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1
METHOD FOR DATA COMPRESSION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application relates to and claims priority of

U.S. provisional patent application (“Provisional Applica-
tion”), Ser. No. 62/364,773, entitled “Method for Data

Compression,” filed on Jul. 20, 2016. The Provisional Patent
Application 1s hereby incorporated by reference 1n its
entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention relates to data compression using,
machine learning techmiques. In particular, the present
invention relates to data compression for improved commu-
nication and storage etliciencies, such as desirable 1 appli-
cations involving speech, audio data and video data.

2. Discussion of the Related Art

In machine learming, an optimizing predictive model 1s a
computational model that learns a function that receives
certain input values. One type of optimizing predictive
model applies a stochastic gradient descent optimization
technique over a loss function. One example of a loss
function may be, for example, the difference (“error’)
between the output of the predictive model and the desired
output. Typically, the optimization procedure involves itera-
tively executing the model using training data, and then
differentiating the model to adapt the values of the model
parameters to mimmize the loss function. The goal 1s, over
the course of the training, the optimizing predictive model 1s
adapted to perform the function to be learned, which can
then be applied to data outside of the training data.

An optimizing predictive model may be implemented, for
example, 1n a neural network model. A neural network
model 1s usually based on a graph consisting of nodes
(referred to as “neurons™) and a set of directed, weighted
edges that connect the neurons. The goal of the training 1s to
achieve a directed graph that represents the function to be
learned. In a typical implementation, each neuron 1is
assigned a simple computational task (e.g., a linear trans-
formation followed by a non-linecar function, such as a
logistic function) and the loss function 1s computed over the
entire neural network model. The parameters of the neural
network model are typically determined (“learned”) using a
method that minimizes the loss function. Stochastic gradient
descent 1s a method that 1s often used to achieve the
mimmization. In stochastic gradient descent, optimization 1s
achieved 1teratively by (a) finding analytical gradients for
the loss functions and (b) perturbing or moving the test
values by a small amount 1n the direction of the gradient,
until the loss function 1s minimized.

In multimedia applications (e.g., an audio or video record-
ing), 1t 1s olten necessary to compress the data to achieve
data communication or storage efliciencies. In addition to
climinating information redundancy, data compression often
takes advantage of knowledge of the human senses of
perception. For example, in speech encoding, data compres-
sion has long been achieved using a linear prediction tech-
nique (“LPC”) technique, in which speech signals are ana-
lyzed for a set of recognized resonant patterns of the human
vocal tract (“formants™), which are then encoded separately
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from the remainder of the speech signal. The formants may
be represented by significantly less bits than the raw speech
signal, thereby achieving data compression. Likewise, video
encoding often takes advantage of knowledge of the human
psycho-visual perception of light intensities and sensitivities
to specific colors. However, such approaches result in com-
plex compression and decompression algorithms which are
difficult to optimize.

SUMMARY

According to one embodiment of the present invention, a
data compression system includes: (a) a data compression
module that receives a sequence of mput vectors and that
provides a sequence ol compressed vectors, the data com-
pression module implementing a computational model char-

acterized by a first set of parameters; (b) a data decompres-
s1ion module that receives the compressed vectors to provide
a sequence of output vectors, the data decompression mod-
ule implementing a computational model characterized by a
second set of parameters; and (¢) a parameter update module
that recerves the sequence of input vectors and the sequence
of output vectors, and which updates values of the first set
of parameters and the second set of parameters based on a
loss function of the input vectors, the output vectors, the first
set of parameters and the second set of parameters. Each
input vector and a corresponding output vector may repre-
sent digitized time-domain signals (e.g., speech, audio or
video signals) over a predetermined time period. The loss
function may be evaluated for each predetermined time
period.

According to one embodiment of the present ivention,
the parameter update module updates the first and second
sets of parameters based on a stochastic gradient descent
method.

According to one embodiment of the present invention,
the data compression module and the data decompression
module are each implemented by a neural network compu-
tational model.

In one implementation, the data compressor and decom-
pressor pair i a system may be personalized to the voice of
a specific mndividual to allow reproduction (1.e., decompres-
sion) at a high fidelity, even with a small decompressor and
at a high compression ratio. Such a system 1s particularly
usetul 1n telephone and teleconferencing applications.

The present invention 1s better understood upon consid-
cration of the detailed description below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of compressor-decompressor
system 100, which includes data compressor 101 and data
decompressor 102 that are traimned together, 1n accordance
with one embodiment of the present invention.

FIG. 2 1s a block diagram of compressor-decompressor
system 200, which includes data compressor 101 and data
decompressor 102 that are trained together and that process
data 1n the frequency domain, 1n accordance with a second
embodiment of the present invention.

To simplity cross-reference among like elements across
the figures, like elements in the figures are assigned like
reference numerals.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

(Ll

FIG. 1 1s a block diagram compressor-decompressor
system 100, which includes data compressor 101 and data
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decompressor 102 that are tramned together, 1n accordance
with one embodiment of the present invention. To facilitate
discussion herein, compressor-decompressor system 100 of
FIG. 1 1s described as representing an exemplary system for
compression and decompression of audio signals. However,
the systems and methods of the present invention are not so
limited. The present invention 1s applicable to any data or
signal compression including text, speech, audio or video
signal compression and signals used in other multimedia
applications. As shown 1n FIG. 1, analog 1nput signals, such
as audio signals from one or more source channels, are
sampled and filtered 1n signal preprocessing subsystem 103.
Therefore, signal processing subsystem 103 may provide,
for example, a digital data stream of 16-bit samples at 16
KHz, such that 16,000 16-bit samples are available every
second for compression. In one embodiment, compression
may be performed for data collected over fixed-length time
periods (e.g., each second). Compressor 101 takes the input
samples for each compression period (e.g., 1 second) and
compresses 1t mto, for example, a 8000-bit output com-
pressed vector, to achieve a 32:1 compression. (A rule of
thumb has been developed over experience in audio pro-
cessing that 16-bit samples can be compressed to 1-bit per
sample on the average, without significant loss of fidelity to
the human listener.) From each 8000-bit value, decompres-
sor 102 provides as output 16,000 16-bit samples. The 16000
16-bit samples may then be digital-to-analog converted and
filtered 1n output module 104 to reproduce the input audio
signal over the decompression period. Of course, the sam-
pling frequency, the number of bits per sample and the size
of the compressed vector are selected herein merely for
illustrative purpose. In actual practice, these quantities may
be varied for performance and fidelity as desired.

During the time period when compressor-decompressor
system 100 1s trained, both the mput vectors to compressor
101 of each compression period and the corresponding
output vectors at decompressor 102 are provided to param-
eter update unit 105. A loss function based on these mnput and
output vectors 1s evaluated multiple times and processed to
provide updates to the parameter values so as to adaptively
determine the functions implemented 1n compressor 101 and
decompressor 102. The loss function may be evaluated at
regular time intervals, e.g., when an input vector and 1its
corresponding output vector are available. For example, 1n
one embodiment, the mput vectors and the output vectors
may each be a 16,000-dimensional vector. According to one
embodiment of the present invention, the output vector 1s a
function of the mput vector and both the model parameters
of compressor 101 and decompressor 102. In one embodi-
ment, to evaluate the loss function, a 2-norm value between
the two vectors for each compression period (1.e., the square
of the Euclidean distance between the mput and output
vectors) 1s calculated. (The loss function may be a function
of the 2-norm values of multiple compression periods.)
Imitially, 1.e., at the beginning of the training process, the
model parameters of compressor 101 and decompressor 102
may be each initialized to any suitable value (e.g., 0).

The training process 1s expected to move the value of each
model parameter 1n a way that minimizes the loss function.
According to one embodiment of the present invention, in
which the method of stochastic gradient descent 1s used, a
gradient of the loss function 1s the calculated to drive the
optimization process. (The gradient may be, for example,
the derivative of the loss Tunction with respect to each model
parameter). In some embodiments, a “straight-through esti-
mator” approach may be used, regardless of any non-
linearity that may exist in the underlying data processing
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structures. Based on the gradient, the model parameters 1n
both compressor 101 and decompressor 102 are updated so
that the resulting evaluations of the computational models in
compressor 101 and decompressor 102 would result 1n a
reduced value 1n the loss function. In one embodiment, each
model parameter 1s updated by multiplying the gradient with
a small negative value, projecting the product on the model
parameter, and adjusting the model parameter accordingly to
achieve the reduced loss function). Remnforcement learning
techniques may also be applied. In addition, any other
suitable techmique to improve performance may also be
applied. For example, the techmques disclosed by Georges
Harik 1 U.S. patent application Ser. No. 14/165,431,
entitled “METHOD FOR AN OPTIMIZING PREDICTIVE
MODEL USING GRADIENT DESCENT AND CONJU-
GATE RESIDUALS,” filed on Jan. 27, 2014, may also be
used.

In one embodiment, compressor-decompressor system
100 1s tramned using audiobooks (1.e, audio recordings in
which text 1s read aloud). As compressor-decompressor
system 100 may be implemented as relatively small pro-
grams, even for a high compression ratio, the decompression
module can be stored or transmitted with the compressed
data for customized decompression. In fact, the compressor-
decompressor systems of the present invention may be used
in mobile applications (e.g., smartphones). For example, 1n
one application, trained decompressors can be exchanged at
the beginning of a communication session among commu-
nicating participants prior to communicating the compressed
data. The inventor discovered that the compressor-decoms-
pressor system 100 may be easily trained to become per-
sonalized to a specific speaker (e.g., trained to become
particular ethicient for compressing speech of a particular
speaker). Such personalized compressor-decompressor sys-
tems are particularly desirable for telephone or teleconier-
ence applications.

The methods of the present invention may be i1mple-
mented, for example, 1n a neural network model. In one
embodiment of the present invention, compressor 101 and
decompressor 102 may each be implemented as a neural
network 1 a computational environment that includes a
number of parallel processors. In one 1mplementation, in
which audio signals sampled at 16 KHz are used, with data
compressed to 8,000 bits per second, compressor 101 and
decompressor 102 may each be implemented by a neural
network of 2.5 million nodes. Each parallel processor, which
may be provided by a graphics processor, may implement
multiple nodes to take advantage of computational structures
optimized for arithmetic operations, as 1s typical in such
graphics processors. Alternatively, each processor may also
be 1mplemented by a custom circuit optimized for imple-
menting neural network model elements. A host computer
system using conventional programming techniques may
configure compressor-decompressor system 100. Of course,
cach neuron in the neural network model may also be
implemented by a customized circuit.

A compression-decompression system can also process
data 1n the frequency domain. FIG. 2 1s a block diagram of
compressor-decompressor system 200, which includes data
compressor 101 and data decompressor 102 that are trained
together and that process data 1n the frequency domain, in
accordance with a second embodiment of the present inven-
tion. In FIG. 2, a fast fourier transtorm (FFT) 1s performed
on the sampled audio data in FF'T module 201 prior to being
provided to compressor 101. Correspondingly, an inverse
fast fourier transtform (1FFT) i1s performed on the decom-
pressed data from decompressor 102 1n 1FFT module 202 to
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provide time-domain digital output data to output module
104. In this embodiment, parameter updates may be per-
formed using time domain data, as shown 1n FIG. 2.

The above detailed description 1s provided to illustrate the
specific embodiments of the present mvention and 1s not
intended to be limiting. Various modification and variations
within the scope of the present invention are possible. The
present mvention 1s set forth 1n the following claims.

I claim:

1. A data compression system, comprising:

a data compressor, implemented 1n a computational envi-
ronment of parallel processors, that receives a sequence
of mnput vectors and that provides a sequence of com-
pressed vectors, wherein the total number of data bits
representing the mput vectors 1s greater than the num-
ber of data bits representing the compressed vectors
and wherein the data compressor 1s configured accord-
ing to a first set of parameters; and

a data decompressor, implemented 1n the computational
environment, that receives the compressed vectors and
that provides a sequence of output vectors, wherein the
total number of data bits representing the output vectors
1s greater than the total number of data bits representing
the compressed vectors and wherein the data decom-
pressor 1s configured according to a second set of
parameters, wherein the first set of parameters and the
second set of parameters are updated after a time
interval based on a loss function of (1) a difference
between at least one of the input vectors received
during the time interval and at least one of the output
vectors received during that time interval, (11) the first
set of parameters and (111) the second set of parameters.

2. The data compression system of claim 1, wherein the
data compressor receives one input vector and the data
decompressor provides one corresponding output vector
over a predetermined time period.

3. The data compression system of claim 2, wherein the
loss function 1s evaluated for each predetermined time
period.

4. The data compression system of claim 1, wherein the
first and second sets of parameters are updated using a
stochastic gradient descent method.

5. The data compression system of claim 4, wherein the
stochastic gradient descent method uses a straight-through
estimator.

6. The data compression system of claim 1, wherein the
values of the first and second sets of parameters are updated
using reinforcement learning techniques.

7. The data compression system of claim 1, wherein the
sequence of mput vectors and the sequence of output vectors
cach represent digitized audio signals.

8. The data compression system of claim 1, wherein the
data compressor further carries out a fast fourier transform
(FFT) on each mput vector, and wherein the data decom-
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pressor further carries out an inverse fast fourier transform
(1FFT) on each output vector.

9. The data compression system of claim 1, wherein each
output vector 1s a function of: (1) a corresponding input
vector, and (11) both the first and second sets of parameters.

10. The data compression system of claim 1, wherein the

computation environment comprises one or more neural
networks.

11. In a computational environment of parallel processors,
a method of data compression, comprising:

tramning a data compressor and a corresponding data

decompressor wherein the data compressor and the data
decompressor are configured according to a first set of
parameters and a second set of parameters, respec-
tively; and

compressing input data using the trained data compressor

and decompressing the compressed input data using the
trained data decompressor, wherein training the data
compressor and the data decompressor comprises
updating, after a time interval, the first set of param-
cters and the second set of parameters based on evalu-
ating a loss function of a difference between at least one
of the mput vectors received during the time interval
and at least one of the output vectors provided during
the time interval, the first set of parameters and the
second set of parameters.

12. The method of claim 11, wherein the trained data
decompressor 1s stored with the compressed input data.

13. The method of claim 11, further comprising sending
to a recipient the data decompressor prior to decompressing
the compressed input data.

14. The method of claim 11, wherein the data compressor
receives one input vector and the data decompressor pro-
vides one corresponding output vector over a predetermined
time period.

15. The method of claim 11, wherein the loss function 1s
evaluated for each predetermined time period.

16. The method of claim 11, wherein the parameters are
updated according to a stochastic gradient descent method.

17. The method of claim 16, wherein the stochastic
gradient descent method uses a straight-through estimator.

18. The method of claim 11, wherein 1teratively updating
the first set of parameters and the second set of parameters
apply reinforcement learning techniques.

19. The method of claim 11, wherein the data compressor
and the data decompressor process data in the frequency
domain.

20. The method of claim 11, wherein each output vector
1s a function of: (1) a corresponding input vector, and (11)
both the first and second sets of parameters.

21. The method of claim 11, wherein the computation
environment comprises one or more neural networks.
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