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VECTORIZE STORE INSTRUCTIONS
METHOD AND APPARATUS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s a national phase entry under 335
U.S.C. § 371 of International Application No. PCT/RU2016/

000410, filed Jul. 1, 2016, entitled “VECTORIZE STORE
INSTRUCTIONS METHOD AND APPARATUS”, which
designated, among the various States, the United States of
America. The Specifications of the PCT/RU2016/000410

Application 1s hereby incorporated by reference.

FIELD

The present disclosure relates to the field of computing, in
particular to, vectorizing store instructions.

BACKGROUND

In parallel computing, many calculations are carried out
simultaneously. Single instruction, multiple data (*“SIMD”)
1s a type of parallel computing in which multiple processing
clements perform the same operation on multiple data
points, generally during the same processor clock cycle or
pursuant to one struction (which, due to page fault, inter-
rupts, and the like, may be spread out over one or more clock
cycles).

In SIMD processes, data 1s handled 1n blocks; a block or
vector comprising a number of values can be loaded into
SIMD memory—such as a vector register—with one
instruction, rather than requiring a series of 1nstructions. A
common function can then be applied to all the values 1n the
block. Thus, processor clock cycles and power can be saved
by saving sets of data as one or more vector(s), loading the
vector(s) i SIMD memory, and executing a function on the
vector(s) and/or vector elements 1n vector.

SIMD 1s known to be particularly applicable to processing
multimedia data, inasmuch as processing multimedia data
often requires applying the same function across large sets
of bits or bytes. For example, adjusting contrast 1n a digital
image file may require adding or subtracting a single value
from each pixel in an image. This can be performed by
loading some or all of the pixels 1n the 1image 1nto a single
vector register and adding/subtracting the value to all of the
pixel values 1n one instruction.

However, at least write-alter-write (write-atter-write also
being known as output dependence) dependence can prevent
a loop or function from operating on vectorized data without
potentially causing errors.

For example, i the following pseudo-code in Table 1,
indexes for accessing A[ | array may potentially have the
same values pointing to the same memory location. In this
case, 1ull vectorization of the loop 1s not possible, because
the order of stores 1n a vector execution 1s different from the
scalar execution; later execution with respect to an earlier
store may overwrite a memory cell, producing an 1ncorrect
result.

TABLE 1

for(i=0; i<N; i++){
computation_ without_ dependencies; //no other accesses to A[ | array
Almdex1[1]] = X; //block of stores potentially having dependencies
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TABLE 1-continued

Alimndex2[1]]
Alindex3[1]]

h

Y;
Z;

In another example, illustrated in the following pseudo-
code 1n Table 2, values are stored with pointers pl, p2, p3
which may be aliased (equal or intersect randomly), and/or

which may be computed in arbitrary (vectorizable) way on
cach iteration of the loop:

TABLE 2

for(i=0; i<N; i++){

computation_ without_ dependencies; //no other accesses to pl, p2 and p3
pointers

11 = computationl(1) //any computation depending on iteration or load
from memory

12 = computation2(1) //any computation depending on iteration or load
from memory

13 = computation3(1) //any computation depending on iteration or load
from memory

pl[il] = X; //block of stores potentially having dependencies
p2[12] = Y;

p3[12] = Z;

h

Legacy approaches to the problem of output dependence
and vectorization are to 1) serialize the entire loop execution,
which foregoes the benefits which may come from vector-
ization or 11) separately serialize ordered regions of code
and, potentially, perform parallel execution of code outside
of serialized regions, as e.g., 1 Section 2.13.8, “ordered
Construct” m “OpenMP Application Programming Inter-
face”, version 4.5, November, 2015.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a network and device diagram illustrating an
example of at least one computer device 1n a network
environment incorporated with teachings of the present
disclosure, according to some embodiments.

FIG. 2 1s a functional block diagram illustrating an
example of a computer device icorporated with teachings
of the present disclosure, according to some embodiments.

FIG. 3 1s a functional block diagram illustrating an
example of a computer device datastore for practicing the
present disclosure, consistent with embodiments of the
present disclosure.

FIG. 4 1s a functional block diagram illustrating an
example of a processor found 1n computer device, consistent
with embodiments of the present disclosure.

FIG. 5 1s a flow diagram illustrating an example of a
method performed by a compiler optimization module,
according to some embodiments.

FIG. 6 1s a flow diagram illustrating an example of a
method performed by a vectorization module, according to
some embodiments.

FIG. 7 1s a flow diagram 1illustrating an example of a
method performed by a cost analysis module, according to
some embodiments.

Although the following Detailed Description will proceed
with reference being made to illustrative embodiments,
many alternatives, modifications, and variations thereot will
be apparent to those skilled in the art.
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DETAILED DESCRIPTION

Following are defined terms 1n this document.

As used herein, a register 1s a computer memory device
capable of storing and providing information. When located
in a central processing unit, a register may also be referred
to as a processor register.

As used herein, a vector register 1s a register which holds
a one-dimensional array of data, a vector, for vector pro-
cessing by SIMD and/or other multiple istruction and/or
multiple data struction classifications in Flynn’s tax-
onomy. Vector registers may range e.g., ifrom 64 to 128 bit
lengths (which are also referred to as “small-scale” vector
registers) to e.g., 256 to 512 or more bits.

As used herein, a vector element, element, or way 1s a unit
into which a vector register may be divided. For example, 1f
a vector register 1s 256 bits, and 11 the vector element 1s 8
bits, then the vector register can process 32 ways or 32
vector elements 1n the 256 bit vector register.

As used herein, Flynn’s taxonomy 1s a classification of
computer architectures by Michael J. Flynn 1n 1966; Flynn’s
taxonomy comprises the following classifications: single
istruction stream, single data stream (“SISD”), single
instruction stream, multiple data streams (“SIMD”), mul-
tiple instruction streams, single data stream (“MISD™), mul-
tiple instruction streams, multiple data streams (“MIMD™),
single program, multiple data streams (“SPMD”’), and mul-
tiple programs, multiple data streams (“MPMD”).

As used heremn, SIMD 1s defined in the background
section of this document. SIMD instruction sets can be
executed on most central processing units and graphics
processing units which exist contemporary with this paper.
SIMD 1nstruction sets 1nclude International Business
Machine’s AltiVec and SPE for PowerPC, Hewlett Pack-
ard’s PA-RISC Multimedia Acceleration eXtensions
(MAX), Intel Corporation’s MMX and iwMMXt, SSE,
SSE2, SSE3 SSSE3 SSE4.x, AVX, Larrabee, and Many
Integrated Core Architecture or Xeon Phi architectures,
Advanced Micro Device’s 3DNow!, ARC International’s
ARC Video subsystem, SPARC Internatlonal Inc.’s VIS and
VIS2, Sun Microsystem’s MAJC, ARM Holding’s NEON
technology, MIPS Technologies, Inc.”’s MDMX (MaDMaX)
and MIPS-3D and the like. As discussed herein, Processor
400 described herein may support SIMD 1nstructions 270
which may utilize vector register(s) 421. SIMD 1nstruction
set 270 may comprise ntrinsics and libraries for mvoking
vectorized algorithms. SIMD instruction set 270 may
require or be able to utilize one or more vector registers of
processor 400.

As used herein, the term “module” (or “logic”) may refer
to, be part of, or include an Application Specific Integrated
Circuit (ASIC), a System on a Chip (S0C), an electronic
circuit, a processor (shared, dedicated, or group) and/or
memory (shared, dedicated, or group) or in another com-
puter hardware component or device that execute one or
more soltware or firmware programs or a combination
(having machine instructions supported by the processing
units, which may be generated from assemblers or compiled
from high level language compilers), a combinational logic
circuit, and/or other suitable components that provide the
described functionality. Modules may be distinct and 1nde-
pendent components integrated by sharing or passing data,
or the modules may be subcomponents of a single module,
or be split among several modules. The components may be
processes running on, or implemented on, a single compute
node or distributed among a plurality of compute nodes
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4

running in parallel, concurrently, sequentially or a combi-
nation, as described more fully 1n conjunction with the flow
diagrams 1n the figures.

As used herein, a process corresponds to an instance of an
application executing on a processor and a thread corre-
sponds to a portion of a process. A processor may include
one or more execution core(s). The processor may be
configured to be coupled to a socket.

As used herein, a loop 1s a sequence of soitware instruc-
tion(s) which 1s specified once and which 1s carrnied out
several times 1n succession. Code mside a loop, or a “loop
body” may be executed 1) a specified number of times, 1)
once for each of a collection of items, 111) until a condition
1s met, or 1v) indefinitely. The number and/or conditions on
execution of a loop body may be described in a store
execution condition matrix.

As used herein, mutually dependent store instructions,
store instructions exhibiting output dependency, or write-
alter-write store instructions are more than one store mstruc-
tion which both write to the same memory resource and
wherein one of the store mnstructions must precede the other
in order to produce a correct result.

As used herein, logic may refer to an app, software,
firmware and/or circuitry configured to perform any of the
operations or modules discussed herein. Software may be
embodied as a software package, code, mstructions, mnstruc-
tion sets and/or data recorded on non-transitory computer

readable storage medium. Firmware may be embodied as
code, instructions or instruction sets and/or data that are
hard-coded (e.g., 1n a nonvolatile way) 1n memory devices.

As used herein, circuitry may comprise, for example,
singly or 1n any combination, hardwired circuitry, program-
mable circuitry such as computer processors comprising one
or more individual 1nstruction processing cores, state
machine circuitry, and/or firmware that stores instructions
executed by programmable circuitry. The logic may, collec-
tively or mdividually, be embodied as circuitry that forms
part of a larger system, for example, an integrated circuit
(IC), an application-specific integrated circuit (ASIC), a
system on-chip (SoC), desktop computers, laptop comput-
ers, tablet computers, servers, smart phones, etc.

In some embodiments, a hardware description language
(HDL) may be used to specily circuit and/or logic imple-
mentation(s) for the various logic and/or circuitry described
herein. For example, in one embodiment the hardware
description language may comply or be compatible with a
very high speed integrated circuits (VHSIC) hardware
description language (VHDL) that may enable semiconduc-
tor fabrication of one or more circuits and/or logic described

herein. The VHDL may comply or be compatible with IEEE
Standard 1076-1987, IEEE Standard 1076.2, IEEE1076.1,

IEEE Draft 3.0 of VHDL-2006, IEEE Drait 4.0 of VHDL-
2008 and/or other versions of the IEEE VHDL standards
and/or other hardware description standards.

In overview, this disclosure relates to methods and sys-
tems 1n a computing device apparatus to optimize compila-
tion of source code into object or intermediate code (both
referred to herein as “compiled code”). As discussed in
relation to FIG. § and compiler optimization module 500,
the disclosed optimization identifies loops or functions with
mutually dependent stores (loops or functions which may
have output dependency). If the number of mutually depen-
dent stores exceeds a threshold, such that the mutually
dependent stores are estimated to result 1n a significant
execution time and/or energy component in the loop or
function, then a vectorization procedure may be followed to
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vectorize the loop/function, with an example of such pro-
cedure being discussed 1n relation to vectorization module
600.

To determine whether execution of the output of the
vectorization procedure 1s more eflicient than a scalar execu-
tion, a cost analysis may be performed, with an example of
a cost analysis being discussed 1n relation to cost analysis
module 700. I1 the cost analysis indicates that the vectorized
loop/function 1s more ethicient and/or 1s faster, then the
disclosed compiler optimization compiles the vectorized
version of the loop/function, such as according to the output
ol the vectorization procedure. If the cost analysis indicates
that the vectorized loop/function 1s less eflicient and/or 1s
slower, then the disclosed compiler optimization compiles
scalar store 1nstruction(s). The compiled code, such as object
or intermediate code, may then be executed, potentially
achieving speed benefits of vectorization and parallelized
computing (assuming cost analysis indicates that the vec-
torized loop/function 1s more eflicient and/or 1s Tfaster),
without write-alter-write or output dependency errors which
might otherwise occur when a loop/function comprising,
output dependent stores 1s executed in a vectorized manner.

As discussed further in relation to FIG. 6, vectorization
module 600 may determine a scalar data store order matrix,
a scalar address store order matrix, and a store execution
condition matrix which would result from scalar execution
of the loop/function. Vectorization module 600 may trans-
pose these matrices mnto a vector data matrix, a vector
address matrix and a vector mask matrix (which dynami-
cally skips stores when conditions are present, such as IF
branch outcomes). Vectorization module 600 may exclude
no-operation elements 1n the vector data and vector address
matrices. Vectorization module 600 may also determine
scatter 1nstruction(s) to scatter the vector matrices.

As discussed further in relation to FIG. 7, cost analysis
module 700 determines whether the time required at execu-
tion time to transpose the matrices and execute the scatter
istruction 1s longer than the scalar execution time. Cost
analysis module 700 may also determine whether the execu-
tion time for the entire vectorized loop/function 1s faster or
slower than the execution time for a scalar execution of the
loop/tunction. If the vectorized code and/or vectorized
execution time 1s faster, then cost analysis module 700 may
commit to compiling the vectorized loop/function, other-
wise, cost analysis module 700 may commit to compiling
the serial loop/Tunction.

Pursuant to this disclosure, software developers or pro-
grammers may take advantage ol SIMD and similar parallel
processing 1nstructions with respect to loops/functions
which have output dependencies, automatically, without
producing output dependency errors and excluding instances
in which the vectorized version 1s not faster than a scalar
version.

Referring now to FIG. 1, which 1s a network and device
diagram 1llustrating 1n tableau 100 an example of at least one
computer device 200, computer device datastore 300, net-
work 150, execution device 105 and uncompile code device
110, incorporated with the teachings of the present disclo-
sure, according to some embodiments. In embodiments,
computer device 200 may include a compiler optimization
module 500, a vectorization module 600, and a cost analysis
module 700, of the present disclosure (to be described more
tully below).

Computer device 200 may be used for compiling source
code into compiled code, such as object or intermediate
code. Computer device 200, except for the teachings of the
present disclosure, may include, without limitation, a virtual
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6

reality display or supporting computers therefore, a server, a
workstation computer, a desktop computer, a laptop com-
puter, a tablet computer (e.g., 1IPad®, GalaxyTab® and the
like), an ultraportable computer, an ultramobile computer, a
netbook computer and/or a subnotebook computer; a mobile
telephone mncluding, but not limited to a smart phone, (e.g.,
1IPhone®, Android®-based phone, Blackberry®, Sym-
bian®-based phone, Palm®-based phone, etc.) and the like.
Computer device 200 may be a server computer or server
module within another computer device, such as within
execution device 105 or within uncompiled code device 110.

Also 1illustrated 1mn FIG. 1 1s computer device datastore
300. Computer device datastore 300 1s described further,
herein, though, generally, 1t should be understood as a
datastore used by computer device 200.

Also 1llustrated 1n FIG. 1 1s network 150. Network 150
may comprise computers, network connections among the
computers, and software routines to enable communication
between the computers over the network connections.
Examples of Network 150 comprise an Ethernet network,
the Internet, and/or a wireless network, such as a GSM,
TDMA, CDMA, EDGE, HSPA, LTE or other network
provided by a wireless service provider. Connection to
Network 150 may be via a Wi-Fi connection. More than one
network may be involved mm a communication session
between the 1llustrated devices. Connection to Network 150
may require that the computers execute software routines
which enable, for example, the seven layers of the OSI
model of computer networking or equivalent 1n a wireless
phone network.

Also 1llustrated 1n FIG. 1 1s execution device 105. Execu-
tion device 105 may execute compiled code prepared by
computer device 200. Execution device 105 may be similar
to computer device 200, though execution device 105 may
not comprise embodiments of the disclosure herein. Execu-
tion device 105 may comprise vector register, similar to
vector register 421, and supports a SIMD 1struction set,
similar to SIMD instruction set 270, such that execution
device 105 may be capable of executing compiled vector-
1zed code, such as compiled code 340 obtained directly or
indirectly (such as via network 150) from computer device
200.

Also 1llustrated 1n FIG. 1 1s uncompiled code device 110.
Uncompiled code device 110 may be a source or provider
(such as via network 150) of uncompiled code to computer
device 200. Uncompiled code device 110 may be similar to
computer device 200, though uncompiled code device 110
may not comprise embodiments of the disclosure herein. As
discussed herein, uncompiled code from uncompiled code
device 110 may be stored and/or recorded in computer
device 200 as source code 335. Computer device 200 may
compile source code 335 mto compiled code, such as
compiled code 340, pursuant to this disclosure.

FIG. 2 1s a functional block diagram illustrating an
example of computer device 200 incorporated with the
teachings of the present disclosure, according to some
embodiments. Computer device 200 may include chipset
2355, comprising processor 400, mput/output (I/0) port(s)
and peripheral devices, such as output 240 and mput 245,
and network interface 230, and computer device memory
250, all interconnected via bus 220. Network Interface 230
may be utilized to form connections with Network 150, with
computer device datastore 300, or to form device-to-device
connections with other computers. Processor 400 may
include features that support a SIMD instruction set, such as
SIMD 1nstruction set 270, and 1s discussed and illustrated
turther in relation to FIG. 4.
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Chipset 255 may include communication components
and/or paths, e.g., bus(es) 220, that couple processor 400 to
peripheral devices, such as, for example, output 240 and
input 245, which may be connected via I/O ports. For
example, chipset 255 may include a peripheral controller
hub (PCH). In another example, chipset 255 may include a
sensors hub. Input 245 and output 240 may include, for
example, user interface device(s) including a display, a
touch-screen display, printer, keypad, keyboard, etc.,
sensor(s) including accelerometer, global positioning system
(GPS), gyroscope, etc., communication logic, wired and/or
wireless, storage device(s) including hard disk drives, solid-
state drives, removable storage media, etc. I/O ports for
input 245 and output 240 may be configured to transmit
and/or receive commands and/or data according to one or
more communications protocols. For example, one or more
of the I/O ports may comply and/or be compatible with a
universal serial bus (USB) protocol, peripheral component
interconnect (PCI) protocol (e.g., PCI express (PCle)), or the
like.

Computer device memory 250 may generally comprise a
random access memory (“RAM”), a read only memory
(“ROM”), and a permanent mass storage device, such as a
disk drive or SDRAM (synchronous dynamic random-ac-
cess memory). Computer device memory 2350 may store
program code for software modules or routines, such as, for
example, compiler optimization module 500 (illustrated and
discussed further 1n relation to FIG. §), vectorization module
600 (1llustrated and discussed further 1n relation to FIG. 6),
and cost analysis module 700 (illustrated and discussed
turther in relation to FIG. 7).

Computer device memory 250 may also store operating
system 280. These soltware components may be loaded
from a non-transient computer readable storage medium 2935
into computer device memory 250 using a drive mechanism
associated with a non-transient computer readable storage
medium 295, such as a floppy disc, tape, DVD/CD-ROM
drive, memory card, or other like storage medium. In some
embodiments, software components may also or instead be
loaded via a mechanism other than a drive mechanism and
computer readable storage medium 295 (e.g., via network
interface 230).

Computer device memory 230 1s also 1llustrated as com-
prising kernel 285, kernel space 295, user space 290, user
protected address space 260, and computer device datastore
300 (1llustrated and discussed further 1n relation to FIG. 3).

Computer device memory 250 may store one or more
process 265 (1.e., executing software application(s)). Process
265 may be stored in user space 290. One or more process
265 may execute generally 1n parallel, 1.e., as a plurality of
processes and/or a plurality of threads.

Computer device memory 250 1s further illustrated as
storing operating system 280 and/or kernel 285. The oper-
ating system 280 and/or kernel 2835 may be stored 1n kernel
space 295. In some embodiments, operating system 280 may
include kernel 285.

Kernel 285 may be configured to provide an interface
between user processes and circuitry associated with com-
puter device 200. In other words, kernel 285 may be
configured to manage access to processor 400, chipset 255,
I/0 ports and peripheral devices by process 265. Kernel 285
may include one or more drivers configured to manage
and/or communicate with components of computer device
200 (1.e., processor 400, chipset 255, I/O ports and periph-
eral devices).

Computer device memory 250 1s further illustrated as
storing compiler 275. Compiler 275 may be, for example, a
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computer program or set of programs that transform source
code written 1n a programming language, such as source
code 335, mto another computer language. The other com-
puter language may be binary object code, such as an
executable program, or intermediate code or bytecode which
may be mnterpreted by a runtime interpreter. Binary object
code and intermediate code are referred to herein as com-
piled code.

Computer device 200 may also comprise or communicate
via Bus 220 with computer device datastore 300, 1llustrated
and discussed further in relation to FIG. 3. In various
embodiments, bus 220 may comprise a storage area network
(“SAN™), a high speed senial bus, and/or via other suitable
communication technology. In some embodiments, com-
puter device 200 may communicate with computer device
datastore 300 via network interface 230. Computer device
200 may, 1n some embodiments, include many more com-
ponents than as 1llustrated. However, 1t 1s not necessary that
all components be shown in order to disclose an illustrative
embodiment.

FIG. 3 1s a functional block diagram of computer device
datastore 300 illustrated in the computer device of FIG. 2,
according to some embodiments. The components of com-
puter device datastore 300 may include data groups used by
modules and/or routines, €.g, vector register size 305, scalar
data/address store order matrix 310, scalar store mask 315
(which may also be referred to as scalar store execution
condition matrix), vector data/address store order matrix
320, vector store mask 325 (which may also be referred to
as vector store execution condition matrix), scatter istruc-
tion 330, source code 335, compiled code 340, and loop/
function 345 (to be described more fully below). The data
groups used by modules or routines illustrated 1n FIG. 3 may
be represented by a cell in a column or a value separated
from other values 1n a defined structure 1n a digital document
or file. Though referred to herein as individual records or
entries, the records may comprise more than one database
entry. The database entries may be, represent, or encode
numbers, numerical operators, binary values, logical values,
text, string operators, joins, conditional logic, tests, and
similar.

FIG. 4 1s a functional block diagram illustrating an
example of processor 400, consistent with embodiments of
the present disclosure. As illustrated in FI1G. 4, processor 400
includes one or more execution core(s) 410A, . . ., 410P,
which may be central processing units (“CPUs”) and/or
graphics processing units (“GPUs”) and a plurality of reg-
isters 420; registers 420 may include one or more vector
registers 421A, . . ., 421P. Processor 400 may further
comprise one or more cache memor(ies) 425. Cache(s) 425
may include one or more cache memories, which may be
used to cache compiler optimization module 500, vectoriza-
tion module 600, and cost analysis module 700, of the
present disclosure. Processor 400 may include a memory
management unit (MMU) 415 to manage memory accesses
between processor 400 and computer device memory 250.
Each core 410A, . . . , 410P may be configured to execute
one or more process(es) and/or one or more thread(s) of the
one or more processes. In addition to and/or including vector
register 421, the plurality of registers 420 may include a
plurality of general purpose registers, a status register and an
instruction pointer.

FIG. 5§ 1s a flow diagram illustrating an example of
compiler optimization module 500, according to some
embodiments. Compiler optimization module 500 may be
executed by, for example, computer device 200. Compiler
optimization module 500 may be executed during compila-



US 10,776,093 B2

9

tion of source code into compiled code, such as during
execution of compiler 275. Compilation of source code may
be with respect to a target computer device, processor, and
operating system, such as with respect to execution device
105. Source code being compiled may be stored 1n computer
device datastore 300 as one or more source code 335
records. Compiled code prepared from source code 335 may
be store 1n computer device datastore 300 as one or more
compiled code 340 records.

Opening loop block 5035 to closing loop block 540 may
iterate over one or more loops or functions which occur 1n
source code being compiled. Compiler 275 may compile
source code into compiled code using existing compilation
techniques, 1 addition to using the techniques and compo-
nents disclosed herein, for example, compiler 275 may
vectorize other portions of source code using existing vec-
torization techniques.

As source code 1s compiled, loops and functions may be
identified and/or recorded 1n computer device datastore 300
as one or more loop/Tfunction 345 records.

At decision block 510, a determination may be made
regarding whether dependencies or other conditions of the
then-current loop or function, loop/function 345, of source
code 335, or of mntended compiled code (or of an execution
device 105), preclude any vectorization. If aflirmative or
equivalent, then proceeding further with compiler optimi-
zation module 500 with respect to the then-current loop/
function 3435 may be unnecessary and compiler optimization
module 500 may return to opening loop block 505 to iterate
over the next loop/function 345, i1 any, which may occur 1n
source code 335 being compiled.

If negative or equivalent at decision block 510, at decision
block 515 a determination may be made regarding whether
the then-current loop/function 345 comprises any mutually
dependent store instructions. If negative or equivalent at
decision block 515, then proceeding turther with compiler
optimization module 500 with respect to the then-current
loop/function 345 may be unnecessary and compiler opti-
mization module 500 may return to opening loop block 5035
to 1terate over the next loop/function 345, if any, which may
occur 1n source code 335 being compiled.

If afirmative or equivalent at decision block 515, then at
decision block 520 a determination may be made regarding
whether the mutually dependent stores of block 515 exceed
a threshold. The threshold may be set by a system admin-
istrator, by a user, by a party who programmed compiler
optimization module 500 or the like. The threshold may be
based on a number of 1terations of loop, such as more than
one, more than two, etc., 1terations.

It should be recognized that one or more of decision
blocks 510, 515, and 520 may be omitted and/or may occur
in a different order than as illustrated.

If aflirmative or equivalent at decision block 520, com-
piler optimization module 500 may vectorize then-current
loop/tTunction 345, taking into account the scalar store order
of loop/function 345 and optimizing the scalar store for
vector execution. For example, compiler optimization mod-
ule 500 may execute vectorization module 600, whether
independently or as a subroutine or submodule.

Compiler optimization module 500 may determine the
relative cost, efliciency, or speed of vectorized and scalar
versions ol loop/function 345, such as by executing cost
analysis module 700, whether mndependently or as a sub-
routine or submodule.

At decision block 525, compiler optimization module 500
may determine whether cost analysis of vectorized compiled
code or scalar compiled code favors compiling scalar or
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vectorized code. At block 530, compiler optimization mod-
ule 500 may compile loop/function 345 1n a scalar form or
may commit to including scalar compiled form of loop/
function 345 1n compiled code 340. At block 535, compiler
optimization module 500 may compile loop/function 345 1n
a vector form or may commit to including vector compiled
form of loop/function 345 in compiled code 340.

At closing loop block 540, may return to opening loop
block 505 to iterate over the next loop or function, if any, as
source code 335 1s compiled into compiled code 340, such
as by compiler 275.

At done block 599, compiler optimization module 500
may conclude and/or may return to a process which may
have spawned 1t.

FIG. 6 1s a flow diagram illustrating an example of
vectorization module 600, according to some embodiments.
Vectorization module 600 may be executed by, for example,
computer device 200, whether independently or as a sub-
routine or submodule of compiler optimization module 500.

At block 605, vectorization module 600 may determine a
scalar data store order matrix, a scalar address store order
matrix, and a scalar store execution condition matrix in
relation to a then-current loop/function 345. Scalar data
store order matrix and scalar address store order matrix may
be stored 1n computer device datastore 300 as one or more
scalar data/address store order matrix 310 records. Store
execution condition matrix may be stored and/or recorded 1n
computer device datastore 300 as one or more scalar store
mask 315 records (which may also be referred to as a scalar

store execution condition matrix). An example of a scalar
data/address store order matrix 1s shown below, 1n Table 3.

TABLE 3
Iter3 Iter? Iterl IterO
Storel X3 X2 X1 X0
Store2 Y3 Y2 Y1 YO
Store3 73 72 /7.1 Z0

In Table 3, scalar execution order 1s X0, YO, 70, X1, Y1,
71,X2,Y2, 72, X3, Y3, 73.

Store execution condition matrix 1s similar, though it may
list conditions and/or whether a condition, such as an IF
branch, applies to a store.

Legacy vector execution order, 1n a 4-way vector, would
be X0, X1, X2, X3,Y0,Y1,Y2,Y3, 20, Z1, Z2, Z3. When
write-alter-write or output dependency is present, such a
re-ordering of stores may lead to results which do not match
the scalar execution. For example, if Storel 1n Iter2 (X2) and
Store2 1n Iterl (Y1) are to the same memory location, there
1s an output dependence between the two. For the sake of
simplicity, assume that other stores are to diflerent memory
locations. In the scalar execution scenario, the Y1 store 1s
overwritten by the X2 store, setting the value of the memory
location after Iter3. In the vector execution scenario, the X2
store 1s overwritten by the Y1 store. Unless X2 and Y1 stores
happened to write the same values by chance, the memory
states after all 12 stores (X0 to Z3) are different from each
other 1n scalar execution and vector execution.

At block 610, vectorization module 600 transposes scalar
data store order matrix, scalar address store order matrix
(from one or more scalar data/address store order matrix
310) and scalar store mask 315 1nto vector element matrices
preserving the scalar order and based on the bit length of a
vector register to be used during execution of compiled code
340, such as a bit length of vector register 1n a target device,
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such as execution device 105, and a number of vector
elements therein. Vector element matrices for scalar data/
address store order matrix 310 may be stored 1n computer
device datastore 300 as, for example, one or more vector
data/address store order matrix 320 records. Vectorized
scalar store mask 315 may be stored as, for example, one or
more vector store mask 325 records. An example of trans-
position of the scalar data/address matrix of Table 3 1nto a
vector element matrix 1s shown below 1n Table 4.

TABLE 4
Elem3 Elem?2 Eleml ElemO
Storel 6 7.0 YO X0
Store2 6 7.1 Y1 X1
Store3 6 72 Y2 X2
Stored 6 73 Y3 X3

The above matrix in Table 4 preserves the scalar store
order; vector execution ol the above now preserves the
scalar execution order, even 1n the presence of write-after-
write or output dependency in the original code (before
transposition).

In the above, “*” 1ndicates no-operation vector elements
which do not fully utilize the vector register space. These
occur because of a mis-match between the number of
clements in the vector register (in this case, four), and the
number of store instructions (in this case, three) 1n the scalar
version of the loop or function.

A vector store mask 325 record would be similar to the
matrix in Table 4, though may contain entries (such as a O
or 1, one bit per vector element) indicating whether or not
a condition applies to the corresponding cell 1n the vector
data/address store order matrix 320 record.

Various techniques could be applied to eliminate no-
operation (or wrrelevant) vector elements in both vector
data/address store order matrix 320 and vector store mask
325. For example, a comparison between the number of
store instructions in the scalar loop to the number of ways 1n
the vector register may indicate which elements in the vector
data/address store order matrix 320 and vector store mask
325 contain no-operation entries as a bi-product of the
mis-match between ways in the vector register and the
number of store instructions.

As 1llustrated 1 FIG. 6, to exclude no-operation entries,
opening loop block 615 to closing loop block 630 iterate
over each element 1n transposed vector data/address store
order matrix 320. At decision block 620, vectorization
module 600 may determine whether the then-current ele-
ment 1s a no-operation element. If athirmative or equivalent
at decision block 620, then at block 625 the no-operation
clement may be excluded from the transposed matrices,
vector data/address store order matrices 320 and vector store
mask 325. This assumes that the vector data/address store
order matrices 320 and vector store mask 325 use the same
s1ze vector register with the same number of ways-1f they do
not, then opening loop block 613 to closing loop block 630
may be executed with respect to both vector data/address
store order matrices 320 and vector store mask 325. In the
case ol some processors, a dedicated mask register may be
present 1n the processor for this purpose.

If negative or equivalent at decision block 620, vector-
1ization module 600 may return to opening loop block 615 to
iterate over the next element, 11 any.

Upon conclusion of iteration of opening loop block 615 to
closing loop block 630 across the elements 1n the transposed
matrices, vectorization module 600 may, at block 635,

10

15

20

25

30

35

40

45

50

55

60

65

12

record the final version of vector data/address store order
matrices 320 and vector store mask 325. It should be
understood that vector data/address store order matrices 320

may be stored as two separate matrices, one for data store
order and one for address store order.

In terms of the example 1llustrated above 1n Tables 3 and
4, the final version of vector data/address store order matrix
320 would appear as follows 1n Table 5.

TABLE 5
Elem3 Elem?2 Eleml ElemO
Storel X1 Z0 YO X0
Store2 Y2 X2 7.1 Y1
Store3 73 Y3 X3 72

At block 640, vectorization module 600 may determine
instruction sequences for transposition, for scatter mstruc-
tion(s) based on the final transposed matrices. The scatter
istruction(s) may accept operands for the vector data store
order matrix, for the vector address store order matrix, for
the mask, and for a base pointer. Permutation of data,
address, and mask, 1n addition to scatter, may be performed,
such as, according to a permutation pattern available at
compile time.

The scatter instruction may be executed from lowest to
highest vector element and, 1n the vector of indices (the
vector address store order matrix) the indices do not have to
be unique and 1f there 1s an overlap between indices in
neighboring vector elements, then the later one wins. Certain
graphics processing units may not obey these rules.

At done block 699, vectorization module 600 may con-
clude or return to a module or process which may have
called it, such as compiler optimization module 500.

FIG. 7 1s a flow diagram 1illustrating an example of a cost
analysis module 700, according to some embodiments. Cost
analysis module 700 may be executed by, for example
computer device 200, whether independently or as a sub-
routine or submodule of compiler optimization module 500.
Cost analysis module 700 may be executed with respect to
cach loop/function 345 processed by vectorization module
600.

At block 703, cost analysis module 700 may determine or
estimate the execution time, such as execution time by
execution device 105, which would be required to transpose
the matrices (the store address, store data, and mask matri-
ces) and to execute the scatter instruction(s). If the mask
values are all true (or equivalent indicators indicating no
mask), then time required for transposing the mask matrix
may be omitted.

At block 710, cost analysis module 700 may determine or
estimate the execution time, such as execution time by

execution device 105, which would be required to execute
serial extraction of store addresses, serial extraction of store
data, serial performance of scalar stores, and serial extrac-
tion of mask values and conditional branches (per scalar
store mask 315). As with block 705, 1f values in the scalar
store mask are all true (or equivalent), then the mask may be
skipped.

At decision block 715, cost analysis module 700 may
determine which 1s faster, the vectorized store execution or
the scalar execution. If aflirmative or equivalent at decision
block 715 (indicating that scalar execution of the loop/
function 1s faster), then at block 730, cost analysis module
700 may commuit to scalar serialization of the loop/function.
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If negative or the equivalent at decision block 715 (indi-
cating that vector execution 1s faster), then at block 720, cost
analysis module 700 may determine or estimate the execu-
tion time of the entire loop/function in both vector and scalar
forms.

At decision block 723, cost analysis module 700 may,
based on the result of block 720, determine which 1s faster,
the vectorized loop/function or the scalar loop/function. If
vector at decision block 7235, then at block 735, cost analysis
module 700 may commit to vectorization of the loop/
function. If scalar at decision block 725, then at block 730,
cost analysis module 700 may commit to scalar serialization
of the loop/function.

At done block 799, cost analysis module 700 may con-
clude and/or return to another process or module which may
have spawned 1t, such as compiler optimization module 500.

Embodiments of the operations described herein may be
implemented 1n a computer-readable storage device having
stored thereon instructions that when executed by one or
more processors perform the methods. The processor may
include, for example, a processing unit and/or program-
mable circuitry. The storage device may include a machine
readable storage device including any type of tangible,
non-transitory storage device, for example, any type of disk
including floppy disks, optical disks, compact disk read-only
memories (CD-ROMs), compact disk rewritables (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
riecs (RAMs) such as dynamic and static RAMs, erasable
programmable read-only memornes (EPROMs), electrically
crasable programmable read-only memories (EEPROMs),
flash memories, magnetic or optical cards, or any type of
storage devices suitable for storing electronic instructions.
USB (Universal serial bus) may comply or be compatible
with Universal Serial Bus Specification, Revision 2.0, pub-
lished by the Universal Serial Bus organization, Apr. 27,
2000, and/or later versions of this specification, for example,
Universal Serial Bus Specification, Revision 3.1, published
Jul. 26, 2013. PCle may comply or be compatible with PCI
Express 3.0 Base specification, Revision 3.0, published by
Peripheral Component Interconnect Special Interest Group
(PCI-SIG), November 2010, and/or later and/or related
versions ol this specification.

Following are examples:

Example 1

An apparatus for computing, comprising: a computer
processor and a memory; and a vectorization module to
vectorize a set of mutually dependent store instructions in a
loop or function in a source code, wherein to vectorize the
set of mutually dependent store instructions, the vectoriza-
tion module 1s to determine a scalar store order for the set of

mutually dependent store instructions and determine a vec-
torized store order for the scalar store order.

Example 2

The apparatus according to Example 1, wherein deter-
mine the vectorized store order for the scalar store order

comprises determine the vectorized store order for the scalar
store order based on a number of vector elements 1n a vector

register coupled to a target computer processor.

Example 3

The apparatus according to Example 2, wherein deter-
mine the vectorized store order for the scalar store order
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based on the number of vector elements 1n the vector register
coupled to the target computer processor further comprises
exclude a no-operation store instruction from the vectorized
store order.

Example 4

The apparatus according to Example 3, wherein exclude
the no-operation store instruction from the vectorized store
order comprises exclude the no-operation store 1nstruction
from the vectorized store order when such no-operation
store 1nstruction occurs because of a diflerence in size
between a scalar matrix comprising the number of sequential
scalar instruction iterations and the number of sequential
store 1nstructions 1n each iteration in the number of sequen-
tial scalar instruction iterations and a vector matrix com-
prising the number of vector elements executed by a SIMD
instruction using the vector register.

Example 5

The apparatus according to Example 2, wherein deter-
mine the vectorized store order for the scalar store order
comprises determine the vectorized store order according to
a number of sequential scalar instruction iterations and a
number of sequential store nstructions in each iteration in
the number of sequential scalar instruction iterations.

Example 6

The apparatus according to Example 5, wherein a scalar
matrix comprising the number of sequential scalar mnstruc-
tion 1terations and the number of sequential store mnstruc-
tions 1n each iteration in the number of sequential scalar
instruction 1iterations 1s less than a vector matrix comprising
the number of elements executed by a SIMD instruction
using the vector register.

Example 7

The apparatus according to Example 1, wherein deter-
mine the vectorized store order for the scalar store order
turther comprises transpose each store instruction in the set
of mutually dependent store instructions mto an element 1n
a set of elements executed by a single 1nstruction, multiple
data (SIMD) 1nstruction using a vector register coupled to a
target computer processor.

Example 8

The apparatus according to Example 7, wherein transpose
cach store 1nstruction 1n the set of mutually dependent store
instructions into the element in the set of elements further
comprises 11l each element 1n the set of elements with each
store 1nstruction in the set of mutually dependent store
instructions.

Example 9

The apparatus according to Example 8, wherein fill each
clement 1n the set of elements executed by the SIMD
instruction with each store instruction in the set of mutually
dependent store instructions further comprises exclude a
no-operation store nstruction.

Example 10

The apparatus according to Example 1, wherein the
vectorization module 1s further to determine a scatter
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instruction to store a result of the vectorized store order to
a set of non-contiguous or random locations 1 a target
memory.

Example 11

The apparatus according to Example 1, further compris-
ing a compilation optimization module to optimize compi-
lation of the source code, wherein to optimize compilation
of the source code, the compilation optimization module 1s
to determine that the loop or function comprises mutually
dependent store instructions.

Example 12

The apparatus according to Example 11, wherein the
compilation optimization module 1s further to compile the
source code comprising the loop or function into a compiled
code for a target computer.

Example 13

The apparatus according to Example 11, further compris-
ing a cost analysis module to compare execution of a scalar
version of the loop or function and a vector version of the
loop or function, wherein to compare execution of a scalar
version of the loop or function and a vector version of the
loop or function the cost analysis module 1s to compare 1) an
execution time of a vector transposition of the mutually
dependent store instructions plus an execution time for a
scatter instruction associated with the vector transposition of
the mutually dependent store instructions to 11) a serialized
scalar execution of the set of mutually dependent store
instructions.

Example 14

The apparatus according to Example 12, wherein the
target computer supports vector processing.

Example 15

The apparatus according to Example 14, wheremn the
target computer comprises at least one vector register.

Example 16

The apparatus according to Example 14, wherein target
computer supports single instruction, multiple data (SIMD)
instructions.

Example 17

The apparatus according to Example 1, wherein the set of
mutually dependent store 1nstructions comprises write-aiter-
write store istructions.

Example 18

A computer implemented method, comprising: determin-
ing a scalar store order for a set of mutually dependent store
instructions in a loop or function in a source code; and
determining a vectorized store order for the scalar store
order.

Example 19

The method according to Example 18, wherein determin-
ing the vectorized store order for the scalar store order
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comprises determining the vectorized store order for the
scalar store order based on a number of vector elements 1n
a vector register coupled to a target computer processor.

Example 20

The method according to Example 19, wherein determin-
ing the vectorized store order for the scalar store order based
on the number of vector elements 1 the vector register
coupled to the target computer processor further comprises
excluding a no-operation store instruction from the vector-
1zed store order.

Example 21

The method according to Example 20, wherein excluding,
the no-operation store instruction from the vectorized store
order comprises excluding the no-operation store 1mstruction
from the vectorized store order when such no-operation
store 1nstruction occurs because of a difference in size
between a scalar matrix comprising the number of sequential
scalar instruction iterations and the number of sequential
store 1nstructions 1n each iteration in the number of sequen-
tial scalar instruction iterations and a vector matrix com-
prising the number of vector elements executed by a SIMD
istruction using the vector register.

Example 22

The method according to Example 19, wherein determin-
ing the vectorized store order for the scalar store order
comprises determining the vectorized store order according
to a number of sequential scalar instruction iterations and a
number of sequential store instructions in each iteration in
the number of sequential scalar instruction iterations.

Example 23

The method according to Example 21, wherein a scalar
matrix comprising the number of sequential scalar nstruc-
tion 1terations and the number of sequential store mnstruc-
tions 1n each iteration in the number of sequential scalar
instruction iterations is less than a vector matrix comprising
the number of elements executed by a SIMD instruction
using the vector register.

Example 24

The method according to Example 18, wherein determin-
ing the vectorized store order for the scalar store order
further comprises transposing each store instruction in the
set of mutually dependent store instructions 1into an element
in a set of elements executed by a single istruction, multiple
data (SIMD) instruction using a vector register coupled to a
target computer processor.

Example 25

The method according to Example 24, wherein transpos-
ing e¢ach store mstruction in the set of mutually dependent
store 1nstructions into the element 1n the set of elements
turther comprises filling each element in the set of elements
with each store mstruction in the set of mutually dependent
store instructions.

Example 26

The method according to Example 25, wherein filling
cach element 1n the set of elements executed by the SIMD
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instruction with each store mstruction in the set of mutually
dependent store instructions further comprises excluding a
no-operation store nstruction.

Example 27

The method according to Example 18, further comprising,
determining a scatter mnstruction to store a result of the
vectorized store order to a set of non-contiguous or random
locations 1n a target memory.

Example 28

The method according to Example 18, further comprising
determining that the loop or function comprises mutually
dependent store instructions.

Example 29

The method according to Example 28, further comprising
compiling the source code comprising the loop or function
into a compiled code for a target computer.

Example 30

The method according to Example 28, further comprising
comparing 1) an execution time ol a vector transposition of
the mutually dependent store 1nstructions plus an execution
time for a scatter instruction associated with the vector
transposition of the mutually dependent store instructions to
11) a serialized scalar execution of the set of mutually
dependent store instructions.

Example 31

The method according to Example 29, wherein the target
computer supports vector processing.

Example 32

The method according to Example 31, wherein the target
computer comprises at least one vector register.

Example 33

The method according to Example 31, wherein target
computer supports single instruction, multiple data (SIMD)
instructions.

Example 34

The method according to Example 18, wherein the set of
mutually dependent store 1nstructions comprises write-aiter-
write store istructions.

Example 35

An apparatus for computing, comprising: means to deter-
mine a scalar store order for a set of mutually dependent
store instructions 1n a loop or function 1n a source code; and
means to determine a vectorized store order for the scalar
store order.

Example 36

The apparatus according to |

Hxample 35, wherein means

to determine the scalar store order for the set of mutually
dependent store instructions comprises means to determine
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the vectorized store order for the scalar store order based on
a number of vector elements in a vector register coupled to
a target computer processor.

Example 37

The apparatus according to Example 36, wherein means
to determine the vectorized store order for the scalar store
order based on the number of vector elements 1n the vector
register coupled to the target computer processor further
comprises means to exclude a no-operation store instruction
from the vectorized store order.

Example 38

The apparatus according to Example 37, wherein means
to exclude the no-operation store instruction from the vec-
torized store order comprises means to exclude the no-
operation store instruction from the vectorized store order
when such no-operation store instruction occurs because of
a difference 1n size between a scalar matrix comprising the
number of sequential scalar istruction iterations and the
number of sequential store instructions 1n each iteration in
the number of sequential scalar instruction 1iterations and a
vector matrix comprising the number of vector elements
executed by a SIMD instruction using the vector register.

Example 39

The apparatus according to Example 36, wherein means
to determine the vectorized store order for the scalar store
order comprises means to determine the vectorized store
order according to a number of sequential scalar instruction
iterations and a number of sequential store instructions 1in
cach iteration 1n the number of sequential scalar instruction
iterations.

Example 40

The apparatus according to Example 38, wherein a scalar
matrix comprising the number of sequential scalar mnstruc-
tion 1terations and the number of sequential store mnstruc-
tions in each iteration i the number of sequential scalar
instruction iterations 1s less than a vector matrix comprising
the number of elements executed by a SIMD instruction
using the vector register.

Example 41

The apparatus according to Example 35, wherein means
to determine the vectorized store order for the scalar store
order further comprises means to transpose each store
instruction 1n the set of mutually dependent store instruc-
tions 1nto an element 1n a set of elements executed by a
single instruction, multiple data (SIMD) instruction using a

vector register coupled to a target computer processor.

Example 42

The apparatus according to Example 41, wherein means
to transpose each store instruction in the set of mutually
dependent store instructions 1nto the element in the set of
clements further comprises means to {ill each element 1n the
set of elements with each store instruction in the set of
mutually dependent store instructions.

Example 43

The apparatus according to Example 42, wherein means
to fill each element 1n the set of elements executed by the
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SIMD 1nstruction with each store instruction in the set of
mutually dependent store instructions further comprises
means to exclude a no-operation store instruction.

Example 44

The apparatus according to Example 35, further compris-
ing means to determine a scatter instruction to store a result
of the vectorized store order to a set ol non-contiguous or
random locations 1n a target memory.

Example 45

The apparatus according to Example 33, further compris-
ing means to determine that the loop or function comprises
mutually dependent store instructions.

Example 46

The apparatus according to Example 45, further compris-
ing means to compile the source code comprising the loop
or function into a compiled code for a target computer.

Example 47

The apparatus according to Example 45, further compris-
ing means to compare 1) an execution time of a vector
transposition of the mutually dependent store instructions
plus an execution time for a scatter mstruction associated
with the vector transposition of the mutually dependent store
instructions to 11) a serialized scalar execution of the set of
mutually dependent store instructions.

Example 48

The apparatus to Example 46, wherein the target com-
puter supports vector processing.

Example 49

The apparatus according to Example 48, wherein the
target computer comprises at least one vector register.

Example 50

The method according to Example 48, wherein target
computer supports single instruction, multiple data (SIMD)
instructions.

Example 51

The apparatus according to Example 335, wherein the set
of mutually dependent store instructions comprises write-
alter-write store instructions.

Example 52

One or more computer-readable media comprising
instructions that cause a computer device, 1n response to
execution of the mnstructions by a processor of the computer
device, to: by the computer device, determine a scalar store
order for a set of mutually dependent store instructions 1n a
loop or function 1n a source code; and by the computer
device, determine a vectorized store order for the scalar store
order.

Example 53

The computer-readable media according to Example 52,
wherein determine the vectorized store order tor the scalar
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store order comprises determine the vectorized store order
for the scalar store order based on a number of vector

clements 1n a vector register coupled to a target computer
Processor.

Example 54

The computer-readable media according to Example 53,
wherein determine the vectorized store order for the scalar
store order based on the number of vector elements in the
vector register coupled to the target computer processor
further comprises exclude a no-operation store instruction
from the vectorized store order.

Example 55

The computer-readable media according to Example 54,
wherein exclude the no-operation store instruction from the
vectorized store order comprises exclude the no-operation
store 1struction from the vectorized store order when such
no-operation store instruction occurs because of a difference
in size between a scalar matrix comprising the number of
sequential scalar instruction iterations and the number of
sequential store instructions 1n each iteration in the number
of sequential scalar instruction iterations and a vector matrix
comprising the number of vector elements executed by a
SIMD instruction using the vector register.

Example 56

The computer-readable media according to Example 53,
wherein determine the vectorized store order for the scalar
store order comprises determine the vectorized store order
according to a number of sequential scalar instruction itera-
tions and a number of sequential store instructions in each

iteration in the number of sequential scalar instruction
iterations.

Example 57

The computer-readable media according to Example 53,
wherein a scalar matrix comprising the number of sequential
scalar instruction iterations and the number of sequential
store 1nstructions 1n each iteration in the number of sequen-
tial scalar instruction iterations 1s less than a vector matrix
comprising the number of elements executed by a SIMD
instruction using the vector register.

Example 38

The computer-readable media according to Example 52,
wherein determine the vectorized store order for the scalar
store order further comprises transpose each store instruc-
tion 1n the set of mutually dependent store instructions into
an clement 1 a set of elements executed by a single
instruction, multiple data (SIMD) instruction using a vector
register coupled to a target computer processor.

Example 59

The computer-readable media according to Example 58,
wherein transpose each store instruction in the set of mutu-
ally dependent store instructions into the element in the set
of elements further comprises {ill each element 1n the set of
clements with each store instruction 1n the set of mutually
dependent store 1nstructions.
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Example 60

The computer-readable media according to Example 59,
wherein {11l each element 1n the set of elements executed by
the SIMD instruction with each store 1nstruction in the set of
mutually dependent store instructions further comprises
exclude a no-operation store instruction.

Example 61

The computer-readable media according to Example 52,
turther comprising determine a scatter istruction to store a
result of the vectorized store order to a set of non-contiguous
or random locations 1n a target memory.

Example 62

The computer-readable media according to Example 52,
turther comprising determine that the loop or function
comprises mutually dependent store instructions.

Example 63

The computer-readable media according to Example 62,
turther comprising to compile the source code comprising
the loop or function into a compiled code for a target
computer.

Example 64

The computer-readable media according to Example 62,
turther comprising compare 1) an execution time of a vector
transposition of the mutually dependent store instructions
plus an execution time for a scatter mstruction associated
with the vector transposition of the mutually dependent store
istructions to 11) a serialized scalar execution of the set of
mutually dependent store instructions.

Example 65

The computer-readable media according to Example 63,
wherein the target computer supports vector processing.

Example 66

The computer-readable media according to Example 65,
wherein the target computer comprises at least one vector

register.

Example 67

The computer-readable media according to Example 65,

wherein target computer supports single instruction, mul-
tiple data (SIMD) instructions.

Example 68

The computer-readable media according to Example 52,
wherein the set of mutually dependent store instructions
comprises write-after-write store instructions.

What 1s claimed 1s:

1. An apparatus for computing, comprising;

a computer processor and a memory;

a compilation optimization module disposed in the
memory, and operated by the computer processor, to
optimize compilation of a set of source code 1nto a set
of executable code for a target execution environment,
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wherein to optimize compilation of the source code, the
compilation optimization module 1s to determine that a
loop or function 1n the source code comprises a set of
mutually dependent store instructions;

a vectorization module disposed in the memory, and
operated by the computer processor, to vectorize the set
of mutually dependent store instructions in the loop,
wherein to vectorize the set of mutually dependent
store instructions, the vectorization module 1s to deter-
mine a scalar store order matrix for the set of mutually
dependent store 1nstructions, transpose the scalar store
order matrix mnto an initial vector element matrix
preserving the scalar store order and based at least 1n
part on a bit length of a vector register in the target
execution environment, eliminate no-operation vector
clements 1n the 1nitial vector element matrix to generate
a final vector element matrix, and determine at least one
scatter 1nstruction to store vector elements 1n the final
vector element matrix to a set ol non-contiguous or
random locations 1n a target memory of the target
execution environment; and

a cost analysis module disposed in the memory, and
operated by the computer processor, to compare execu-
tion of a scalar version of the loop or function and a
vector version of the loop or function, wherein to
compare execution of a scalar version of the loop or
function and a vector version of the loop or function the
cost analysis module 1s to compare 1) an execution time
of the transposition of the scalar store order matrix into
the 1mitial vector element matrix plus an execution time
for the at least one scatter istruction to 11) a serialized
scalar execution of the set of mutually dependent store
instructions.

2. The apparatus according to claim 1, wherein the target
execution environment supports vector processing, coms-
prises at least the vector register, and supports single mnstruc-
tion, multiple data (SIMD) instructions.

3. A computer implemented method, comprising:

determining that a loop or function 1n a set of source code
comprises mutually dependent store instructions, the
set of source code being compiled into a set of execut-
able code for a target execution environment;

determining a scalar store order for a set of mutually
dependent store instructions in the loop or function;

determining a vectorized store order for the scalar store
order and at least one scatter istruction to store a result
of the vectorized store order to a set of non-contiguous
or random locations 1n a target memory of the target
execution environment;

wherein determining a vectorized store order for the
scalar store order comprises determining a scalar store
order matrix for the set of mutually dependent store
istructions, transposing the scalar store order matrix
into an 1nitial vector element matrix preserving the
scalar store order and based at least 1n part on a bt
length of a vector register in the target execution
environment, and eliminating no-operation vector ele-
ments 1n the 1nitial vector element matrix to generate a
final vector element matrix;

wherein determiming at least one scatter instruction to
store the result of the vectorized store order comprises
determining at least one scatter instruction to store
vector elements of the final vector element matrix to the
set of non-contiguous or random locations 1n the target
memory of the target execution environment; and

comparing 1) an execution time of the transposing of the
scalar store order matrix into the mnitial vector element
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matrix plus an execution time for the at least one scatter
instruction to 11) a serialized scalar execution of the set
of mutually dependent store instructions.

4. The method according to claim 3, wherein the target
computing environment supports vector processing, com-
prises at least the vector register, and supports single mnstruc-
tion, multiple data (SIMD) instructions.

5. One or more non-transitory computer-readable media
comprising instructions that cause a computer device, 1n

response to execution of the mstructions by a processor of 10

the computer device, to:

by the computer device, determine that a loop or function
in a set of source code comprises mutually dependent
store instructions, the set of source code being com-
piled mto a set of executable code for a target execution
environment;

by the computer device, determine a scalar store order for
a set of mutually dependent store instructions 1n a loop
or function;

by the computer device, determine a vectorized store
order for the scalar store order and at least one scatter
instruction to store a result of the vectorized store order
to a set of non-contiguous or random locations in a
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target memory, wherein determine a vectorized store
order for the scalar store order comprises determine a
scalar store order matrix for the set of mutually depen-
dent store instructions, transpose the scalar store order
matrix into an initial vector element matrix preserving
the scalar store order and based at least 1n part on a bit
length of a vector register 1mn the target execution
environment, and eliminate no-operation vector ele-
ments 1n the initial vector element matrix to generate a
final vector element matrix; wherein determine at least
one scatter instruction to store the result of the vector-
1zed store order comprises determine at least one scatter

istruction to store vector elements of the final vector
clement matrix to the set of non-contiguous or random
locations 1n the target memory of the target execution
environment; and

compare 1) an execution time of the transposition of the
scalar store order matrix into the initial vector element
matrix plus an execution time for the at least one scatter
instruction to 11) a serialized scalar execution of the set
of mutually dependent store instructions.
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