US010764273B2

a2y United States Patent (10) Patent No.: US 10,764,273 B2
Mohamad Abdul et al. 45) Date of Patent: Sep. 1, 2020

(54) SESSION SYNCHRONIZATION ACROSS (56) References Cited
MULTIPLE DEVICES IN AN IDENTITY

CLOUD SERVICE U.S. PATENT DOCUMENTS

5,550,971 A 8/1996 Brunner et al.

: _ . . 6,097,382 A 8/2000 Rosen et al.
(71) Applicant: Oracle International Corporation, 6.266.058 Bl 7/2001 Meyer

Redwood Shores, CA (US) 6,353,834 Bl 3/2002 Wong et al.
(Continued)

(72) Inventors: Mohamad Raja Gani Mohamad

Abdul, Fremont, CA (US); Kavita FOREIGN PATENT DOCUMENTS

Tippanna, Fremont, CA (US) CN 101399813 A 4/2009
CN 103780635 A 5/2014
(Continued)

(73) Assignee: Oracle International Corporation,

Redwood shores, CA (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Wikipedia: “Security Assertion Markup Language—Wikipedia”,Aug.
patent 1s extended or adjusted under 35 28, 2016 (Aug. 28, 2016), XP055417859, Retrieved from the

U.S.C. 134(b) by 275 days. Internet: URL:https://en. wlkipedia.org/w/index.php?title=Security
Assertion Markup LLanguage&oldid=736544308 [retrieved on Oct.
(21) Appl. No.: 16/021,253 23, 2017}
(Continued)
(22) Filed: Jun. 28, 2018 Primary Examiner — Evans Desrosiers
(74) Attorney, Agent, or Firm — Potomac Law Group,
(65) Prior Publication Data PLLC
US 2020/0007530 Al Jan. 2, 2020 (57) ABSTRACT
Embodiments provide session synchronization across mul-
(51) Imt. CL tiple user devices 1 a cloud-based identity and access
HO4L 29/06 (2006.01) management (IAM) system by authenticating the user into
HO4L 29/08 (2006.01) an application on a first device; receiving a first request by

a single-sign-on (SSO) service of the IAM system from the

(52) US. CL first device to enroll the first device 1n a circle of trust (CoT)

CPC 2013 .OIH %24?? %‘; %%11?;?)11)’ g (O)ji g;j (I) (2) device group associated with the user, where a second device
(01); (01); 5013 01 of the user 1s already enrolled in CoT; sending a push
(01) notification to the second device to obtain user consent to
(58) Field of Classification Search enroll the first device 1n CoT, where the second device
CPC HO4L 63/0823; HO4L 63/0861; HO4L obtains user consent and sends a consent token to the first
0/3263; HO4L 2209/80; HO4L, 9/3247 device; receiving a second request including the consent
USPC oot 726/7 token from the first device; verifying the consent token;
See application file for complete search history. (Continued)
100
‘h-.,‘_‘- .118
: 04 26 a0 1
/; // i J{.------------:T.-----E';.-.._tI';:' -
™ L l .ﬁx‘x . / \ _4 — {"j____i\
[¢ ™ ; Hi 18 AN i : 4)
{ LTy / ; / [) Reporis / Dashihoants ! ,JJ \
B ey T e A Wl
- ' £ T e PRI PR
L] Szal A VAR Sl CoNAL Lo 390 Servee e Lomesy 1 3
i | Pass SHR Pt ey /7 o Y % i
_ B I e L A T ! i '™ i -, . . R, 1
______ S liﬁ - A o FeniRuon oefie {DAML) v it i
e N S e I B I o rrrat {
Oracte Choud Apns Parner Cloud Apo 2hedd g B AP Token Service {08t} 1921 g |
- " PP ety | SIS i
(s 12 C1a Tl AgestPiatiorndl Dirasiory Bavce (SO if;_ﬁii,r:i,t;.;’,_,.;:
‘ g A PR R et DR ¢
e Ay~ ranining b (S5 4T0H) 136 z
g T 4B pia s S
Ll i et BN YTy Eyent Serviee (REET SSJ
NN T A NI
ﬂ"'-«-i g '.‘%’ E - xe S N L R e 2 E
! Meaens 8 I A :
; a il .!
. eme .- - R e - \ 7 !
AR P . Coustome & \ : /
3 Party Cloue Apps Cusizoner Apns \\\ Oracie Wdentty Cioue Service \ j:

HeY

US 10,764,273 B2

Page 2

(56)

20 Claims, 18 Drawing Sheets

0,578,008
0,631,497
6,631,519
6,978,305
0,990,053
7,002,502
7,111,307
7,116,310
7,203,678
7,337,434
7,395,355
7,428,725
7,430,732
7,464,297
7,487,248
7,546,576
7,546,602
7,577,909
7,577,934
7,610,575
7,650,594
7,653,608
7,707,553
7,730,427
7,735,068
7,757,177
7,757,207
7,779,383
7,827,256
7,849,447
7,861,121
7,917,888
7,926,027
8,032,634
8,160,387
8,209,491
8,219,970
8,304,908
8,417,728
8,452,567
8,404,003
8,473,951
8,572,091
8,578,282
8,612,599
8,670,723
8,732,605
8,745,641
8,782,632
8,799,641
8,813,028
8,824,274
8,863,111
8,873,401
8,938,540
8,949,776
8,954,732
8,955,081
8,972,929
8,977,693
8,978,114
8,984,581
8,990,705
9,009,858
9,037,723
9,047,166
9,047,404

References Cited

U.S. PATENT DOCUMENTS

WP rEEEEWw

6/2003
10/2003
10/2003
12/2005

1/2006

6/2006

9/2006
10/2006

4/2007

2/2008

7/2008

9/2008

9/2008
12/2008

2/2009

6/2009

6/2009

8/2009

8/2009
10/2009

1/201

1/201

4/201

6/201

6/201

7/201

7/201

8/201
11/201
12/201
12/201

3/2011

4/2011
10/2011

4/201

6/201

7/201

1/201

4/201

5/201

6/201

6/201
10/201
11/201
12/201

3/201

5/201

6/201

7/201

8/201

8/201

9/201
10/201
10/201

1/201

2/201

2/201

2/201

3/201

3/201

3/201

3/201

3/201

4/201

5/201

6/201

6/201

CO OO O OO0 OO

h ththhthth ittt ot I o D D D BB B I G0 0 D 0 W L2 L o N N

Bowman-Amuah
Jamshidi et al.
Nicholson et al.
Nainani et al.
Burd et al.
Kesler

Wang

Evans et al.

Petropoulos et al.

Nichols et al.
Afergan et al.
Niyogl et al.
Cwalina et al.
Potter et al.
Moran et al.
Egli

Hejlsberg et al.
Harriger et al.
Anonsen et al.
Sproule
Nattinger
Shelat et al.
Roques et al.
Peters

Siddaramappa et al.

Bohm et al.
Yan et al.
Bomhoevd et al.
Phillips et al.
Karis et al.
Wang

Chong et al.
Chen et al.
Eppstein et al.
Morrison et al.
Mobarak et al.
Nelil et al.
Corcoran et al.
Anders et al.
Sullivan et al.
Agarwal et al.
Sharon et al.

enrolling the first device mn Col; and performing SSO
session synchronization across devices enrolled 1n Co'T.

Sivasubramanian et al.

Boillot

Tung et al.

Jung

Vedula et al.
Coker
Chigurapat: et al.
Seidenberg et al.
Farooqi

Medved et al.
Selitser et al.

Ashwood-Smith et al.

Biljon et al.
Feber

Watsen et al.
Metke et al.
Fahmy
Gidugu
Kaushik et al.
[Luna et al.
Kulkarni et al.
Kevin et al.
Morgan
Nishio et al.
Jibaly et al.

9,047,414
9,069,979
9,077,770
9,105,046
9,118,657
9,158,518
9,183,321
9,223,684
9,246,840
9,258,068
9,258,669
9,270,546
9,282,582
9,292,502
9,369,457
9,413,750
9,448,790
9,544,293
9,547,858
9,648,007
9,729,539
9,772,822
9,781,122
9,826,045
9,894,067
10,028,105
2001/0007128
2002/0116441
2002/0174010
2003/0028583
2003/0149717
2004/0010621
2004/0031030
2004/0046789
2004/0128546
2004/0250257
2005/0091539
2005/0172261
2005/0183059
2006/0075398
2006/0143359
2006/0185004
2006/0291398
2007/0016804
2007/0112574
2007/0174290
2007/0219956
2007/0240127
2007/0255764
2008/0222238
2008/0256554
2008/0276224
2009/0006538
2009/0064001
2009/0086726
2009/0119763
2009/0144338
2009/0157811
2009/0164571
2009/0183072
2010/0017812
2010/0042869
2010/0070230
2010/0257513
2010/0269164

2010/0281475
2010/0293080
2011/0078675
2011/0107196

2011/0123973
2011/0125448
2011/0138034
2011/0209140
2011/0213756
2011/0213870
2011/0246964
2011/0265077
2011/0302516

AAAAAAAAAA XA AAAAAAAARAARAANAAAAAARARAARAAAR AN A A

6/201
6/201
7/201
8/201
8/201
10/201
11/201
12/201
1/201
2/201
2/201
2/201
3/201
3/201
6/201
8/201
9/201
1/201
1/201
5/201
8/201
9/201
10/201
11/201
2/201
7/201
7/2001
8/2002
11/2002
2/2003
8/2003
1/2004
2/2004
3/2004
7/2004
12/2004
4/2005
8/2005
8/2005
4/2006
6/2006
8/2006
12/2006
1/2007
5/2007
7/2007
9/2007
10/2007
11/2007
9/2008
10/2008
11/2008
1/2009
3/2009
4/2009
5/2009
6/2009
6/2009
6/2009
7/2009
1/201
2/201
3/201
10/201
10/201

OO0 ~1~-1~-1~1~1~1~1TNANANDNDANODONC Y h Lh Lh Lh Lh Lh Lh

oo o OO

11/2010

11/2010
3/2011
5/2011

5/2011
5/2011
6/2011
8/2011
9/2011
9/2011
10/2011
10/2011
12/2011

Matyjek
Srinivasan et al.
Redpath

Dias et al.

Shetty

Brown et al.
Murthy
Gittelman et al.
Anderson et al.
Mall et al.
Nyisztor et al.
[.ehmann et al.

Dunsbergen et al.

Karlsen

Grajek et al.
Akula et al.
Collison et al.
Mathew et al.
Karkhanis et al.
Sterling et al.
Agrawal et al.
Narayanan et al.
Wilson et al.
Straub et al.
Mandadi et al.
Swart

[ambert et al.
Ding et al.
Rice

Flores et al.
Heinzman
Afergan et al.
Kidder et al.
Inanoria
Blakley et al.
Koutyrine et al.
Wang et al.
Yuknewicz et al.
[L.oksh et al.
Bennett et al.
Dostert et al.
Song et al.
Potter et al.
Kemshall
(Greene

Narang et al.
Milton

Roques et al.
Sonnier et al.
[vanov et al.
Yassin

Gyure et al.
Risney et al.
Robbins
Savage et al.
Park et al.
Feng et al.
Bailor et al.
Potter et al.
Stephenson et al.
Nigam

Szabo et al.
Kumar et al.
Thirumalai et al.

Sosnosky

Jain et al.

Shah

Camp et al.
Foster

Singh
Jung

Brookbanks et al.

Scheidel et al.
Chen et al.
Cail et al.

Cox et al.
Collison et al.

White et al.

HO4L 67/02
726/7

US 10,764,273 B2

Page 3
(56) References Cited 2015/0195182 A1 7/2015 Mathur et al.
2015/0229638 Al 82015 Loo
U.S. PATENT DOCUMENTS 2015/0295844 A1 10/2015 Perrerra et al.
2015/0304446 Al 10/2015 Kato
2011/0314159 Al 12/2011 Murphy et al. 20150319185 Al 112015 Kurti et al.
2011/0321033 Al 12/2011 Kelkar et al. 2OT5/0319252 A__h 11/20th5 Momchilov et al.
2012/0036125 Al 2/2012 Al-Kofahi et al. 2015/0332596 Al 1172015 Applehans
2012/0090021 Al 4/2012 Luh et al. 2015/0350338 Al 12/2015 Barnett et al.
2012/0096521 Al 4/2012 Peddada 2016/0004668 Al 1/2016 Rowles et al.
2012/0102451 Al 4/2012 Kulkarni et al. 2016/0048848 Al 2/2016 Diggs et al.
2012/0110650 Al 5/2012 Biljon et al. 2016/0057229 Al 2/2016 Barton et al.
2012/0151063 Al 6/2012 Yang et al. 2016/0080360 Al 3/2016 Child et al
2012/0151568 Al 6/2012 Pieczul et al. 2016/0085666 Al 3/2016 Jordan
2012/0170751 Al 7/2012 Wurm 2016/0085735 Al 3/2016 Davis et al.
2012/0215582 Al 8/2012 Petri et al. 2016/0087880 Al 3/2016 Shalita et al.
2012/0252405 Al 10/2012 Lortz et al. 2016/0092176 Al 3/2016 Straub et al.
2012/0297016 Al 11/2012 Iyer et al. 2016/0092179 Al 3/2016 Straub
2012/0303912 Al 11/2012 Calder et al. 2016/0092180 A1 3/2016 Straub
2012/0317172 Al 12/2012 Redpath 2016/0092339 Al 3/2016 Straub et al.
2012/0317233 Al 12/2012 Redpath 2016/0092348 Al 3/2016 Straub et al.
2012/0323553 Al 12/2012 Aslam et al. 2016/0092425 Al 3/2016 Shah et al.
2012/0328105 Al 12/2012 Mukkara et al. 2016/0092540 Al 3/2016 Bihani et al.
2013/0007845 Al 1/2013 Chang et al. 2016/0112475 Al 4/2016 Lawson et al.
2013/0019015 Al 1/2013 Devarakonda et al. 2016/0124742° A1 5/2016 Rangasamy et al.
2013/0019242 Al 1/2013 Chen et al. 2016/0125490 Al 5/2016 Angal et al.
2013/0024695 Al 1/2013 Kandrasheu et al. 2016/0127199 Al 5/2016 Ding et al.
2013/0031136 Al 1/2013 Shah 2OT6/0127254 A__h 5/2036 Kum::}_r et al.
2013/0071087 Al 3/2013 Motiwala et al. 2016/0127349 Al 5/2016 Nakajima et al.
2013/0086645 Al 4/2013 Srinivasan et al. 2016/0127454 Al 5/2016 Maheshwari et al.
2013/0151848 Al 6/2013 Baumann et al. 2016/0149882 Al 5/2016 Srivastava
2013/0152047 Al 6/2013 Moorthi et al. 2016/0154629 Al 6/2016 Noens et al.
2013/0191339 Al 7/2013 Haden et al. 2016/0171555 Al1* 6/2016 Buerger G06Q 30/0201
2013/0198236 Al 8/2013 Lissack et al. | | | | 705/14.66
2013/0232179 Al 9/2013 Chhaunker et al. 2016/0182328 Al 6/2016 Bhasin et al.
2013/0254262 Al 9/2013 Udall 2016/0182588 Al 6/2016 Luo et al.
2013/0262626 Al 10/2013 Bozek et al. 2016/0202007 Al 7/2016 Hatch et al.
2013/0312117 Al 11/2013 Kevin et al. 2016/0203087 Al 7/2016 Nam et al.
2014/0007205 Al 1/2014 Oikonomou 2016/0248866 Al 82016 Garas
2014/0013109 Al 1/2014 Yin 2016/0269343 Al 9/2016 Li et al.
2014/0032531 Al 1/2014 Ravi et al. 2016/0364231 Al 12/2016 Tati et al.
2014/0053056 Al 2/2014 Weber et al. 2016/0373932 Al* 12/2016 Yang HO4W 12/08
2014/0053126 Al 2/2014 Watson et al. 2016/0378439 Al 12/2016 Straub et al.
2014/0075032 Al 3/2014 Vasudevan et al. 20}7/0010370 Al 1/20.}7 Davis et al.
2014/0075501 Al 3/2014 Srinivasan et al. 2017/0046134 Al 2/2017 Straub
2014/0089674 Al 3/2014 Buehl 2017/0046235 Al 2/2017 Straub et al.
2014/0090037 A1 3/2014 Singh 2017/0046254 Al 2/2017 Buege
2014/0108474 Al 4/2014 David et al. 2017/0048215 Al 2/2017 Straub
2014/0109072 Al 4/2014 Lang et al. 2017/0048252 Al 2/2017 Straub et al.
2014/0109078 Al 4/2014 Lang et al. 2017/0048319 Al 2/2017 Straub
2014/0114707 A1 4/2014 Rope et al. 2017/0048339 Al 2/2017 Straub
2014/0173454 Al 6/2014 Sanchez 2017/0063833 Al 3/2017 Colle et al.
2014/0245389 Al 8/2014 Oberheide et al. 2017/0063989 Al 3/2017 Langouev et al
2014/0280948 Al 9/2014 Schmidt et al. 2017/0083293 Al 3/2017 Jao et al.
2014/0281943 Al 9/2014 Prilepov et al. 2017/0083503 Al 3/2017 Davis et al.
2014/0282398 Al 9/2014 Podolyak et al. 2017/0141916 AL 52017 Zhang
2014/0282399 Al 9/2014 Gorelik et al. 2017/0155686 Al 6/2017 Yanacek et al.
2014/0289833 Al* 9/2014 Briceno HO041. 63/08 2017/0161296 Al 6/2017 Rutter
796/7 2017/0187785 Al 6/2017 Johnson et al.

2014/0298293 Al 10/2014 Nishio et al. 2017/0244613 Al 8/2017 Vasudevan et al.
2014/0304507 Al 10/2014 Coppola et al. 2017/0364411 Al 12/2017 Fan et al.
2014/0304700 A1l 10/2014 Kim et al. 2018/0075231 Al 3/2018 Subramanian et al.
2014/0310243 Al 10/2014 McGee et al. 2018/0077138 A1 3/2018 Bansal et al.
2014/0324911 Al 10/2014 Lavarene et al.
2014/0330869 A1 11/2014 Factor et al. FORFIGN PATENT DOCUMENTS
2014/0337914 Al 11/2014 Canning et al.
2014/0372702 Al 12/2014 Subramanyam et al. CN 105515759 A 4/7016
2015/0039732 Al 2/2015 Mall et al. CN 107857417 A 19018
2015/0040104 Al 2/2015 Mall et al. Ep 2003867 Al 32016
2015/0040201 Al 2/2015 Nyisztor et al. 1P 2008027043 A 22008
2015/0067135 Al 3/2015 Wang et al. P 5013025405 A 59013
2015/0089340 Al 3/2015 Logan et al. P 5013182310 A /7013
2015/0089341 Al 3/2015 Davis et al P 5015527681 A /7015
2015/0089342 Al 3/2015 Davis et al. P 5015529366 A 10/2015
2015/0089351 Al 3/2015 Logan et al. P 2016000090 A 19016
2015/0089569 Al 3/2015 Sondhi et al. WO 5005001620 A2 1/7005
2015/0089604 Al 3/2015 Mathew et al. WO 2013071087 Al 5/2013
2015/0128063 Al 5/2015 Jones WO 2014039918 Al 3/2014
2015/0128106 Al 5/2015 Halley et al. WO 2014046857 Al 3/2014
2015/0154415 Al 6/2015 Wu et al. WO 2014176363 Al 10/2014

US 10,764,273 B2
Page 4

(56) References Cited
FORFEIGN PATENT DOCUMENTS

WO 2016049626 Al 3/2016
WO 2016065080 Al 4/2016
WO 2017096399 Al 6/2017
WO 2018053122 Al 3/2018
WO 2018053258 Al 3/2018

OTHER PUBLICATIONS

Hardt, “RFC 6749 the O0Auth 2.0 Authorization Framework™, Oct.

31, 2012, pp. 1-76, www.ric-editor.org/ric/pdirfc/ric6749 txt.pdf.

Saranya et al., “Implementing authentication in an Openstack
environment-survey”’, 2016 International Conference on Computer
Communication and informatics (ICCCI), IEEE, Jan. 7, 2016, pp.
1-7.

U.S. Appl. No. 62/802,887, filed Feb. 8, 2019, Xiaoxiao Xu.

U.S. Appl. No. 62/807,454, filed Feb. 19, 2019, Sudhir Kumar
Srinivasan.

U.S. Appl. No. 62/807,894, filed Feb. 20, 2019, Sudhir Kumar
Srinivasan.

“Citnx XenServer Workload Balancing (WLB)”; Jan. 22, 2015;https://
www.cltrix.com/blogs/2015/01/22/citrix-xenserver-workload-balancing-
wlb-why-xendesktop-and-xenapp-customers-really-should-take-
note/.

“Cross-Device Single Sign-On Session Transfer”, retrieved from
https://www.egiz.gv.at/en/projekte/ 160-sso_session_transfer on Sep.
7, 2017,

“Explore Microsoft Azure monitoring and diagnostics”, youtube,Sep.
28, 2016 (Sep. 28, 2016), p. 1 pp.» XP054977701,Retrieved from
the Internet: URL:https://www.youtube.com/watch?v=wU{4sm 8aA
w]retrieved on Sep. 5, 2017].

Anonymous, “DaaS—Diagnostics as a Service for Azure Web Sites:
Blog: Microsoft Azure”, Jul. 8, 2014 (Jul. 8, 2014), XP055403199,
Retrieved from the Internet: URL:https://azure. microsoft.com/en-
gb/blog/daas/ [retrieved on Sep. 1, 2017].

Anonymous, Gluu Server Overview : The Gluu Server for SSO,
WAM, & 2FA : Gluu, website, , Aug. 29, 2016 (Aug. 29, 2016),
XP055417541, Retrieved from the Internet on Oct. 20, 2017,
https://web.archive.org/web/20160829102122/https://www.gluu.org/
gluu-server/overview/,

Application Note—“Implementing Single Sign-On Using SAML
2.0 on Juniper Networks Mag Series Junos Pulse Gateways”,
Juniper Networks, Inc., 2013, 22 pages.

Author Unknown, “Oracle Access Management—Complete, Inte-
grated, Scalable Access Management Solution”, Oracle White Paper,
Retrieved Fromhttp://www.oracle.com/technetwork/middleware/id-
mgmt/overview/complete-and-scalable-access-mgmit-1697349 pdf, Pub-
lished May 2015.

Author Unknown, SCIM Directory Services, Oracle Corporation,
Sep. 2012, https://tools.1etf.org/1d/draft-hunt-scim-directory-00.
html#ric.section.2.2, visited Jun. 26, 2017.

Author Unknown, UnboundID Identity Proxy Product Description
Version 4.5, UnboundID Corp., Austin TX, 2015 , https://cdn2.
hubspot.net’hub/405650/file-2157336753-pdt/Resources/Data_Sheets/
UnboundID_Identity Proxy_ v4.5PD.pdi?t=1458081481415, vis-
ited Jun. 26, 2017.

Brockallen: “Single sign-out and IdentityServer3: brockallen™ Feb.
8, 2016, XP055417951, Retrieved from the Internet on Nov. 20,
2017, URL:https://brockallen.com/2016/02/08/single-sign-out-and-
identityserver3/,

Gluu: “Diagram Gluu Software Architecture”, Dec. 3, 2013 (Dec. 3,
2013), XP055417597, Retrieved from the Internet: URL:https://
www.gluu.org/blog/wp-content/uploads/2013/12/1dea_asimba.png
[retrieved on Oct. 20, 2017].

Gluu: “Use Case for Asimba as SAML Proxy: Gluu : Blog”, Dec.
3, 2013 (Dec. 3, 2013), XP055417606, Retrieved from the
Internet: URL:https://www.gluu.org/blog/use-case-for-asimba-as-
saml-proxy/ [retrieved on Oct. 20, 2017].

Gluu:“Shibboleth Plugin released to enable simultaneous OpenlD
Connect and SAML sessions: Gluu™, Mar. 25, 2013 (Mar. 25, 2013),
XP055417498 Retrieved from the Internet: URL :https://www.gluu.
org/press-releases/2013/gluu-releases-shibboleth-plugin-for-ox-to-
enable-simultaneous-openid-connect-and-saml-sessions/ [retrieved
on Oct. 19, 2017].

Gregg Browinski: “SAML Single Logout—What You Need to
Know”,Jun. 20, 2016 (Jun. 20, 2016), XP055417923, Retrieved
from the Internet: URL:https://www.portalguard.com/blog/2016/06/
20/saml-single-logout-need-to-know/ [retrieved on Oct. 23, 2017].
Grossman et al., “ToolClips: An Investigation of Contextual Video
Assistance for Functionality Understanding, CHI 2010: Looking
with Video”, Apr. 10-15, 2010, pp. 1515-1524.

Hudli et al., “An Ewvaluation Framework for Selection of Mobile
App Development Platform™, ACM, pp. 13-16, 2015.

Jones et al., RFC 7519 JSON Web Tokens (JW'T), May 2015, IETFE,
pp. 1-30.

Sairam Pappu et al., “Integrate Oracle E-Business Suite Using
Oracle E-Business Suite AccessGate with Oracle Access Manager
Using Multiple Data Stores”, Retrieved From http://www.oracle.
com/technetwork/middleware/1d-mgmt/oamebsintegrationwhi- tepaper-

2152856.pdf, Published Feb. 2014.
Unknown, “SAML Authorization Assertion”, Oct. 31, 2014, Oracle,

pp. 1-2, Retrieved from docs.oracle.com.

Coan et al., “Using Distributed Topology Update and Preplanned
Configurations to Achieve Trunk Network Survivability”, Oct.
1991, IEEE, vol. 40, No. 4 (Year: 1991).

Konstantinou et al., “An Architecture for Virtual Solution Compo-
sition and Deployment in Infrastructure Clouds™, Jun. 2009, ACM
(Year: 20009).

Oliverra et al., “Delivering software with agility and quality in a
cloud environment”, Mar. 2016, IBM, vol. 60 No. 2/3 Paper 10
(Year: 2016).

Rasti et al., “On the Long-Term Evolution of the Two-Tier Gnutella
Overlay”, Apr. 2007, IEEE (Year: 2007).

Rokonuzzaman et al., “A Cross-layer Approach for Qos Topology
Control in Wireless Ad Hoc Networks”, 2009. IEEE (Year: 2009).
International Search Report 1ssued in the corresponding Interna-
tional Application No. PCT/US2020/014320, dated Apr. 9, 2020,
recetved on Jul. 14, 2020.

Wiritten Opinion issued in the corresponding International Applica-
tion No. PCT/US2020/014320, dated Apr. 9, 2020, received on Jul.

14, 2020.

* cited by examiner

US 10,764,273 B2

Sheet 1 of 18

Sep. 1, 2020

U.S. Patent

Sady JaUNIEND maﬁ DNOIT Al nif

e e, e, e, ke, e, ke, ke, o, ok,
. :
g, ke, o, o, e, o, e,

'}

[18TH) S0IAEG JUeAT

 2I0SU07),
WDy
SU()

LICHRIA
ALED]

{52
.- 3
Sk
ﬂ:iﬁ

4%
SUdY DNOP BUEY SUAY DROIT 3BID

T,
B

\\"V‘-'--'--'--'--'--'--'--'- EL T A L L T T

o

L e £ F ¢ f b P X R EEE LR RS EREEE YRR YRR e EREERENYE RN NN RN K]

e, vl vk, ke, e, vl ol vk, i, e, vl o, e, e, e, e, o, o, i,

v, o, e, o,

Hi ver mw m‘ ¢

ENd oo
A
g
-
o
o>
oo

- mges e el sk ek ey mghs L LR L] i ek e s myew M e ek ek ik s ke e .'M ek e snew pier g ek ek e ok mges el el ek ek ke ey maks ek e ek e L1 I] ek =l

3%%@%wmw%@ﬁs@ﬂﬁmwwm W
e PR0IC) m

US 10,764,273 B2

3

o

SRR AN
gt walny mal el sk gl mk

iﬂ@

._ .~ .ﬁ..n.‘.ﬁu.., - :
'sadyewosng) | OB DE0) THT

¥ i

H
H
{
i
% ;
H
H
{

3.
St
<X,
g
J

Sheet 2 of 18

|

N Aopenn /
\ SAY

¥
L]
]
]
-]
]
]
]
]
]
]
-]
k s
tu"h"--''|--''--"--"|--''--"--"|--''--"--"|--"--"--"|--"--"--

L L R r r R P PR LR R LR YR YR LY R TN

L]

4
T ™ ¥
it

124 sddy dsuped | | soony

e { m SEAAIS SR |

: , . L.

: __ “ ;

= m .

2 m m

= m m

S m

. 4

. :3,“ ;;;;;;;;;;; :

- .f “ . n

7 N

S l_l:l”l llllllllll frssssnssaa"" == 0@z asssssssssssjissssssssss

I
S

i :
) i

] F -

” L adnoiey @ siesn aude Bl
¥ M . L ...\m

)

F

e as Bt m- E AE AR BE B B B BE BB B B B e BB B B B B hE. RS BE RS B - RS B A !\. R BE B BE ERE B 5B RE BE RS B =B BE BE B BE By =B RE O RE BE BF R =B R R B BA By =E RE BE B B By B RE RS BE B EE =B RE AR BE BE e - W RE -
. .

vl

§ 174

U.S. Patent

US 10,764,273 B2

Sheet 3 of 18

Sep. 1, 2020

U.S. Patent

—1 WO

14

!

M OBULOD O USdO) £ TS UOIEDIUSUINY 81BISpS 4

H asnugid-u0 wﬁ

¥ B

M — ﬂww%
g — O\ '/

- 5 L4 B
LONBIOnS

PO

RICRST

€ NG CH

L

" i " e A " e A " e " I e A I e " e A I e A I e " O e A I e e I e A O e A I e " O e A O e e O e e I e A O e e O O A O O A O A ‘\I“\I“\I‘M

¥

Yeden

'qu'q"q"q"q"q"q"q.‘{

_,l")
)
¥

)

)

¥

)

)

¥

)

)

It""'lfhnl.-'.'.-'.'..'.'.-'--'.-'.'..'.'.-'-'.-'.

SI0CYIGIGQRAeT
SIS COR

b

A
A

\I‘““i““““bf

A e, e, e, e, e e, e e, e e e e, e e e, e e e e e,

'-'-1-'-'-'-u'-'-"'-'-"'-'-'-'-'-"'-'-'-u'-'-"'-'-1-'-'-'-:'-'-1-'-'-"'-'-"'-'-"'-'-'-u'-'-"'-'-"'-'-1-'-'-1-'-'-"'-'-"'-'-"'-'-'-'-'-"'-'-'-‘ll-'

;
(AIQT SSIUSDT BST UCISIARI W

e u

/

Gl

2144

US 10,764,273 B2

""""""""""""

oy

w_m&ﬁm&&%m [me g 0

I OB LRHOAIOH

:}..J

) P

L]
Al g s A W A

Sheet 4 of 18

a"‘-"-‘-‘-‘-‘-‘-"-‘-‘-‘-‘-‘-‘-‘-‘- - .

‘,‘h“"““"“""‘

iiiiiiiiiiiii
T

SN I F——
B S80IAISS GRE

iiiiiiiiiiiiiii

—————
¥
¥
*
¥
¥
¥
¥
¥
¥
¥

lllllllllllll

Sep. 1, 2020

R AR

U.S. Patent

/
2
L2
Od

/
-~
<
X

US 10,764,273 B2

Sheet 5 of 18

Sep. 1, 2020

U.S. Patent

AHUSp] {BI00S U B0IAIRSE 188 -

SREBRURIS WHOS ZINYS ZHYD mmmmm_ (usd0
wumww &mmm& , gy INGA O SauAJaR LS ARG -

!!!!!!‘r...r-..r...r...r-..r...r...r-..r...r...r-..r...r!!!!!!!!!!!!!‘r!!‘r!!!!!!!

SUN0IS § 5135} DUAG P o,
m ¢ T / BOIAIBG DROID) AJIUSD] 8108I(

v

a
453
EJ
E?

K

.-
v T—. "
4 Mgy : p w
v e et st e e st et e et et et et et e e et et e et e e e et e e A o et e st et e st e ke -
e v f.f...,_/ P “
.-l.‘. " L % . - . n
M. W%mgmwwwm 4 l.__-.... % .wjn(h N .a-..l.] .E.l.-_..-;l.._-_-..-..lu._-_..-;l.._-_-..-..l1._-_..-.1.-_.._-_q.l.lq.i.iql..iq.l.lq.i.iql.iq.l.lqi” ii imlip.f. m
] P T e PR T TR R R "
Y | ; . L ¢ ; $335 1R 2ae 4 5% L
“ .w llllllllllllllllllllllllllllllllllllll " " r ¥ r‘.\ : : . “.w m ...lu...!-.m.l.nll.
“ ﬁ%ﬁ-{fi_-i_ ----------------- w—nne .-i_-,.m._rwf.f I.._. &M\w Mwmw utwu(m .W.H«M ¢ 7 4 - ! o . H My m”.m M”J.
i L . . R R I 1
, ...# s S m\m : e e) bt e ~ ?m v o
o Nogva S psuefieury uMo)
O, M Cavat /S i S
) 3 b, L T d 3
“ b | A " T SRS SR B A 3R ¢
“ ... m i kffh ’ &rrv. ¥ By g g e g g g g L g e g e g g g g e e g e g g e e g e e e e s e “ q_?
“ ! \ " - " " . ; . 4 1
s | ““ ﬁ. .Iu.ll.'.. 'ill ‘i\l l’. " - g dagr r " V“n_.d" .M. ' " “
: | i £ . ;) % ...n.... g} ¢ e g . .gf." ﬁ ." Xy LT
: | : . v . 55 o ¢ et - We :
| : | : 5 . £ 3 ¢ 4 ' , bt ¥
] - . ¥ A .-u. Ry . 1 ' 1
prRE T . k ". v pusni ustislBuB S0 88N R
o v ol s E * i : g g e A e T B e i T R i R i T el ¥ L, a & fa
Pl T 7 “ P : :? M m ki edon,
b _-..._._ m ﬂ ¥ m-._ﬂ_--..n."ﬁ “ . n...r. " H Nt rEa TE R SE &% =S =1 == - !?- '’ ...1!....1!...1!..1!...1!..1!..1!...1!..1!..1!...1!..1!..1!..1!!!!fr}f!r}r}f!r}r}f!!f!!r}r}r}f!!ff!{\i. “ X
M i { “"«rle._.- ax i 1 e e) " 1 " i %
- L7 { OB I A ; b . ' i E B aiinteininieinieteitetninieinieteinteinintebeinteinietninieteinteininteinteteinieteinieininteinteteinteininteininteinietetntetnintelnte ! W ¥ 3
. . ¥ “ r 3 L h
___.w ‘u-ﬁ.f.' "-_“._u m P L_.m.“ T -u......v“___l..fn n”. r “ 1 .ngggitl##. " . “ !]
PO TR el TR ,_,. : L _m @EWMMM. m. wm.w.u ﬂwmmw o
i 2 "y % d T LS e § : . ¥ 1 ' .ﬁ}f
- el d ..l.l..... ¥ - L) [] -‘. . M . ¥ i N -
N RS it L : Mfa. L . M .m nseenemnnnnnnnnnnnnnnnns s nnsn s na s ————— - N .wwm.wﬁ
- m i e Bl A en m. iiiiiiiiiiiiiiiiiiiiiiiii 4 i W e
ik W 4 i v R tphiade R yesss ¥ b e e E s E s EEsEssEEssEssEsSEEssEssssssEssssssssas -a :
i " i R E.”_.”:,.:...m". o~ g R4 Vo
i S { 3 e Ll .._. L.." M\ i ¥ [M Voo
: F r...h-..»w i iy i ' nf %%%%%%%%%%%%%%%%%%%% " -M ﬁ. :-t.-.ﬁ.-._..u
...l..._.l..._ i ol 1....r....r.._! - maa _-_..-. N 4 : : “ 1 .
e Tans nans _ 5 i ¢ Yl . .
-, . ._i__....l.____.. iiiiiiiiiiiiiiiiiiiiiiiiiiiiii ___m...... iiiiiiiiiiiiiiiiiiiiiiiiiii e N "_ N e o e e A A " "
A ._.ma..._- . . , h 3 :
\ 4 M mm@mﬁm b ! | m .
. . . .] o L m e o mar e mm mm mm mm mm mea aem e wm me omm o mm mm mm mm e s s omm we ma ._...-.. .
; 700 248 . / ;
WW mm.. prdecdacy Yf..f
ok L4 N h..

RUnoss gy 1934 9 0SS 8K, 198N 10} BB POID XNION S o

£
£
(45

US 10,764,273 B2

Sheet 6 of 18

Sep. 1, 2020

U.S. Patent

Hm. mﬁﬁ g 7 iR LR as

JOHRION 188N .mmmmﬁm wmmmmiﬁ

e N S ey, AT

wagmne 1 [swsng

By SUOREISNN v
e B l..,..,.,....,,,.,.;u sy g

-l..-.‘.l....-_. -a"e"n L

CUBBIBION 340 iy

e PO .. i A TR e tmi......_...,_.tr_.._.. ™ .-_...n. m Wmm.h
£ . K.

%
...ﬁ.ds_

W N b
\ g x\ﬂ 7 soel [PUOREIALD pUS HESY $3Y ﬁﬁma

: mm_m SBUDGILOT BRI SO0 ARAD

SOHNGSEN BUADERY
LT e, mfmu

@ﬁmmmwmmmm m
SSRGS wn

mwg,m.w mﬁ

]
]
™ ..."-H"'l"
' , g e
' e T
' w'm
. T

\ JNW{ wmww.”,ﬂ.,M

. _ﬁm BN RHARG

BIRBOS GO7

*

ol

LG
“. .w...r”w.w"... m..n. .
m #&Mw.n“mm < .u. -.\oa e A N) e, »n./
m —ry JEE / Sy g
h ; ; o
%,.,,.,,.,,.,,.,,.,,.W,ﬂww?rwmrﬂ###ﬁ#ﬁ### M :

% - ..w e ,..w,." ...u.mnm @ ..m..}.
3 B m.fm.wnw SRES Tl

wwﬂa.mw.ﬂ____ .H_n

ﬁmm&mm

BT m %&
e f/mmﬁmm __

SENART | éﬁﬂ_

. < wm mm . %mﬁm&ﬁ
N\ ﬂw e dieg L uopeoyddy

?f?.lf.......ﬂ._._....r.;{.................- ras g s i ; : |
il £ 09 ﬁ
. . [v ._.__.ﬂ .} o
“ Wik FUY Tt
SEUARSCINE ST
3
™
b
m..f L

US 10,764,273 B2

Sheet 7 of 18

Sep. 1, 2020

U.S. Patent

FOAIBG mc:S O PIIOYS

_________________ _...__.___b ol

bl S S e SN S e SN Sl o o

(ayiydein)
SNBSS SOLIBIA B0 kdrs

QoiAISG UORBOYION PNol | 9Tt
| _r._r.«._r._r..r._f._r.p._r._r.w.w._r..r._r._r._f._r._r..r._f._r.w._r._r.w.«._r.p.w._r._f._r._r..r._f._r..r._r._r.«._r._r.p.«.w.p.w.w.«.p.«.«._}.w._f.wmmw 2
aoieg 8h2101S PN ”
3dLs

i i vl sl sl e o

‘o mmumrm.m R _
) aw i gm, | Se0unossy m
; WSISAS = -
..".n“u...ru.”-,.-::-. - Iodens o S T Lﬂﬂ.@
| Emc poisuEly | sBumeg
188 | uonezeuosisd
g eI T g0
Wi

- — A W TTIT T R Ly man

Emcm.w 2oy 1 T
o O

TEE ma o

WP T mP W P T MY T MY ST P T YT ST T T YT T YT T YT T YT ST YT T YT T YT T YT T YT T YT YT T T T T™W

‘_‘-_

__.,,.. 34013 Agpuep]

..n_‘)

L

BEHIIOPE!

- ‘l?‘
.. -

rj...al-lr..a.-i...-]..a.\r.. b B

960

Sfefy UOH

ETUOYITY

Qmwu&_mcm a1ep mﬁﬁwﬁ ‘suondussans | [T { E.awougo_uﬁn% 2B I0NG |
2 SUCHIETIHIOU JOST) JOSSSO0I4 IUBA saBrigmn 8ons e e T

: = =R - ARl 19 G245 909

G879 5949

| wowsbeuepy || onosg || aedoug | L eouruoacn i o SUBLLISACS) L GOIMBE || 8DIAIBS | 90108 DHAISS
Uogeios4 :mmﬁﬂ: asudios ?.mﬂ 300 nﬁcﬁ 523@ NJS{w AT S@cc@ﬂ. mmcmao
mm R - 5 ! R . gt ST
w B39 ad5a arsg 4259 o adb as o
) 3E0IABS Whitiald SO i W75 a0mib8 luiopeld 8001 (0

q

‘--.-.-.-.-.-.-.-.q-
L

IS ||

4 sddy phois 1_
===l _%m é fRzs ons A_sddy seue
weby | ‘uoneiBei Oy afzg 989 |
oyoedy || eBpug Amuep; | uonesBaul qgig| Sddy sewnsngy
e e e e e e o ' o _ n.u.....-.....-.....-.....-.._..-...........n.un.n.un.H.n.H.n.H.n.n.n.u.un.uuuuu M.Rﬁ-- ---
4529 G710 L9
.\.Eu.,.:.h._..‘a

||||||||||||||||||||||| “ i]
Y MR | 1 BRUDY 1Y S8S) PUH
sAGASCT ABOIENT {1 ISUGEND
as 1o adog 9goo G091} 8O0
9208

.l e e . e e s el ol s e e e e e e e e o e sl e o

W

4%

US 10,764,273 B2

Sheet 8 of 18

Sep. 1, 2020

U.S. Patent

2ioud sasn ysenba
¢y Adesseosy

(s ZunwD 29 A f ﬁmmmmm

SE SRD B
UBD uonBdNddy

AR Y ,mejw pUZ Jo/pue |

Sa% &m N —
Ay 1=y 5e800 | _

L
Mﬂ

SIES) IR0 Ag peneioid B01R0 DBty
,..m. e : - |
/ Hd e van Bumbis uaun 1o

n-nn
w"

oL NIHOL ALIINIAL -
, 438N 3LOKY -

m‘mmmummg Mhm SiEE s DO

bty 3O ORET IREAGER

FHAIST TUEYS
UMD me%u = CHUS
SOH

e
-h*@*f*q*@tftq*@#f*q*@#f*qd

JBST BIENUSUINY

]
e
P
GLL
JfﬁT : .
......if..:. g
.|iLiJ?Er?. w
t B ¥
. . " H i
e PR A ..__. i ACH “ T m——————y T T £
SSOUNOSS DRGSIGT |
", - A Vi ST .
A | Sefiitd QNG U CF b
Mg M. aﬂ-ﬂ._ W ﬁqﬂly u » _.P..nn B AT
5 WOEOHUGE U Segodr .

sadlidet 2B DTS

mbeuey uoissen wﬁ

3 U0 PRSI R0

'3?

e . . e . e

BPO0T UCISSAD

- ﬁm% w mmw m M

et

I

L L

219% 2180 PRGIT

e

e

'
Ll

¥

d __.
Wi -
H * i
2, L W O) D t
e
- - Ade m..:rrr.u-iif.f.iﬂ.
ucgesiddy |, i
____________________ ﬂ

U.S. Patent Sep. 1, 2020 Sheet 9 of 18 US 10,764,273 B2

Database | Connection |
806 Pool |

Tenant 1 é SN SO

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

US 10,764,273 B2

Sheet 10 of 18

Sep. 1, 2020

U.S. Patent

8L 2018 (1 SO

T MESIABNTOS eI &
.“ gt 8 MdiGh \

L
F ® 1w -
1
L
. -

;

£ e o s o o i o o o o o Y o o s s o o
- .
w gmmﬁw

- -
- - - -

(aopusg |
sheiog |
70

WA AR DR R Ry

BAIBS IBUD

. -

-

cil i o wi mgu
SUINY(G _ m

GG/ 4L

/ .
26

i SE0ABE BIMPNISEI SO0 b

L
sl Faafals Fafafs TRl el 'eieta

W

Ry ~J10v Bngquin_7 S
. N.Ta&bﬁm _x .f. wsf _. mmm q“ M
SOAIBD © b MG Gif W ik
UORBOUHON ¥ | | N |
e '\ | L 8URED SOOI |

2d0

-

ﬁmmmwummm
il \ ALl e

AN G

366

-

d1iH

PR ” Mﬁwﬁ#&@ TaT m I e 2
HSd /T IGS eeewbreteewedeoemwereewenseemweeeoeee e oo e et e B R HIHO L REHT R AT I PP SO R— Sl A
, SuoREIE0) S| ”] emodo

Wﬂﬁﬂ@m@&ﬁ :ﬁmxd mmmawm Uﬁwﬁw: mapuarabarafraPaharaParaAbaPARar st s _ m . “ . : ") .
—— suogeIaH0 IO WL, D IO 80GHIN, N\ di g 00
%am OLs 806 |

PUOSEE 0N SUO7 NG

=

2
N
sﬁ RN REOGN MM

US 10,764,273 B2

w,._r.. ™

2 e i
ek

ar SN
Y oie en wn e = - -

.*""".

Lo o o o o o W o) o W o o N N g o L o

LY

o

-

Sheet 11 of 18

Sep. 1, 2020

n.__.......i.,..
W

h.__...r

U.S. Patent

s oAy { AT
I .mw.ﬁfa ; iﬂu_.ﬁﬂ Lwa
e R T e o S N0 S5 L AW Rt T e
u.“w LE _._.”.}MM "_.m&t..sw..m% CR-SRAE
g gl e Ay ity iy i, gl g gyt iy wiy gl .-ll“

N ™ T T

408 TS
A kgl KD o

“iw“.mmw .&Mm..f m

“ w&ﬁﬁm
BB o .&u:mﬂm i

-. i.f

ol e
V

[RS
o BUIEEY

-u.suu" ”
+ m.}._.ﬂ

g n A m&v n
,me# Y

o ¢
R ,.x._..
5,
&
M
i

vm ma mE my me wm m hE na

Rt LN SR
T [3 ..‘ “..- l.._.
" » . " " R ﬂ“lﬁiﬂ. :... .l-...ll.l."
e i s e
. .1_1....._ - - .rill_,..ll S "
l.lt.f...ll I.-. I..l....-l.l - .”..
I-:.l”.ll..__ e LT
I-... - l..l.-..._.r.v] - I._..ll.
3 W. ¥ T,
L . m‘.-.-_ ; 1...-. 3 . e .
" Foy .,_:_n .__..m-.-...&- e
A W W
A ! Mv

ﬂi111111111111111111111111

''' *.u
]
]
))]
w))
g . i
yAHASY
]
:
NW£WWMW h.Mw mm” L“w n %
]
]
ﬂ mw ﬂ W
o~ ___.
L]
A A Ay A A A A A A _..._.-. M
[} ..l..-. H
L) o i
» e _Vin- i ".. . -
* ! P
.' .- '3
4 (RPN & W
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii .i- “..
-]
2 ']
5 H
............... ﬂ!‘ L & K X & K X & K X 5 K X & K X 5 K X & X J |.........-........ L 2 K X & Kk X § J
HJ AT
- _..-._-.l-._..
ﬁ.'.ul '..ll'l.ll l'l-.lf
L -
. T
r-.....h._.l '_.-ll.r..l
fﬁ-
L

...............

E??#}fuélﬁaﬂﬂ!ﬁ?-ﬁ}i#};{{

Mﬁ%ﬁh mmﬁﬁ
..H ,M%mw,_.w M CREARATY m

“- ._..l - .i. L] l_ L _1-_ -y fl -

BREY s,

wwﬁ.wﬁu%m m m mw

aﬂ ¥

Bk ok b b b S Sl Sk ok o S S S o kb e

t
L]
.-.*_-.l:\-;

~a

T

Bl

ey

o e ¥
-..‘.Lll
._..-- |
.
SUBHOY

%

RN Ly
m#.w.il

a5

ey g_

!!!

BT
05 B

e,

.;.tﬁ.m.m %m&

e mmm
Gl BN

w,
-
= e e e e

e

L
L
¥
L
L
J
(g
. 1
L
L
¥
L
L
¥
L
L
¥
L
L
¥
L
L
¥
L
L
¥
L
L
¥
-‘
L
¥
L
L
¥
L
L
¥
L
L
¥
L
L
¥
L
L]

#-‘r‘—‘ﬁ'#“—'—'ﬁ'r’—'ﬁ'r‘—'ﬁ'r‘—' -

% -
- . pal
o3 TR0 1Y 1Ry W
2 Wmmmm% o} BRI

2 husndovaamnpdiv oy
£ s s Hﬂw ey
2 MEET 1D S0

S OSuEne | GomsEn o
.:.m ._.m | h ..._.m .nuuu..m m .”uw
P T S0 S S - S S
(T o " M 5 ;

0 .___.w......%... -.-.- : -..\\ S

, _....“.. -,.-...._. .m.__.u. . * . .,._.r
”,._.”.ﬂ....,.h..f.x Wow.ww d ."...

o
5

U.S. Patent Sep. 1, 2020 Sheet 12 of 18 US 10,764,273 B2

™
S
-

“etetvte'y
&

i'.:':i?

I

A

a d s A i A i mde na dmm domc doma ddec i b i s de s dem dowc Aok ow e

*
.
L]

-

ek m dwm dwm ki lm onddmd ok omm b e b dne dodn A odm b omd e md o mm dp e drdes dode A ode s deom- b m drm A m doma ok dr- o mode e dmmc e m hw i omd b md o o s --4-;4-—-4-:--

.""-*-. .

e e o s M s e
i,
«
.l

ass
w3

e e

o o e e o e

]
LI N
e
-

:. A

L I L T I e T T R R e R A e e e e e e *'u.-" P R gl lr Ry Ly b ol gy g sy gy gl By gl R gl W gl gk ag gl ey Ty gl By gl R gkl gl &
e

1':.'}:: o
g e e
ll-I
[]
X

i
ﬁ L
&

-

—
LI
a =

l..-
s
=¥

r_or i ﬁ_ ' +
:. ‘:: E ;%ﬂi’:t:l"& [
o Py
l"i'l
P N]
e

| NN

P Y
N T

e

Ak ol ha o e o e ot R o R e et b e tu R R el R W R R ow L et a o N at e oad Ry A fa o e a, R Gl ot R, P S om, R o b el oAt e oot R o e s oo R el R af B, R R A R W R et tu o R W R At E, Ry R, et

n
>
o o e o o o o o o o o e o o e o o e o e o e o o i

'.llf Pl
o W s
. }' £x. St
L' . et o o R
‘E" l":ll' ;‘_i:.;: . -ﬂ:::;? ;'ET ?l."'."f
AT L
B e B PR oW
o : . sl M gy Haa
H 3 R R
: ii} .:J:'f" Bk wnlTh
PR TR gooh s £33
t A A U e
H vy, e O i
: TS o W
: ""& ‘T L TR R e I T e e A R L L L e A T] ap owt tu ol e ol PR SR T N oA Ty wf d g W e gl e P By P T | “."‘lb .“"., - wt - ﬁ:j‘ e w oahh g R e i wte it gl hay ol b wP By o h da we i wiy W R ol T b B oad F Ry e ok e i wh R el A
o STy . Vo) .
" E : . . e’ - :
A H -‘: ‘- '5. ;} m ey '.ll{.l- -
7 & ":,m L s Swed o
-.p':. : atad ,‘ :} "n'natn LT e
> H Nt oL KN ."#. -
m : :‘? | !':' f!r L %53
s : et £ % S
M 'yl K Plar o
" - e R o3y)

o o e 0 Do Qe o e le e D0l O M- M K !ﬁ-!ﬁ-ﬂ#..ﬂr!ﬁ-##: .##h#ﬁi - D L R T

|
I..
1 .
,
.

.---ll---t------t--qi'------t---t---t--

-

¥
=

Y

v,

:.F"

: i::':";'u o o
H A alein ¥ | e
: e KL K >
! Bt ! R .
‘ o £ (53
H e, Srafiurieed Fomnn,
: - el LK 4= = L 4 =4 LK 4 &} 4= 4=) 4 4 'l!-:-:‘..:': L LK - 4= L] 4= 4 =4 4 - - & k*:‘% L L - L] E] 4= -y el = 4 - - = ar 4=
: R S N % £
: A $od : Wt y g .
t Sl ‘v : 2 R ool A s A v
: . Lo - "y g R o
i . <> o3 =B
: , e g = . ﬁi:":"- ﬁ;t} . ﬂ:‘ .':} - “ by
L] s:(!.;k {;‘i'l‘} " 1l-l:h'- m -, {.ilt
t 154 =y . 3':‘::!*} e ey S
o R-5.5. oot : oo g o ot
& E Ry $ W 3 awmat f;l-‘# aty b
."‘I‘. E ‘‘‘‘‘ (‘l‘kﬁ iﬁk --'-'-'-'{" ::-:': . :ﬁ:-!:}{: ﬁ.:.. '
o | 3 I R S = g i
t i i) Ll LN 4
- “ t " :"'l'll"'- ER '}t 4 _&i‘) 't q-:
o S ¢ & £ £ e
. .'l;.-l.ﬂl - -y F - - L] -] L] L) - {'.-} - - - o L - - 4--!- - f gy L] - F L] F o 0= - . - {:} L] - - I'-.:u.,.,u - - LE) i - LY o r LF)
% : - v Lo ; T
H
t .
¢ .
: .
: I i
: []
L]
L]

e
%)

] I'.L}
tee? X __:1_: % "’i_f-'_:':': é,-} e
T wd o s ey
. .> Nl . =..£.::T' . 1‘_17- . ':Iq- ‘..}I
«“ A W &y E o B g3y
g . e Lie 2 T P 49
83 S ¥ < & I TR
.__b‘_.:-.‘_ . 5:.:.;.:.‘ Tk " - {iﬁi !.Jr_-_‘-.l 3 I-:.' "f;i;; :_ LX) 1{:.}
H . -:'-!‘ x'x+ 'I"!-_-.__q.‘_ :.l . Sy r = . . "
: b s ' R S £ e z*-ii
. ' ;it::;- Ok e e :gi:& i:,; -*ﬁ:;:i. \ S
; GowE o 3 28 B o3
e ; S it n § W EN S T e IR
w2l A = e b St 3 3 o s T
&2 ; S = e Gy ;U
<gieine : e s e s <y e e ' %"
' t e B iy ol T y = Tty "mn
. . oyl whachyd e (N - gt I‘=:':*: ety "::'z' kgt . - ¥ L gty gty kgt "\: :-' ""T"': . . N oty e . by
mpielele .-‘;*"E s _Qt.-.-.l.-.-.-.-.-.l.-.-.-.-.-.-.-.-.l.:; -:-:‘::} :‘,:.:‘5 ﬁ ”:* :Er:-ug *a:} *_5:55:‘ < :’
£ y . s . Rl o P o T e '
',-" H {"} '."‘?E ‘va ‘: _.'k:l ‘:"'?, e we'als "-"’-‘.*-:; W o
S i LI e 3 i o T £, 1y S EEX
. \ L t,t,tll‘-' il -Tl"'l-:; * _;._t_- e _i:’t' "55 {i} RE .?b:':.i
{i:;? t T et WA 4+ S ot ¢ *"r'; A A et LW M)
R : £3% o S TR X %8 s T g
: : S e P wF A "3 W Yoo LA
e : RN O e g a2 5 o aqn A i35
w B T A Sy g #:"4 '?;&‘:f- .'E:T;: e i *‘:E? ‘i_:.-} '.Eif::’t .] _i;-'} :;::::: lx"'é; .&':*:?';5
E ool 1 oy 8T <,-;=* 3 Lo e Lo oo o
: e o STV B Y RN e ot A5 et £2%..
H 'q--':' ELN :!' .. U}) : L- 4 :J \ - b q ::‘:' Rl -
t oy gy Sat 3NN o N ot L3 o T e 2
L o = L g w 3 {ﬁ‘t" * _i-: m ‘..“"ll“v‘ ;:.,".," g 5 x :
: o o L i £ i B ey Xy B <.
H m . W APRLEN T e d:._::l-__ !,':':‘f s {4:5: .!::_:l:?._ . wiafeles
E ;;i} -r'-'-r'-r'-r'-r"-r_'-r'-r'-r'-'-r"-r'-r'-'-r'-_'-r'-r_'-r'-_'-r'-r:{ {:::?: {%} . ':*_.;o *iﬁ :::: #::::' ﬁ'ﬁ' RS,
-.L": ety e A N Pty #‘ :,._ ataad :E: e ‘.::.i,. ry “'-:‘-":E e xd P T "l - !:.:?,m hutak, e -'-'-'-& at
o ﬁ *‘ﬁg }':'::.. E--_*E_ e iy &*-:é e " pres 33 i
£y 2 ORI S5 aa ke S %oy ek £y s g
P R REE I SR <2 8 A SR £ 80 i
W RN = A, * T - . : *:;
“i::i"‘ E ‘;:,.,} ."_-:;,_ % '*Ji'f :.E':; - m Y {,_.:} o ! a:‘f-""
ooy : a5 & é s e g KL2E e
Reyess? ¢ v LT ' e P o 321 Loy
b S

i"i'i'
i’ti'
we
RS
'.ﬁ;'
LN

N+ L .
DO ok e LN Sl

™ . PR s F ¥ TSN

%
v
F

o

W
-
N

o
B '

S
$
3 -
s
t
T i e Tt
i A
Noad AL
t :":.t* h.*-.:::g; N]
t ""'-:-'-y LN l-.z_-_l:l

WLMMMMMH wint! Ml S et Wit

-l-!-ll-l-!-l-l######L##############"

1

U.S. Patent Sep. 1, 2020 Sheet 13 of 18 US 10,764,273 B2

1200 - Clents |
2 10 L

b 1230& Node 12300

Servar 12200

Node 323’36

Node 1230d] Node 1230e]

Server 1220¢ Server 12204

uster 12008
12064 L4 o

Cluster 1200b
Cluster 1200c] |

tahase

Fig. 12

US 10,764,273 B2

Sheet 14 of 18

Sep. 1, 2020

U.S. Patent

Glol

205 055

ﬂ : : :
| m QELl iy
@ m JOBWIOM| JOSN UIBIGO —~ m@a o} u-pablio]
m | OUB U0 DI $8800 ,W_EWW%WWW s
m -~ o ; :
m SON0) S5R008 DUB UDNOY P SWimal _
_ § Gp0C UOGBZUCUINY SJEPIBA _
9EEL _ m
m (UBNOY) JOULBA UBYO | YIim m |
m 3P0 UDLEZUOUINY DUBY m m
m %) g _
TEEEEEEEEEMEEEEEEEEEEEE doy 0] I03L00 UINSYN |
....... iamgwﬂum tm‘mumn E“UM.WW.."U E_mﬁ @ﬂﬂuﬁm CﬁmwﬁNmmmgmﬁd\ u _
4 :gmmmmmm%wa WILEE wmey % o100 uoissss pajdAious jes cebl |
1980 DYIBIIUBLINE 8] L Vbt h)
30} LOISSSS 1S 91881 | SiEHUDPTIY Jash GRS i ;
VAN _ I AN? | SiBNUSPeID JesH BT F7CL |
| T I T,
| L Sigluepai jesn bundwosd in wibet Aeidsin |
m _______ ST R R TR e u 0781 “
m Giei u _
UG} am A AR R _
M 1530031 BONRZLOUINE pUag | {szuoYIng/} 1UICdpUT UOHBZUOYINY 80IAIBG “
SOV N S A S S S S A
_ YLEl C00UU00) giuedo Y B JRsMosg Youne _
_ | PLEl . S
_ m | am_{ YouneT :
; | i i | oiei |
SOIAIEQ JOBULON 21 I5SMO B3HAB(] 5]
A qe L IOSMOIG W
90¢ 1 vOTl 4159 S

101082

US 10,764,273 B2

Sheet 15 of 18

Sep. 1, 2020

U.S. Patent

JOMEG UOHEDIION

_ JUSUOIUS SIABD MBU JC |
T — 301A8P O UONBAENCU | 1ussu00 apInaid 0F 1GHOI | _
m SOSLBINRIBYD a2IA8(T DUIHOIT % 11 1880baYN | ysnd pues “ QO L M M
pejeisuel yim uoledyou ysnd pueg gevi 13S0 10 S0AB0 DAJICIUS B 10 SY)
_ _ :
m 14N 74) _ “ UOTEORION 13AIST UDHEINION UShd sadexl{dooy
| “ “] \ _
_ . |
_ 15anba) JUSLUoIUT S 40 ” pjisanbay uinjey M cLvi _
m Df 1S8NNSY 81015 ¥ S1BIBUBL “ _ Ot m |
| g _ | | |
M _ | 9Zv1 ”
m dnoley 107 <oyl ! _ S40}S Jusisisiad s Wi (3 80IAB(Hmm&mam _
m CO&@UEHOJ Lmuﬁmm ﬁﬂmmu_vgmz mu_mﬂﬁ_ _m\“.@vm __ “ ___________________ wamm_ __________________ @Dr}.@ _____ _am Smw _________________________ m m
; g_%m P 8uiAB(Pl IUSIT> <~ Pl 488N PRV, | PLLOHD w%wﬁ Skt | "
T NNWW _________________ “ : : :
| _ | |
| | [| | |
n D} 801ABC enbiun eyeiouad | _ “ m
_ PUE U930} SSE00E BJEpHE u WOWHOIUZ L O0/3Y O w
| 87474 _ L U180 SSA00E % DI UONEIIOU JSAJRC USRRIRON | Ll ,
_ | ' usng Ay Dljang puss - 100 Ui Asy djond fosuz ! A m
m _ _ oLl " ddy 0} u-pabhbo) |
_ | m e Kgngsseaoons tesn
| u | ned-Aoy olawwAse [T
_ P

M | “ PRIeLSO Uofedgusgae

_ _ m_%? e ddy 5,53 “

BOIABE B0IAE0) Cb¥E sesp
&N SUARE O8% NBHOIUT mg_meﬁ
30vL 0P| 2! Z0vL

ULl

US 10,764,273 B2

Sheet 16 of 18

Sep. 1, 2020

U.S. Patent

_4 UBSUOD Jasn saiiubis Cap
Qv

m

m $i°14! m

_ [

m O} 80IAB(0 %g:m mwwcmw M

m

m ey

 dN0IEY 0% WL (NS LI} 80IASE pRI0MT 10 Asy oygnd Buisn 7

M (SRR UBNDY JUSSLOD SRILISA *UBN0) 558008 SHEPIEA M

n CGrl m

w m

m n

m

m

m

m

m |

m m

m m

m m

m |

m |

m |

_ m
18AIBS UCHRILION

sy AT 085

UL ol 80PL

QTIABD MBU BUI HOIUS O}

™

:
:

: 84018 1URISISIAd 51 Ui DI 82IA8(] 15ISIR |
_ 08Pl m

D} JuRHD) g B0IM8Q LnjeY
BLVL

WARLE SRR Sdinding Sedingin: 0 el Wininsin wannse sl

b LY} 558008 9 (S UEN01 JUasUOD ‘Di UORBIIROU YShd m
F Aoy ougnd Duitiieiuos jsenbel JUsWi0IUS HgnS-ay)
” $10774! |
u .
“ J0IABS (O8S WO DOUINB) BUO 8Ly u
u SLOTEU WHBID SAAT Ut Pf 158nDay §f Ajuep

= B¥vi m

| 474 UBnoat aoiaan Butioitia o) Aoy aeaid <y Buish |
y, ._. 1

{ DUDIS (D] 1SENDaY BUIRIEILOD) SAAR PUSS DUE BIRIBLAG) §
_ aaa’ u

| UONRIUNUIGD 474 USHIGRISS % DIoUSaIL] |
| LIULM ST SO0IAEBD OM] 81 M/ S0UBISID SLIULEIB0 |

G0¥ 1

| el i
S COSS S SSSSSSSSSSSSSSSSSSS————
P URSUCD 8DIACIKE DUR SiBIeD ;

SHAB(] 3UIARD DUIL0IUS MBIADY 0IAB(]

DSHCIUY iag! BUILO U

US 10,764,273 B2

Sheet 17 of 18

Sep. 1, 2020

U.S. Patent

| ; |
e UONRULIOMI JBSD U0 e
w : | PO e didy o) uqmog
w e o CUZL pug o) p) sesied m fyniSsanons iasn
w w | USYO SSI0R DUE USHOY D) SUiNey O,wmr 0G| _
QGG L~-d_ PHEA, 0} UDISSHS SEYE J1BPAN PUE 2000 m : m n
_ | UOREZLIOUINE WOH DI UOISSSS SBIR 108A1XT | u !
w SpOs LORBZLOUINY g AR x _ m ._
b R WSRO : {awoy) Ao 2ieaud aomag Buien peullis toniassy ¢ “ m
” 2Hqna duish %mﬁmmm@mmﬁwﬂ SEDIBA L AT JUBI LA BD03 UCIRZHOUY pues wmm“ mmug%wmm%mm
| o | _ _ | FEEE..I_ O
SV5 L~ pi UOISSES SEHE POIREID LINBY ¥ o000 UOHEZLOGAR WMBS § Pf U0IS59S S8 “m _ o mm%m S | UOISSes 087 _.
e BULIONI00 BIY000 UDIS33S pAXIAUS $19S “ rara
1Dy U0isses Asetuud o) poul | ssniboid it acesL _ m T
GPGl—~ - sngs v dossas s agaly ¢ A | m @
maw;fiei;tlciifi{1;1;fj;i;fi;i;fi;i;fi;w;flaiiflaiifiaiifiaiif;{1;1;{1;1;41;11{1;11{itii¢1¢;;¢1¢;;flfi;flriaiifm;i;wi;1;¢1;1;¢1;¢;tﬂfi&
| m
AP0 cgmmmazéw Aoy uw_%a o e e —
Ry o mm&m\ 1 S o B pous LOUSEY LN i 9 LOZIOUIY IS 1|
: N\me\ o T——— a mmﬁun «mm DE Mma_} mEmn wwmu d ¥ U H0UUCS Loy i oi{JRIRAR Ozr
| P LOISS8S pajess Wney K ORRZUGUITY L] ' BY000 HOISS88 100 8e4l M ¢Chi
» Pyl m elolel} | m m
B3 PRI B IO OSSR B8] A0l T T I _
(PSRBT SL S PR IR e HOPAL ISSNMMANS T SEUGpan 105N B §2G | m]
w : S 4 1952 A A Al 4 . NS S - |
.. mmmmwwhmﬁm.h“ﬂ ummm mNmWMQED%Q xl.m Cmmgiw nﬂmm&mmm !.,!.,
e | ogeduaLne Jasp Joj) uo uinay 1 PIETRPRID PR BEHEHBE I ABR FER - e}
| BIUEHBAR i S{EIO) UOISSES JOsN LIMeY oy | e m m
| @wa : vNMw. @wa m _
i bofnrnnnmnnnnanranrnnnnnnnsnsnennnn s socsocsocsscnscscsccocd m m
B BOABD WM _
' pa1EI0ssE 88(] 10} UOIESEs BuipuodseLns jsBnDas cmMme“mm e . n
w R sRY 18enbal i p a0 “.,,mu J mﬂo%om . :@Eoﬁ:ﬂ_ 0 999D g%m%mm iodpys YORRZUOUINY w) ddy youne ”
BOIAIOC JOBULDY) (UMD Ul (B JeSMOIY youne Y
8LG} mgamm 108LIUCN L TS PR ow___wm_% PWHEEE] L ZLGE sesn
oSS 0SS} 0161 805, —L Qoo 90g} 12 TR p0gL—~{20ned

U.S. Patent Sep. 1, 2020 Sheet 18 of 18 US 10,764,273 B2

Authenticaling the user into an application on a first device 160

of the user \h/

| Receiving a first request by an SSO service of the cloud- |

based 1AM system from the first device 1o enroll the first

device in a Col device group associated with the user, |

where a second device of the user is already enrolled in | j§04
the CoT device group 55

sending a push nofiication to the second device o oblain

user consent of the user to enroll the first device inthe |
CoT device group, where the second device oblains the | ﬁ%

consert of the user and sends a consent tokan {0 the first -

Performing 550 session synchronizalion across devices |/

cdevice

___ 1698
Receiving a second request from the first device by the
SSO service, where the second reguest includes the
consent token

___ e
Verifying the consent token S

___ 1610
Enrolling the first device in the CoT device group P

anrolled in the CoT device group including the first device |

and {he second device

US 10,764,273 B2

1

SESSION SYNCHRONIZATION ACROSS
MULTIPLE DEVICES IN AN IDENTITY
CLOUD SERVICE

FIELD

One embodiment 1s directed generally to identity and
access management, and in particular, to identity and access

management 1 a cloud system.

BACKGROUND INFORMATION

Generally, the use of cloud-based applications (e.g., enter-
prise public cloud applications, third-party cloud applica-
tions, etc.) 1s soaring, with access coming from a variety of
devices (e.g., desktop and mobile devices) and a variety of
users (e.g., employees, partners, customers, etc.). The abun-
dant diversity and accessibility of cloud-based applications
has led 1dentity management and access security to become
a central concern. Typical security concerns 1 a cloud
environment are unauthorized access, account hijacking,
malicious 1nsiders, etc. Accordingly, there 1s a need for
secure access to cloud-based applications, or applications
located anywhere, regardless of from what device type or by
what user type the applications are accessed.

SUMMARY

One embodiment 1s a cloud-based identity and access
management (IAM) system that provides session synchro-
nization across multiple devices of a user. The embodiment
authenticates the user into an application on a first device of
the user, and receives a first request by a single-sign-on
(SSO) service of the cloud-based IAM system from the first
device to enroll the first device 1n a circle of trust (CoT)
device group associated with the user, where a second device
of the user 1s already enrolled in the CoT device group. The
embodiment sends a push notification to the second device
to obtain user consent of the user to enroll the first device in
the CoT device group, where the second device obtains the
consent of the user and sends a consent token to the first
device. The embodiment receives a second request from the
first device by the SSO service, where the second request
includes the consent token. The embodiment verifies the
consent token, enrols the first device 1n the CoT device
group, and performs SSO session synchronization across
devices enrolled in the CoT device group including the first
device and the second device.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1-5 are block diagrams of example embodiments
that provide cloud-based identity management.

FIG. 6 1s a block diagram providing a system view ol an
embodiment.

FIG. 6 A 1s a block diagram providing a functional view of
an embodiment.

FIG. 7 1s a block diagram of an embodiment that imple-
ments Cloud Gate.

FIG. 8 illustrates an example system that implements
multiple tenancies 1n one embodiment.

FIG. 9 1s a block diagram of a network view of an
embodiment.

FIG. 10 1s a block diagram of a system architecture view
of single sign on (“SSO”) functionality 1n one embodiment.

FIG. 11 1s a message sequence tlow of SSO functionality
in one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 12 illustrates an example of a distributed data grid 1n
one embodiment.

FIGS. 13, 14A, 14B, and 15 are example message
sequence diagrams for session synchronization across mul-
tiple devices, 1n accordance with an embodiment.

FIG. 16 1s a flow diagram of session synchronization
functionality across multiple devices, 1n accordance with an
embodiment.

DETAILED DESCRIPTION

Embodiments provide session synchronmization across
multiple devices of a user 1n a cloud-based 1dentity and data
security management system. Embodiments define a “Circle
of Trust” (*Co1”) device group for the user, enroll the
devices of the user 1n the CoT device group, and use the CoT
device group for implementing session synchronization
functionality across multiple user devices. Embodiments
enroll a new device 1 the CoT device group by obtaining
user consent from devices that are already enrolled in the
CoT device group. When the user signs into a native
application 1n one of his/her devices in the CoT device
group, mstead of logging in the user into each of the other
devices one by one, embodiments securely carry over and
replicate the user session to the other devices enrolled 1n the
CoT device group and log 1n the user 1into each device, thus
avoilding re-authentication into secured applications that are
accessed on multiple devices. In one embodiment, when one
session on one user device 1n the CoT device group 1s logged
off, other sessions on other user devices 1n the CoT device
group are logged ofl as well, thus mvalidating the user
session on all devices 1n the CoT device group.

Embodiments provide an identity cloud service that
implements a microservices based architecture and provides
multi-tenant i1dentity and data security management and
secure access to cloud-based applications. Embodiments
support secure access for hybrid cloud deployments (i1.e.,
cloud deployments which include a combination of a public
cloud and a private cloud). Embodiments protect applica-
tions and data both in the cloud and on-premise. Embodi-
ments support multi-channel access via web, mobile, and
application programming interfaces (“APIs”). Embodiments
manage access for different users, such as customers, part-
ners, and employees. Embodiments manage, control, and
audit access across the cloud as well as on-premise. Embodi-
ments integrate with new and existing applications and
identities. Embodiments are horizontally scalable.

One embodiment 1s a system that implements a number of
microservices 1 a stateless middle tier environment to
provide cloud-based multi-tenant identity and access man-
agement services. In one embodiment, each requested 1den-
tity management service 1s broken into real-time and near-
real-time tasks. The real-time tasks are handled by a
microservice 1n the middle tier, while the near-real-time
tasks are oflloaded to a message queue. Embodiments imple-
ment access tokens that are consumed by a routing tier and
a middle tier to enforce a security model for accessing the
microservices. Accordingly, embodiments provide a cloud-
scale Identity and Access Management (“IAM”) platform
based on a multi-tenant, microservices architecture.

One embodiment provides an i1dentity cloud service that
enables organizations to rapidly develop fast, reliable, and
secure services for their new business initiatives. In one
embodiment, the identity cloud service provides a number of
core services, each of which solving a unique challenge
faced by many enterprises. In one embodiment, the identity
cloud service supports administrators 1n, for example, 1nitial

US 10,764,273 B2

3

on-boarding/importing of users, importing groups with user
members, creating/updating/disabling/enabling/deleting
users, assigning/un-assigning users into/from groups, creat-
ing/updating/deleting groups, resetting passwords, manag-
ing policies, sending activation, etc. The identity cloud
service also supports end users 1n, for example, modilying
profiles, setting primary/recovery emails, verifying emails,
unlocking their accounts, changing passwords, recovering,
passwords 1n case of forgotten password, etc.

Unified Security of Access

One embodiment protects applications and data 1n a cloud
environment as well as 1n an on-premise environment. The
embodiment secures access to any application from any
device by anyone. The embodiment provides protection
across both environments since inconsistencies in security
between the two environments may result in higher risks.
For example, such inconsistencies may cause a sales person
to continue having access to their Customer Relationship
Management (“CRM™) account even after they have
defected to the competition. Accordingly, embodiments
extend the security controls provisioned in the on-premise
environment into the cloud environment. For example, 11 a
person leaves a company, embodiments ensure that their
accounts are disabled both on-premise and 1n the cloud.

Generally, users may access applications and/or data
through many different channels such as web browsers,
desktops, mobile phones, tablets, smart watches, other wear-
ables, etc. Accordingly, one embodiment provides secured
access across all these channels. For example, a user may
use their mobile phone to complete a transaction they started
on their desktop.

One embodiment further manages access for various users
such as customers, partners, employees, etc. Generally,
applications and/or data may be accessed not just by
employees but by customers or third parties. Although many
known systems take security measures when onboarding
employees, they generally do not take the same level of
security measures when giving access to customers, third
parties, partners, etc., resulting 1n the possibility of security
breaches by parties that are not properly managed. However,
embodiments ensure that suflicient security measures are
provided for access of each type of user and not just

employees.
Identity Cloud Service
Embodiments provide an Identity Cloud Service

(“IDCS”) that 1s a multi-tenant, cloud-scale, IAM platiorm.
IDCS provides authentication, authorization, auditing, and
tederation. IDCS manages access to custom applications and
services running on the public cloud, and on-premise sys-
tems. In an alternative or additional embodiment, IDCS may
also manage access to public cloud services. For example,
IDCS can be used to provide Single Sign On (“SSO”)
functionality across such variety of services/applications/
systems.

Embodiments are based on a multi-tenant, microservices
architecture for designing, building, and delivering cloud-
scale software services. Multi-tenancy refers to having one
physical implementation of a service securely supporting
multiple customers buying that service. A service 1s a
soltware functionality or a set of software functionalities
(such as the retrieval of specified information or the execu-
tion of a set of operations) that can be reused by diflerent
clients for different purposes, together with the policies that
control 1ts usage (e.g., based on the i1dentity of the client
requesting the service). In one embodiment, a service 1s a
mechanism to enable access to one or more capabilities,
where the access 1s provided using a prescribed interface and

10

15

20

25

30

35

40

45

50

55

60

65

4

1s exercised consistent with constraints and policies as
specified by the service description.

In one embodiment, a microservice 1s an independently
deplovyable service. In one embodiment, the term microser-
vice contemplates a software architecture design pattern in
which complex applications are composed of small, inde-
pendent processes communicating with each other using
language-agnostic APIs. In one embodiment, microservices
are small, highly decoupled services and each may focus on
doing a small task. In one embodiment, the microservice
architectural style 1s an approach to developing a single
application as a suite of small services, each running 1n 1ts

own process and communicating with lightweight mecha-

nisms (e.g., an HI'TP resource API). In one embodiment,
microservices are easier to replace relative to a monolithic
service that performs all or many of the same functions.
Moreover, each of the microservices may be updated with-
out adversely aflecting the other microservices. In contrast,
updates to one portion of a monolithic service may unde-
sirably or unintentionally negatively affect the other portions
of the monolithic service. In one embodiment, microservices
may be beneficially organized around their capabilities. In
one embodiment, the startup time for each of a collection of
microservices 1s much less than the startup time for a single
application that collectively performs all the services of
those microservices. In some embodiments, the startup time
for each of such microservices 1s about one second or less,
while the startup time of such single application may be
about a minute, several minutes, or longer.

In one embodiment, microservices architecture refers to a
specialization (1.e., separation of tasks within a system) and
implementation approach for service oriented architectures
(“SOAs™) to build flexible, independently deployable soft-
ware systems. Services 1n a microservices architecture are
processes that communicate with each other over a network
in order to fulfill a goal. In one embodiment, these services
use technology-agnostic protocols. In one embodiment, the
services have a small granularity and use lightweight pro-
tocols. In one embodiment, the services are independently
deployable. By distributing functionalities of a system into
different small services, the cohesion of the system 1is
enhanced and the coupling of the system 1s decreased. This
makes 1t easier to change the system and add functions and
qualities to the system at any time. It also allows the
architecture of an individual service to emerge through
continuous refactoring, and hence reduces the need for a big
up-iront design and allows for releasing software early and
continuously.

In one embodiment, 1n the microservices architecture, an
application 1s developed as a collection of services, and each
service runs a respective process and uses a lightweight
protocol to communicate (e.g., a unique API for each
microservice). In the microservices architecture, decompo-
sition of a software nto individual services/capabilities can
be performed at different levels of granularity depending on
the service to be provided. A service 1s a runtime component/
process. Each microservice 1s a seli-contained module that
can talk to other modules/microservices. Each microservice
has an unnamed universal port that can be contacted by
others. In one embodiment, the unnamed universal port of a
microservice 1s a standard communication channel that the
microservice exposes by convention (e.g., as a conventional
Hypertext Transier Protocol (“HTTP”) port) and that allows
any other module/microservice within the same service to
talk to 1t. A microservice or any other self-contained func-
tional module can be generically referred to as a “service”.

US 10,764,273 B2

S

Embodiments provide multi-tenant identity management
services. Embodiments are based on open standards to
ensure ease ol integration with various applications, deliv-
ering IAM capabilities through standards-based services.

Embodiments manage the lifecycle of user identities
which entails the determination and enforcement of what an
identity can access, who can be given such access, who can
manage such access, etc. Embodiments run the identity
management workload in the cloud and support security
functionality for applications that are not necessarily 1n the
cloud. The identity management services provided by the
embodiments may be purchased from the cloud. For
example, an enterprise may purchase such services from the
cloud to manage their employees’ access to their applica-
tions.

Embodiments provide system security, massive scalabil-
ity, end user usability, and application interoperability.
Embodiments address the growth of the cloud and the use of
identity services by customers. The microservices based
foundation addresses horizontal scalability requirements,
while careful orchestration of the services addresses the
functional requirements. Achieving both goals requires
decomposition (wherever possible) of the business logic to
achieve statelessness with eventual consistency, while much
ol the operational logic not subject to real-time processing 1s
shifted to near-real-time by offloading to a highly scalable
asynchronous event management system with guaranteed
delivery and processing. Embodiments are fully multi-tenant
from the web tier to the data tier 1n order to realize cost
clliciencies and ease of system administration.

Embodiments are based on industry standards (e.g., Ope-
nID Connect, OAuth2, Security Assertion Markup Lan-
guage 2 (“SAML2”), System for Cross-domain Identity
Management (“SCIM™), Representational State Transfer
(“REST™), etc.) for ease of integration with various appli-
cations. One embodiment provides a cloud-scale API plat-
form and implements horizontally scalable microservices
for elastic scalability. The embodiment leverages cloud
principles and provides a multi-tenant architecture with
per-tenant data separation. The embodiment further provides
per-tenant customization via tenant self-service. The
embodiment 1s available via APIs for on-demand integration
with other 1dentity services, and provides continuous feature
release.

One embodiment provides mteroperability and leverages
investments 1n 1dentity management (“IDM™) functionality
in the cloud and on-premise. The embodiment provides
automated 1dentity synchronization from on-premise Light-
weight Directory Access Protocol (“LDAP”) data to cloud
data and vice versa. The embodiment provides a SCIM
identity bus between the cloud and the enterprise, and allows
for different options for hybrid cloud deployments (e.g.,
identity federation and/or synchronization, SSO agents, user
provisioning connectors, etc.).

Accordingly, one embodiment 1s a system that imple-
ments a number of microservices 1n a stateless middle tier to
provide cloud-based multi-tenant identity and access man-
agement services. In one embodiment, each requested 1den-
tity management service 1s broken into real-time and near-
real-time tasks. The real-time tasks are handled by a
microservice in the middle tier, while the near-real-time
tasks are offloaded to a message queue. Embodiments imple-
ment tokens that are consumed by a routing tier to enforce
a security model for accessing the microservices. Accord-
ingly, embodiments provide a cloud-scale IAM platiorm
based on a multi-tenant, microservices architecture.

10

15

20

25

30

35

40

45

50

55

60

65

6

Generally, known systems provide siloed access to appli-
cations provided by different environments, e.g., enterprise
cloud applications, partner cloud applications, third-party
cloud applications, and customer applications. Such siloed
access may require multiple passwords, different password
policies, diflerent account provisioning and de-provisioning
schemes, disparate audit, etc. However, one embodiment
implements IDCS to provide unified IAM functionality over
such applications. FIG. 1 1s a block diagram 100 of an
example embodiment with IDCS 118, providing a unified
identity platform 126 for onboarding users and applications.
The embodiment provides seamless user experience across
various applications such as enterprise cloud applications
102, partner cloud applications 104, third-party cloud appli-
cations 110, and customer applications 112. Applications
102, 104, 110, 112 may be accessed through different
channels, for example, by a mobile phone user 108 via a
mobile phone 106, by a desktop computer user 116 via a
browser 114, etc. A web browser (commonly referred to as
a browser) 1s a software application for retrieving, present-
ing, and traversing information resources on the World Wide
Web. Examples of web browsers are Mozilla Firefox®,
Google Chrome®, Microsoit Internet Explorer®, and Apple
Safari®.

IDCS 118 provides a unified view 124 of a user’s appli-
cations, a unified secure credential across devices and appli-
cations (via identity platform 126), and a unified way of
administration (via an admin console 122). IDCS services
may be obtained by calling IDCS APIs 142. Such services
may 1nclude, for example, login/SSO services 128 (e.g.,
OpenlD Connect), federation services 130 (e.g., SAML),
token services 132 (e.g., OAuth), directory services 134
(e.g., SCIM), provisioning services 136 (e.g., SCIM or Any
Transport over Multiprotocol (“AToM”)), event services 138
(e.g., REST), and authornization services 140 (e.g., SCIM).
IDCS 118 may further provide reports and dashboards 120
related to the offered services.

Integration Tools

Generally, 1t 1s common for large corporations to have an
IAM system 1n place to secure access to their on-premise
applications. Business practices are usually matured and
standardized around an in-house IAM system such as
“Oracle IAM Suite” from Oracle Corp. Even small to
medium organizations usually have their business processes
designed around managing user access through a simple
directory solution such as Microsoft Active Directory
(“AD”). To enable on-premise integration, embodiments
provide tools that allow customers to integrate their appli-
cations with IDCS.

FIG. 2 1s a block diagram 200 of an example embodiment
with IDCS 202 1 a cloud environment 208, providing
integration with an AD 204 that 1s on-premise 206. The
embodiment provides seamless user experience across all
applications including on-premise and third-party applica-
tions, for example, on-premise applications 218 and various
applications/services in cloud 208 such as cloud services
210, cloud applications 212, partner applications 214, and
customer applications 216. Cloud applications 212 may
include, for example, Human Capital Management
(“HCM”), CRM, talent acquisition (e.g., Oracle Taleo cloud
service from Oracle Corp.), Configure Price and Quote
(“CPQ™), etc. Cloud services 210 may include, for example,
Platform as a Service (*PaaS”), Java, database, business
intelligence (“BI”), documents, etc.

Applications 210, 212, 214, 216, 218, may be accessed
through different channels, for example, by a mobile phone
user 220 via a mobile phone 222, by a desktop computer user

US 10,764,273 B2

7

224 via a browser 226, ctc. The embodiment provides
automated 1dentity synchronization from on-premise AD
data to cloud data via a SCIM identity bus 234 between
cloud 208 and the enterprise 206. The embodiment further
provides a SAML bus 228 for federating authentication from
cloud 208 to on-premise AD 204 (e.g., using passwords
232).

Generally, an identity bus 1s a service bus for identity
related services. A service bus provides a platform for
communicating messages from one system to another sys-
tem. It 1s a controlled mechanism for exchanging informa-
tion between trusted systems, for example, 1n a service
oriented architecture (“SOA”). An identity bus 1s a logical
bus built according to standard HTTP based mechanisms
such as web service, web server proxies, etc. The commu-
nication in an identity bus may be performed according to a
respective protocol (e.g., SCIM, SAML, OpenlD Connect,
etc.). For example, a SAML bus 1s an HT'TP based connec-
tion between two systems for communicating messages for
SAML services. Similarly, a SCIM bus 1s used to commu-
nicate SCIM messages according to the SCIM protocol.

The embodiment of FIG. 2 implements an identity (“ID”)
bridge 230 that 1s a small binary (e.g., 1 MB in size) that can
be downloaded and installed on-premise 206 alongside a
customer’s AD 204. ID Brnidge 230 listens to users and
groups (e.g., groups of users) from the organizational units
(“OUs”) chosen by the customer and synchronizes those
users to cloud 208. In one embodiment, users’” passwords
232 are not synchronized to cloud 208. Customers can
manage application access for users by mapping IDCS
users’ groups to cloud applications managed 1in IDCS 208.
Whenever the users” group membership 1s changed on-
premise 206, their corresponding cloud application access
changes automatically.

For example, an employee moving from engineering to
sales can get near instantaneous access to the sales cloud and
lose access to the developer cloud. When this change is
reflected 1n on-premise AD 204, cloud application access
change 1s accomplished in near-real-time. Similarly, access
to cloud applications managed 1n IDCS 208 1s revoked for
users leaving the company. For full automation, customers
may set up SSO between on-premise AD 204 and IDCS 208
through, e.g., AD federation service (“AD/FS”, or some
other mechanism that implements SAML federation) so that
end users can get access to cloud applications 210, 212, 214,
216, and on-premise applications 218 with a single corpo-
rate password 332.

FI1G. 3 15 a block diagram 300 of an example embodiment
that includes the same components 202, 206, 208, 210, 212,

214, 216, 218, 220, 222, 224, 226, 228, 234 as in FIG. 2.
However, 1n the embodiment of FIG. 3, IDCS 202 provides
integration with an on-premise IDM 304 such as Oracle
IDM. Oracle IDM 304 1s a software suite from Oracle Corp.
for providing IAM functionality. The embodiment provides
secamless user experience across all applications including
on-premise and third-party applications. The embodiment
provisions user identities from on-premise IDM 304 to
IDCS 208 via SCIM identity bus 234 between cloud 202 and
enterprise 206. The embodiment further provides SAML bus
228 (or an OpenlD Connect bus) for federating authentica-
tion from cloud 208 to on-premise 206.

In the embodiment of FIG. 3, an Oracle Identity Manager
(“OIM”) Connector 302 from Oracle Corp., and an Oracle
Access Manager (“OAM”) federation module 306 from
Oracle Corp., are implemented as extension modules of
Oracle IDM 304. A connector 1s a module that has physical
awareness about how to talk to a system. OIM 1s an

10

15

20

25

30

35

40

45

50

55

60

65

8

application configured to manage user identities (e.g., man-
age user accounts 1n different systems based on what a user
should and should not have access t0). OAM 1s a security
application that provides access management functionality
such as web SSO; identity context, authentication and autho-
rization; policy administration; testing; logging; auditing;
etc. OAM has built-in support for SAML. I a user has an
account 1n IDCS 202, OIM connector 302 and OAM {fed-
eration 306 can be used with Oracle IDM 304 to create/
delete that account and manage access from that account.

FIG. 4 15 a block diagram 400 of an example embodiment
that includes the same components 202, 206, 208, 210, 212,

214, 216, 218, 220, 222, 224, 226, 234 as in FIGS. 2 and 3.
However, in the embodiment of FIG. 3, IDCS 202 provides
functionality to extend cloud identities to on-premise appli-
cations 218. The embodiment provides seamless view of the
identity across all applications including on-premise and
third-party applications. In the embodiment of FIG. 4, SCIM
identity bus 234 i1s used to synchronize data in IDCS 202
with on-premise LDAP data called “Cloud Cache” 402.
Cloud Cache 402 1s disclosed in more detail below.

Generally, an application that i1s configured to communi-
cate based on LDAP needs an LDAP connection. An LDAP
connection may not be established by such application
through a URL (unlike, e.g., “www.google.com” that makes
a connection to Google) since the LDAP needs to be on a
local network. In the embodiment of FIG. 4, an LDAP-based
application 218 makes a connection to Cloud Cache 402,
and Cloud Cache 402 establishes a connection to IDCS 202
and then pulls data from IDCS 202 as 1t 1s being requested.
The communication between IDCS 202 and Cloud Cache
402 may be implemented according to the SCIM protocol.
For example, Cloud Cache 402 may use SCIM bus 234 to
send a SCIM request to IDCS 202 and receive correspond-
ing data in return.

Generally, fully implementing an application includes
building a consumer portal, running marketing campaigns
on the external user population, supporting web and mobile
channels, and dealing with user authentication, sessions,
user profiles, user groups, application roles, password poli-
cies, self-service/registration, social integration, identity
tederation, etc. Generally, application developers are not
identity/security experts. Therefore, on-demand identity
management services are desired.

FIG. 515 a block diagram 500 of an example embodiment
that includes the same components 202, 220, 222, 224, 226,
234, 402, as 1n FIGS. 2-4. However, 1n the embodiment of
FIG. 5, IDCS 202 provides secure 1dentity management on
demand. The embodiment provides on demand integration
with 1dentity services of IDCS 202 (e.g., based on standards
such as OpenlD Connect, OAuth2, SAML2, or SCIM).
Applications 505 (which may be on-premise, 1n a public
cloud, or in a private cloud) may call identity service APIs
504 1n IDCS 202. The services provided by IDCS 202 may
include, for example, self-service registration 506, password
management 508, user profile management 510, user
authentication 512, token management 514, social integra-
tion 516, etc.

In this embodiment, SCIM 1dentity bus 234 1s used to
synchronize data i IDCS 202 with data in on-premise
LDAP Cloud Cache 402. Further, a “Cloud Gate” 502
running on a web server/proxy (e.g., NGINX, Apache, etc.)
may be used by applications 505 to obtain user web SSO and
REST API secunity from IDCS 202. Cloud Gate 502 15 a
component that secures access to multi-tenant IDCS micros-
ervices by ensuring that client applications provide valid
access tokens, and/or users successfully authenticate 1n

US 10,764,273 B2

9

order to establish S5O sessions. Cloud Gate 502 1s further
disclosed below. Cloud Gate 502 (enforcement point similar
to webgate/webagent) enables applications running behind
supported web servers to participate 1n SSO.

One embodiment provides SSO and cloud SSO function-
ality. A general point of entry for both on-premise IAM and
IDCS 1n many organizations 1s SSO. Cloud SSO enables
users to access multiple cloud resources with a single user
sign-1n. Often, organizations will want to federate their
on-premise identities. Accordingly, embodiments utilize
open standards to allow for integration with existing SSO to
preserve and extend investment (e.g., until a complete,
eventual transition to an identity cloud service approach 1is
made).

One embodiment may provide the following functional-
1ties:

maintain an i1dentity store to track user accounts, owner-

ship, access, and permissions that have been autho-
rized,

integrate with workflow to facilitate various approvals

(e.g., management, IT, human resources, legal, and
compliance) needed for applications access,

provision SaaS user accounts for selective devices (e.g.,

mobile and personal computer (“PC”)) with access to
user portal containing many private and public cloud
resources, and

facilitate periodic management attestation review for

compliance with regulations and current job responsi-
bilities.

In addition to these functions, embodiments may further
provide:

cloud account provisioning to manage account life cycle

in cloud applications,

more robust multifactor authentication (“MFA”) integra-

tion,

extensive mobile security capabilities, and

dynamic authentication options.

One embodiment provides adaptive authentication and
MFA. Generally, passwords and challenge questions have
been seen as inadequate and susceptible to common attacks
such as phishing. Most business entities today are looking at
some form of MFA to reduce risk. To be successtully
deployed, however, solutions need to be easily provisioned,
maintained, and understood by the end user, as end users
usually resist anything that interferes with their digital
experience. Companies are looking for ways to securely
incorporate bring your own device (“BYOD”), social 1den-
tities, remote users, customers, and contractors, while mak-
ing MFA an almost transparent component of a seamless
user access experience. Within an MFA deployment, indus-
try standards such as OAuth and OpenlD Connect are
essential to ensure integration of existing multifactor solu-
tions and the incorporation of newer, adaptive authentication
technology. Accordingly, embodiments define dynamic (or
adaptive) authentication as the evaluation of available infor-
mation (1.e., IP address, location, time of day, and biomet-
rics) to prove an identity after a user session has been
iitiated. With the appropnate standards (e.g., open authen-
tication (“OATH”) and fast identity online (“FIDO™)) inte-
gration and extensible identity management Iframework,
embodiments provide MFA solutions that can be adopted,
upgraded, and mtegrated easily within an I'T organization as
part of an end-to-end secure IAM deployment. When con-
sidering MFA and adaptive policies, organizations must
implement consistent policies across on-premise and cloud
resources, which in a hybrid IDCS and on-premise 1AM
environment requires ntegration between systems.

10

15

20

25

30

35

40

45

50

55

60

65

10

One embodiment provides user provisioning and certifi-
cation. Generally, the fundamental function of an IAM
solution 1s to enable and support the entire user provisioning
life cycle. This includes providing users with the application
access appropriate for their identity and role within the
organization, certitying that they have the correct ongoing
access permissions (e.g., as their role or the tasks or appli-
cations used within their role change over time), and
promptly de-provisioning them as their departure from the
organization may require. This 1s important not only for
meeting various compliance requirements but also because
mappropriate msider access 1s a major source ol security
breaches and attacks. An automated user provisioning capa-
bility within an 1dentity cloud solution can be important not
only 1n 1ts own right but also as part of a hybnid IAM
solution whereby IDCS provisioning may provide greater
flexibility than an on-premise solution for transitions as a
company downsizes, upsizes, merges, or looks to integrate
existing systems with laaS/PaaS/SaaS environments. An
IDCS approach can save time and effort 1n one-off upgrades
and ensure appropriate integration among necessary depart-
ments, divisions, and systems. The need to scale this tech-
nology often sneaks up on corporations, and the ability to
deliver a scalable IDCS capability immediately across the
enterprise can provide benefits 1n flexibility, cost, and con-
trol.

Generally, an employee 1s granted additional privileges
(1.e., “privilege creep”) over the years as her/his job changes.
Companies that are lightly regulated generally lack an
“attestation” process that requires managers to regularly
audit their employees’ privileges (e.g., access to networks,
servers, applications, and data) to halt or slow the privilege
creep that results 1n over-privileged accounts. Accordingly,
one embodiment may provide a regularly conducted (at least
once a year) attestation process. Further, with mergers and
acquisitions, the need for these tools and services increases
exponentially as users are on SaaS systems, on-premise,
span different departments, and/or are being de-provisioned
or re-allocated. The move to cloud can further complicate
this situation, and the process can quickly escalate beyond
existing, often manually managed, certification methods.
Accordingly, one embodiment automates these functions
and applies sophisticated analytics to user profiles, access
history, provisioning/de-provisioning, and {ine-grained
entitlements.

One embodiment provides 1dentity analytics. Generally,
the ability to integrate identity analytics with the IAM
engine for comprehensive certification and attestation can be
critical to securing an organization’s risk profile. Properly
deployed 1dentity analytics can demand total internal policy
enforcement. Identity analytics that provide a unified single
management view across cloud and on-premise are much
needed 1n a proactive governance, risk, and compliance
(“GRC”) enterprise environment, and can aid 1n providing a
closed-loop process for reducing risk and meeting compli-
ance regulations. Accordingly, one embodiment provides
identity analytics that are easily customizable by the client
to accommodate specific industry demands and government
regulations for reports and analysis required by managers,
executives, and auditors.

One embodiment provides self-service and access request
functionality to improve the experience and efliciency of the
end user and to reduce costs from help desk calls. Generally,
while a number of companies deploy on-premise seli-
service access request for their employees, many have not
extended these systems adequately outside the formal cor-
porate walls. Beyond employee use, a positive digital cus-

US 10,764,273 B2

11

tomer experience increases business credibility and ulti-
mately contributes to revenue increase, and companies not
only save on customer help desk calls and costs but also
improve customer satisfaction. Accordingly, one embodi-
ment provides an 1dentity cloud service environment that 1s
based on open standards and seamlessly integrates with
existing access control software and MFA mechanisms when
necessary. The SaaS delivery model saves time and effort
formerly devoted to systems upgrades and maintenance,
freeing professional IT stail to focus on more core business
applications.

One embodiment provides privileged account manage-
ment (“PAM”). Generally, every organization, whether
using SaaS, PaaS, laaS, or on-premise applications, 1s vul-
nerable to unauthorized privileged account abuse by 1nsiders
with super-user access credentials such as system adminis-
trators, executives, HR oflicers, contractors, systems inte-
grators, etc. Moreover, outside threats typically first breach
a low-level user account to eventually reach and exploit
privileged user access controls within the enterprise system.
Accordingly, one embodiment provides PAM to prevent
such unauthorized msider account use. The main component
of a PAM solution 1s a password vault which may be
delivered in various ways, e.g., as software to be installed on
an enterprise server, as a virtual appliance also on an
enterprise server, as a packaged hardware/software appli-
ance, or as part of a cloud service. PAM functionality 1s
similar to a physical safe used to store passwords kept 1n an
envelope and changed periodically, with a manifest for
signing them 1 and out. One embodiment allows for a
password checkout as well as setting time limits, forcing
periodic changes, automatically tracking checkout, and
reporting on all activities. One embodiment provides a way
to connect directly through to a requested resource without
the user ever knowing the password. This capability also
paves the way for session management and additional func-
tionality.

Generally, most cloud services utilize APIs and adminis-
trative interfaces, which provide opportunities for infiltrators
to circumvent security. Accordingly, one embodiment
accounts for these holes in PAM practices as the move to the
cloud presents new challenges for PAM. Many small to
medium sized businesses now administer their own SaaS
systems (e.g., Oflice 365), while larger companies increas-
ingly have individual business units spinning up their own
SaaS and laaS services. These customers find themselves
with PAM capabilities within the identity cloud service
solutions or from their laaS/PaaS provider but with little
experience in handling this responsibility. Moreover, 1n
some cases, many different geographically dispersed busi-
ness units are trying to segregate administrative responsi-
bilities for the same SaaS applications. Accordingly, one
embodiment allows customers in these situations to link
existing PAM 1nto the overall identity framework of the
identity cloud service and move toward greater security and
compliance with the assurance of scaling to cloud load
requirements as business needs dictate.

API Platform

Embodiments provide an API platform that exposes a
collection of capabilities as services. The APIs are aggre-
gated into microservices and each microservice exposes one
or more of the APIs. That 1s, each microservice may expose
different types of APIs. In one embodiment, each microser-
vice communicates only through 1ts APIs. In one embodi-
ment, each API may be a microservice. In one embodiment,
multiple APIs are aggregated into a service based on a target
capability to be provided by that service (e.g., OAuth,

10

15

20

25

30

35

40

45

50

55

60

65

12

SAML, Admin, etc.). As a result, similar APIs are not
exposed as separate runtime processes. The APIs are what 1s
made available to a service consumer to use the services
provided by IDCS.

Generally, 1n the web environment of IDCS, a URL
includes three parts: a host, a microservice, and a resource
(e.g., host/microservice/resource). In one embodiment, the
microservice 1s characterized by having a specific URL
prefix, e.g., “host/oauth/v1” where the actual microservice 1s
“oauth/v1”, and under “oauth/v1” there are multiple APIs,
¢.g., an API to request tokens: “host/oauth/v1/token”, an API
to authenticate a user: “host/oauth/v1/authorize”, etc. That
1s, the URL implements a microservice, and the resource
portion of the URL implements an API. Accordingly, mul-
tiple APIs are aggregated under the same microservice. In
one embodiment, the host portion of the URL identifies a
tenant (e.g., hitps://tenant3.1dentity.oraclecloud.com:/oauth/
v1/token™).

Configuring applications that integrate with external ser-
vices with the necessary endpoints and keeping that con-
figuration up to date 1s typically a challenge. To meet this
challenge, embodiments expose a public discovery API at a
well-known location from where applications can discover
the mnformation about IDCS they need 1n order to consume
IDCS APIs. In one embodiment, two discovery documents
are supported: IDCS Configuration (which includes IDCS,
SAML, SCIM, OAuth, and OpenlD Connect configuration,
at e.g., <IDCS-URL>/.well-known/idcs-configuration), and
Industry-standard OpenlD Connect Configuration (at, e.g.,
<IDCS-URL>/.well-known/openid-configuration). Applica-
tions can retrieve discovery documents by being configured
with a single IDCS URL.

FIG. 6 1s a block diagram providing a system view 600 of
IDCS 1n one embodiment. In FIG. 6, any one of a variety of
applications/services 602 may make HTTP calls to IDCS
APIs to use IDCS services. Examples of such applications/
services 602 are web applications, native applications (e.g.,
applications that are built to run on a specific operating
system, such as Windows applications, 10S applications,
Android applications, etc.), web services, customer applica-
tions, partner applications, or any services provided by a
public cloud, such as Software as a Service (*SaaS™), PaaS,
and Infrastructure as a Service (“laaS™).

In one embodiment, the HT'TP requests of applications/
services 602 that require IDCS services go through an
Oracle Public Cloud BIG-IP appliance 604 and an IDCS
BIG-IP appliance 606 (or similar technologies such as a
Load Balancer, or a component called a Cloud Load Bal-
ancer as a Service (“LBaaS”) that implements appropriate
security rules to protect the traflic). However, the requests
can be received 1n any manner. At IDCS BIG-IP appliance
606 (or, as applicable, a similar technology such as a Load
Balancer or a Cloud LBaaS), a cloud provisioning engine
608 performs tenant and service orchestration. In one
embodiment, cloud provisioning engine 608 manages inter-
nal security artifacts associated with a new tenant being
on-boarded into the cloud or a new service instance pur-
chased by a customer.

The HTTP requests are then received by an IDCS web
routing tier 610 that implements a security gate (1.e., Cloud
(Gate) and provides service routing and microservices reg-
istration and discovery 612. Depending on the service
requested, the HTTP request 1s forwarded to an IDCS
microservice 1n the IDCS middle tier 614. IDCS microser-
vices process external and internal HTTP requests. IDCS
microservices implement platform services and inirastruc-
ture services. IDCS platform services are separately

US 10,764,273 B2

13

deployed Java-based runtime services implementing the
business of IDCS. IDCS infrastructure services are sepa-
rately deployed runtime services providing infrastructure
support for IDCS. IDCS further includes infrastructure
libraries that are common code packaged as shared libraries
used by IDCS services and shared libraries. Infrastructure
services and libraries provide supporting capabilities as
required by platform services for implementing their func-
tionality.

Platform Services

In one embodiment, IDCS supports standard authentica-
tion protocols, hence IDCS microservices include platform
services such as OpenlD Connect, OAuth, SAML?2, System
for Cross-domain Identity Management++(“SCIM++"), etc.

The OpenlD Connect platiorm service implements stan-
dard OpenlD Connect Login/Logout tlows. Interactive web-
based and native applications leverage standard browser-
based OpenlD Connect flow to request user authentication,
receiving standard identity tokens that are JavaScript Object
Notation (“JSON”") Web Tokens (“JWTs”) conveying the
user’s authenticated i1dentity. Internally, the runtime authen-
tication model 1s stateless, maintaining the user’s authenti-
cation/session state 1n the form of a host HI'TP cookie
(including the JW'T 1dentity token). The authentication inter-
action mitiated via the OpenlD Connect protocol 1s del-
egated to a trusted SSO service that implements the user
login/logout ceremonies for local and federated logins. Fur-
ther details of this functionality are disclosed below with
reference to FIGS. 10 and 11. In one embodiment, OpenlD
Connect functionality 1s implemented according to, for
example, OpenlD Foundation standards.

The OAuth2 platform service provides token authoriza-
tion services. It provides a rich API infrastructure for cre-
ating and validating access tokens conveying user rights to
make API calls. It supports a range of useful token grant
types, enabling customers to securely connect clients to their
services. It implements standard 2-legged and 3-legged
OAuth2 token grant types. Support for OpenlD Connect
(“OIDC”) enables compliant applications (OIDC relaying
parties (“RP”’s)) to integrate with IDCS as the identity
provider (OIDC OpeniD provider (“OP”)). Similarly, the
integration of IDCS as OIDC RP with social OIDC OP (e.g.,
Facebook, Google, etc.) enables customers to allow social
identities policy-based access to applications. In one
embodiment, OAuth functionality 1s implemented according
to, for example, Internet Engineering Task Force (“IETF”),
Request for Comments (“RFC”) 6749.

The SAML?2 platform service provides identity federation
services. It enables customers to set up federation agree-
ments with their partners based on SAML 1dentity provider
(“IDP”) and SAML service provider (“SP”) relationship
models. In one embodiment, the SAML2 platform service
implements standard SAML2 Browser POST Login and
Logout Profiles. In one embodiment, SAML functionality 1s
implemented according to, for example, IETE, RFC 7522.

SCIM 1s an open standard for automating the exchange of
user 1dentity information between 1dentity domains or infor-
mation technology (“IT”) systems, as provided by, e.g.,
IETF, RFCs 7642, 7643, 7644. The SCIM++ platiform
service provides 1dentity administration services and enables
customers to access IDP features of IDCS. The administra-
tion services expose a set of stateless REST interfaces (1.¢.,
APIs) that cover 1dentity lifecycle, password management,
group management, etc., exposing such artifacts as web-
accessible resources.

All IDCS configuration artifacts are resources, and the
APIs of the administration services allow for managing

10

15

20

25

30

35

40

45

50

55

60

65

14

IDCS resources (e.g., users, roles, password policies, appli-
cations, SAML/OIDC 1identity providers, SAML service

providers, keys, certifications, notification templates, etc.).
Administration services leverage and extend the SCIM
standard to implement schema-based REST APIs for Create,
Read, Update, Delete, and Query (“CRUDQ”) operations on

all IDCS resources. Additionally, all internal resources of
IDCS used for administration and configuration of IDCS

itsell are exposed as SCIM-based REST APIs. Access to the
identity store 618 1s i1solated to the SCIM++ API.

In one embodiment, for example, the SCIM standard 1s
implemented to manage the users and groups resources as
defined by the SCIM specifications, while SCIM++ 1s con-
figured to support additional IDCS internal resources (e.g.,

password policies, roles, settings, etc.) using the language
defined by the SCIM standard.

The Administration service supports the SCIM 2.0 stan-
dard endpoints with the standard SCIM 2.0 core schemas
and schema extensions where needed. In addition, the
Administration service supports several SCIM 2.0 compliant
endpoint extensions to manage other IDCS resources, for
example, Users, Groups, Applications, Settings, etc. The
Admuinistration service also supports a set of remote proce-
dure call-style (“RPC-style”) REST interfaces that do not
perform CRUDQ operations but instead provide a functional
service, for example, “UserPasswordGenerator,” “UserPass-
wordValidator,” etc.

IDCS Administration APIs use the OAuth2 protocol for
authentication and authorization. IDCS supports common
OAuth2 scenarios such as scenarios for web server, mobile,
and JavaScript applications. Access to IDCS APIs 1s pro-
tected by access tokens. To access IDCS Admimstration
APIs, an application needs to be registered as an OAuth2
client or an IDCS Application (1in which case the OAuth2
client 1s created automatically) through the IDCS Adminis-
tration console and be granted desired IDCS Administration
Roles. When making IDCS Admuinistration API calls, the
application first requests an access token from the IDCS
OAuth2 Service. After acquiring the token, the application
sends the access token to the IDCS API by including 1t in the
HTTP authorization header. Applications can use IDCS
Administration REST APIs directly, or use an IDCS Java
Client API Library.

Infrastructure Services

The IDCS infrastructure services support the functionality
of IDCS platform services. These runtime services include
an event processing service (for asynchronously processing
user notifications, application subscriptions, and auditing to
database); a job scheduler service (for scheduling and
executing jobs, e.g., executing immediately or at a config-
ured time long-running tasks that do not require user inter-
vention); a cache management service; a storage manage-
ment service (for integrating with a public cloud storage
service); a reports service (for generating reports and dash-
boards); an SSO service (for managing internal user authen-
tication and SSO); a user terface (“UI”) service (for
hosting diflerent types of Ul clients); and a service manager
service. Service manager 1s an internal interface between the
Oracle Public Cloud and IDCS. Service manager manages
commands 1ssued by the Oracle Public Cloud, where the
commands need to be implemented by IDCS. For example,
when a customer signs up for an account 1n a cloud store
betore they can buy something, the cloud sends a request to
IDCS asking to create a tenant. In this case, service manager
implements the cloud specific operations that the cloud
expects IDCS to support.

US 10,764,273 B2

15

An IDCS microservice may call another IDCS microser-
vice through a network interface (i.e., an HI'TP request).

In one embodiment, IDCS may also provide a schema
service (or a persistence service) that allows for using a
database schema. A schema service allows for delegating the
responsibility of managing database schemas to IDCS.
Accordingly, a user of IDCS does not need to manage a
database since there 1s an IDCS service that provides that
functionality. For example, the user may use the database to
persist schemas on a per tenant basis, and when there 1s no
more space in the database, the schema service will manage
the functionality of obtaining another database and growing,
the space so that the users do not have to manage the
database themselves.

IDCS further includes data stores which are data reposi-
tories required/generated by IDCS, including an identity
store 618 (storing users, groups, etc.), a global database 620
(storing configuration data used by IDCS to configure itsell),
an operational schema 622 (providing per tenant schema
separation and storing customer data on a per customer
basis), an audit schema 624 (storing audit data), a caching,
cluster 626 (storing cached objects to speed up perior-
mance), etc. All internal and external IDCS consumers
integrate with the identity services over standards-based
protocols. This enables use of a domain name system
(“DNS”) to resolve where to route requests, and decouples
consuming applications from understanding the internal
implementation of identity services.

Real-Time and Near-Real-Time Tasks

IDCS separates the tasks of a requested service into
synchronous real-time and asynchronous near-real-time
tasks, where real-time tasks include only the operations that
are needed for the user to proceed. In one embodiment, a
real-time task 1s a task that 1s performed with minimal delay,
and a near-real-time task 1s a task that 1s performed 1n the
background without the user having to wait for 1t. In one
embodiment, a real-time task 1s a task that 1s performed with
substantially no delay or with negligible delay, and appears
to a user as being performed almost instantaneously.

The real-time tasks perform the main business function-
ality of a specific identity service. For example, when
requesting a login service, an application sends a message to
authenticate a user’s credentials and get a session cookie 1n
return. What the user experiences 1s logging into the system.
However, several other tasks may be performed 1n connec-
tion with the user’s logging in, such as validating who the
user 1s, auditing, sending notifications, etc. Accordingly,
validating the credentials 1s a task that i1s performed in
real-time so that the user 1s given an HI'TP cookie to start
a session, but the tasks related to notifications (e.g., sending
an email to notify the creation of an account), audits (e.g.,
tracking/recording), etc., are near-real-time tasks that can be
performed asynchronously so that the user can proceed with
least delay.

When an HT'TP request for a microservice 1s received, the
corresponding real-time tasks are performed by the micros-
ervice in the middle tier, and the remaining near-real-time
tasks such as operational logic/events that are not necessar-
1ly subject to real-time processing are oflfloaded to message
queues 628 that support a highly scalable asynchronous
event management system 630 with guaranteed delivery and
processing. Accordingly, certain behaviors are pushed from
the front end to the backend to enable IDCS to provide high
level service to the customers by reducing latencies 1n
response times. For example, a login process may include
validation of credentials, submission of a log report, updat-

10

15

20

25

30

35

40

45

50

55

60

65

16

ing of the last login time, etc., but these tasks can be
offloaded to a message queue and performed 1n near-real-
time as opposed to real-time.

In one example, a system may need to register or create
a new user. The system calls an IDCS SCIM API to create
a user. The end result 1s that when the user 1s created 1n
identity store 618, the user gets a notification email includ-
ing a link to reset theiwr password. When IDCS receives a
request to register or create a new user, the corresponding
microservice looks at configuration data in the operational
database (located 1n global database 620 in FIG. 6) and
determines that the “create user” operation 1s marked with a
“create user” event which 1s identified in the configuration
data as an asynchronous operation. The microservice returns
to the client and 1ndicates that the creation of the user 1s done
successiully, but the actual sending of the notification email
1s postponed and pushed to the backend. In order to do so,
the microservice uses a messaging API 616 to queue the
message 1 queue 628 which is a store.

In order to dequeue queue 628, a messaging microservice,
which 1s an infrastructure microservice, continually runs in
the background and scans queue 628 looking for events in
queue 628. The events 1n queue 628 are processed by event
subscribers 630 such as audit, user notification, application
subscriptions, data analytics, etc. Depending on the task
indicated by an event, event subscribers 630 may commu-
nicate with, for example, audit schema 624, a user notifi-
cation service 634, an identity event subscriber 632, etc. For
example, when the messaging microservice finds the “create
user’ event 1 queue 628, it executes the corresponding
notification logic and sends the corresponding email to the
user.

In one embodiment, queue 628 queues operational events
published by microservices 614 as well as resource events
published by APIs 616 that manage IDCS resources.

IDCS uses a real-time caching structure to enhance sys-
tem performance and user experience. The cache itsell may
also be provided as a microservice. IDCS mmplements an
clastic cache cluster 626 that grows as the number of
customers supported by IDCS scales. Cache cluster 626 may
be implemented with a distributed data grid which 1s dis-
closed 1in more detail below. In one embodiment, write-only
resources bypass cache.

In one embodiment, IDCS runtime components publish
health and operational metrics to a public cloud monitoring
module 636 that collects such metrics of a public cloud such
as Oracle Public Cloud from Oracle Corp.

In one embodiment, IDCS may be used to create a user.
For example, a client application 602 may issue a REST API
call to create a user. Admin service (a platform service 1n
614) delegates the call to a user manager (an infrastructure
library/service 1n 614), which 1n turn creates the user in the
tenant-specific ID store stripe 1 ID store 618. On “User
Create Success™, the user manager audits the operation to the
audit table 1n audit schema 624, and publishes an “i1denti-
ty.user.create.success” event to message queue 628. Identity
subscriber 632 picks up the event and sends a “Welcome”
email to the newly created user, including newly created
login details.

In one embodiment, IDCS may be used to grant a role to
a user, resulting in a user provisioning action. For example,
a client application 602 may 1ssue a REST API call to grant
a user a role. Admin service (a platform service in 614)
delegates the call to a role manager (an infrastructure
library/service 1n 614), who grants the user a role in the
tenant-specific ID store stripe i ID store 618. On “Role
Grant Success”, the role manager audits the operations to the

US 10,764,273 B2

17

audit table 1n audit schema 624, and publishes an “identi-
ty.user.role.grant.success” event to message queue 628.
Identity subscriber 632 picks up the event and evaluates the
provisioming grant policy. If there 1s an active application
grant on the role being granted, a provisioning subscriber
performs some validation, 1mitiates account creation, calls
out the target system, creates an account on the target
system, and marks the account creation as successtul. Each
of these functionalities may result 1n publishing of corre-
sponding events, such as “prov.account.create.initiate”,

“prov.target.create.initiate”, “prov.target.create.success’”, or

“prov.account.create.success”. These events may have their
own business metrics aggregating number of accounts cre-
ated 1n the target system over the last N days.

In one embodiment, IDCS may be used for a user to log
in. For example, a client application 602 may use one of the
supported authentication flows to request a login for a user.
IDCS authenticates the user, and upon success, audits the

operation to the audit table 1n audit schema 624. Upon
fatlure, IDCS audits the failure in audit schema 624, and
publishes “login.user.login.faillure” event 1n message queue
628. A login subscriber picks up the event, updates its
metrics for the user, and determines i additional analytics on
the user’s access history need to be performed.

Accordingly, by implementing “inversion of control”
functionality (e.g., changing the flow of execution to sched-
ule the execution of an operation at a later time so that the
operation 1s under the control of another system), embodi-
ments enable additional event queues and subscribers to be
added dynamically to test new features on a small user
sample before deploying to broader user base, or to process
specific events for specific internal or external customers.

Stateless Functionality

IDCS microservices are stateless, meaning the microser-
vices themselves do not maintain state. “State” refers to the
data that an application uses i1n order to perform its capa-
bilities. IDCS provides multi-tenant functionality by persist-
ing all state into tenant specific repositories in the IDCS data
tier. The middle tier (1.e., the code that processes the
requests) does not have data stored in the same location as
the application code. Accordingly, IDCS 1s highly scalable,
both horizontally and vertically.

To scale vertically (or scale up/down) means to add
resources to (or remove resources from) a single node 1n a
system, typically involving the addition of CPUs or memory
to a single computer. Vertical scalability allows an applica-
tion to scale up to the limits of its hardware. To scale
horizontally (or scale out/in) means to add more nodes to (or
remove nodes from) a system, such as adding a new com-
puter to a distributed software application. Horizontal scal-
ability allows an application to scale almost infinitely, bound
only by the amount of bandwidth provided by the network.

Stateless-ness of the middle tier of IDCS makes it hori-
zontally scalable just by adding more CPUs, and the IDCS
components that perform the work of the application do not
need to have a designated physical infrastructure where a
particular application 1s running. Stateless-ness of the IDCS
middle tier makes IDCS highly available, even when pro-
viding 1identity services to a very large number of customers/
tenants. Fach pass through an IDCS application/service 1s
focused on CPU usage only to perform the application
transaction itself but not use hardware to store data. Scaling,
1s accomplished by adding more slices when the application
1s runmng, while data for the transaction 1s stored at a
persistence layer where more copies can be added when
needed.

10

15

20

25

30

35

40

45

50

55

60

65

18

The IDCS web tier, middle tier, and data tier can each
scale independently and separately. The web tier can be
scaled to handle more HTTP requests. The middle tier can
be scaled to support more service functionality. The data tier
can be scaled to support more tenants.

IDCS Functional View

FIG. 6 A 1s an example block diagram 6005 of a functional
view of IDCS 1n one embodiment. In block diagram 6005,
the IDCS functional stack includes services, shared libraries,
and data stores. The services include IDCS platform services
64056, IDCS premium services 6305, and IDCS infrastruc-
ture services 662b5. In one embodiment, IDCS platform
services 6406 and IDCS premium services 6505 are sepa-
rately deployed Java-based runtime services implementing
the business of IDCS, and IDCS infrastructure services 66254
are separately deployed runtime services providing inira-
structure support for IDCS. The shared libraries include
IDCS 1nfrastructure libraries 6805 which are common code
packaged as shared libraries used by IDCS services and
shared libraries. The data stores are data repositories
required/generated by IDCS, including identity store 6985,
global configuration 7005, message store 7025, global ten-
ant 704b, personalization settings 7065, resources 7085, user
transient data 7105, system transient data 7125, per-tenant
schemas (managed ExaData) 714b, operational store (not
shown), caching store (not shown), etc.

In one embodiment, IDCS platform services 6405
include, for example, OpenlD Connect service 6425,
OAuth2 service 6446, SAML?2 service 6465, and SCIM++
service 648b. In one embodiment, IDCS premium services
include, for example, cloud SSO and governance 6525,
enterprise governance 6545, AuthN broker 6565, federation
broker 63586, and private account management 6605.

IDCS mfirastructure services 6625 and IDCS infrastruc-
ture libraries 6800 provide supporting capabilities as
required by IDCS platform services 64056 to do their work.

In one embodiment, IDCS infrastructure services 6625
include job scheduler 6645, Ul 6665, SSO 668b, reports

670b, cache 672b, storage 674bH, service manager 6760
(public cloud control), and event processor 6785 (user
notifications, app subscriptions, auditing, data analytics). In
one embodiment, IDCS infrastructure libraries 6805 include

data manager APIs 6825, event APIs 684b, storage APIs
6865, authentication APIs 68856, authorization APIs 6905,
cookie APIs 692b, keys APIs 694bH, and credentials APIs
6966. In one embodiment, cloud compute service 6025
(1internal Nimbula) supports the function of IDCS infrastruc-
ture services 6626 and IDCS infrastructure libraries 6805.

In one embodiment, IDCS provides various Uls 6025 for
a consumer of IDCS services, such as customer end user Ul
6045, customer admin Ul 6065, DevOps admin UI 6085,
and login UI 6105. In one embodiment, IDCS allows for
integration 6125 of applications (e.g., customer apps 6145,
partner apps 6165, and cloud apps 618b) and firmware
integration 6205. In one embodiment, various environments
may ntegrate with IDCS to support their access control
needs. Such integration may be provided by, for example,
identity bridge 6225 (providing AD integration, WNA, and
SCIM connector), Apache agent 6245, or MSFT agent 626b.

In one embodiment, internal and external IDCS consum-
ers integrate with the i1dentity services of IDCS over stan-

dards-based protocols 6285, such as OpenlD Connect 6305,
OAuth2 6326, SAML?2 6345, SCIM 63656, and REST/HTTP

638b. This enables use of a domain name system (“DNS”)
to resolve where to route requests, and decouples the con-
suming applications from understanding internal implemen-
tation of the i1dentity services.

US 10,764,273 B2

19

The IDCS functional view in FIG. 6A further includes
public cloud infrastructure services that provide common
functionality that IDCS depends on for user notifications
(cloud notification service 718b), file storage (cloud storage
service 716b), and metrics/alerting for DevOps (cloud moni-
toring service (EM) 72256 and cloud metrics service (Graph-
ite) 7205).

Cloud Gate

In one embodiment, IDCS implements a “Cloud Gate” in
the web tier. Cloud Gate 1s a web server plugin that enables
web applications to externalize user SSO to an 1dentity
management system (e.g., IDCS), similar to WebGate or
WebAgent technologies that work with enterprise IDM
stacks. Cloud Gate acts as a security gatekeeper that secures
access to IDCS APIs. In one embodiment, Cloud Gate 1s
implemented by a web/proxy server plugin that provides a
web Policy Enforcement Point (“PEP”) for protecting HT'TP
resources based on OAuth.

FIG. 7 1s a block diagram 700 of an embodiment that
implements a Cloud Gate 702 running 1n a web server 712
and acting as a Policy Enforcement Point (“PEP”) config-
ured to mtegrate with IDCS Policy Decision Point (“PDP”)
using open standards (e.g., OAuth2, OpenlD Connect, etc.)
while securing access to web browser and REST API
resources 714 of an application. In some embodiments, the
PDP 1s mmplemented at OAuth and/or OpenlD Connect
microservices 704. For example, when a user browser 706
sends a request to IDCS for a login of a user 710, a
corresponding IDCS PDP validates the credentials and then
decides whether the credentials are suflicient (e.g., whether
to request for further credentials such as a second password).
In the embodiment of FIG. 7, Cloud Gate 702 may act both
as the PEP and as the PDP since 1t has a local policy.

As part of one-time deployment, Cloud Gate 702 1s
registered with IDCS as an OAuth2 client, enabling it to
request OIDC and OAuth2 operations against IDCS. There-
alter, it maintains configuration information about an appli-
cation’s protected and unprotected resources, subject to
request matching rules (how to match URLs, e.g., with wild
cards, regular expressions, etc.). Cloud Gate 702 can be
deployed to protect different applications having different
security policies, and the protected applications can be
multi-tenant.

During web browser-based user access, Cloud Gate 702
acts as an OIDC RP 718 initiating a user authentication flow.
If user 710 has no valid local user session, Cloud Gate 702
re-directs the user to the SSO microservice and participates
in the OIDC *“Authorization Code” flow with the SSO
microservice. The flow concludes with the delivery of a
JWT as an 1dentity token. Cloud Gate 708 validates the JWT
(c.g., looks at signature, expiration, destination/audience,
etc.) and 1ssues a local session cookie for user 710. It acts as
a session manager 716 securing web browser access to
protected resources and 1ssuing, updating, and validating the
local session cookie. It also provides a logout URL for
removal of its local session cookie.

Cloud Gate 702 also acts as an HI'TP Basic Auth authen-
ticator, validating HTTP Basic Auth credentials against
IDCS. This behavior 1s supported in both session-less and
session-based (local session cookie) modes. No server-side
IDCS session 1s created 1n this case.

During programmatic access by REST API clients 708,
Cloud Gate 702 may act as an OAuth2 resource server/filter
720 for an application’s protected REST APIs 714. It checks
for the presence of a request with an authorization header
and an access token. When client 708 (e.g., mobile, web
apps, JavaScript, etc.) presents an access token (1ssued by

10

15

20

25

30

35

40

45

50

55

60

65

20

IDCS) to use with a protected REST API 714, Cloud Gate
702 validates the access token before allowing access to the
API (e.g., signature, expiration, audience, etc.). The original
access token 1s passed along unmodified.

Generally, OAuth 1s used to generate either a client
identity propagation token (e.g., indicating who the client is)
or a user 1dentity propagation token (e.g., indicating who the
user 1s). In the embodiments, the implementation of OAuth
in Cloud Gate 1s based on a JW'T which defines a format for
web tokens, as provided by, e.g., IETFE, RFC 7519.

When a user logs 1n, a JWT 1s 1ssued. The JW'T 1s signed
by IDCS and supports multi-tenant functionality i IDCS.
Cloud Gate validates the JW'T 1ssued by IDCS to allow for
multi-tenant functionality 1n IDCS. Accordingly, IDCS pro-
vides multi-tenancy in the physical structure as well as 1n the
logical business process that underpins the security model.

lenancy lypes

IDCS specifies three types of tenancies: customer ten-
ancy, client tenancy, and user tenancy. Customer or resource
tenancy specifies who the customer of IDCS 1s (i.e., for
whom 1s the work being performed). Client tenancy speci-
fies which client application 1s trying to access data (i.e.,
what application 1s doing the work). User tenancy specifies
which user 1s using the application to access data (1.e., by
whom 1s the work being performed). For example, when a
prolessional services company provides system integration
functionality for a warehouse club and uses IDCS {for
providing 1dentity management for the warehouse club
systems, user tenancy corresponds to the professional ser-
vices company, client tenancy is the application that 1s used
to provide system integration functionality, and customer
tenancy 1s the warehouse club.

Separation and i1dentification of these three tenancies
enables multi-tenant functionality 1n a cloud-based service.
Generally, for on-premise software that 1s installed on a
physical machine on-premise, there 1s no need to specily
three different tenancies since a user needs to be physically
on the machine to log 1n. However, 1n a cloud-based service
structure, embodiments use tokens to determine who 1s
using what application to access which resources. The three
tenancies are codified by tokens, enforced by Cloud Gate,
and used by the business services 1 the middle tier. In one
embodiment, an OAuth server generates the tokens. In
various embodiments, the tokens may be used 1n conjunc-
tion with any security protocol other than OAuth.

Decoupling user, client, and resource tenancies provides
substantial business advantages for the users of the services
provided by IDCS. For example, 1t allows a service provider
that understands the needs of a business (e.g., a healthcare
business) and their 1dentity management problems to buy
services provided by IDCS, develop their own backend
application that consumes the services of IDCS, and provide
the backend applications to the target businesses. Accord-
ingly, the service provider may extend the services of IDCS
to provide their desired capabilities and offer those to certain
target businesses. The service provider does not have to
build and run software to provide identity services but can
instead extend and customize the services of IDCS to suit the
needs of the target businesses.

Some known systems only account for a single tenancy
which 1s customer tenancy. However, such systems are
inadequate when dealing with access by a combination of
users such as customer users, customer’s partners, custom-
er’s clients, clients themselves, or clients that customer has
delegated access to. Defimng and enforcing multiple tenan-
cies 1n the embodiments facilitates the 1dentity management
functionality over such variety of users.

US 10,764,273 B2

21

In one embodiment, one entity of IDCS does not belong
to multiple tenants at the same time; it belongs to only one
tenant, and a “tenancy” 1s where artifacts live. Generally,
there are multiple components that implement certain func-
tions, and these components can belong to tenants or they
can belong to infrastructure. When infrastructure needs to
act on behalf of tenants, i1t interacts with an entity service on
behalf of the tenant. In that case, infrastructure 1tself has 1ts
own tenancy and customer has its own tenancy. When a
request 1s submitted, there can be multiple tenancies
involved in the request.

For example, a client that belongs to “tenant 17 may
execute a request to get a token for “tenant 2” speciiying a
user 1 “tenant 3.” As another example, a user living in
“tenant 1” may need to perform an action in an application
owned by “tenant 2”. Thus, the user needs to go to the
resource namespace of “tenant 2” and request a token for
themselves. Accordingly, delegation of authority 1s accom-
plished by identifying “who” can do “what” to “whom.” As
yet another example, a first user working for a first organi-
zation (“tenant 1”) may allow a second user working for a
second organization (“tenant 2”) to have access to a docu-
ment hosted by a third organization (“tenant 37).

In one example, a client 1n “tenant 17 may request an
access token for a user i “tenant 2” to access an application
in “tenant 3”. The client may do so by mvoking an OAuth
request for the token by going to “http://tenant3/oauth/
token”. The client 1dentifies itself as a client that lives in
“tenant 17 by including a *“‘client assertion” 1n the request.
The client assertion 1includes a client ID (e.g., “client 17) and
the client tenancy “tenant 17. As “client 17 1n “tenant 17, the
client has the right to invoke a request for a token on “tenant
3” and the client wants the token for a user in “tenant 2”.
Accordingly, a “user assertion” 1s also passed as part of the
same HTTP request. The access token that 1s generated waill
be 1ssued in the context of the target tenancy which is the
application tenancy (“tenant 3”) and will include the user
tenancy (“tenant 27).

In one embodiment, in the data tier, each tenant 1s
implemented as a separate stripe. From a data management
perspective, artifacts live 1 a tenant. From a service per-
spective, a service knows how to work with different tenants,
and the multiple tenancies are different dimensions in the
business function of a service. FIG. 8 1llustrates an example
system 800 implementing multiple tenancies 1n an embodi-
ment. System 800 includes a client 802 that requests a
service provided by a microservice 804 that understands
how to work with data in a database 806. The database
includes multiple tenants 808 and each tenant includes the
artifacts of the corresponding tenancy. In one embodiment,
microservice 804 1s an OAuth microservice requested
through https://tenant3/oauth/token for getting a token. The
function of the OAuth microservice 1s performed 1n micros-
ervice 804 using data from database 806 to verity that the
request of client 802 1s legitimate, and 1if 1t 1s legitimate, use
the data from diflerent tenancies 808 to construct the token.
Accordingly, system 800 1s multi-tenant 1n that 1t can work
in a cross-tenant environment by not only supporting ser-
vices coming into each tenancy, but also supporting services
that can act on behalf of different tenants.

System 800 1s advantageous since microservice 804 1s
physically decoupled from the data 1n database 806, and by
replicating the data across locations that are closer to the
client, microservice 804 can be provided as a local service
to the clients and system 800 can manage the availability of
the service and provide 1t globally.

10

15

20

25

30

35

40

45

50

55

60

65

22

In one embodiment, microservice 804 1s stateless, mean-
ing that the machine that runs microservice 804 does not
maintain any markers pointing the service to any specific
tenants. Instead, a tenancy may be marked, for example, on
the host portion of a URL of a request that comes 1n. That
tenancy points to one of tenants 808 1n database 806. When
supporting a large number of tenants (e.g., millions of
tenants), microservice 804 cannot have the same number of
connections to database 806, but instead uses a connection
pool 810 which provides the actual physical connections to
database 806 in the context of a database user.

Generally, connections are built by supplying an under-
lying driver or provider with a connection string, which 1s
used to address a specific database or server and to provide
instance and wuser authentication credentials (e.g.,
“Server=sql_box;Database=Common;User ID=ud;
Pwd=password;”). Once a connection has been built, 1t can
be opened and closed, and properties (e.g., the command
time-out length, or transaction, 1f one exists) can be set. The
connection string includes a set of key-value pairs, dictated
by the data access interface of the data provider. A connec-
tion pool 1s a cache of database connections maintained so
that the connections can be reused when future requests to
a database are required. In connection pooling, after a
connection 1s created, 1t 1s placed in the pool and 1t 15 used
again so that a new connection does not have to be estab-
lished. For example, when there needs to be ten connections
between microservice 804 and database 808, there will be
ten open connections in connection pool 810, all 1n the
context of a database user (e.g., 1n association with a specific
database user, e¢.g., who 1s the owner of that connection,
whose credentials are being validated, 1s 1t a database user,
1s 1t a system credential, etc.).

The connections in connection pool 810 are created for a
system user that can access anything. Therefore, 1n order to
correctly handle auditing and privileges by microservice 804
processing requests on behall of a tenant, the database
operation 1s performed 1n the context of a “proxy user” 812
associated with the schema owner assigned to the specific
tenant. This schema owner can access only the tenancy that
the schema was created for, and the value of the tenancy 1s
the value of the schema owner. When a request 1s made for
data 1n database 806, microservice 804 uses the connections
in connection pool 810 to provide that data. Accordingly,
multi-tenancy 1s achieved by having stateless, elastic middle
tier services process incoming requests 1n the context of
(e.g., 1n association with) the tenant-specific data store
binding established on a per request basis on top of the data
connection created in the context of (e.g., 1n association
with) the data store proxy user associated with the resource
tenancy, and the database can scale independently of the
SErvices.

The following provides an example functionality for
implementing proxy user 812:
dbOperation=<prepare DB command to execute>
dbConnection=getDBConnectionFromPool()
dbConnection.setProxyUser (resourcelenant)

result=dbConnection.executeOperation (dbOperation)

In this functionality, microservice 804 sets the “Proxy User”
setting on the connection pulled from connection pool 810
to the ““Tenant,” and performs the database operation in the
context of the tenant while using the database connection 1n
connection pool 810.

When striping every table to configure different columns
in a same database for different tenants, one table may
include all tenants’ data mixed together. In contrast, one
embodiment provides a tenant-driven data tier. The embodi-

e

US 10,764,273 B2

23

ment does not stripe the same database for different tenants,
but mstead provides a different physical database per tenant.
For example, multi-tenancy may be implemented by using a
pluggable database (e.g., Oracle Database 12¢ from Oracle
Corp.) where each tenant 1s allocated a separate partition. At
the data tier, a resource manager processes the request and
then asks for the data source for the request (separate from
metadata). The embodiment performs runtime switch to a
respective data source/store per request. By 1solating each
tenant’s data from the other tenants, the embodiment pro-
vides improved data security.

In one embodiment, various tokens codity diflerent ten-
ancies. A URL token may identily the tenancy of the
application that requests a service. An 1dentity token may
codity the i1dentity of a user that 1s to be authenticated. An
access token may 1dentify multiple tenancies. For example,
an access token may codify the tenancy that 1s the target of
such access (e.g., an application tenancy) as well as the user
tenancy of the user that 1s given access. A client assertion
token may 1dentify a client ID and the client tenancy. A
user-assertion token may identily the user and the user
tenancy.

In one embodiment, an 1dentity token includes at least a
claim/statement 1indicating the user tenant name (1.e., where
the user lives). A “claim™ (as used by one of ordinary skall
in the security field) in connection with authorization tokens
1s a statement that one subject makes about itself or another
subject. The statement can be about a name, i1dentity, key,
group, privilege, or capability, for example. Claims are
1ssued by a provider, and they are given one or more values
and then packaged 1n security tokens that are 1ssued by an
issuer, commonly known as a security token service
(“STS”).

In one embodiment, an access token includes at least a
claim/statement indicating the resource tenant name at the
time the request for the access token was made (e.g., the
customer), a claim indicating the user tenant name, a claim
indicating the name of the OAuth client making the request,
and a claim indicating the client tenant name. In one
embodiment, an access token may be implemented accord-
ing to the following JSON functionality:

"y

"y

"tok_type " : "AT",

"user_ 1d" : "testuser',

"user__tenantname” : "<value-oi-identity-tenant>"
“tenant” : “<value-of-resource-tenant>"’
“client__1d” : “testclient™,

“client_ tenantname™: “<value-of-client-tenant>"

In one embodiment, a client assertion token includes at
least a claim indicating the client tenant name, and a claim
indicating the name of the OAuth client making the request.

The tokens and/or multiple tenancies described herein
may be implemented 1n any multi-tenant cloud-based ser-
vice other than IDCS. For example, the tokens and/or
multiple tenancies described herein may be implemented in
SaaS or Enterprise Resource Planning (“ERP”) services.

FI1G. 9 15 a block diagram of a network view 900 of IDCS
in one embodiment. FIG. 9 illustrates network interactions
that are performed 1n one embodiment between application
“zones” 904. Applications are broken into zones based on
the required level of protection and the implementation of
connections to various other systems (e.g., SSL zone, no

10

15

20

25

30

35

40

45

50

55

60

65

24

SSL zone, etc.). Some application zones provide services
that require access from the inside of IDCS, while some
application zones provide services that require access from
the outside of IDCS, and some are open access. Accordingly,
a respective level of protection 1s enforced for each zone.

In the embodiment of FIG. 9, service to service commu-
nication 1s performed using HTTP requests. In one embodi-
ment, IDCS uses the access tokens described herein not only
to provide services but also to secure access to and within
IDCS 1tself. In one embodiment, IDCS microservices are
exposed through RESTIul interfaces and secured by the
tokens described herein.

In the embodiment of FIG. 9, any one of a variety of
applications/services 902 may make HTTP calls to IDCS
APIs to use IDCS services. In one embodiment, the HTTP
requests of applications/services 902 go through an Oracle
Public Cloud Load Balancing External Virtual IP address
(“VIP”) 906 (or other similar technologies), a public cloud
web routing tier 908, and an IDCS Load Balancing Internal
VIP appliance 910 (or other similar technologies), to be
received by IDCS web routing tier 912. IDCS web routing
tier 912 recerves the requests coming 1n from the outside or
from the 1nside of IDCS and routes them across either an
IDCS platform services tier 914 or an IDCS 1nfrastructure
services tier 916. IDCS platform services tier 914 includes
IDCS microservices that are invoked from the outside of
IDCS, such as OpenlD Connect, OAuth, SAML, SCIM, etc.
IDCS frastructure services tier 916 includes supporting
microservices that are mvoked from the mside of IDCS to
support the functionality of other IDCS microservices.
Examples of IDCS infrastructure microservices are UI, SSO,
reports, cache, job scheduler, service manager, functionality
for making keys, etc. An IDCS cache tier 926 supports
caching functionality for IDCS platform services tier 914
and IDCS 1infrastructure services tier 916.

By enforcing security both for outside access to IDCS and
within IDCS, customers of IDCS can be provided with
outstanding security compliance for the applications they
run.

In the embodiment of FIG. 9, other than the data tier 918
which communicates based on Structured Query Language
(“SQL”) and the ID store tier 920 that communicates based
on LDAP, OAuth protocol 1s used to protect the communi-
cation among IDCS components (e.g., microservices) within
IDCS, and the same tokens that are used for securing access
from the outside of IDCS are also used for security within
IDCS. That 1s, web routing tier 912 uses the same tokens and
protocols for processing the requests 1t receives regardless of
whether a request 1s received from the outside of IDCS or
from the iside of IDCS. Accordingly, IDCS provides a
single consistent security model for protecting the entire
system, thereby allowing for outstanding security compli-
ance since the fewer security models implemented 1n a
system, the more secure the system 1s.

In the IDCS cloud environment, applications communi-
cate by making network calls. The network call may be
based on an applicable network protocol such as HT'TP,
Transmission Control Protocol (“TCP”), User Datagram
Protocol (“UDP”), etc. For example, an application “X” may
communicate with an application “Y” based on HTTP by
exposing application “Y” as an HTTP Uniform Resource
Locator (“URL”). In one embodiment, “Y” 1s an IDCS
microservice that exposes a number of resources each cor-
responding to a capability. When “X” (e.g., another IDCS
microservice) needs to call “Y”, 1t constructs a URL that
includes “Y” and the resource/capability that needs to be
invoked (e.g., https:/host/Y/resource), and makes a corre-

US 10,764,273 B2

25

sponding REST call which goes through web routing tier
912 and gets directed to “Y”.

In one embodiment, a caller outside the IDCS may not
need to know where “Y” 1s, but web routing tier 912 needs
to know where application “Y” 1s runming. In one embodi-
ment, IDCS implements discovery functionality (1mple-
mented by an API of OAuth service) to determine where
cach application 1s runming so that there is no need for the
availability of static routing information.

In one embodiment, an enterprise manager (“EM”) 922
provides a “single pane of glass™ that extends on-premise
and cloud-based management to IDCS. In one embodiment,
a “Chet” server 924 which 1s a configuration management
tool from Chet Software, Inc., provides configuration man-
agement functionality for wvarious IDCS tiers. In one
embodiment, a service deployment infrastructure and/or a
persistent stored module 928 may send OAuth2 HTTP
messages to IDCS web routing tier 912 for tenant lifecycle
management operations, public cloud lifecycle management
operations, or other operations. In one embodiment, IDCS
infrastructure services tier 916 may send ID/password HT'TP
messages to a public cloud notification service 930 or a
public cloud storage service 932.

Cloud Access Control—SSO

One embodiment supports lightweight cloud standards for
implementing a cloud scale SSO service. Examples of
lightweight cloud standards are HTTP, REST, and any
standard that provides access through a browser (since a web
browser 1s lightweight). On the contrary, SOAP 1s an
example of a heavy cloud standard which requires more
management, configuration, and tooling to build a client
with. The embodiment uses OpenlD Connect semantics for
applications to request user authentication against IDCS.
The embodiment uses lightweight HT'TP cookie-based user
session tracking to track user’s active sessions at IDCS
without statefull server-side session support. The embodi-
ment uses JWT-based identity tokens for applications to use
in mapping an authenticated identity back to their own local
session. The embodiment supports integration with feder-
ated 1dentity management systems, and exposes SAML IDP
support for enterprise deployments to request user authen-
tication against IDCS.

FIG. 10 1s a block diagram 1000 of a system architecture
view ol SSO functionality i IDCS 1n one embodiment. The
embodiment enables client applications to leverage stan-
dards-based web protocols to 1mitiate user authentication
flows. Applications requiring SSO integration with a cloud
system may be located 1n enterprise data centers, in remote
partner data centers, or even operated by a customer on-
premise. In one embodiment, different IDCS platform ser-
vices 1mplement the business of SSO, such as OpenlD
Connect for processing login/logout requests from con-
nected native applications (1.e., applications utilizing Ope-
nID Connect to integrate with IDCS); SAML IDP service for
processing browser-based login/logout requests from con-
nected applications; SAML SP service for orchestrating user
authentication against an external SAML IDP; and an 1inter-
nal IDCS SSO service for orchestrating end user login
ceremony including local or federated login flows, and for
managing IDCS host session cookie. Generally, HT'TP
works either with a form or without a form. When 1t works
with a form, the form i1s seen within a browser. When it
works without a form, 1t functions as a client to server
communication. Both OpenlD Connect and SAML require
the ability to render a form, which may be accomplished by
presence of a browser or virtually performed by an appli-
cation that acts as 1f there 1s a browser. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

26

an application client implementing user authentication/SSO
through IDCS needs to be registered 1n IDCS as an OAuth?2
client and needs to obtain client identifier and credentials
(e.g., ID/password, ID/certificate, etc.).

The example embodiment of FIG. 10 includes three
components/microservices that collectively provide login
capabilities, including two platform microservices: OAuth2
1004 and SAML2 1006, and one infrastructure microser-
vice: SSO 1008. In the embodiment of FIG. 10, IDCS
provides an “Identity Metasystem™ in which SSO services
1008 are provided over different types of applications, such
as browser based web or native applications 1010 requiring
3-legged OAuth flow and acting as an OpenlD Connect
relaying party (“RP,” an application that outsources its user
authentication function to an IDP), native applications 1011
requiring 2-legged OAuth flow and acting as an OpenlD
Connect RP, and web applications 1012 acting as a SAML
SP.

Generally, an Identity Metasystem 1s an interoperable
architecture for digital identity, allowing for employing a
collection of digital identities based on multiple underlying
technologies, 1mplementations, and providers. LDAP,
SAML, and OAuth are examples of different security stan-
dards that provide 1dentity capability and can be the basis for
building applications, and an Identity Metasystem may be
configured to provide a unified security system over such
applications. The LDAP security model specifies a specific
mechanism for handling 1dentity, and all passes through the
system are to be strictly protected. SAML was developed to
allow one set of applications securely exchange information
with another set of applications that belong to a diflerent
organization in a different security domain. Since there 1s no
trust between the two applications, SAML was developed to
allow for one application to authenticate another application
that does not belong to the same organization. OAuth
provides OpenlD Connect that 1s a lightweight protocol for
performing web based authentication.

In the embodiment of FIG. 10, when an OpenlD appli-
cation 1010 connects to an OpenlD server in IDCS, 1ts
“channels™ request SSO service. Similarly, when a SAML
application 1012 connects to a SAML server 1n IDCS, 1ts
“channels™ also request SSO service. In IDCS, a respective
microservice (e.g., an OpenlD microservice 1004 and a
SAML microservice 1006) will handle each of the applica-
tions, and these microservices request SSO capability from
SSO microservice 1008. This architecture can be expanded
to support any number of other security protocols by adding
a microservice for each protocol and then using SSO micros-
ervice 1008 for SSO capability. SSO microservice 1008
issues the sessions (1.e., an SSO cookie 1014 1s provided)
and 1s the only system in the architecture that has the
authority to 1ssue a session. An IDCS session 1s realized
through the use of SSO cookie 1014 by browser 1002.
Browser 1002 also uses a local session cookie 1016 to
manage 1ts local session.

In one embodiment, for example, within a browser, a user
may use a first application based on SAML and get logged
in, and later use a second application built with a different
protocol such as OAuth. The user 1s provided with SSO on
the second application within the same browser. Accord-
ingly, the browser 1s the state or user agent and maintains the
cookies.

In one embodiment, SSO microservice 1008 provides
login ceremony 1018, ID/password recovery 1020, first time
login flow 1022, an authentication manager 1024, an HI'TP
cookie manager 1026, and an event manager 1028. Login
ceremony 1018 mmplements SSO functionality based on

US 10,764,273 B2

27

customer settings and/or application context, and may be
configured according to a local form (1.e., basic Auth), an
external SAML IDP, an external OIDC IDP, etc. ID/pass-
word recovery 1020 1s used to recover a user’s 1D and/or
password. First time login flow 1022 1s implemented when
a user logs 1n for the first time (1.¢., an SSO session does not
yet exist). Authentication manager 1024 i1ssues authentica-
tion tokens upon successful authentication. HI'TP cookie
manager 1026 saves the authentication token i an SSO
cookie. Event manager 1028 publishes events related to SSO
functionality.

In one embodiment, interactions between OAuth micros-
ervice 1004 and SSO microservice 1008 are based on
browser redirects so that SSO microservice 1008 challenges
the user using an HI'ML form, validates credentials, and
1ssues a session cookie.

In one embodiment, for example, OAuth microservice
1004 may receive an authorization request from browser
1002 to authenticate a user of an application according to
3-legged OAuth tlow. OAuth microservice 1004 then acts as
an OIDC provider 1030, redirects browser 1002 to SSO
microservice 1008, and passes along application context.
Depending on whether the user has a valid SSO session or
not, SSO microservice 1008 either validates the existing
session or performs a login ceremony. Upon successiul
authentication or validation, SSO microservice 1008 returns
authentication context to OAuth microservice 1004. OAuth
microservice 1004 then redirects browser 1002 to a callback
URL with an authonization (“AZ”) code. Browser 1002
sends the AZ code to OAuth microservice 1004 to request
the required tokens 1032. Browser 1002 also includes its
client credentials (obtained when registering in IDCS as an
OAuth2 client) 1n the HT'TP authorization header. OAuth
microservice 1004 1n return provides the required tokens
1032 to browser 1002. In one embodiment, tokens 1032
provided to browser 1002 include JW identity and access
tokens signed by the IDCS OAuth2 server. Further details of
this functionality are disclosed below with reference to FIG.
11.

In one embodiment, for example, OAuth microservice
1004 may receive an authorization request from a native
application 1011 to authenticate a user according to a
2-legged OAuth tlow. In this case, an authentication man-
ager 1034 1n OAuth microservice 1004 performs the corre-
sponding authentication (e.g., based on ID/password
received from a client 1011) and a token manager 1036
1ssues a corresponding access token upon successiul authen-
tication.

In one embodiment, for example, SAML microservice
1006 may receive an SSO POST request from a browser to
authenticate a user of a web application 1012 that acts as a
SAML SP. SAML microservice 1006 then acts as a SAML
IDP 1038, redirects browser 1002 to SSO microservice
1008, and passes along application context. Depending on
whether the user has a valid SSO session or not, SSO
microservice 1008 either validates the existing session or
performs a login ceremony. Upon successiul authentication
or validation, SSO microservice 1008 returns authentication
context to SAML microservice 1006. SAML microservice
then redirects to the SP with required tokens.

In one embodiment, for example, SAML microservice
1006 may act as a SAML SP 1040 and go to a remote SAML
IDP 1042 (e.g., an active directory federation service
(“ADFS”)). One embodiment implements the standard
SAML/AD flows. In one embodiment, interactions between
SAML microservice 1006 and SSO microservice 1008 are
based on browser redirects so that SSO microservice 1008

10

15

20

25

30

35

40

45

50

55

60

65

28

challenges the user using an HI'ML form, validates creden-
tials, and 1ssues a session cookie.

In one embodiment, the interactions between a compo-
nent within IDCS (e.g., 1004, 1006, 1008) and a component
outside IDCS (e.g., 1002, 1011, 1042) are performed
through firewalls 1044.

Login/Logout Flow

FIG. 11 1s a message sequence tlow 1100 of SSO func-
tionality provided by IDCS 1n one embodiment. When a user
uses a browser 1102 to access a client 1106 (e.g., a browser-
based application or a mobile/native application), Cloud
Gate 1104 acts as an application enforcement point and
enforces a policy defined 1n a local policy text file. If Cloud
Gate 1104 detects that the user has no local application
session, 1t requires the user to be authenticated. In order to
do so, Cloud Gate 1104 redirects browser 1102 to OAuth2
microservice 1110 to imtiate OpenlD Connect login flow
against the OAuth2 microservice 1110 (3-legged AZ Grant
flow with scopes="openid profile”).

The request of browser 1102 traverses IDCS routing tier
web service 1108 and Cloud Gate 1104 and reaches O Auth?2
microservice 1110. OAuth2 microservice 1110 constructs
the application context (1.e., metadata that describes the
application, e.g., identity of the connecting application,
client ID, configuration, what the application can do, etc.),
and redirects browser 1102 to SSO microservice 1112 to log
1.

If the user has a valid SSO session, SSO microservice
1112 validates the existing session without starting a login
ceremony. If the user does not have a valid SSO session (1.¢.,
no session cookie exists), the SSO microservice 1112 1niti-
ates the user login ceremony 1n accordance with customer’s
login preferences (e.g., displaying a branded login page). In
order to do so, the SSO microservice 1112 redirects browser
1102 to a login application service 1114 implemented 1n
JavaScript. Login application service 1114 provides a login
page 1 browser 1102. Browser 1102 sends a REST POST to
the SSO microservice 1112 including login credentials. The
SSO microservice 1112 generates an access token and sends
it to Cloud Gate 1104 1n a REST POST. Cloud Gate 1104
sends the authentication information to Admin SCIM
microservice 1116 to validate the user’s password. Admin
SCIM microservice 1116 determines successiul authentica-
tion and sends a corresponding message to SSO microser-
vice 1112.

In one embodiment, during the login ceremony, the login
page does not display a consent page, as “login” operation
requires no further consent. Instead, a privacy policy 1s
stated on the login page, informing the user about certain
profile attributes being exposed to applications. During the
login ceremony, the SSO microservice 1112 respects cus-
tomer’s IDP preferences, and 1f configured, redirects to the
IDP for authentication against the configured IDP.

Upon successful authentication or wvalidation, SSO
microservice 1112 redirects browser 1102 back to OAuth?2
microservice 1110 with the newly created/updated SSO host
HTTP cookie (e.g., the cookie that 1s created in the context
of the host indicated by “HOSTURL”) containing the user’s
authentication token. OAuth2 microservice 1110 returns AZ
Code (e.g., an OAuth concept) back to browser 1102 and
redirects to Cloud Gate 1104. Browser 1102 sends AZ Code
to Cloud Gate 1104, and Cloud Gate 1104 sends a REST
POST to OAuth2 microservice 1110 to request the access
token and the identity token. Both tokens are scoped to
OAuth microservice 1110 (indicated by the audience token
claim). Cloud Gate 1104 receives the tokens from OAuth2
microservice 1110.

US 10,764,273 B2

29

Cloud Gate 1104 uses the 1dentity token to map the user’s
authenticated 1dentity to 1ts internal account representation,
and 1t may save this mapping in 1ts own HT'TP cookie. Cloud
Gate 1104 then redirects browser 1102 to client 1106.
Browser 1102 then reaches client 1106 and receives a
corresponding response from client 1106. From this point
on, browser 1102 can access the application (1.e., client
1106) secamlessly for as long as the application’s local
cookie 1s valid. Once the local cookie becomes 1nvalid, the
authentication process 1s repeated.

Cloud Gate 1104 further uses the access token received in
a request to obtain “userinfo” from OAuth2 microservice
1110 or the SCIM microservice. The access token 1s suili-
cient to access the “userinio” resource for the attributes
allowed by the “profile” scope. It 1s also suilicient to access
“/me” resources via the SCIM microservice. In one embodi-
ment, by default, the recerved access token 1s only good for
user profile attributes that are allowed under the “profile”
scope. Access to other profile attributes 1s authorized based
on additional (optional) scopes submitted 1n the AZ grant
login request 1ssued by Cloud Gate 1104.

When the user accesses another OAuth2 integrated con-
necting application, the same process repeats.

In one embodiment, the SSO ntegration architecture uses
a similar OpenlD Connect user authentication flow {for
browser-based user logouts. In one embodiment, a user with
an existing application session accesses Cloud Gate 1104 to
initiate a logout. Alternatively, the user may have initiated
the logout on the IDCS side. Cloud Gate 1104 terminates the
application-specific user session, and 1nitiates OAuth2 Ope-
nID Provider (“OP”") logout request against OAuth2 micros-
ervice 1110. OAuth2 microservice 1110 redirects to SSO
microservice 1112 that kills the user’s host SSO cookie. SSO
microservice 1112 imtiates a set of redirects (OAuth2 OP
and SAML IDP) against known logout endpoints as tracked
in user’s SSO cookie.

In one embodiment, if Cloud Gate 1104 uses SAML
protocol to request user authentication (e.g., login), a similar
process starts between the SAML microservice and SSO
microservice 1112.

Cloud Cache

One embodiment provides a service/capability referred to
as Cloud Cache. Cloud Cache 1s provided in IDCS to
support communication with applications that are LDAP
based (e.g., email servers, calendar servers, some business
applications, etc.) since IDCS does not communicate
according to LDAP while such applications are configured
to communicate only based on LDAP. Typically, cloud
directories are exposed via REST APIs and do not commu-
nicate according to the LDAP protocol. Generally, managing,
LDAP connections across corporate firewalls requires spe-
cial configurations that are diflicult to set up and manage.

To support LDAP based applications, Cloud Cache trans-
lates LDAP communications to a protocol suitable for
communication with a cloud system. Generally, an LDAP
based application uses a database via LDAP. An application
may be alternatively configured to use a database via a
different protocol such as SQL. However, LDAP provides a
hierarchical representation of resources in tree structures,
while SQL represents data as tables and fields. Accordingly,
LDAP may be more desirable for searching functionality,
while SQL may be more desirable for transactional func-
tionality.

In one embodiment, services provided by IDCS may be
used 1n an LDAP based application to, for example, authen-
ticate a user of the applications (1.e., an 1dentity service) or
enforce a security policy for the application (1.e., a security

10

15

20

25

30

35

40

45

50

55

60

65

30

service). In one embodiment, the interface with IDCS 1s
through a firewall and based on HTTP (e.g., REST). Typi-
cally, corporate firewalls do not allow access to internal
LDAP communication even 1f the communication 1imple-
ments Secure Sockets Layer (“SSL”), and do not allow a
TCP port to be exposed through the firewall. However,
Cloud Cache translates between LDAP and HTTP to allow

LDAP based applications reach services provided by IDCS,
and the firewall will be open for HT'TP.

Generally, an LDAP directory may be used in a line of
business such as marketing and development, and defines
users, groups, works, etc. In one example, a marketing and
development business may have different targeted custom-
ers, and for each customer, may have their own applications,
users, groups, works, etc. Another example of a line of
business that may run an LDAP cache directory 1s a wireless
service provider. In this case, each call made by a user of the
wireless service provider authenticates the user’s device
against the LDAP directory, and some of the corresponding
information i1n the LDAP directory may be synchronized
with a billing system. In these examples, LDAP provides
functionality to physically segregate content that 1s being
searched at runtime.

In one example, a wireless service provider may handle 1ts
own 1dentity management services for their core business
(e.g., regular calls), while using services provided by IDCS
in support of a short term marketing campaign. In this case,
Cloud Cache ““flattens” LDAP when 1t has a single set of
users and a single set of groups that 1t runs against the cloud.
In one embodiment, any number of Cloud Caches may be
implemented 1n IDCS.

Distributed Data Grid

In one embodiment, the cache cluster in IDCS 1s 1mple-
mented based on a distributed data grid, as disclosed, for
example, in U.S. Pat. Pub. No. 2016/0092540, the disclosure
of which 1s hereby incorporated by reference. A distributed
data grid 1s a system in which a collection of computer
servers work together 1n one or more clusters to manage
information and related operations, such as computations,
within a distributed or clustered environment. A distributed
data grid can be used to manage application objects and data
that are shared across the servers. A distributed data gnid
provides low response time, high throughput, predictable
scalability, continuous availability, and information reliabil-
ity. In particular examples, distributed data grids, such as,
¢.g., the Oracle Coherence data grid from Oracle Corp., store
information in-memory to achieve higher performance, and
employ redundancy 1n keeping copies of that information
synchronized across multiple servers, thus ensuring resil-
iency of the system and continued availability of the data 1n
the event of failure of a server.

In one embodiment, IDCS 1mplements a distributed data
orid such as Coherence so that every microservice can
request access to shared cache objects without getting
blocked. Coherence 1s a proprietary Java-based in-memory
data grid, designed to have better reliability, scalability, and
performance than traditional relational database manage-
ment systems. Coherence provides a peer to peer (1.e., with
no central manager), in-memory, distributed cache.

FIG. 12 1llustrates an example of a distributed data gnd
1200 which stores data and provides data access to clients
1250 and implements embodiments of the invention. A “data
orid cluster”, or “distributed data grid”, 1s a system com-
prising a plurality of computer servers (e.g., 1220a, 12205,
1220¢, and 1220d) which work together in one or more
clusters (e.g., 1200a, 12005, 1200¢) to store and manage
information and related operations, such as computations,

US 10,764,273 B2

31

within a distributed or clustered environment. While distrib-
uted data grid 1200 1s illustrated as comprising four servers

1220a, 122056, 1220c, 12204, with five data nodes 1230aq,
12305, 1230¢, 12304, and 1230e 1n a cluster 1200q, the
distributed data grid 1200 may comprise any number of
clusters and any number of servers and/or nodes 1n each
cluster. In an embodiment, distributed data grid 1200 imple-
ments the present invention.

As 1llustrated in FIG. 12, a distributed data grid provides
data storage and management capabilities by distributing
data over a number of servers (e.g., 1220a, 12205, 1220c,
and 1220d) working together. Each server of the data gnid
cluster may be a conventional computer system such as, for
example, a “commodity x86” server hardware platform with
one to two processor sockets and two to four CPU cores per
processor socket. Each server (e.g., 1220q, 12205, 1220c,
and 12204) 1s configured with one or more CPUs, Network
Interface Cards (“NIC”), and memory including, {for
example, a minimum of 4 GB of RAM up to 64 GB of RAM
or more. Server 1220q 1s 1illustrated as having CPU 1222a,
Memory 1224a, and NIC 1226a (these elements are also
present but not shown in the other Servers 122056, 1220c,
1220d). Optionally, each server may also be provided with
flash memory (e.g., SSD 1228a) to provide spillover storage
capacity. When provided, the SSD capacity 1s preferably ten
times the size of the RAM. The servers (e.g., 1220q, 12205,
1220c, 12204) 1n a data grid cluster 1200a are connected
using high bandwidth NICs (e.g., PCI-X or PCle) to a

high-performance network switch 1220 (for example, giga-
bit Ethernet or better).

A cluster 1200a pretferably contains a minimum of four
physical servers to avoid the possibility of data loss during,

a failure, but a typical installation has many more servers.
Failover and failback are more eflicient the more servers that
are present 1n each cluster and the impact of a server failure
on a cluster 1s lessened. To minimize communication time
between servers, each data grid cluster 1s 1deally confined to
a single switch 1202 which provides single hop communi-
cation between servers. A cluster may thus be limited by the
number of ports on the switch 1202. A typical cluster will

therefore include between 4 and 96 physical servers.

In most Wide Area Network (“WAN™) configurations of a
distributed data grid 1200, each data center 1n the WAN has
independent, but interconnected, data grid clusters (e.g.,
1200a, 12005, and 1200c). A WAN may, for example,
include many more clusters than shown in FIG. 12. Addi-
tionally, by using interconnected but independent clusters
(e.g., 1200a, 12005, 1200¢) and/or locating interconnected,
but independent, clusters in data centers that are remote from
one another, the distributed data grid can secure data and
service to clients 1250 against simultaneous loss of all
servers 1n one cluster caused by a natural disaster, fire,

flooding, extended power loss, and the like.
One or more nodes (e.g., 1230a, 12305, 1230c¢, 12304 and

1230¢) operate on each server (e.g., 1220a, 12205, 1220c,
1220d) of a cluster 1200a. In a distributed data grid, the
nodes may be, for example, software applications, virtual
machines, or the like, and the servers may comprise an
operating system, hypervisor, or the like (not shown) on
which the node operates. In an Oracle Coherence data grid,
cach node 1s a Java virtual machine (“JVM™). A number of
IVMs/nodes may be provided on each server depending on
the CPU processing power and memory available on the
server. JVMs/nodes may be added, started, stopped, and
deleted as required by the distributed data grid. JVMs that

5

10

15

20

25

30

35

40

45

50

55

60

65

32

run Oracle Coherence automatically join and cluster when
started. JVMs/nodes that join a cluster are called cluster
members or cluster nodes.

Each client or server includes a bus or other communi-
cation mechanism for communicating information, and a
processor coupled to bus for processing information. The
processor may be any type of general or specific purpose
processor. Fach client or server may further include a
memory for storing information and instructions to be
executed by processor. The memory can be comprised of
any combination of random access memory (“RAM”), read
only memory (“ROM”), static storage such as a magnetic or
optical disk, or any other type of computer readable media.
Each client or server may turther include a communication
device, such as a network interface card, to provide access
to a network. Therefore, a user may interface with each
client or server directly, or remotely through a network, or
any other method.

Computer readable media may be any available media

that can be accessed by processor and includes both volatile
and non-volatile media, removable and non-removable
media, and communication media. Communication media
may 1nclude computer readable instructions, data structures,
program modules, or other data in a modulated data signal
such as a carrier wave or other transport mechanism, and
includes any information delivery media.

The processor may further be coupled via bus to a display,
such as a Liquid Crystal Display (“LCD”). A keyboard and
a cursor control device, such as a computer mouse, may be
further coupled to bus to enable a user to interface with each
client or server.

In one embodiment, the memory stores software modules
that provide functionality when executed by the processor.
The modules include an operating system that provides
operating system functionality each client or server. The
modules may further include a cloud i1dentity management
module for providing cloud 1dentity management function-
ality, and all other functionality disclosed herein.

The clients may access a web service such as a cloud
service. The web service may be implemented on a Web-
Logic Server from Oracle Corp. in one embodiment. In other
embodiments, other implementations of a web service can
be used. The web service accesses a database which stores
cloud data.

Session Synchronization Across Multiple Devices

As disclosed above, embodiments of IDCS function as a
platform for application security. Generally, some known
systems perform SSO 1nto multiple native apps installed on
the same device of a user, such that the user only needs to
authenticate once into a device native app (e.g., Safari/Satari
View Controller in 10S or Chrome tan in Android). That 1s,
these known systems enable sharing of session state across
multiple native apps on a single device. However, 1n these
known systems, 11 a user owns multiple devices such as
1IPhone, Mac, Android tablet, etc., the user needs to sign into
cach ol his/her devices at least once to access the apps
secured by different identity management systems. This
results 1n a bad user experience when accessing the same app
across multiple devices.

In contrast to the known systems, embodiments provide
improved user sign in experience by enabling the user to log
in once nto one of his/her trusted devices and then sharing
the user’s session seamlessly across all the user’s trusted
devices, so that the user does not have to sign 1n again when
switching to a different device. Similarly, when a user signs
out from his/her SSO session, the shared user session gets
invalidated across all of the user’s trusted devices. Accord-

US 10,764,273 B2

33

ingly, embodiments provide SSO and Single Log-out
(“SLO”) experience across all of the user’s trusted devices.
By improving the user’s sign in experience, embodiments
save time 1n allowing quick access to information available
in the apps. Further, embodiments reduce phishing attacks
where the user 1s habituated into providing his/her user
credentials 1n each of the apps and devices. By implement-
ing the embodiments, the user becomes conscious when a
log 1n 1s prompted by suspicious apps outside his/her normal
session duration. Yet further, as the user has to log in only
once to use any of his/her trusted devices, phishing-resistant
strong authentication with multiple factors can be 1mple-
mented.

Embodiments provide SSO session synchromization
across multiple devices owned by the same user by enrolling
the devices 1 a Circle of Trust (“CoT1”) device group
associated with the user and managed 1n IDCS, where only
devices i proximity of each other may request and complete
enrollment 1n the CoT device group. In one embodiment,
proximity 1s determined through peer-to-peer (“P2P”) com-

munication via, for example, Bluetooth Low Energy adver-
tisements (“BTLE”), Near Field Communication (“NFC™),
or W-Fi1 Direct protocols. In one embodiment, the P2P
communication 1s used for enrollment of a device in the CoT
device group to prove that the user 1s in possession of the
device that he/she 1s enrolling, and the user provides consent
to enroll the new device via one of the already enrolled
devices. Embodiments enroll the new device’s public key 1n
the CoT device group managed in IDCS. In one embodi-
ment, the user authenticates with the IDCS authorization
infrastructure using an app on the enrolling device (the
device that 1s not yet enrolled in the CoT device group), and
a second factor authentication 1s performed using an out-
of-band mechanism through P2P communication between
the enrolling device and an already enrolled device.

In one embodiment, the user authenticates 1nto the app on
the enrolling device using his/her IDCS credentials accord-
ing to the OpenlD Connect (“OIDC™”) flow. After user
authentication against IDCS 1s completed and the app
receives the corresponding identity and access token, the
device’s enrollment 1n the CoT device group 1s performed as
tollows. The app generates an asymmetric key pair consist-
ing of a public key and a private key, stores the private key
in a secure enclave of the device, and sends the public key
and Device Push Notification ID along with the access token
to a CoT device enrollment endpoint of IDCS authorization
infrastructure which 1s secured using OAuth. After IDCS
validates the access token, 1f this 1s the user’s first device to
be enrolled in the CoT device group, IDCS generates a
unique device ID, associates the public key to this device 1D,
and adds the tuple “<Client ID, Device 1D, Public Key, Push
Notification ID>"" to the CoT device group of the authenti-
cated user. The user ID 1s available from the access token
sent in the request. It returns the device ID and the client 1D
to the client.

If the CoT device group of the user already includes one
or more enrolled devices, IDCS generates a request ID for
this enrollment request, retrieves the device push notifica-
tion ID for all enrolled devices, and sends push notifications
to all the enrolled devices using a push notification channel
such as Apple Push Notification Service (“APNS”) for 105
devices or Firebase Cloud Messaging (“FCM”) for Android
devices. The generated request 1D along with other device
characteristics of the enrolling device are passed 1n the push
notification payload. IDCS also returns the request 1D back
to the enrolling device 1n the HT'TPS response.

10

15

20

25

30

35

40

45

50

55

60

65

34

The noftification in enrolled devices prompts the user to
provide consent for enrolling the new device. In one
embodiment, the user may use one of his/her enrolled
devices to review the enrollment request of the new device.
In what follows, “device A” represents an enrolled device 1n
the CoT device group that the user uses for approving the
request, and “device B” represents the newly enrolling
device. The prompt on device A includes characteristics of
device B such as device type (e.g., 1Phone, 1Pad, Apple
Watch, Android), device model (e.g., MRIN2), device loca-
tion (e.g., GPS coordinates), etc. The user signs 1nto the app
(1f not already signed in) on device A and reviews and
approves the enrollment request received for device B.

After the user provides consent, device A may use one of
the P2P communication mechanmisms described below (or
any other applicable communication mechanism) to create a
connection to device B 1dentified in the push notification. In
one embodiment, device A determines the distance between
the two devices, and 11 the devices are within a certain range,
device A creates a JSON Web Token (“JWT”") including
“subject” and “1ssuer” claims as device A’s device ID and
the request ID. The JW'T token 1s signed with device A’s
private key using JSON Web Signature (“JWS™). The app 1n
device A sends the signed JW'T token to the app 1n device B
using the P2P channel. The JWT token indicates that the user
has given consent from device A for enrolling device B 1n
the CoT device group of the user.

The app 1n device B verifies if the request 1D present 1n
the JW'T token received from device A matches the request
ID returned by IDCS. If the request IDs match, device B
re-submits the enrollment request to IDCS as before (sends
device B’s public key, push notification ID, etc., to IDCS
enrollment point as before). Additionally, 1t also sends the
JWT token 1t received from device A as part of the request
payload to enroll device B’s public key 1n the user’s CoT
device group.

IDCS enrollment endpoint validates the access token 1n
the request as betfore, parses the JW'T token in the request
payload, retrieves the “subject” claim and the request 1D,
and verifies the signature of the JWT token using the public
key associated with device A (available m the “subject”
claim of the JW'T token) in the user’s CoT device group.
Once the signature 1s validated successiully, IDCS adds the
public key of device B to the user’s CoT device group and
returns the device ID and the client ID to the app 1n device
B.

In one embodiment, the P2P communication between an
already enrolled device (device A) and a newly enrolling
device (device B) may be performed over one of the
protocols supported by both devices. This allows the
enrolled device to discover and connect to the enrolling
device. Protocols such as Bluetooth Low Energy (“BTLE”),
Wi-F1 Peer-to-Peer (*“Wi-F1 Direct”), or Near-Field Com-
munication (“NFC”) may be used for inter-device commu-
nication to transier the enrolling device’s public key to the
enrolled device.

In one embodiment, the request payload to enroll the
public key of the enrolling device with IDCS authorization
inirastructure 1s according to the following example func-
tionality:

POST /Me/CoTEnrollment HTTP 1.1
Host: 1dentity.oracle.com
Content-Type: application/json
Authorization: Bearer <Access Token>

{

US 10,764,273 B2

35

-continued

“consentToken”:<JW'T Token>, [Optional for first enrollment of a
device]
"devicelnfo": {

"name’: "John Smith’s iPhone”,
"model: "1Phone X"

h

"publicKey': "...",
"notificationld": "..."

;

HTTP Enrollment Response:
HTTP/1.1 200

Content-Type: application/json

1

"deviceld": ABC-1234,
"clientld": abl23¢d456..

One embodiment performs cross-device authentication.
Assuming that there are two or more devices enrolled 1n a
user’s CoT device group, one embodiment performs SSO
authentication across apps mstalled in the enrolled devices.
In one embodiment, initially no SSO session for the user 1s
available 1n IDCS. When the user launches an app installed
on one of his/her devices, say device A, the app attempts to
obtain an OIDC i1dentity token and an OAuth access token,
for example, by initiating OIDC Authorization Code Grant
flow, with an additional extension of i1ts enrolled device ID
in “device_1d” query parameter using browser tab compo-
nents such as “SFSafar1ViewController” 1in 10S browsers or
“ChromeTab” in Android browsers. As part of user sign 1n
flow, IDCS SSO infrastructure retrieves the device ID 1n the
OAuth authorization request and determines 1f the user
associated with this device ID has a user session available.
Since no user session 1s yet available, IDCS prompts the user
for authentication. An example of an OIDC request to IDCS
Authorization server with the “device_i1d” extension param-
eter 1s according to the following functionality:

GET /authorize?
response__type=code
&scope=openid®%20profile%20email
&client_ 1d=<ClientID>
&state=<State>
&device__1d=<DevicelD>
&redirect_ uri=1dcs%3 A%2F%2Fapp.oracle.com%2Fch HTTP/1.1

After the user submits his/her credentials, IDCS validates
the user credentials, and 1f successtul, creates an SSO user
session and persists it 1n IDCS session data store. IDCS
creates and sets an encrypted session cookie containing the
session 1D 1n the device’s browser component and returns an
OAuth authorization code. The app in device A exchanges
the authorization code and obtains an OIDC identity token
and an OAuth access token from IDCS OAuth infrastructure
using JWT assertion for OAuth client authentication, as
described, for example, 1n IETF RFC 7523. In this case,
client assertion 1s generated as per RFC 7523 by signing the
JWT token using device A’s private key (whose correspond-
ing public key 1s enrolled 1n the CoT device group of the
authenticated user). IDCS verifies the signature in client
assertion using the public key of device A available in CoT
device group. This completes the user sign 1n flow to the app
in device A.

If the user switches to the same app in another one of
his/her devices, say device B, to continue his/her business
functions 1 device B by launching the app in device B, the
app 1 device B also attempts to obtain an OIDC i1dentity

10

15

20

25

30

35

40

45

50

55

60

65

36

token and an OAuth access token by 1nitiating OIDC Autho-
rization Code Grant flow with additional extension of its
enrolled device ID 1n “device_1d” query parameter using
browser tab components such as “SFSafar1ViewController”
1n 10S or “ChromeTab” in Android browsers, same as above.
IDCS SSO infrastructure determines 1f the user associated
with device B has a user session. Since the user has already
signed 1n from device A, IDCS S5O {finds the existing user
session, and creates an alias user session linked to the
primary/existing user session (e.g., parent/child user ses-
sions). The alias user session 1s stored i IDCS session data
store with the user session status as “In Process”. IDCS
creates and sets an encrypted session cookie with the session
ID of the alias user session 1 device B’s browser component
and returns the OAuth authorization code. The IDCS gen-
erated authorization code also has an association to this alias
user session.

Then, the app 1n device B generates a client assertion by
signing the JWT token using the private key of device B
(whose corresponding public key 1s enrolled in the CoT
device group) and sends the OAuth token request to IDCS
OAuth infrastructure. OAuth validates the authorization
code and the client assertion sent by device B using the
public key of device B 1n the CoT device group. After
successiul validation, IDCS retrieves the alias session 1D
from authorization code and updates the alias session status
in IDCS session data store to “Valid”. If one of the valida-
tions fails, IDCS updates the alias session status to
“Invalid”. In one embodiment, invalid sessions are purged
periodically from IDCS session store.

Next, IDCS OAuth infrastructure generates an OIDC
identity token and an OAuth access token for the app 1n
device B, resulting 1n acquiring successiul user session and
tokens for the app 1 device B, and without the user having
to explicitly perform sign 1n with his/her credentials.

FIG. 13 1s an example message sequence diagram of first

time user authentication to a device 1304 using OpenlD
Connect Service Proot Key for Code FExchange (“PKCE”)

flow (for example, as described 1n IETF RFC 7636), accord-
ing to an embodiment. At 1312 a user 1302 launches an app
on device 1304, and at 1314 device 1304 launches a browser
tab 1306 with OIDC Authorization Endpoint (e.g., /autho-
rize). At 1316 browser tab 1306 sends an authorization
request to OpenlD Connect Service 1308 (e.g., an IDCS
service as described herein, for example, with reference to
IDCS microservices 614 1 FIG. 6). At 1318 OpenlD
Connect Service 1308 1n response returns a login Ul for user
authentication.

At 1320 browser tab 1306 displays the login Ul to user
1302, prompting user credentials. At 1322 user 1302 enters
user credentials 1n browser tab 1306, and at 1324 browser
tab 1306 submits the user credentials to OpenlD Connect
Service 1308. At 1326 OpenlD Connect Service 1308 sends
a message to the SSO service 1310 (e.g., an IDCS service as
described herein, for example, with reference to IDCS
microservices 614 1n FIG. 6) to create a user session for the
authenticated user. At 1328 SSO service 1310 returns a
created “session_1d” to OpenlD Connect Service 1308. At
1330 OpenlD Connect Service 1308 sets an encrypted
session cookie and returns an authorization code to browser
tab 1306 using a custom URL scheme. At 1332 browser tab
1306 returns control to the app on device 1304. At 1334
device 1304 sends the authorization code with a token
verifier (e.g., /token) to OpenlD Connect Service 1308. At
1336 OpenlD Connect Service 1308 validates the authori-
zation code and returns “id token” and ‘“‘access token” to
device 1304. At 1338 device 1304 parses “1d_token” and

US 10,764,273 B2

37

obtains user information, and at 1340 user 1302 1s success-
tully logged 1nto the app on device 1304.

FIGS. 14A and 14B together provide an example message
sequence diagram of enrollment of a device 1n a CoT device
group associated with a user, according to an embodiment.
The embodiment defines a CoT device group for every user,
where the Co'T device group of a user i1dentifies a group of
enrolled/trusted devices associated with that user.

Referring first to FIG. 14A, at 1412 a user 1402 launches
an app on an enrolling device 1404 (a device that 1s not yet
enrolled 1 the CoT device group of user 1402 and needs to
be enrolled in the Col device group of user 1402) and
completes authentication (e.g., as described herein with
reference to FIG. 13) so that at 1414 user 1402 1s success-
tully logged into the app. At 1416 enrolling device 1404
generates an asymmetric key pair (1.e., a private key and a
public key), and at 1418 enrolling device 1404 sends a
message to the SSO service 1408 to enroll the public key in
the CoT device group (e.g., sends the public key, its push
notification 1D, and an access token to “/Me/CoTEnroll-
ment”).

If this 1s the first device enrollment in the CoT device
group (1.e., no user device 1s yet enrolled 1n the CoT device
group), at 1420 S5O service 1408 validates the access token

and generates a umque device 1D for enrolling device 1404,
and at 1422 SSO service 1408 adds the entry: “User

ID—<Client ID, Device ID, Public Key, Push Notification
ID> 1 the CoT device group. At 1424 SSO service 1408
returns the device ID and client ID to enrolling device 1404,
and at 1426 enrolling device 1404 persists the device ID 1n
its persistent store.

I this 1s not the first device enrollment 1n the CoT device
group (1.€., the CoT device group already includes one or
more enrolled devices of user 1402, and additional devices
need to be enrolled), at 1428 S5O service 1408 generates
and stores a request ID for this enrollment request, and at
1430 SSO service 1408 returns the request ID to enrolling
device 1404. Then, a loop 1432 1s repeated to retrieve push
notification IDs of the currently enrolled devices of user
1402. Specifically, at each 1teration of loop 1432, at 1434
and 1436 SSO service 1408 sends a push notification with
the generated request ID and enrolling device characteristics
to each enrolled device 1406 1n the user’s CoT device group
through the push notification server 1410. At 1438 enrolled
device 1406 prompts user 1402 to provide consent of new
device enrollment.

Continuing to FIG. 14B, at 1440 user 1402 reviews
enrolling device details and provides consent 1n enrolled
device 1406 to register the enrolling device 1404 1n CoT
device group. At 1442 enrolled device 1406 determines
whether the distance between itsell and enrolling device
1404 1s within a threshold, and if so, establishes a P2P
communication with enrolling device 1404. At 1444
enrolled device 1406 generates and sends a JSON Web
Signature (“JWS”) signed using its private key to enrolling
device 1404 through P2P. The JWS contains the request 1D
generated at 1428 and indicates user consent to enroll the
new device at 1446. At 1448 enrolling device 1404 verifies
if the request ID 1 JWS claim matches the request 1D
returned from SSO Service 1408 at 1430, and at 1450
enrolling device 1404 re-submits the enrollment request
containing its public key, 1ts push noftification 1D, the con-
sent token (JWS), and the access token, to SSO service
1406.

At 1452 SSO service 1408 validates the access token and
verifies the consent token (JWS) using the public key of
enrolled device 1406 (in “subject” claim) from the CoT

10

15

20

25

30

35

40

45

50

55

60

65

38

device group. At 1454 SSO service 1408 generates a unique
device ID for enrolling device 1404. At 1456 SSO service

1408 adds “User ID—<Client 1D, Device 1D, Public Key,
Push Notification 1D>" in the CoT device group. At 1458
SSO service 1408 returns the device ID and the client ID to
enrolling device 1404, and at 1460 enrolling device 1404

persists the device ID 1n 1ts persistent store, completing the
new device enrollment tlow.

FIG. 15 1s an example message sequence diagram of SSO
service authentication across multiple devices of a user 1502
by using the CoT device group of the user, according to an

embodiment. At 1512 user 1502 launches an app on device
1504, and at 1514 device 1504 launches a browser tab 1506
with OIDC Authorization Endpoint along with “device_1d”
(e.g., /authornize). At 1516 browser tab 1506 sends an autho-
rization request to OpenlD Connect Service 1508. At 1518
OpenlD Connect Service 1508 sends a message to SSO
Service 1510 to check if “device 1d” 1n the request has a

corresponding session for a user associated with “devi-
ce 1d”. At 1520 SSO Service 1510 returns the user session
details to OpenlD Connect Service 1508 11 available.

If at 1522 there are no available user sessions, at 1524
OpenlD Connect Service 1508 returns a login Ul to browser
tab 1506 for user authentication. At 1526 browser tab 1506
displays the login UI to user 1502, prompting user creden-

tials. At 1528 user 1502 enters user credentials in browser
tab 1506. At 1530 browser tab 1506 submits the user

credentials to OpenlD Connect Service 1508. At 1532
OpenlD Connect Service 1508 sends a message to SSO
Service 1510 to store the user session for the authenticated
user. At 1534 SSO Service 1510 sends a message to OpenlD
Connect Service 1508 to return the created “session 1d”’. At
1536 OpenlD Connect Service 1508 sets session cookie
containing the “session_1d” and returns authorization code
using custom URL scheme to browser tab 1506. The gen-
erated authorization code 1s associated with the “session 1d”
to retrieve “session 1d” from authorization code during token
acquisition. At 1538 browser tab 1506 returns control to the
app on device 1504. At 1540 device 1504 sends the autho-
rization code with Client JWT Assertion signed using the
private key of device 1504 (e.g., /token) to OpenlD Connect
Service 1508, and at 1542 OpenlD Connect Service 1508
validates both JW'T Assertion using the public key of device
1504 and the authorization code.

Alternative to 1522, 1t at 1544 a user session 1s available
in SSO Service 1510, at 1546 OpenlD Connect Service 1508
sends a message to SSO Service 1510 to create an alias user
session with status “In Progress” linked to the primary
“session 1d”. At 1548 SSO Service 1510 returns the created
alias “session_i1d” to OpenlD Connect Service 1508. At
1550 OpenlD Connect Service 1508 sets an encrypted
session cookie containing the alias “session_i1d” and returns
authorization code browser tab 1506. At 1552 browser tab
1506 returns control to the app on device 1504. At 1554
device 1504 sends authorization code with Client JWT
Assertion signed using the private key of device 1504
(e.g., /token) to OpenlD Connect Service 1508. At 1556
OpenlD Connect Service 1508 validates both JW'T Assertion
using the public key of device 1504 and the authorization
code. At 1558 OpenlD Connect Service 1508 sends a
message to SSO Service 1510 with the alias session 1D
retrieved from the authorization code so that SSO Service
1510 can update the alias session status to “Valid”.

After an applicable one of 1522 or 1544 1s finished, at
1560 OpenlD Connect Service 1508 returns “1d_token™ and
“access token” to device 1504. At 1562 device 1504 parses

US 10,764,273 B2

39

“1d_token” and obtains user information, and at 1564 user
1502 1s successiully logged into the app on device 1504.

FIG. 16 1s a flow diagram of functionality for session
synchronization across multiple devices of a user 1n a
cloud-based 1AM system, 1n accordance with an embodi-
ment. In one embodiment, the functionality of the flow
diagram of FIG. 16 1s implemented by software stored in
memory or other computer readable or tangible medium,
and executed by a processor. In other embodiments, the
functionality may be performed by hardware (e.g., through
the use of an application specific integrated -circuit
(“ASIC”), a programmable gate array (“PGA”), a field
programmable gate array (“FPGA™), etc.), or any combina-
tion of hardware and software.

At 1602 the user 1s authenticated into an application on a
first device of the user. The application 1s configured using
functionality provided by components of the cloud-based
IAM system such as any of the IDCS microservices 614
providing cloud-based IAM services to tenants of the multi-
tenant cloud-based IAM system as described herein with
reference to FIG. 6. In one embodiment, a microservice 1s a
self-contained module that can communicate with other
modules/microservices, and each microservice has an
unnamed universal port that can be contacted by others. In
one embodiment, the microservice 1s a run-time component/
process. In one embodiment, the microservice 1s stateless
and retrieves data from a database to perform an identity
management service. In one embodiment, the database and
the microservice are configured to scale independently of
one another. In one embodiment, the database includes a
distributed data grid. In one embodiment, the application
(c.g., any application illustrated at 602 1n FIG. 6) imple-
ments IAM functionality provided by components of the
multi-tenant cloud-based IAM system (e.g., miCcroservices
614 in FIG. 6).

At 1604 a first request 1s recerved by an SSO service of
the cloud-based IAM system (e.g., a microservice 614 in
FIG. 6) from the first device to enroll the first device 1n a
CoT device group associated with the user, where a second
device of the user 1s already enrolled 1 the CoT device
group. In one embodiment, the first device generates a first
asymmetric key pair that includes a first public key and a
first private key. In one embodiment, the first device stores
the first private key and passes the first public key 1n the first
request to the SSO service.

At 1606 a push notification 1s sent to the second device to
obtain user consent of the user to enroll the first device 1n the
CoT device group. In one embodiment, the second device
obtains the consent of the user and sends a consent token to
the first device, for example, through a P2P communication
channel. In one embodiment, a request ID 1dentifying the
first request 1s generated. In one embodiment, the request 1D
and device characteristics of the first device are passed in the
push noftification to the second device, and the request ID 1s
returned to the first device 1n an HTTPS response.

In one embodiment, after obtaining the consent of the
user, the second device determines a relative distance
between the first device and the second device, establishes
a secure P2P communication with the first device 1if the
relative distance 1s less than a threshold, and sends the
consent token to the first device using the P2P communica-
tion.

In one embodiment, the consent token includes a device
ID of the second device and the request ID identifying the
first request. In one embodiment, the consent token 1s signed
using a second private key of the second device. In one
embodiment, the second private key and a second public key

10

15

20

25

30

35

40

45

50

55

60

65

40

comprise a second asymmetric key pair generated by the
second device, and the Col device group includes the
second public key of the second device.

At 1608 a second request 1s received from the first device
by the SSO service, where the second request includes the
consent token. In one embodiment, the first device validates
the consent token before sending the second request to the
SSO service. In one embodiment, the first device validates
the consent token by validating the request ID in the consent
token. In one embodiment, the second request further
includes the first public key.

At 1610 the consent token 1s verified. In one embodiment,
the consent token 1s verified using the second public key.

At 1612 the first device 1s enrolled 1 the CoT device
group. In one embodiment, the enrolling of the first device
in the CoT device group includes adding the first public key
and the first push notification ID to the CoT device group.

At 1614 S50 session synchronization 1s performed across
devices enrolled in the CoT device group including the first
device and the second device when the user signs-in to one
of the enrolled devices.

In some embodiments, the app in the second device can
obtain an SSO session without authentication when the user
has already signed-into one of their other devices, e.g., the
first device. In some embodiments, the second device may
obtain the SSO session from the server as described herein
with reference to FIG. 15. Alternatively, 1n some embodi-
ments, the second device may obtain the SSO session using
a P2P communication channel when the authenticated and
to-be authenticated devices are 1n the vicinity of each other.

In one embodiment, the SSO session synchronization
across devices 1s achieved by maintaining a CoT device
group comprising all user-enrolled devices across which the
user session can be shared. One embodiment creates an SSO
session when the user signs-into a first device, creates and
links an alias SSO session with the primary SSO session
when a second device 1n the CoT device group attempts to
obtain the SSO session and token, and converts the alias
SSO session from “In Progress” state to “Valid” state after
veritying the Client JWT assertion signed by the second
device using the public key of the second device available 1n
the CoT device group, after which the alias SSO Session and
token become valid to access protected resources without
the user explicitly signing-in to the second device.

In an alternative embodiment, an SSO session created for
the first device 1s replicated by encrypting the SSO session
using the second public key and sending the encrypted SSO
session from the first device to the second device using the
P2P communication, where the second device decrypts the
encrypted SSO session using the second private key stored
at the second device and re-uses the SSO session.

In one embodiment, the SSO session synchronization
includes logging ofl user sessions on all user devices
enrolled 1n the CoT device group when one session on one
user device i the CoT device group 1s logged ofl, for
example, by invalidating all the alias SSO sessions and the
primary SSO session 1 the IAM system.

In one embodiment, the authenticating 1s performed by an
OpenlD Connect service of the cloud-based multi-tenant
IAM system (e.g., a microservice 614 in FIG. 6), for
example, as described herein with reference to FIG. 13.

As disclosed, some embodiments perform session syn-
chronization using, for example, Bluetooth or NFC commu-
nications, for sharing the same SSO session across multiple
devices when the devices are 1n a vicimity of each other. For
example, 1n one embodiment, the first device encrypts the
SSO session/token using the second device’s public key it

US 10,764,273 B2

41

obtained from the user’s CoT device group and sends the
encrypted SSO session to the second device. The second
device decrypts the encrypted SSO session using the second
private key stored in the second device and re-uses the SSO
session/token. In one embodiment, when one session 1s
logged ofl, all other sessions are logged off. Unlike known
systems that use a central server, embodiments use device to
device communication for device enrollment in the CoT
device group used during session synchronization. One
embodiment enables seamless transier and replication of an
SSO session created 1n one user’s device to the user’s other
trusted devices, via a CoT device group, thereby avoiding
user re-authentication when the user starts using secured
apps 1n their other devices.

In one embodiment, the user explicitly logs into each of
their trusted devices once, using an application which uses
an 1dentity management mobile SDK that performs user
authentication against IDCS. Then, the device creates an
asymmetric key pair such as, for example, Elliptic Curve
Cryptography (“ECC”), and registers the public key with the
user record 1n IDCS. This adds the device and its public key
to a CoT device group managed across all devices that the
user has registered with IDCS. Any new device to be added
to the Co'T device group needs to be approved by the user
from an already enrolled device. At run-time, after user
authentication into one of their trusted devices, the app 1n the
authenticated device uses the public keys of trusted devices
in the CoT device group to encrypt the SSO session data. In
one embodiment, the app can obtain and cache the CoT
device group contamning the public keys of all enrolled
devices by querying a protected endpoint in the IAM system
(SSO service) using the access token. When the user
attempts to access an app in one ol their other trusted
devices, the embodiment determines whether the SSO ses-
s10n 1s available. If available, the SSO session key encrypted
using the requesting device’s public key 1s returned through
the P2P communication channel between the authenticated
device and the requesting device. Since only the requesting
device has access to 1ts private key i 1ts local secure
enclave, 1t can decrypt the SSO Session key using its private
key and re-use the session. Embodiments are applicable to
any IAM system which enables user authentication and
access from mobile devices.

Several embodiments are specifically illustrated and/or
described herein. However, 1t will be appreciated that modi-
fications and vanations of the disclosed embodiments are
covered by the above teachings and within the purview of
the appended claims without departing from the spirit and
intended scope of the mvention.

What 1s claimed 1s:

1. A method for session synchronization across multiple
devices of a user 1mn a cloud-based identity and access
management (IAM) system, the method comprising:

authenticating the user into an application on a first device

of the user;
receiving a first request by a single-sign-on (SSO) service
of the cloud-based IAM system from the first device to
enroll the first device in a circle of trust (CoT) device
group associated with the user, wherein a second device
of the user 1s already enrolled 1n the CoT device group;

sending a push notification to the second device to obtain
user consent of the user to enroll the first device 1n the
CoT device group, wherein the second device obtains
the consent of the user and sends a consent token to the
first device:

10

15

20

25

30

35

40

45

50

55

60

65

42

recetving a second request from the first device by
SSO service, wherein the second request includes
consent token;

verifying the consent token;

enrolling the first device 1n the CoT device group; and

performing SSO session synchronization across devices
enrolled 1 the CoT device group including the first
device and the second device.

2. The method of claim 1, wherein the first device

generates a first asymmetric key pair that includes a first
public key and a first private key, wherein the first device
stores the first private key, wherein the first device passes the
first public key 1n the first request to the SSO service.

3. The method of claim 2, further comprising:

generating a request 1dentifier (ID) 1dentifying the first

request;

passing the request ID of the first request and device

characteristics of the first device 1n the push notification
to the second device; and

returning the request ID to the first device 1n a Hypertext

Transier Protocol Secure (HT'TPS) response.

4. The method of claim 3, wherein, after obtaining the
consent of the user, the second device determines a relative
distance between the first device and the second device,
establishes peer-to-peer (P2P) communication with the first
device 1f the relative distance 1s less than a threshold, and
sends the consent token to the first device using the P2P
communication.

5. The method of claim 4, wherein the consent token
comprises a device ID of the second device and the request
ID 1dentitying the first request, wherein the consent token 1s
signed using a second private key of the second device,
wherein the second private key and a second public key
comprise a second asymmetric key pair generated by the
second device, wherein the CoT device group includes the
second public key of the second device.

6. The method of claim 5, wherein the first device
validates the consent token before sending the second
request to the SSO service, wherein the first device validates
the consent token by validating the request ID 1n the consent
token.

7. The method of claim 6, wherein the second request
further includes the first public key.

8. The method of claim 7, wherein the consent token 1s
verified using the second public key.

9. The method of claim 8, wherein the enrolling of the first
device 1n the CoT device group comprises adding the first
public key to the CoT device group.

10. The method of claim 9, further comprising:

creating a primary SSO session by the SSO service when

the user signs-into the first device;

creating an alias SSO session linked with the primary

SSO session when the second device attempts to obtain
an SSO session subsequent to the creating of the
primary SSO session, wherein the alias SSO session 1s
created with an “In Progress™ status;

setting an encrypted session cookie containing the alias

session and returning an authorization code including
the alias session to the second device, wherein the
second device returns the authorization code with a
Chient JWT Assertion that 1s signed using the second
private key;

veritying the Client JWT assertion using the second

public key available 1n the CoT device group; and
converting the alias SSO session from the “In Progress”
status to a “Valid” status.

the
the

US 10,764,273 B2

43

11. The method of claim 9, wherein the SSO session
synchronization comprises replicating an SSO session cre-
ated for the first device by encrypting the SSO session using
the second public key and sending the encrypted SSO
session from the first device to the second device using the
P2P communication, wherein the second device decrypts the
encrypted SSO session using the second private key stored
at the second device and re-uses the SSO session.

12. The method of claam 9, wherein the SSO session
synchronization comprises logging ofl user sessions on all
user devices enrolled 1 the CoT device group when one
session on one user device 1n the Co'l device group 1s logged
off.

13. The method of claim 1, wherein the authenticating 1s
performed by an OpenlD Connect service of the cloud-based
IAM system.

14. The method of claim 1, wherein the first application
implements IAM functionality provided by components of
the cloud-based IAM system.

15. The method of claim 14, wherein the components
COmprise one Or more microservices.

16. A non-transitory computer readable medium compris-
ing instructions that, when executed by a processor, cause
the processor to perform session synchronization across
multiple devices of a user in a cloud-based identity and
access management (IAM) system, the processor executing
the 1nstructions to:

authenticate the user into an application on a first device

of the user;
receive a first request by a single-sign-on (SSO) service of
the cloud-based IAM system from the first device to
enroll the first device 1n a circle of trust (CoT) device
group associated with the user, wherein a second device
of the user 1s already enrolled 1n the CoT device group;

send a push notification to the second device to obtain
user consent of the user to enroll the first device 1n the
CoT device group, wherein the second device obtains
the consent of the user and sends a consent token to the
first device;

receive a second request from the first device by the SSO

service, wherein the second request includes the con-
sent token;

verily the consent token;

enroll the first device 1n the CoT device group; and

perform SSO session synchronization across devices

enrolled 1n the CoT device group including the first
device and the second device.

10

15

20

25

30

35

40

45

44

17. The non-transitory computer readable medium of
claim 16, wherein the first device generates a first asym-
metric key pair that includes a first public key and a first
private key, wherein the first device stores the first private
key, wherein the first device passes the first public key 1n the

first request to the SSO service.

18. The non-transitory computer readable medium of
claim 17, wherein the processor 1s further configured to:

generate a request identifier (ID) identifying the first

request;

pass the request 1D of the first request and device char-

acteristics of the first device in the push notification to
the second device; and

return the request 1D to the first device in a Hypertext

Transier Protocol Secure (HT'TPS) response.

19. The non-transitory computer readable medium of
claim 18, wherein, after obtaining the consent of the user, the
second device determines a relative distance between the
first device and the second device, establishes peer-to-peer
(P2P) communication with the first device if the relative
distance 1s less than a threshold, and sends the consent token
to the first device using the P2P communication.

20. A cloud-based 1dentity and access management (IAM)
system for performing session synchronization across mul-
tiple devices of a user, the system comprising a processor
coupled to storage, the processor executing instructions to:

authenticate the user 1into an application on a first device

of the user;
recerve a first request by a single-sign-on (SS0) service of
the cloud-based IAM system from the first device to
enroll the first device in a circle of trust (CoT) device
group associated with the user, wherein a second device
of the user 1s already enrolled 1n the CoT device group;

send a push notification to the second device to obtain
user consent of the user to enroll the first device 1n the
CoT device group, wherein the second device obtains
the consent of the user and sends a consent token to the
first device;

recerve a second request from the first device by the SSO

service, wherein the second request includes the con-
sent token;

verily the consent token;

enroll the first device in the CoT device group; and

perform SSO session synchronization across devices

enrolled 1mn the CoT device group including the first
device and the second device.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

