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SEQUENCE OPTIMIZATIONS IN A
HIGH-PERFORMANCE COMPUTING
ENVIRONMENT

GOVERNMENT LICENSE RIGHTS

This 1nvention was made with government support under
H98230-13-D-0124 awarded by Department of Energy. The
government has certain rights in the invention.

TECHNICAL FIELD

Embodiments described herein include techniques to per-
form sequence optimizations for configurable spatial accel-
erators 1n a high-performance computing environment.

BACKGROUND

Exascale systems are projected to integrate on the order of
100,000 processor nodes to achieve enormous processing
goals, as defined by the Department of Energy, of 1
ExaFL.OPs within an aggressive power budget (20 MW).
However, simultaneously improving the performance and
energy eiliciency of program execution with classical von
Neumann architectures has become diflicult and incur high
energy cost. To achieve performance and energy require-
ments simultaneously, a new kind of architecture is required
which targets high performance computing (HPC).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates an example of a computing device.

FIG. 2A illustrates an example of a logic tlow.

FIG. 2B illustrates an example of a processing flow to
convert a code segment.

FIG. 3A illustrates an example of a second logic flow.

FIG. 3B illustrates an example of a processing flow
diagram of a conversion from a dataflow graph to a reverse
single static assignment (SSA) graph.

FIG. 3C/D 1illustrate examples of code smippets.

FI1G. 4 1llustrates an example of a logic flow diagram.

FI1G. 5 illustrates an example embodiment of a computing
architecture.

DETAILED DESCRIPTION

Embodiments may be directed to processing data in an
HPC environment utilizing a Configurable Spatial Accelera-
tor (CSA) architecture. The CSA executes hybrid datatlow
graphs and dataflow graph instructions. Moreover, the CSA
architecture enables a computationally dense yet energy-
ellicient spatial architecture to solve complex problems 1n
accordance with stringent resource requirements, such as
those defined by the Department of Energy’s Exascale
performance guidelines.

For complex operations that are common in the HPC
code, the CSA captures them directly 1in the instruction set
architecture (ISA). One important style of datatlow operator
1s the sequencer, which 1s intended to implement the control
of for-style loops in an efhicient manner. However, the
sequencer implemented using primitive operators introduces
a feedback path between the condition and post-condition
update portions ol the loop since these terms are often
dependent (1.e. 1<N 1s oiten followed by 1++ or similar). This
serious bottleneck in performance of the primitive imple-
mentation can be resolved by introducing the compound
sequencer operation, which 1s able to perform the condition
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and update of many common for-loop patterns 1n a single
operation. Examples of such compound instructions are,
sequence, sequence reduction (which need to be correlated
to the sequence struction 1t depends on), repeat (a data
flow 1diosyncrasy generated 1n the data flow conversion pass
for loop mnvariant variable), sequence stride (driven by a
sequence instruction), nestrepeat (driven by two sequence
instruction), filter, replace, replicate, etc. Embodiments dis-
cussed herein are focused on efliciently generating those
compound data flow instructions

Reference 1s now made to the drawings, wherein like
reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth to pro-
vide a thorough understanding thereof. It may be evident,
however, that the novel embodiments can be practiced
without these specific details. In other instances, well-known
structures and devices are shown in block diagram form 1n
order to facilitate a description thereof. The intention 1s to
cover all modifications, equivalents, and alternatives con-
sistent with the claimed subject matter.

FIG. 1 1llustrates an example embodiment of a computing,
device 100 1n which aspects of the present disclosure may be
employed to process data in a high-performance computing
environment. In embodiments, the computing device 100
includes a configurable spatial accelerator (CSA) 126 having
an accelerator architecture design to execute hybrid datatlow
graphs and dataflow graph instructions. An accelerator
architecture enables a computationally dense yet energy-
cllicient spatial architecture to solve complex problems 1n
accordance with stringent resource requirements, such as
those defined by the Department of Energy’s Exascale
performance guidelines.

In embodiments, the computing device 100 may include
a number ol components icluding the CSA 126 having an
array ol processing elements (PEs) 128 coupled by an
interconnect, e.g., back-pressured network or fabric. The
PEs 128 are heterogeneous and may be customized to
perform highly eflicient operations. For example, each of the
PEs 128 may perform a specific function, such as integer
arithmetic, floating point arithmetic, communication, 1in-
fabric storage, and so forth.

The computing device 100 including the PEs 128 may
process dataflow graphs and datatlow graph instructions,
which are parallel program descriptions arising in the com-
pilation of sequential codes. These graphs are directly con-
figured on to the PEs 128, rather than being transformed into
sequential instruction streams. The derivation of graphs
from traditional sequential compilation flows allows the
computing device 100 to support familiar programming
models, e.g., C, C++, Fortran, etc., and to directly execute
existing high-performance computing nstructions.

In embodiments, the computing device 100 may include
cache memory 124 that may be utilized by the PEs 128 to
process the dataflow graphs and instructions. In some
embodiments, the cache memory 124 may be coupled with
the PEs 128 via an Accelerator Cache Interconnect (ACI)
that includes a network connecting request address file

RAF) circuitry to the cache memory 124. In embodiments,
the CSA 126 may also include an in-fabric memory (not
shown), such as a bufler PE (a small storage element) and
memory element (a larger storage element). In embodi-
ments, the buller element may provide a small amount of
memory to improve performance in the presence of variable-
latency subgraphs. Each bufler element will provide several
buflers which can either be used individually or grouped to
form a larger structure. The memory element is typically a
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larger memory, such as an SRAM-based structure can be
tied our coupled with the cache memory 124 using a
mezzanine network. The memory element may be used to
storage capacity 1n service of the runtime system within the
tabric, for example, to cache dataflow graph configurations.
Embodiments are not limited in this manner.

In embodiments, the computing device 100 may include
one or more components to perform compilation and opti-
mization operations to compile the source code, such as C,
C++, Fortran, etc. into compiled datatlow graphs that may be
overlaid onto the fabric and PEs 128 for execution. For
example, the computing device 100 may include processing
circuitry 104 that may be used to perform one or more
operations discussed herein, e.g., compile source code, per-
form optimizations, overlay (assign) datatlow graphs, and so
forth. The processing circuitry 104 may be any type of
processing circuitry include a processing core or processing
unit, a central processing unit, a controller, and so forth. In
some embodiments, the processing circuitry 104 may be
located on the same die as the other components of the
computing device 100. However, in other embodiments, the
processing circuitry 104 may be located on a different die,
but on the same board as the components of the computing,
device 100. In even different embodiments, the processing
circuitry 104 may be part of a different computing device
and communicate with the components of the computing
device 100 via interface 140. Embodiments are not limited
in this manner.

In embodiments, the computing device 100 includes
memory 114 and storage 132. The memory 114 may be one

or more ol volatile memory including random access
memory (RAM) dynamic RAM (DRAM), static RAM
(SRAM), double data rate synchronous dynamic RAM
(DDR SDRAM), SDRAM, DDR1 SDRAM, DDR2
SDRAM, SSD3 SDRAM, single data rate SDRAM (SDR
SDRAM), DDR3, DDR4, and so forth. Embodiments are
not limited 1n this manner, and other memory types may be
contemplated and be consistent with embodiments discussed
herein. In embodiments, the memory 114 may store, in some
instances on a temporary basis, information and data includ-
ing instructions used by the processing circuitry 104 to
process.

The storage 132 may be any type of storage as discussed
herein, such as a non-volatile storage. The storage 132 may
store a compiler 134, one or more instructions 136, and
source code 138. The compiler 134 includes a program or set
of programs to translate source text/code 138 into code/text
including datatlow graph instructions and graphs that may
be mapped to the PEs 128. In some instances, the compi-
lation of source code 138 with the compiler 134 can be done
in multiple phases and passes to transtorm hi-level program-
ming language code 1nto, assembly language code, datatlow
graphs, and perform sequence optimizations.

In embodiments, the compiler 134 compiles high-level
languages such as C, C++, and Fortran into a combination of
host code LLVM mtermediate representation (IR) for spe-
cific regions to be accelerated. Moreover, compiler 134 may
utilize the LLVM IR as input, perform optimizations and
compiles the IR mto a CSA assembly code. The compiler
134 converts the control-flow instructions into datatlow
graph 1nstructions or instructions for the CSA 126.

More specifically, compiler 134 may convert a function
represented in control tlow form, 1.e., a control-flow graph
(CFG) with sequential machine instructions operating on
virtual registers, into a datatflow function that 1s conceptually
a graph of datatlow operations (instructions) connected by
latency-insensitive channels (LICs). In the third step, the
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4

compiler 134 generates instructions i a CSA assembly
format, e.g., datatlow graph instructions. The compiler 134

may place and route the dataflow instructions on the actual
CSA 126.

In some 1nstances, the compiler 134 may perform one or
more optimizations, such as a sequence optimization. For
example, the compiler 134 may perform optimization opera-
tions for functions, such as loops because values such as a
loop mduction variable are flowing in pick/add/compare/
switch cycles around the loop that can potentially be opti-
mized using sequence units or compound instructions. The
compound 1nstruction are instructions capable of producing
new sequence values at a rate of 1 per cycle, e.g., can update
values of a for-loop 1nstruction set 1n a single operation. The
compiler 134 may run an optimization pass aiter the data-
flow conversation to replace certain pick/switch instruction
sets (cycles) with the compound 1nstructions in assembly.

In embodiments, the compiler 134 may search for these
pick/switch 1nstruction sets, as will be discussed 1n more
detail, and replace certain pick/switch instruction sets with
a compound 1nstruction, such as a sequence instruction, a
sequence reduction instruction, a repeat instruction, a
sequence stride instruction, a nestrepeat nstruction, a filter
instruction, a replace instruction, a replicate instruction, and
so forth. In one example, a sequence instruction takes as
iput a triple of base, bound, and stride, and produces a
stream of values roughly equivalent to a for loop using those
inputs. For example, if base 1s 10, bound 1s 135, and stride 1s
2, then sequence mstruction (seqlts32) produces a stream of
three output values, 10, 12, 14. The sequence 1nstruction also
produces a control stream of 1, 1, 1, 0, which can be used to
control other types of mstructions 1n the sequence family. In
another example, a sequence stride or stride mstruction takes
as mput a base, stride, and iput control (ctl), and generates
a corresponding linear sequence to match ctl. For example,
for a stride32 instruction, if base 1s 10, stride 1s 1, and ctl 1s
1, 1, 1, O, then the output 1s 10, 11, 12. A stride instruction
can be thought as a dependent sequence instruction which
relies on a control stream of a sequence instruction when to
step instead of doing a comparison bound. In another
example, the reduction struction takes as inputs an nitial
value 1nit, a value stream 1n, and control stream ctl, and
outputs the sum of the imitial value and value stream. For
example, a redadd32 instruction with 1mt of 10, as of 3, 4,
2,and ctl of 1, 1, 1, O produces an output of 19. In another
example, the repeat mstruction takes as input value accord-
ing to an iput control stream. For example, a repeat32
instruction with input values 432 and control stream 1, 1, 1,
0 will output three instances of 42. In a final example, the
onend 1nstruction conceptually matches up mput values on
an 1nput stream 1n to signals on a control stream ctl,
returning a signal when all matches are done. For example,
an onend instruction with ctl input 1, 1, 1, 0, will match any
three 1inputs on a value stream 1n, and output a done signal
when 1t reaches 0 1n ctl. Embodiments are not limited to
these examples.

In one specific example for a loop instruction, all the
iteration constructs in the loop are detected, and a compound
instruction 1s generated for each of them. As a result, each
sequence runs independently of other sequences. For
example, 1n a memory copy loop: for (1=0; 1<n; 1++)
a[1]=b[1], three sequences are generated. The compiler 134
generates a first compound instruction for the induction
variable 1. The compiler also generates a second compound
instruction for load address of array b, and a third compound
instruction for store address of array a.
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The compiler 134 may run the optimization operations
aiter the compiler 134 converts the control flow to datatlow
to search for sequence candidates, e.g., pick/switch pairs, to
replace with compound instructions. In one example, the
compiler 134 may search for pick/switch pairs that corre-
spond to values that increase/decrease per loop iteration,
¢.g., an indication variable, and convert the value to a
sequence 1nstruction. The compiler 134 may also search for
remaining compatible candidates, e.g., pick/switch pairs,
and 1nto compound instructions, such as dependent stride,
repeat, or reduction instructions.

In embodiments, the compiler 134 may perform the
optimization operations to replace the sequence candidates
with the compound instructions by processing dataflow
graph 1nstructions. More specifically, the compiler 134 may
determine dataflow graph instructions including one or more
pick/switch 1nstruction sets to convert to one or more
compound instructions. For example, the compiler 134 may
convert the control flow graph istructions to the datatlow
graph istructions and determine to perform on the optimi-
zation operations on the dataflow graph instructions.

As previously mentioned, the compiler 134 may utilize
pick/switch struction pairs to replace loop instructions
when converting from control tlow graph istructions to the
dataflow graph instructions. The compiler 134 may then
search the datatlow graph instructions for the pick/switch
instruction pairs to find candidates to replace with com-
pound 1instructions. The datatlow graph instructions may be
in single static assignment (SSA) form, which 1s a property
of the intermediate representation (IR), e.g., IR requires that
cach variable 1s assigned exactly once, and every vanable 1s
defined before it 1s used. In SSA form, use-def chains are
explicit and each contains a single element. Existing vari-
ables 1n the original IR are split into versions, new variables
typically indicated by the original name with a subscript, so
that every definition gets 1ts own version. To search for the
candidates, the compiler 134 generates a reverse SSA graph
based on the datatflow graph instructions by reversing the
edges of the datatlow control graph.

The compiler 134 may generate a reverse SSA graph
including strongly connected components (SCCs) by revers-
ing direction (flow) of the edges of the datatlow graph,
which 1s 1n SSA form. In embodiments, the iteration con-
structs 1n the loop can be 1llustrated as SCCs 1n the reverse
SSA. In embodiments, an SCC may be where every node 1s
reachable from every other node 1n the reverse SSA graph by
via edges. Moreover, each of the SCCs 1n the reverse SSA
may be associated with a pick/switch instruction pair. The
compiler 134 may traverse the reverse SSA graph depth-first
to search for SCCs associated with pick/switch 1nstruction
pairs using a depth-first algorithm, e.g., Tarjan’s depth-first
search algorithm that 1s used to find the SSCs of a reverse
SSA 1n linear time. Other algorithms may be utilized, such
as Kosaraju’s algorithm and the path-based strong compo-
nent algorithm. Embodiments are not limited 1n this manner.
The reversed SSA graph enables the fast linear depth-first
algorithm to search quickly in linear time through the code
to first 1dentify a pick/switch instructions pair (SCC_O)
associated with an induction variable and then instructions
(SCC_1) having dependencies on the induction variable. A
graph can have lots of tangled SCCs. Moreover, embodi-
ments discussed enable the compiler to identify the candi-
date of sequence instruction by 1dentitying SCC in graph 1n
an order according to our specific criteria 1n linear time, e.g.,
induction variable first.

Moreover, the 1dea 1s to find the SCC_0 for loop induction
variable first, generate sequence compound instruction I_0
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for 1t. Then come the SCC_1 that had data dependence on the
induction variable’s SCC. When generating the sequence
compound instruction for SCC_1, the system requires the
output of I_0, hence the order 1s critical.

The compiler 134 may determine an SCC associated with
a pick/switch 1instruction pair in the reverse SSA, and
determine whether the SCC and pick/switch instruction pair
includes configuration values. If the pick/switch instruction
pair includes configuration values, the compiler 134 may
replace the pick/switch instruction with a compound nstruc-
tion 1n the datatflow graph instructions. The configuration
values for the pick/switch instruction may be based on
values specified 1n the reverse SSA (datatlow graph 1nstruc-
tions) and associated SCC. In one example, the compiler 134
may determine an SCC associated with a pick/switch
instruction pair for an induction variable includes configu-
ration values, such as an 1nitial value, a boundary value, and
a stride. The compiler 134 may replace the pick/switch
istruction pair associated with the induction variable with
a compound 1nstruction, such as a sequence nstruction. In
embodiments, the compiler 134 may analyze the SCC asso-
ciated with induction variable first based on the depth-first
traversal. The compiler 134 may continue to analyze the
reverse SSA and determine for each SCC whether configu-
ration values are present. If the configuration values are
present, the compiler 134 may replace the pick/switch pair
associated with the SCC with a compound 1nstruction. If the
configuration values are not present, the compiler 134 may
continue to traverse the remainder of the reverse SSA. In one
example, a copy 1nstruction loop may include SCCs asso-
ciated with an address that includes configuration values
including an initial value, and a stride. The compiler 134
may also replace pick/switch instructions associated with the
address with one or more compound instructions.

In some embodiments, the compiler 134 may determine
whether the induction variable and corresponding pick/
switch istruction pair 1s athine or not atline, e.g., has or does
not have a linear relationship between mput and output. In
some embodiments, the compiler 134 may determine the
induction variable 1s afline and generate multiple compound
istructions to replace pick/switch pairs, e.g., three com-
pound instructions may replace pick/switch pairs for a copy
loop 1nstruction block. The compiler 134 may determine that
the induction variable 1s not athine and replace the pick/
switch pairs with a single compound nstruction to drive the
sequence processing, €.g., drives a sequence reduction the
summary and sequence stride for a memory address for a
copy loop 1nstruction. Embodiments are not limited to these
examples.

FIG. 2A illustrates an example of a processing tflow 200
that may be representative of some or all the operations
executed by one or more embodiments described herein. For
example, the processing flow 200 may illustrate operations
performed by and one or more components of computing
device 100, e.g., compiler 134. However, embodiments are
not limited in this manner, and one or more other compo-
nents may perform operations to enable and support the
operations discussed 1n this processing flow 200.

At block 202, the computing device may determine
source code to be compiled and for execution. As previously
mentioned, the source code may be written 1n a high-level
programming language, such as C, C++, FORTRAN, efc.
and compiled, 1n a number of steps, by the compiler into
dataflow graph 1nstructions to be processed on the comput-
ing device. At block 204, the computing device may 1nitiate
compiling of the source code. The compiler may process the
source code and generate an intermediate representation (IR)
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from the high-level source code for specific regions of the
computing device. In some embodiments, the source code
may be converted into the IR form on a different computing
device, and provided to the compiler for the CSA-specific
compilation.

In embodiments, the computing device may generate
control-flow instructions based on the IR at block 206. The
compiler may also convert the control-tlow instructions to
dataflow graph instructions at block 208. For example, the
compiler may take the IR as an input, optimize and compile
the IR into control-flow graph instructions and then convert
the control-tflow graph instructions mto computing device
(CSA) specific assembly instructions, e.g., datatlow graph
instructions. The compiler also adds appropriate builering
and latency-insensitive channels for performance.

At block 210, the computing device including the com-
piler may perform one or more optimizations including a
sequence optimization process on the datatlow graph
istructions. As previously discussed, certain code con-
structs, such as loops, are not optimal as a result of the
control-flow 1nstructions to datatlow graph instructions con-
version because values such as the loop mduction variable
are tlowing in pick/add/compare/switch cycles around the
loop. In the CSA architecture, these kinds of cycles can be
optimized using sequence units or compound instructions.
To utilize compound instructions, the compiler runs an
optimization pass after datatlow conversion to replace cer-
tain pick/switch cycles with compound 1nstructions 1n the
dataflow graph instructions (assembly), as will be discussed
in more detail with respect to FIGS. 3A/3B. The compiler
may perform one or more optimizations and place and route
the datatlow graph instructions on the hardware fabric.

FIG. 2B 1illustrates code snippet examples during a pro-
cessing flow to convert source code to dataflow graph
istructions (prior to optimization), as discussed 1 FIG. 2A.
Note that FIG. 2B illustrates one example based on a for
loop to copy locations; however, embodiments are not
limited 1n this manner and operations discussed herein may
apply to diflerent loop and control-flow situations.

In embodiments, a computing device including a compiler
may convert high-level code, such as source code snippet
252, mto IR and then control-flow graph instructions during
compiler operations. The ability to process and convert the
high-level code facilitates customer adoption because 1t does
not require a customer to rewrite/convert older code and/or
learn different programming languages. The control-tlow
graph 1instruction snippet 254 may be generated by the
compiler based on the loop code 252. The control-tlow
graph 1nstructions may include a number of different types
of control-flow code, e.g., straight-line code, branching
code, and loop code, that may be converted to datatlow
graph instructions. Embodiments are not limited to this
example, and different control-flow code may be generated
for diflerent source code.

The control-flow graph instruction snippet 254 may be
converted to the datatflow graph instruction snippets 256. As
illustrated 1n FIG. 2B, the dataflow graph instructions snip-
pet 256 includes a number of pick/switch pairs based on the
control-flow snippet 254 for the loop instruction. One or
more ol these pick/switch pairs may be replaced with
compound instructions.

FIG. 3A illustrates one exemplary processing flow 300 to
perform optimization operations on the dataflow graph
instructions including converting/replacing one or more
pick/switch pairs. The processing tlow 300 may illustrate
operations performed by one or more components of com-
puting device 100, e.g., compiler 134. However, embodi-
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ments are not limited 1n this manner, and one or more other
components may perform operations to enable and support
the operations discussed 1n this processing tlow 300.

At block 302, a computing device may determine data-
flow graph instructions on which to perform optimizations
operations. The dataflow graph instructions may be gener-
ated from source code and control-flow graph instructions,
as previously discussed above in FIGS. 2A/2B. At block
304, the computing device may determine or generate a
dataflow graph, e.g., convert the datatlow graph instructions
into graph form as illustrated in FI1G. 3B, for example. The
datatlow graph may represent data dependencies between
operations, where the operations are represented by nodes
and the data dependencies are represented by edges con-
necting the nodes. Moreover, the datatflow graph includes
one or more SCCs where each of the nodes 1s reachable by
every other node and may form a partition into subgraphs
that are strongly connected. As illustrated in FIG. 3B, the
dataflow graph 332 includes three SSCs 338-1 through
338-3 corresponding with the load instruction, the induction
variable, and the store instruction, respectively. The datatlow
graph may also be 1n static single assignment (SSA) form
that 1s a property of the IR form requirement each variable
1s assigned exactly once and every variable 1s defined before
it 1s used.

At block 306, the computing device may generate a
reverse SSA graph (reverse dataflow graph) based on the
datatflow graph. For example, the computing device may
reverse direction (flow) of the edges of the datatlow graph
connecting the nodes. In one example, as illustrated in FIG.
3B, the edges of the datatlow graph 332 are reversed to
generate the reverse SSA graph 334. The reverse SSA graph
334 includes nodes connected by edges in a reverse tlow
direction and one or more SCCs. In FIG. 3B, the iteration
constructs 1n the loop can be illustrated as SCCs 336-1
through 336-3 1n the reverse SSA graph 334. Each of the
SCCs 336 1n the reverse SSA graph 334 may be associated
with a pick/switch instruction pair. As illustrated, a first SCC
336-1 1s associated with a pick/switch pair for the load
address instruction, a second SCC 336-2 1s associated with
the pick/switch pair for the induction variable, and a third
SCC 336-3 1s associated with the pick/switch pair for the
store address 1nstruction. Note that embodiments are not
limited to this example, other examples may include more or
less SCCs and pick/switch pairs.

At block 308, the computing device may 1nitiate perform-
ing a traversal of the reverse SSA graph. More specifically,
the compiler may traverse the reverse SSA graph depth-first
to search for SCCs associated with pick/switch instruction
pairs using a depth-first algorithm, e.g., Tarjan’s depth-first
search algorithm.

At block 310, the computing device may determine and/or
locate an SCC of the reverse SSA graph based on the
traversal of using an algorithm. More specifically, the com-
piler may determine an SCC associated with a pick/switch
instruction pair i the reverse SSA graph. As previously
discussed, the compiler first determine the SCC associated
with the induction varnable based on the direction and edges
of the reverse SSA graph when utilizing the depth-first
traversal 1n linear time. Moreover, the reverse direction of
the SSA graph ensures that the SCC associated induction
variable 1s discovered first and SCCs associated with
instructions have dependencies from the induction variable
are discovered subsequent the discovery of the induction
variable SCC. These subsequent SCCs may be discovered
when the logic flow loop repeats at block 316, for example.
Thus, 1if SCC_0 1s associate with the induction variable and
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if SCC_1 (where 1 any integer greater than 0) depends on
SCC_0, SCC_0 will be discovered betore SCC_1 and
SCC_0 can dnive SCC_1. In other words, the output of the
compound instruction of SCC_0O 1s used to generate the
compound instructions for SCC_1.

At block 312, the computing device determines whether
the SCC and associated pick/switch instruction pair includes
configuration values. If the pick/switch 1nstruction pair does
not include configuration values, the computing device
determines whether any SCC remain in the reverse SSA
graph for analysis at block 316. If the pick/switch instruction
pair includes configuration values, the compiler may replace
the pick/switch istruction with a compound instruction in
the dataflow graph instructions at block 314. The configu-
ration values for the pick/switch instruction may be based on
values specified 1n the reverse SSA (dataflow graph 1nstruc-
tions ) and associated SCC. In one example, the compiler 134
may determine an SCC associated with a pick/switch
instruction pair for an mduction variable includes configu-
ration values, such as an 1nitial value, a boundary value, and
a stride. The compiler 134 may replace the pick/switch
instruction pair associated with the induction variable with
one or more compound instructions, such as sequence
instructions.

In embodiments, the compiler may analyze the SCC
associated with induction variable first based on the depth-
first traversal. In some instances, the compiler may deter-
mine whether the induction varniable and corresponding
pick/switch nstruction pair 1s ailine or not athne, ¢.g., has or
does not have a linear relationship between input and output.
If the compiler determines the induction variable 1s afline,
the compiler generates multiple compound 1nstructions to
replace pick/switch pairs, e.g., three compound 1nstructions
may replace pick/switch pairs for a copy loop instruction
block as illustrated 1n code snippet 350 of FIG. 3C. How-
ever, 11 the compiler determines that the induction variable
1s not afline, the compiler replaces the pick/switch pairs with
a single compound 1nstruction to drive the sequence pro-
cessing, e.g., drives a sequence reduction the summary and
sequence stride for a memory address for a copy loop
istruction as illustrated in code snmippet 370 of FIG. 3D.
Embodiments are not limited to these examples.

At block 316 the computing device determines 1f any
SCCs remain for analysis. More specifically, the compiler
continues to traverse the remainder of the reverse SSA
graph. For example and with reference to FIG. 3B, the
compiler may first analyze the SCC 336-2 associated with
the 1induction variable and then the SCCs 336-1 and 336-3
associated with the load and store address instructions. If the
compiler determines that one or more of the address mstruc-
tions include configuration values, such as an initial value
and a stride, the compiler replaces the address instruction’s
pick/switch pairs with compound instructions, e.g.,
sequence 1nstructions to generate a sequence ol addresses.

FIG. 4 1llustrates an example of a logic flow 400 that may
be representative of some or all of the operations executed
by one or more embodiments described herein. For example,
the logic flow 400 may illustrate operations performed by a
system 1ncluding a compiler, as described herein.

At block 405, the logic flow 400 includes determining
dataflow graph istructions having one or more pick/switch
instruction pairs. In embodiments, the pick/switch instruc-
tion pairs may be generated based on a compiler perform a
conversion between control-flow graph instructions and
dataflow graph instructions for branch and loop instruction
sets. For example, the compiler may isert switches at the
end of a loop to direct values out of a loop (erther out of the
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loop exit or around the back-edge to the beginning of the
loop), and 1nsert picks at the beginning of the loop to choose
between 1itial values entering the loop and values coming
through the back edge. Moreover, each variable that con-
ceptually cycles around the loop (1 and sum) may have a
corresponding pick/switch pair that controls the tlow of the
values. However, as previously mentioned, these pick/
switch pair cycles are not optimized and may cause a
bottleneck.

At block 410, the logic flow 400 i1ncludes generating a
reverse static single assignment graph based on the datatlow
graph 1nstructions. In embodiments, the reverse static single

assignment graph may include strongly connected compo-
nents, and each of the strongly connected components 1s
associated with at least one of the one or more pick/switch
instruction pairs. The reverse static single assignment graph
may be generated by reversing a datatlow graph based on the
dataflow graph 1nstructions, for example. The logic flow 400
includes traversing the reverse static single assignment
graph depth-first, and replace pick/switch istructions asso-
ciated with strongly connected components having configu-
ration values with compound 1nstructions at block 415.

FIG. 5 illustrates an embodiment of an exemplary com-
puting architecture 500 suitable for implementing various
embodiments as previously described. In embodiments, the
computing architecture 500 may include or be implemented
as part ol a node, for example.

As used 1n this application, the terms “system” and
“component” are intended to refer to a computer-related
entity, either hardware, a combination of hardware and
soltware, soltware, or software 1n execution, examples of
which are provided by the exemplary computing architec-
ture 500. For example, a component can be, but 1s not
limited to being, a process running on a pProcessor, a pro-
cessor, a hard disk drive, multiple storage drives (of optical
and/or magnetic storage medium), an object, an executable,
a thread of execution, a program, and/or a computer. By way
of 1llustration, both an application running on a server and
the server can be a component. One or more components can
reside within a process and thread of execution, and a
component can be localized on one computer and distributed
between two or more computers. Further, components may
be communicatively coupled to each other by various types
of communications media to coordinate operations. The
coordination may involve the uni-directional or bi-direc-
tional exchange of information. For instance, the compo-
nents may communicate information in the form of signals
communicated over the communications media. The infor-
mation can be implemented as signals allocated to various
signal lines. In such allocations, each message 1s a signal.
Further embodiments, however, may alternatively employ
data messages. Such data messages may be sent across
various connections. Exemplary connections include paral-
lel interfaces, serial interfaces, and bus interfaces.

The computing architecture 500 includes various com-
mon computing elements, such as one or more processors,
multi-core processors, co-processors, memory units, chip-
sets, controllers, peripherals, interfaces, oscillators, timing
devices, video cards, audio cards, multimedia input/output
(I/0) components, power supplies, and so {forth. The
embodiments, however, are not limited to implementation
by the computing architecture 500.

As shown i FIG. 5, the computing architecture 500
includes a processing unit 304, a system memory 306 and a
system bus 508. The processing unit 504 can be any of
various commercially available processors.
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The system bus 508 provides an interface for system
components including, but not limited to, the system
memory 506 to the processing unit 504. The system bus 508
can be any of several types of bus structure that may further
interconnect to a memory bus (with or without a memory
controller), a peripheral bus, and a local bus using any of a
variety of commercially available bus architectures. Inter-
face adapters may connect to the system bus 508 via slot
architecture. Example slot architectures may include without
limitation Accelerated Graphics Port (AGP), Card Bus,
(Extended) Industry Standard Architecture ((E)ISA), Micro
Channel Architecture (MCA), NuBus, Peripheral Compo-
nent Interconnect (Extended) (PCI(X)), PCI Express, Per-
sonal Computer Memory Card International Association
(PCMCIA), and the like.

The computing architecture 500 may include or imple-
ment various articles of manufacture. An article of manu-
facture may include a computer-readable storage medium to
store logic. Examples of a computer-readable storage
medium may include any tangible media capable of storing
clectronic data, including volatile memory or non-volatile
memory, removable or non-removable memory, erasable or
non-erasable memory, writeable or re-writeable memory,
and so forth. Examples of logic may include executable
computer program instructions implemented using any suit-
able type of code, such as source code, compiled code,
interpreted code, executable code, static code, dynamic
code, object-oriented code, visual code, and the like.
Embodiments may also be at least partly implemented as
instructions contained in or on a non-transitory computer-
readable medium, which may be read and executed by one
or more processors to enable performance of the operations
described herein.

The system memory 506 may include various types of
computer-readable storage media 1n the form of one or more
higher speed memory units, such as read-only memory
(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDRAM), synchro-
nous DRAM (SDRAM), static RAM (SRAM), program-
mable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), tlash memory, polymer memory such as ferroelec-
tric polymer memory, ovonic memory, phase change or
ferroelectric memory, silicon-oxide-nitride-oxide-silicon
(SONOS) memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory, solid state drives (SSD) and any other type of
storage media suitable for storing information. In the 1llus-
trated embodiment shown 1n FIG. 5, the system memory 506
can include non-volatile memory 510 and volatile memory
512. A basic mnput/output system (BIOS) can be stored 1n the
non-volatile memory 510.

The computer 502 may include various types of com-
puter-readable storage media 1n the form of one or more
lower speed memory units, including an internal (or exter-
nal) hard disk drive (HDD) 514, a magnetic floppy disk
drive (FDD) 516 to read from or write to a removable
magnetic disk 516, and an optical disk drive 520 to read
from or write to a removable optical disk 522 (e.g., a
CD-ROM or DVD). The HDD 514, FDD 516 and optical
disk drive 520 can be connected to the system bus 508 by an
HDD iterface 524, an FDD interface 526 and an optical
drive interface 526, respectively. The HDD interface 524 for
external drive implementations can include at least one or
both of Unmiversal Serial Bus (USB) and IEEE 1394 interface
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The drnives and associated computer-readable media pro-
vide volatile and nonvolatile storage of data, data structures,
computer-executable 1nstructions, and so forth. For
example, a number of program modules can be stored in the
drives and memory umts 510, 512, including an operating
system 530, one or more application programs 532, other
program modules 3534, and program data 536. In one
embodiment, the one or more application programs 532,
other program modules 534, and program data 536 can
include, for example, the various applications and compo-
nents of the device 100.

A user can enter commands and information into the
computer 302 through one or more wire/wireless input
devices, for example, a keyboard 538 and a pointing device,
such as a mouse 540. Other iput devices may include
microphones, nfra-red (IR) remote controls, radio-ire-
quency (RF) remote controls, game pads, stylus pens, card
readers, dongles, finger print readers, gloves, graphics tab-
lets, joysticks, keyboards, retina readers, touch screens (e.g.,
capacitive, resistive, etc.), trackballs, track pads, sensors,
styluses, and the like. These and other mput devices are
often connected to the processing unit 304 through an 1mnput
device interface 542 that 1s coupled to the system bus 508,
but can be connected by other interfaces such as a parallel
port, IEEE 1394 serial port, a game port, a USB port, an IR
interface, and so forth.

A monitor 544 or other type of display device 1s also
connected to the system bus 508 via an interface, such as a
video adaptor 546. The monitor 544 may be internal or
external to the computer 502. In addition to the monitor 544,
a computer typically includes other peripheral output
devices, such as speakers, printers, and so forth.

The computer 502 may operate 1n a networked environ-
ment using logical connections via wire and wireless com-
munications to one or more remote computers, such as a
remote computer 348. The remote computer 548 can be a
workstation, a server computer, a router, a personal com-
puter, portable computer, microprocessor-based entertain-
ment appliance, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the computer 502, although, for pur-
poses ol brevity, only a memory/storage device 350 1s
illustrated. The logical connections depicted include wire/
wireless connectivity to a local area network (LAN) 552 and
larger networks, for example, a wide area network (WAN)
554. Such LAN and WAN networking environments are
commonplace 1n oflices and companies and facilitate enter-
prise-wide computer networks, such as intranets, all of
which may connect to a global communications network, for
example, the Internet.

When used in a LAN networking environment, the com-
puter 502 1s connected to the LAN 3352 through a wire and/or
wireless communication network interface or adaptor 556.
The adaptor 556 can facilitate wire and/or wireless commu-
nications to the LAN 3552, which may also include a wireless
access point disposed thereon for communicating with the
wireless functionality of the adaptor 556.

When used in a WAN networking environment, the com-
puter 502 can include a modem 558, or 1s connected to a
communications server on the WAN 554, or has other means
for establishing communications over the WAN 554, such as
by way of the Internet. The modem 5358, which can be
internal or external and a wire and/or wireless device,
connects to the system bus 308 via the input device interface
542. In a networked environment, program modules
depicted relative to the computer 502, or portions thereof,
can be stored in the remote memory/storage device 550. It
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will be appreciated that the network connections shown are
exemplary and other means of establishing a communica-
tions link between the computers can be used.

The computer 502 1s operable to communicate with wire
and wireless devices or entities using the IEEE 502 family
of standards, such as wireless devices operatively dlsposed
in wireless communication (e.g., IEEE 502.11 over-the-air
modulation techniques). This includes at least Wi-F1 (or
Wireless Fidelity), WiMax, and Bluetooth™ wireless tech-
nologies, among others. Thus, the communication can be a
predefined structure as with a conventional network or
simply an ad hoc communication between at least two
devices. Wi-F1 networks use radio technologies called IEEE
502.116 (a, b, g, n, etc.) to provide secure, reliable, fast
wireless connectivity. A Wi-F1 network can be used to
connect computers to each other, to the Internet, and to wire
networks (which use IEEE 502.3-related media and func-
tions).

The wvarious elements of the devices as previously

described with reference to FIGS. 1-5 may include various
hardware elements, software elements, or a combination of
both. Examples of hardware elements may include devices,
logic devices, components, processors, miCroprocessors, cir-
cuits, processors, circuit elements (e.g., transistors, resistors,
capacitors, inductors, and so {forth), integrated circuits,
application specific integrated circuits (ASIC), program-
mable logic devices (PLD), digital signal processors (DSP),
field programmable gate array (FPGA), memory units, logic
gates, registers, semiconductor device, chips, microchips,
chip sets, and so forth. Examples of software elements may
include software components, programs, applications, coms-
puter programs, application programs, system programs,
soltware development programs, machine programs, oper-
ating system software, middleware, firmware, soltware
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(API), imnstruction sets, computing code, computer code,
code segments, computer code segments, words, values,
symbols, or any combination thereof. However, determining
whether an embodiment 1s 1mplemented using hardware
clements and/or software elements may vary in accordance
with any number of factors, such as desired computational
rate, power levels, heat tolerances, processing cycle budget,
input data rates, output data rates, memory resources, data
bus speeds and other design or performance constraints, as
desired for a given implementation.

The detailed disclosure now turns to providing examples
that pertain to further embodiments. Examples one through
twenty-five provided below are intended to be exemplary
and non-limiting.

In a first example, an apparatus, device, system, and so
forth may include memory to store instructions, and pro-
cessing circuitry coupled with the memory, the processing
circuitry operable to execute the instructions, that when
executed, enable processing circuitry to determine datatlow
graph 1nstructions including one or more pick/switch
instruction pairs, generate a reverse static single assignment
graph based on the datatlow graph instructions, the reverse
static single assignment graph including strongly connected
components, each of the strongly connected components
associated with at least one of the one or more pick/switch
istruction pairs, and traverse the reverse static single
assignment graph depth-first, and replace pick/switch
instructions associated with strongly connected components
having configuration values with compound nstructions.

In a second example and 1n furtherance of the first
example, the apparatus, device, system, and so forth may
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include the processing circuitry to determine a strongly
connected component associated with an induction variable
has configuration values including an 1mitial value, a bound-
ary value, and a stride, and replace pick/switch instructions
associated with the induction variable with one or more
compound 1nstructions.

In a third example and in furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processmg circuitry to determine
whether the induction variable 1s afline or linear, 1n response
to the determination that the induction variable 1s athne,
replace the pick/switch instructions associated with the
induction variable with a plurality of compound 1nstructions,
and 1n response to the determination that the induction
variable 1s linear, replace the pick/switch instructions asso-
ciated with the induction variable with a single compound
instruction to drive stride for one or more other 1nstructions
during execution.

In a fourth example and 1n furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processing circuitry to determine a
strongly connected component associated with an address
has configuration values including an initial value, and a
stride, and replace pick/switch instructions associated with
the address with one or more compound instructions.

In a fifth example and i1n furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processing circuitry to generate a
dataflow graph for the datatlow graph instructions prior to
generation of the reverse static single assignment graph, and
generate the reverse static single assignment graph by
reversing flow direction of edges of the datatlow graph.

In a sixth example and 1n furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processing circuitry to process a
strongly connected component for an induction variable
prior to processing strongly connected components for one
or more address instructions when traversing the reverse
static single assignment graph depth-first.

In a seventh example and in furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processing circuitry to wherein the
dataflow graph instructions are based on one or more loop
instructions 1 a high-level computer programming lan-
guage.

In an eighth example and in furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may 1nclude the processing circuitry to wherein each of
the one or more compound 1nstructions including one of a
sequence 1nstruction, a sequence reduction instruction, a
repeat 1istruction, a sequence stride mstruction, a nestrepeat
instruction, a filter instruction, a replace instruction, and a
replicate instruction.

In a ninth example and in furtherance of any of the
proceeding examples, the apparatus, device, system, and so
forth may include the processing circuitry to wherein the
processing circuitry operable to execute the one or more
instructions during a compilation operation for a configu-
rable spatial accelerator to perform high-performance com-
puting, the configurable spatial accelerator including an
array ol processing elements coupled by a network.

In a tenth example and in furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include determiming,
dataflow graph instructions including one or more pick/
switch instruction pairs, generating a reverse static single
assignment graph based on the datatlow graph instructions,
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the reverse static single assignment graph including strongly
connected components, each of the strongly connected com-
ponents associated with at least one of the one or more
pick/switch 1nstruction pairs, and traversing the reverse
static single assignment graph depth-first, and replace pick/
switch mstructions associated with strongly connected com-
ponents having configuration values with compound nstruc-
tions.

In an eleventh example and 1n furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include determining a
strongly connected component associated with an induction
variable has configuration values including an 1nitial value,
a boundary value, and a stride, and replacing pick/switch
instructions associated with the induction variable with one
or more compound 1nstructions.

In a twelfth example and 1n furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include determining
whether the induction variable 1s athine or linear. In response
to the determination that the induction variable 1s athne,
replacing the pick/switch instructions associated with the
induction variable with a plurality of compound instructions,
and 1n response to the determination that the induction
variable 1s linear, replacing the pick/switch instructions
associated with the induction variable with a single com-
pound instruction to drive stride for one or more other
instructions during execution.

In a thirteenth example and in furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include determining a
strongly connected component associated with an address
has configuration values including an initial value, and a
stride, and replacing pick/switch instructions associated with
the address with one or more compound instructions.

In a fourteenth example and 1n furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include generating a
datatflow graph for the datatlow graph instructions prior to
generation of the reverse static single assignment graph, and
generating the reverse static single assignment graph by
reversing tlow direction of edges of the datatlow graph.

In a fifteenth example and in furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include processing a
strongly connected component for an induction variable
prior to processing strongly connected components for one
or more address instructions when traversing the reverse
static single assignment graph depth-first.

In a sixteenth example and 1n furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include processing
cach of the one or more compound instructions including
one of a sequence 1nstruction, a sequence reduction instruc-
tion, a repeat instruction, a sequence stride instruction, a
nestrepeat instruction, a filter mstruction, a replace instruc-
tion, and a replicate instruction.

In a seventeenth example and 1n furtherance of any of the
proceeding examples, a computer-implemented method to
perform compiler optimizations may include processing the
dataflow graph instructions are based on one or more loop
istructions in a high-level computer programming lan-
guage.

In an eighteenth example and 1n furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurality of instructions, that
when executed, enable processing circuitry to determine
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dataflow graph instructions including one or more pick/
switch 1instruction pairs, generate a reverse static single
assignment graph based on the dataflow graph instructions,
the reverse static single assignment graph including strongly
connected components, each of the strongly connected com-
ponents associated with at least one of the one or more
pick/switch instruction pairs, and traverse the reverse static
single assignment graph depth-first, and replace pick/switch
instructions associated with strongly connected components
having configuration values with compound nstructions.

In a nineteenth example and 1n furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurality of instructions, that
when executed, enable processing circuitry to determine a
strongly connected component associated with an induction
variable has configuration values including an initial value,
a boundary value, and a stride, and replace pick/switch
instructions associated with the induction variable with one
or more compound instructions.

In a twentieth example and 1n furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurahty of instructions, that
when executed, enable processmg circuitry to determine
whether the induction variable 1s afline or linear, 1n response
to the determination that the induction variable 1s athne,
replace the pick/switch instructions associated with the
induction variable with a plurality of compound 1nstructions,
and 1n response to the determination that the induction
variable 1s linear, replace the pick/switch instructions asso-
ciated with the induction variable with a single compound
instruction to drive stride for one or more other nstructions
during execution.

In a twenty-first example and 1n furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurality of instructions, that
when executed, enable processing circuitry to determine a
strongly connected component associated with an address
has configuration values including an initial value, and a
stride, and replace pick/switch instructions associated with
the address with one or more compound 1instructions.

In a twenty-second example and in furtherance of any of
the proceeding examples, a non-transitory computer-read-
able storage medium, including a plurality of instructions,
that when executed, enable processing circuitry to generate
a dataflow graph for the datatlow graph 1nstructions prior to
generation of the reverse static single assignment graph, and
generate the reverse static single assignment graph by
reversing flow direction of edges of the datatlow graph.

In a twenty-third example and 1n furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurality of instructions, that
when executed, enable processing circuitry to process a
strongly connected component for an induction variable
prior to processing strongly connected components for one
or more address instructions when traversing the reverse
static single assignment graph depth-first.

In a twenty-fourth example and in furtherance of any of
the proceeding examples, a non-transitory computer-read-
able storage medium, including a plurahty ol instructions,
that when executed, enable processing circuitry to process
the datatlow graph instructions based on one or more loop
istructions 1 a high-level computer programming lan-
guage.

In a twenty-fifth example and in furtherance of any of the
proceeding examples, a non-transitory computer-readable
storage medium, including a plurality of instructions, that
when executed, enable processing circuitry to process each
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of the one or more compound 1nstructions including one of
a sequence instruction, a sequence reduction instruction, a
repeat mstruction, a sequence stride mstruction, a nestrepeat
instruction, a filter 1nstruction, a replace instruction, and a
replicate instruction.

Some embodiments may be described using the expres-
sion “one embodiment” or “an embodiment” along with
their dertvatives. These terms mean that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included in at least one embodiment. The
appearances of the phrase “in one embodiment™ in various
places 1n the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their dernivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are
in direct physical or electrical contact with each other. The
term “coupled,” however, may also mean that two or more
clements are not in direct contact with each other, but yet
still co-operate or interact with each other.

It 1s emphasized that the Abstract of the Disclosure 1s
provided to allow a reader to quickly ascertain the nature of
the technical disclosure. It 1s submitted with the understand-
ing that 1t will not be used to interpret or limit the scope or
meaning of the claims. In addition, 1n the foregoing Detailed
Description, it can be seen that various features are grouped
together 1n a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure 1s not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly
recited in each claim. Rather, as the following claims retlect,
inventive subject matter lies 1n less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated 1nto the Detailed Description, with each
claim standing on 1ts own as a separate embodiment. In the
appended claims, the terms “including” and “in which™ are
used as the plain-English equivalents of the respective terms
“including” and “wherein,” respectively. Moreover, the
terms ““first,” “second,” “third,” and so forth, are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

What has been described above includes examples of the
disclosed architecture. It 1s, of course, not possible to
describe every concelvable combination of components and/
or methodologies, but one of ordinary skill 1in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture 1s intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.

What 1s claimed 1s:
1. An apparatus, comprising:
memory to store executable computer program instruc-
tions; and
processing circuitry coupled with the memory, the pro-
cessing circuitry operable to execute the instructions,
that when executed, enable processing circuitry to:
determine dataflow graph instructions comprising one
or more pick and switch instruction pairs;
generate a reverse static single assignment graph based
on the datatlow graph instructions, the reverse static
single assignment graph comprising strongly con-
nected components, each of the strongly connected
components associated with at least one of the one or
more pick and switch nstruction pairs; and
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traverse the reverse static single assignment graph
depth-first, and replace pick and switch instructions
associated with strongly connected components hav-
ing configuration values with compound instruc-
tions.
2. The apparatus of claim 1, the processing circuitry to:
determine a strongly connected component associated
with an induction variable has configuration values
comprising an imtial value, a boundary value, and a
stride; and
replace pick and switch 1nstructions associated with the
induction variable with one or more compound 1nstruc-
tions.
3. The apparatus claim 2, the processing circuitry to:
determine whether the induction variable 1s afline or
linear;
in response to the determination that the induction vari-
able 1s athne, replace the pick and switch instructions
associated with the induction variable with a plurality
of compound 1nstructions; and
in response to the determination that the induction vari-
able 1s linear, replace the pick and switch instructions
associated with the induction variable with a single
compound 1nstruction to drive stride for one or more
other instructions during execution.
4. The apparatus of claim 1, the processing circuitry to:
determine a strongly connected component associated
with an address includes configuration values compris-
ing an initial value, and a stride; and
replace pick and switch 1nstructions associated with the
address with one or more compound instructions.
5. The apparatus of claim 1, the processing circuitry to:

generate a dataflow graph for the datatlow graph instruc-
tions prior to generation of the reverse static single
assignment graph; and

generate the reverse static single assignment graph by

reversing flow direction of edges of the datatlow graph.

6. The apparatus of claim 1, the processing circuitry to
process a strongly connected component for an induction
variable prior to processing strongly connected components
for one or more address instructions when traversing the
reverse static single assignment graph depth-first.

7. The apparatus of claim 1, wherein the datatlow graph
instructions are converted from one or more loop nstruc-
tions 1n a high-level computer programming language.

8. The apparatus of claim 1, wherein each of the one or
more compound structions comprising one ol a sequence
istruction, a sequence reduction instruction, a repeat
istruction, a sequence stride instruction, a nestrepeat
instruction, a {ilter instruction, a replace instruction, and a
replicate instruction.

9. The apparatus of claim 1, wherein the processing
circuitry operable to execute the one or more instructions
during a compilation operation for a configurable spatial
accelerator to perform high-performance computing, the
configurable spatial accelerator comprising an array of pro-
cessing elements coupled by a network.

10. A computer-implemented method, comprising:

determining dataflow graph instructions comprising one

or more pick and switch 1nstruction pairs;

generating a reverse static single assignment graph based

on the dataflow graph instructions, the reverse static
single assignment graph comprising strongly connected
components, each of the strongly connected compo-
nents associated with at least one of the one or more
pick and switch instruction pairs; and
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traversing the reverse static single assignment graph
depth-first, and replace pick and switch instructions
associated with strongly connected components having
configuration values with compound instructions.

11. The computer-implemented method of claim 10, com-
prising;:

determining a strongly connected component associated

with an induction variable has configuration values
comprising an imtial value, a boundary value, and a
stride; and

replacing pick and switch instructions associated with the

induction variable with one or more compound 1nstruc-
tions.

12. The computer-implemented method of claim 11, com-
prising:

determining whether the induction variable 1s athine or

linear;

in response to the determination that the induction vari-

able 1s afline, replacing the pick and switch instructions
associated with the induction variable with a plurality
of compound 1nstructions; and

in response to the determination that the induction vari-

able 1s linear, replacing the pick and switch mstructions
associated with the induction variable with a single
compound 1nstruction to drive stride for one or more
other 1nstructions during execution.

13. The computer-implemented method of claim 10, com-
prising:

determining a strongly connected component associated

with an address includes configuration values compris-
ing an initial value, and a stride; and

replacing pick and switch instructions associated with the

address with one or more compound 1instructions.

14. The computer-implemented method of claim 10, com-
prising;:

generating a dataflow graph for the datatflow graph

istructions prior to generation of the reverse static
single assignment graph; and

generating the reverse static single assignment graph by

reversing flow direction of edges of the datatlow graph.

15. The computer-implemented method of claim 10, com-
prising processing a strongly connected component for an
induction variable prior to processing strongly connected
components for one or more address instructions when
traversing the reverse static single assignment graph depth-
first.

16. The computer-implemented method of claim 10,
wherein each of the one or more compound instructions
comprising one of a sequence instruction, a sequence reduc-
tion 1nstruction, a repeat instruction, a sequence stride
istruction, a nestrepeat instruction, a filter instruction, a
replace nstruction, and a replicate instruction.

17. The computer-implemented method of claim 10,
wherein the dataflow graph instructions are converted from
one or more loop nstructions in a high-level computer
programming language.

18. A non-transitory computer-readable storage medium,
comprising a plurality of instructions, that when executed,
enable processing circuitry to:

determine dataflow graph instructions comprising one or

more pick and switch instruction pairs;

generate a reverse static single assignment graph based on

the datatlow graph 1nstructions, the reverse static single
assignment graph comprising strongly connected com-
ponents, each of the strongly connected components
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associated with at least one of the one or more pick and
switch instruction pairs; and

traverse the reverse static single assignment graph depth-

first, and replace pick and switch 1nstructions associ-
ated with strongly connected components having con-
figuration values with compound 1nstructions.

19. The non-transitory computer-readable storage
medium of claim 18, comprising a plurality of instructions,
that when executed, enable processing circuitry to:

determine a strongly connected component associated

with an induction variable has configuration values
comprising an imtial value, a boundary value, and a
stride; and

replace pick and switch 1nstructions associated with the

induction variable with one or more compound 1nstruc-
tions.

20. The non-transitory computer-readable storage
medium of claim 19, comprising a plurality of instructions,
that when executed, enable processing circuitry to:

determine whether the induction variable 1s afline or

linear;

in response to the determination that the induction vari-

able 1s afline, replace the pick and switch instructions
associated with the induction variable with a plurality
of compound nstructions; and

in response to the determination that the induction vari-

able 1s linear, replace the pick and switch instructions
associated with the induction variable with a single
compound 1nstruction to drive stride for one or more
other 1nstructions during execution.

21. The non-transitory computer-readable storage
medium of claim 18, comprising a plurality of instructions,
that when executed, enable processing circuitry to:

determine a strongly connected component associated

with an address has configuration values comprising an
initial value, and a stride; and

replace pick and switch instructions associated with the

address with one or more compound 1nstructions.

22. The non-transitory computer-readable storage
medium of claim 18, comprising a plurality of instructions,
that when executed, enable processing circuitry to:

generate a dataflow graph for the datatlow graph instruc-

tions prior to generation of the reverse static single
assignment graph; and

generate the reverse static single assignment graph by

reversing flow direction of edges of the datatlow graph.

23. The non-transitory computer-readable storage
medium of claim 18, comprising a plurality of instructions,
that when executed, enable processing circuitry to process a
strongly connected component for an induction variable
prior to processing strongly connected components for one
or more address instructions when traversing the reverse
static single assignment graph depth-first.

24. The non-transitory computer-readable storage
medium of claim 18, wherein the datatflow graph instruc-
tions are converted from one or more loop instructions 1n a
high-level computer programming language.

25. The non-transitory computer-readable storage
medium of claim 18, wherein each of the one or more
compound 1nstructions comprising one of a sequence
istruction, a sequence reduction instruction, a repeat
istruction, a sequence stride instruction, a nestrepeat
instruction, a filter instruction, a replace instruction, and a
replicate 1nstruction.
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