45) Date of Patent: Sep. 15, 2020

(54) IO COMPLETION POLLING FOR LOW
LATENCY STORAGE DEVICE

(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(72) Inventors: Xiaozhong Xing, Bellevue, WA (US);
Liang Yang, Sammamish, WA (US);
Danyu Zhu, Redmond, WA (US);
Robin Andrew Alexander,
Woodinville, WA (US); HoYuen Chau,
Bellevue, WA (US); Vishal Jose
Mannanal, Renton, WA (US)

(73) Assignee: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 16/168,133
(22) Filed: Oct. 23, 2018

(65) Prior Publication Data
US 2020/0097419 Al Mar. 26, 2020

Related U.S. Application Data
(60) Provisional application No. 62/734,390, filed on Sep.

21, 2018.
(51) Int. CL
GO6F 9/48 (2006.01)
GOGF 13/16 (2006.01)
(52) U.S. CL
CPC ... GOGF 13/1668 (2013.01); GOGF 9/4881
(2013.01)
200\

(38) Field of Classification Search
CPC e GO6F 9/4881
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,488,713 A 1/1996 Norton et al.
6,138,176 A * 10/2000 McDonald GO6F 3/061

710/241
6,195,715 Bl 2/2001 Hoge et al.
6,434,630 Bl 8/2002 Micalizzi et al.
7,853,960 B1 12/2010 Agesen et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 8388934 A1 10/2018

OTHER PUBLICAITONS

“Creating a Passive-Level Interrupt”, Microsoft, Apr. 20, 2017
(Year: 2017).*

(Continued)

Primary Examiner — Farley Abad

(74) Attorney, Agent, or Firm — Buckley, Mascholl &
Talwalkar LLC

(57) ABSTRACT

An I/O processing system includes reception of a request to
perform an I/O operation from a user-mode application,
providing of the request to a storage device, scheduling of an
operating system deferred procedure call to determine
whether the storage device has completed the 1/0O operation,
execution of the scheduled deferred procedure call to deter-
mine that the storage device has completed the I/O opera-
tion, and transmission of a return corresponding to the
completed 1/O operation to the user-mode application.

17 Claims, 13 Drawing Sheets

5210

Receive Request For An /O Qperation From
An Application

5220

Provide The Request To A Storage Device

5230

Request Schaduling Of An OfS Deferred

Procedurs Call To Determine Whether The |/0
Operation Is Complete

Yos
8250
S 1O Operation
Complete? No
Yos

Exscute Deferred
Procedure Call?

8240

No

5260

Transmit Return Corresponding To The
Completed [/O Operation To The Application

US 10,776,289 B2
Page 2

(56)

8,588,228

2002/0144004

20
20
20

10/0138626
10/0274940
11/0179417

20

12/0303842

2013/0024875
2014/0101392

20
20

|7/0300228
| 8/0095675

20

18/0120918

2020/0125504

References Cited

U.S. PATENT DOCUMENTS

Bl1* 11/2013
Al* 10/2002
Al 6/2010
Al 10/2010
Al 7/2011
Al* 11/2012
Al 1/2013
Al* 4/2014
Al 10/2017
Al 4/2018
Al* 5/2018
Al 4/2020

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiii

Lynn et al.
Ahmad et al.

Inakoshi
Cardinell

iiiiiiiiiiiiiiii

Wang et al.
Stern

ttttttttttttttttttttttt

Gollapudi et al.
Kachare et al.

Kwon
Alexander et al.

ttttttttttttttttttt

GOOF 13/24

370/389
GOOF 9/547

719/310

GOOF 13/28
710/22

GOOF 3/061
711/154

GO6F 1/3253

OTHER PUBLICATIONS

“Non Final Office Action Issued 1in U.S. Appl. No. 16/168,039”,

dated Sep. 27, 2019, 18 Pages.

Nakajima, et al., “Effective I/O Processing with Exception-Less
System Calls for Low-Latency Devices”, In Proceedings of the
Third International Symposium on Computing and Networking,
Dec. 8, 2015, pp. 604-606.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US2019/039110”, dated Oct. 7, 2019, 13
Pages.

Jayasekara, Deepal, “Handling IO—NodeJS Event Loop—Part 47,
Retrieved from: https://blog.insiderattack net’/handling-10-node;js-
event-loop-part-4-4180621917d1, Nov. 26, 2017, 14 Pages.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US19/029028, dated Jan. 7, 2020, 11 Pages.

* cited by examiner

U.S. Patent Sep. 15, 2020 Sheet 1 of 13 US 10,776,289 B2

100
v

Application
120

- N
115

DPC

Request Scheduler
110 DPC

Provide e 4 DPC |
/0 Request /0 Compigtgp L Kernel Mode
/O Complete

Storage Device
100

FIG. 71

Storage Driver

U.S. Patent Sep. 15, 2020 Sheet 2 of 13 US 10,776,289 B2

200
N

5210

Recelve Request For An [/O Operation From
An Application

5220

Provide The Request To A Storage Device

5230

Request Scheduling Of An O/S Deferred
°rocedure Call To Determine Whether The |/O
Operation Is Complete

5240

Execute Deferred

2rocedure Call? No
Yes
5250
s [/O Operation
Complete? NoO
Yes
5260

Transmit Return Corresponding To The
Completed |/O Operation To The Application

FIG. 2

U.S. Patent Sep. 15, 2020 Sheet 3 of 13 US 10,776,289 B2

100
v

Application

User Mode

12 Storage

Kernel Mode

U.S. Patent Sep. 15, 2020 Sheet 4 of 13 US 10,776,289 B2

100
v

Application

/0 Request User Mode

112 Storage Driver

Tt e
L

Provide

/0 Request Kernel Mode

U.S. Patent Sep. 15, 2020 Sheet 5 of 13 US 10,776,289 B2

100
v

Application
120

User Mode

115

112 Storage Driver Roquot S CE eF;(l:J\ or

DPC

r,
B

S Kernel Mode

I
N

A

102 Storage Device

FIG. 5

U.S. Patent Sep. 15, 2020 Sheet 6 of 13 US 10,776,289 B2

/100
Application
120
User Mode
12 Storage
;] h
. DPC |
S -’ Kernel Mode

B
N

A

102 Storage Device

FIG. 6

U.S. Patent Sep. 15, 2020 Sheet 7 of 13 US 10,776,289 B2

100
v

Application
120

User Mode

115

112 Storage Driver Roquot S CE eF;(l:J\ or

DPC

r,
B

S Kernel Mode

B
N

A

102 Storage Device

FIG. 7

U.S. Patent Sep. 15, 2020 Sheet 8 of 13 US 10,776,289 B2

100
v

Application

User Mode

112 Storage Driver

4 K

S Kernel Mode

U.S. Patent Sep. 15, 2020 Sheet 9 of 13 US 10,776,289 B2

100
v

Application

User Mode

Storage Driver

S Kernel Mode

Storage Device

U.S. Patent Sep. 15, 2020 Sheet 10 of 13 US 10,776,289 B2

/ 100
Application
120
User Mode
Retumn
110
Storage Driver 114
Kernel Mode
Storage Device Toa

FIG. 710

U.S. Patent Sep. 15, 2020 Sheet 11 of 13 US 10,776,289 B2

/ 100
Application Application
120 125

User Mode

116 117

- N A ...

Storage Driver 4 DPC D:’C
Kernel Mode

FIG. 7117

U.S. Patent Sep. 15, 2020 Sheet 12 of 13 US 10,776,289 B2

1200

'\

App App
bing/libs | bing/libs | | bins/libs | bins/libs

T
0
)

T
0
0

VM O/S

<Z
=
QO
7

I
<
I
=

Hypervisor

O/S

CPU(s)

NVRAM RAM

OIN

US 10,776,289 B2

Sheet 13 of 13

Sep. 15, 2020

U.S. Patent

OLEl

Uy BuISS990.44

9|HEOA

L Ol

0LEl

AJUB)RT-MO7
°|JE|OA-UON

0ctl

et} sianuqg 9o1neg

43N wco_u‘mo__n_n_(

OvEl

92IA9(] UonesIuNWWon SENETaR]

/oom_

US 10,776,289 B2

1

/O COMPLETION POLLING FOR LOW
LATENCY STORAGE DEVICE

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims priority under 35 U.S.C.
§ 119(e) to U.S. Provisional Patent Application Ser. No.
62/734,390, filed Sep. 21, 2018, the contents of which are

incorporated by reference herein for all purposes.

BACKGROUND

Storage devices currently utilize interrupts to process I/O
requests received 1rom user-mode applications. For
example, after completing a requested I/O operation, a
storage device generates an iterrupt which is transmaitted to
its host computer. The operating system of the host computer
receives the interrupt and dispatches 1t to a kernel-mode
interrupt handler, which identifies the corresponding 1/0
request and completes the request by providing an appro-
priate response to the requesting application.

The proportion of I/O processing time attributable to the
above process may be unacceptable in systems which use
modern Solid-State Drives or other low-latency storage

devices, particularly under intensive I/O workloads. These
1ssues are exacerbated 1n a virtualized environment, where
the interrupt generated by the storage device must be deliv-
ered to a physical CPU, to a Hypervisor layer, and then to a
virtual CPU.

Moreover, a low latency storage device may be capable of
delivering 1ts I/O interrupts to only a limited number of
CPUs. Consequently, the CPUs which receive the I/0 1nter-
rupts may become saturated before the storage device
reaches 1ts maximum throughput.

Systems are desired to process incoming I/O requests
without using hardware interrupts and while providing
reduced latency and increased throughput.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system implementing I/O completion
polling according to some embodiments.

FIG. 2 1s a flow diagram of a process to provide 1/O
completion polling according to some embodiments.

FI1G. 3 1llustrates driver queues and corresponding device
queues according to some embodiments.

FI1G. 4 1llustrates reception of an 1/0 request and provid-
ing an I/O request to a storage device according to some
embodiments.

FI1G. 5 illustrates scheduling of a Deferred Procedure Call
according to some embodiments.

FIG. 6 illustrates operation of a Deferred Procedure Call
according to some embodiments.

FIG. 7 illustrates operation of a storage driver to re-
schedule a Deferred Procedure Call according to some
embodiments.

FIG. 8 1llustrates completion of an 1/O operation accord-
ing to some embodiments.

FIG. 9 illustrates operation of a Deferred Procedure Call
according to some embodiments.

FI1G. 10 illustrates completion of an I/O request according,
to some embodiments.

FIG. 11 illustrates a system including I/O requests
received from two applications and including two Detferred
Procedure Call queues according to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 1llustrates a host computing device hosting mul-
tiple virtual machines according to some embodiments.

FIG. 13 1llustrates a computing system according to some
embodiments.

DETAILED DESCRIPTION

The following description 1s provided to enable any
person 1n the art to make and use the described embodi-
ments. Various modifications, however, will remain readily-
apparent to those in the art.

Conventional I/O processing protocols present a technical
problem of excessive processing overhead when used in
conjunction with low-latency storage devices. Some
embodiments provide a technical solution to this technical
problem by scheduling a Deferred Procedure Call to poll for
I/O completion. This solution may reduce I/O latency and
provide consistent I/O throughput from low-latency storage
devices on a host machine or 1n a virtualized environment.

According to some embodiments, the Detferred Procedure
Call 1s scheduled to run 1n the context of the requested 1/0
operation. The Deferred Procedure Call therefore does not
require a dedicated thread, and 1s more eflicient than a
multi-threaded approach.

Some embodiments may reduce CPU usage by schedul-
ing a Deferred Procedure Call only if outstanding I1/0
requests to the storage device are present.

The scheduled Deferred Procedure Call 1s a Threaded
Deferred Procedure Call according to some embodiments. A
Threaded Deferred Procedure Call runs at PASSIVE IRQL
level and can therefore be preempted by higher-level tasks.
Since the operating system 1s aware of Threaded Deferred
Procedure Call operation, tasks of the same priority level
may be scheduled to other CPUs as needed. The use of
Threaded Deferred Procedure Calls may therefore improve
system 1ntegration of the present embodiments.

Scheduling the Deferred Procedure Call on the CPU from
which the I/O request was received may effectively limit the
I/O submission queue depth to one, thereby reducing I/0
throughput in a single-threaded, high queue depth from
application. Accordingly, some embodiments schedule the
Deferred Procedure Call on a counterpart Simultaneous
Multi-Threading processor of the I/O-mitiating CPU. As a
result, embodiments may achieve an improved balance
between low latency and high throughput 1n different
deployment scenarios.

FIG. 1 1llustrates system 100 according to some embodi-
ments. Embodiments are not limited to system 100 or to any
particular implementation described herein. System 100
includes storage device, which may comprise any electronic
storage medium or media that 1s or becomes known. In some
embodiments, storage device 100 comprises one or more
non-volatile random access memory devices. Storage device
100 may exhibit I/O latency and throughput characteristics
similar to volatile random access memory and significantly
more favorable than those provided by disk-based storage.

Storage device 100 1s illustrated 1n communication with
storage driver 110. Storage driver 110 1s shown as executing,
kernel mode of a host operating system. Storage driver 110
comprises executable program code providing an interface
between storage device 100 and other software components
within or executed by the operating system. Storage driver
110 may comprise a single storage driver or multiple layers
of storage drivers 1n an operating system.

Application 120 may comprise any user-mode soltware
application executing on the host operating system. Accord-
ing to some embodiments, application 120 comprises a

US 10,776,289 B2

3

user-mode application executed 1n a virtual machine or in a
host operating system. Application 120 may request 1/O
operations and receive indications of completed I/O opera-
tions from storage driver 110.

A brief description of the operation of system 100 accord-
ing to some embodiments now follows. Application 120
may transmit an I/O request to read data from or write data
to storage device 100. The I/O request 1s received by storage
driver 110 due to an association between storage driver 110
and storage device 100. In some embodiments, the I/O
request 1s recerved from application 120 by an operating,
system component such as an I/O manager prior to being
passed to storage driver 110. In this regard, the I/O request
may pass through several drivers and/or components of an
operating system stack prior to reaching storage driver 110.

Storage driver 110 provides the I/0 request to storage
device 100 via protocols known 1n the art and described 1n
detail below. Storage driver 110 also sends a request to
Deferred Procedure Call scheduler 115, a kernel component,
to schedule a Deferred Procedure Call. The schedule
Deferred Procedure Call 1s added to the end of a DPC queue
to be executed in kernel mode by the operating system
kernel. In particular, when the operating system drops to an
IRQL of the scheduled Deferred Procedure Call, the kernel
executes any Deferred Procedure Calls 1n the queue until the
queue 1s empty or until the occurrence of an iterrupt with
a higher IRQL.

The scheduled Deterred Procedure Call invokes a routine
to determine whether the requested I/O operation has been
completed. If the operation 1s complete, the request is
completed to application 120. If not, or 11 another I/O request
1s outstanding to storage device 100, the Deferred Procedure
Call 1s again scheduled as described above. FIG. 1 illustrates
a scenario 1 which the Deferred Procedure Call 1s first
executed to determine that the I/O operation has not been
completed, 1s rescheduled, and 1s then executed to determine
that the I/O operation has been completed. The request 1s
then completed to application 120, as illustrated by the
arrow from storage driver 110 to application 120 labeled
“Return”™.

FIG. 2 comprises a flow diagram of process 200 according,
to some embodiments. In some embodiments, processing
units (€.g., one or more processors, processing cores, pro-
cessor threads) of a computing device (e.g., a computer
server) execute soltware program code to cause the device
to perform process 200. Process 200 and all other processes
mentioned herein may be embodied in processor-executable
program code read from one or more of non-transitory
computer-readable media, such as a hard disk, a Flash drive,
etc., and then stored in a compressed, uncompiled and/or
encrypted format. In some embodiments, hard-wired cir-
cuitry may be used in place of, or in combination with,
program code for implementation of processes according to
some embodiments. Embodiments are therefore not limited
to any specific combination of hardware and software.

Initially, at S210, a request for an 1/O operation (1.€., an
I/0 request) 1s received from an application. According to
some embodiments, the request 1s transmitted from a user
mode application such as application 120, recerved by an
operating system component, and 1s routed to a device driver
stack corresponding to the hardware device associated with
the I/0 request. In the present example, 1t will be assumed
that the I/O request 1s associated with storage device 100 and
1s therefore routed to and received by storage driver 110 at
S210.

Next, at S220, the I/O request 1s provided to the storage
device. According to some embodiments, providing the I/O

10

15

20

25

30

35

40

45

50

55

60

65

4

request to storage device 100 comprises writing the I/O
request 1nto a submission queue of storage device 100.

FIG. 3 illustrates the association of submission queues
according to some embodiments. During initialization of
storage driver 110 (e.g. at system power-on), submission
queues 112 (i.e., memory bullers) are allocated for storage
driver 110. Moreover, each of queues 112 1s associated with
one of submission queues 102 (i.e., hardware registers)
created within storage device 110. Similarly, completion
queues 114 for storage driver 110 are allocated, each of
which 1s associated with one of completion queues 104
created within storage device 110. Each of queues 102, 104,
112 and 114 includes four queues, that 1s, each illustrated
box represents a distinct queue.

According to some embodiments of S220, the I/O request
1s received at a submission queue 112 of storage driver 110
and then written 1nto the corresponding submission queue
102 (i.e., device memory) of storage device 100. FIG. 4
illustrates S210 and S220 according to some embodiments.
Writing of the request into the corresponding submission
queue 102 of storage device 100 and signaling to storage
device 100 that the request i1s ready for execution triggers
storage device 100 to begin execution of the requested 1/0O
operation.

In some embodiments, the submission queue 112 (and
resulting submission queue 102) to which the I/0 request 1s
written depends upon the CPU from which the I/O request
was received. For example, a CPU ID-to-submission queue
table may be used to determine the submission queue 102 to
which the request will be written. Upon receiving a request
from a CPU, the table 1s checked to determine a submission
queue associated with an ID of the CPU. If no table entry
exists for the CPU ID, an entry is created. The association
of submission queues with particular CPUs may assist 1n
load balancing the I/O requests among all the submission
queues 102.

Next, at S230, scheduling of a Deferred Procedure Call 1s
requested. As 1llustrated in FIG. 5, storage driver 110 may
send a request to Detferred Procedure Call scheduler 1135 to
schedule a Deferred Procedure Call to determine whether
the requested 1/O operation 1s complete. The request may
indicate the submission queue 112 to which the I/0 request
was written.

The schedule Deferred Procedure Call 1s added to the end
of a DPC queue, and 1s to be executed 1n kernel mode by the
operating system kernel when the operating system drops to
an IRQL of the scheduled Deferred Procedure Call. The
scheduled Deferred Procedure Call may comprise a
Threaded Deterred Procedure Call which runs at PASSIVE
IRQL level 1n some embodiments. Such an arrangement
may reduce CPU usage by I/O processing while maintaining
suitable latency and throughput.

According to some embodiments, the request to schedule
the Deterred Procedure Call may also indicate a simultane-
ous multi-threading processor to execute the Deferred Pro-
cedure Call. The simultaneous multi-threading processor
may be determined based on a mapping between CPUs and
counterpart simultaneous multi-threading processors. The
simultaneous multi-threading processor indicated within a
request to schedule a Deferred Procedure Call may therefore
be determined based on the mapping and on the CPU from
which the I/O request was received. A separate Deferred
Procedure Call queue may be established for each CPU/
simultaneous multi-threading processor.

Flow cycles at S240 until it 1s determined, based on CPU
state, queue and queue position, to execute the scheduled

Deferred Procedure Call. At S250, the executing Deferred

US 10,776,289 B2

S

Procedure Call determines whether the requested 1/0 opera-
tion 1s complete. FIG. 6 illustrates S250 according to some
embodiments. As shown, the Deferred Procedure Call
checks a completion queue 114 which 1s associated with the
original submission queue 112. If the checked completion
queue 114 does not indicate that the requested I/0 operation
1s complete, flow returns to S230 to schedule the same
Deferred Procedure Call again, as illustrated in FIG. 7.

FIG. 8 illustrates /O completion according to some
embodiments. In response to completing the I/O request,
storage device 100 writes to a corresponding completion
queue 104. Storage device 100 also writes an entry into the
corresponding completion queue 114 indicating to the oper-
ating system that the I/0 request 1s completed.

Returning to process 200, 1t 1s assumed that the re-

scheduled Deferred Procedure Call 1s again executed at
5250, as 1llustrated in FIG. 9. At this point, due to the entry
in completion queue 114, it 1s determined that the requested
I/O operation 1s complete. Accordingly, the I/O request 1s
then completed to the requesting application at S260 as
illustrated 1n FIG. 10. The manner 1n which the request is
completed to the requesting application (1.e., what 1s
“returned”) may be based on entries written to completion
queue 114 as 1s known 1n the art.

In some embodiments, S260 may also comprise deter-
mimng whether the current submission queue 1s empty (1.€.,
whether one or more other I/0 requests associated with the
same CPU are pending). I so, flow may return to S230 to
schedule another Deferred Procedure Call. In such an
embodiment, process 200 terminates only 1n a case that no
I/0 requests are pending in the submission queue. Accord-
ingly, only one Deferred Procedure Call need be scheduled
per completion queue. Therefore, 11 an I/O request 1s
received at a submission queue, and a Deferred Procedure
Call 1s already scheduled with respect to the completion

queue corresponding to the submission queue, no Deferred
Procedure Call 1s scheduled at S230.

Although S220 and S230 are described and illustrated as
being executed sequentially, these steps may be performed
in reverse order or 1n parallel to any degree.

In some embodiments, no Deferred Procedure Call 1s
scheduled 1f no I/O request 1s outstanding, in order to
conserve CPU cycles. System resources are also conserved
due to the lack of a dedicated polling thread. Some embodi-
ments may provide balanced CPU usage due to CPU-
specific Deferred Procedure Call execution.

FIG. 11 illustrates system 100 including executing user-
mode applications 120 and 125. It 1s assumed that applica-
tions 120 and 125 have each 1ssued I/0 requests associated
with storage driver 110. Each of applications 120 and 125
are executing on a different CPU, therefore the 1ssued
requests are stored 1n different submission queues 112 and
programmed into different corresponding submission
queues 102. Moreover, Deterred Procedure Calls have been
scheduled 1nto queues 116 and 117, one of which corre-
sponds to a simultaneous multi-threaded processor associ-
ated with the CPU executing application 120, and the other
of which corresponds to a simultancous multi-threaded
processor associated with the CPU executing application
125.

FIG. 12 illustrates computing device 1200 which may
implement process 200 according to some embodiments.
Computing device 1200 may be a traditional standalone
computing device or a blade server. Computing device 1200
includes a NIC that manages communication with an exter-
nal physical network. One or more CPUs execute a host

5

10

15

20

25

30

35

40

45

50

55

60

65

6

operating system that supports a hypervisor layer, on which
are executed two virtual machines.

Each virtual machine may be configured to utilize a
dedicated amount of RAM, persistent storage (e.g., low-
latency storage such as NVRAM), and processing resources
of computing device 1200. Each virtual machine may
execute 1ts own operating system which may be the same or
different than the operating system executed by the other
virtual machine. Each virtual machine may run one or more
applications on 1ts operating system to request I/O opera-
tions from NVRAM. These I/O requests may be processed
as described above. By doing so, some embodiments pro-
vide improved latency and throughput over conventional
processing in which an interrupt generated by the storage
device would be delivered to a physical CPU, to the Hyper-
visor layer, and then to a virtual CPU of the requesting
application.

FIG. 13 1s a block diagram of system 1300 according to
some embodiments. System 1300 may comprise a general-
purpose computer server and may execute program code to
provide I/O request processing using any of the processes
described herein. Any one or more components of system
1300 may be mmplemented in a distributed architecture.
System 1300 may include other unshown elements accord-
ing to some embodiments.

System 1300 includes processing unit 1310 operatively
coupled to communication device 1320, persistent data
storage system 1330, one or more input devices 1340, one or
more output devices 13350, volatile memory 1360 and low-
latency non-volatile memory 1370. Processing unit 1310
may compris€ one Or more processors, processing cores,
processing threads, etc. for executing program code. Com-
munication device 1320 may facilitate communication with
external devices, such as client devices requiring application
services. Input device(s) 1340 may comprise, for example,
a keyboard, a keypad, a mouse or other pointing device, a
microphone, a touch screen, and/or an eye-tracking device.
Output device(s) 1350 may comprise, for example, a display
(e.g., a display screen), a speaker, and/or a printer. Input
device(s) 1340 and/or output device(s) 1350 may be coupled
to system 1300 as needed and 1n some cases no such devices
are coupled to system 1300 during operation.

Data storage system 1330 may comprise any number of
appropriate persistent storage devices, including combina-
tions of magnetic storage devices (e.g., magnetic tape, hard
disk drives and flash memory), optical storage devices, Read
Only Memory (ROM) devices, etc. Memory 1360 may

comprise Random Access Memory (RAM) of any type that
1s or becomes known. Non-volatile low-latency memory
1370 may comprise Non-Volatile Random Access Memory
(NVRAM), Storage Class Memory (SCM) or any other
low-latency memory that 1s or becomes known.

Applications 1332 may comprise program code executed
by processing unit 1310 to cause system 1300 to provide
functionality and may require I/O services in order to
provide such functionality. For example, program code of
applications 1332 may be executed to transmit a request for
an I/O operation to executing operating system 1336, which
provides the request to one of executing device drivers 1334.
It the request 1s associated with non-volatile low-latency
memory 1370, the request 1s received by the one of device
drivers 1334 which 1s associated with memory 1370. Pro-
cessing may therefore continue as described above to com-
plete the IO request. Data storage device 1330 may also
store data and other program code for providing additional
functionality and/or which are necessary for operation of
system 1300.

US 10,776,289 B2

7

Each functional component described herein may be
implemented 1n computer hardware (integrated and/or dis-
crete circuit components), 1 program code and/or 1n one or
more computing systems executing such program code as 1s
known 1n the art. Such a computing system may include one
or more processing units which execute processor-execut-
able program code stored 1n a memory system.

The above-described diagrams represent logical architec-
tures for describing processes according to some embodi-
ments, and actual implementations may include more or
different components arranged in other manners. Other
topologies may be used 1n conjunction with other embodi-
ments. Moreover, each component or device described
herein may be implemented by any number of devices in
communication via any number of other public and/or
private networks. Two or more of such computing devices
may be located remote from one another and may commu-
nicate with one another via any known manner of network(s)
and/or a dedicated connection. Each component or device
may comprise any number of hardware and/or software
clements suitable to provide the functions described herein
as well as any other functions.

Embodiments described herein are solely for the purpose
of 1llustration. Those 1n the art will recognize other embodi-

ments may be practiced with modifications and alterations to
that described above.

What 1s claimed 1s:
1. A computing system comprising;:
one Or more processors executing processor-executable
program code; and
a storage device,
wherein the system 1s operable to:
receive a request to perform an I/O operation;
provide the request to the storage device;
store an entry associated with the request 1n a storage
driver submission queue;
schedule a deferred procedure call associated with an
operating system, the deferred procedure call to deter-
mine whether the storage device has completed the 1/0
operation;
if 1t 1s determined that the operating system 1s at an
interrupt request level of the deferred procedure call,
execute the deferred procedure call to determine that
the storage device has completed the I/O operation; and
in response to the determination that the storage device
has completed the I/O operation, transmit a return
corresponding to the completed I/O operation;
determine whether the storage driver submission queue
contains an entry associated with a request to perform
a second 1I/0 operation; and
if 1t 1s determined that the storage driver submission
queue contains an entry associated with a request to
perform a second I/O operation, reschedule the
deferred procedure call to determine whether the stor-
age device has completed the second 1/0O operation.
2. A computing system according to claim 1, wherein the
deferred procedure call comprises a procedure to check a
storage driver completion queue corresponding to the 1/0O
operation.
3. A computing system according to claim 1, wherein
providing of the request to the storage device comprises:
determination of a processor from which the request was
recerved; and
determination that the storage driver submission queue 1s
associated with the determined processor.

10

15

20

25

30

35

40

45

50

55

60

65

8

4. A computing system according to claim 3, wherein the
deferred procedure call 1s scheduled to be executed by a
simultaneous multi-threading processor associated with the

Processor.

5. A computing system according to claim 3, the system
turther operable to:

recerve a second request to perform a third I/O operation;

determine a second processor from which the second

request was receirved;

determine a second storage driver submission queue asso-

ciated with the determined second processor;

store a second entry associated with the second I/O

request 1n the determined second storage driver sub-
mission queue;

schedule a second deferred procedure call associated with

the operating system, the second deferred procedure
call to determine whether the storage device has com-
pleted the third I/O operation;

if 1t 1s determined that the operating system 1s at an

interrupt request level of the second deferred procedure
call, execute the second deferred procedure call to
determine that the storage device has completed the
third I/O operation; and,

in response to the determination that the storage device

has completed the third I/O operation,

transmit a second return corresponding to the completed

third I/O operation;

determine whether the second storage driver submission

queue contains an entry associated with a request to
perform a fourth I/O operation; and

if 1t 1s determined that the storage driver submission

queue contains an entry associated with a request to
perform a fourth I/O operation, reschedule the second
deferred procedure call to determine whether the stor-
age device has completed the fourth I/O operation.

6. A computing system according to claim 5, wherein the
deferred procedure call 1s scheduled to be executed by a
simultaneous multi-threading processor associated with the
processor, and

wherein the second deferred procedure call 1s scheduled

to be executed by a second simultaneous multi-thread-
ing processor associated with the second processor.

7. A computing system executing an operating system, a
user-mode application, and a storage driver, the computing
system to:

recerve, at the storage driver, a request from the user-

mode application to perform an I/O operation associ-
ated with a storage device;

provide the request to the storage device;

store an entry associated with the request 1n a storage

driver submission queue;
transmit, from the storage driver, a request to the operat-
ing system to schedule a deferred procedure call to
determine whether the I/O operation 1s complete;

determine, by the operating system, that the operating
system 1s at an interrupt request level of the deferred
procedure call;

in response to the determination that the operating system

1s at an interrupt request level of the deferred procedure
call, execute, by the operating system, the deferred
procedure call to determine that the I/O operation 1s
complete; and

in response to the determination that the I/O operation 1s

complete,

transmit a return corresponding to the completed 1/O

operation to the user-mode application;

US 10,776,289 B2

9

determine whether the storage driver submission queue
contains an entry associated with a request to perform
a second I/0O operation; and

if 1t 1s determined that the storage driver submission
queue contains an entry associated with a request to
perform a second I/O operation, reschedule the
deferred procedure call to determine whether the sec-
ond I/O operation 1s complete.

8. A computing system according to claim 7, wherein the
deferred procedure call comprises a procedure to check a
completion queue of the storage driver, the completion
queue corresponding to the requested I/0O operation.

9. A computing system according to claim 7, wherein
providing of the request to the storage device comprises:

determination of a processor of the computing system

from which the request was received; and
determination that the storage driver submission queue 1s
associated with the determined processor.

10. A computing system according to claim 9, wherein the
deferred procedure call 1s scheduled to be executed by a
simultaneous multi-threading processor associated with the
Processor.

11. A computing system according to claim 9, the system
turther operable to:

receive, at the storage driver, a second request to perform

a third I/O operation from a second user-mode appli-
cation;

determine a second processor from which the second

request was received;
determine a second storage driver submission queue
which 1s associated with the determined second pro-
CESSOr;

store a second entry associated with the second I/O
request 1n the determined second storage driver sub-
mission queue;

transmit, from the storage driver, a second request to the

operating system to schedule a second deterred proce-
dure call to determine whether the third I/O operation
1s complete;

determine, by the operating system, that the operating

system 1s at an interrupt request level of the second
deferred procedure call;

in response to the determination that the operating system

1s at an interrupt request level of the second deferred
procedure call, execute, by the operating system, the
second scheduled deferred procedure call to determine
that the thaird 1/O operation 1s complete; and

in response to the determination that the the thuird I/O

operation 1s complete,

transmit a second return corresponding to the completed

third I/O operation to the second user-mode applica-
tion;

determine whether the second storage driver submission

queue contains an entry associated with a request to
perform a fourth I/O operation; and

if 1t 1s determined that the second storage driver submis-

s10n queue contains an entry associated with a request
to perform a fourth I/O operation, reschedule the sec-
ond deferred procedure call to determine whether the
fourth I/O operation 1s complete.

12. A computing system according to claim 11, wherein
the deferred procedure call 1s scheduled to be executed by a
simultaneous multi-threading processor associated with the
processor, and

wherein the second deferred procedure call 1s scheduled

to be executed by a second simultaneous multi-thread-
ing processor associated with the second processor.

10

15

20

25

30

35

40

45

50

55

60

65

10

13. A computer-implemented method comprising:

receiving a request to perform an I/O operation from a

user-mode application;

store an entry associated with the request in a storage

driver submission queue;

scheduling a deferred procedure call associated with an

operating system, the deferred procedure call to deter-
mine whether the I/O operation 1s complete;

if 1t 1s determined that the operating system 1s at an

interrupt request level of the deferred procedure call,
executing the scheduled deferred procedure call to
determine that the I/O operation 1s complete; and

in response to the determination that the I/O operation 1s

complete,

transmitting a return corresponding to the completed 1/0

operation to the user-mode application;
determining whether the storage driver submission queue
contains an entry associated with a request to perform
a second I/0 operation; and

i1 1t 1s determined that the storage driver submission
queue contains an entry associated with a request to
perform a second I/O operation, reschedule the
deferred procedure call to determine whether the sec-
ond I/O operation 1s complete.

14. A computer-implemented method according to claim
13, wherein the deferred procedure call comprises a proce-
dure to check a storage driver completion queue correspond-
ing to the I/O operation.

15. A computer-implemented method according to claim
13, further comprising:

determining a processor from which the request was

recerved; and

determining that the storage driver submission queue 1s

associated with the determined processor.

16. A computer-implemented method according to claim
15, further comprising:

recerving a second request to perform a third I/O opera-

tion from a second user-mode application;
determining a second processor from which the second
request was received;
determiming a second storage driver submission queue
associated with the determined second processor;

storing a second entry associated with the second request
in the determined second storage driver submission
queue;

scheduling a second deferred procedure call associated

with the operating system, the second deferred proce-
dure call to determine whether the third I/O operation
1s complete;

i1 1t 1s determined that the operating system 1s at an

interrupt request level of the second deferred procedure
call, executing the scheduled second deferred proce-
dure call to determine that the third I/O operation 1s
complete; and

in response to the determination that the third I/O opera-

tion 1s complete,

transmitting a second return corresponding to the com-

pleted third I/O operation to the second user-mode
application;

determine whether the second storage driver submission

queue contains an entry associated with a request to
perform a fourth I/O operation; and

if 1t 1s determined that the storage driver submission

queue contains an entry associated with a request to
perform a fourth I/O operation, reschedule the deferred
procedure call to determine whether the fourth I/O
operation 1s complete.

US 10,776,289 B2
11

17. A computer-implemented method according to claim
16, wherein the deferred procedure call 1s scheduled to be
executed by a simultaneous multi-threading processor asso-

ciated with the processor, and
wherein the second deferred procedure call 1s scheduled 5
to be executed by a second simultaneous multi-thread-
ing processor associated with the second processor.

¥ ¥ e ¥ ¥

12

	Front Page
	Drawings
	Specification
	Claims

