US010757138B2

12 United States Patent (10) Patent No.: US 10,757,138 B2
Qian et al. 45) Date of Patent: Aug. 25, 2020

(54) SYSTEMS AND METHODS FOR STORING A (56) References Cited
SECURITY PARAMETER INDEX IN AN

OPTIONS FIELD OF AN ENCAPSULATION U.S. PATENT DOCUMENTS

HEADER 7.434,045 B1* 10/2008 Enderwick HOAL 63/06
| o 713/158
(71) Applicant: Nicira, Inc., Palo Alto, CA (US) 10,103,902 Bl * 10/2018 Sampath HOA4L. 12/467
2007/0180227 Al* 82007 Akimoto HO4L. 63/0464
(72) Inventors: Calvin Qian, San Jose, CA (US); 713/153
Ganesan Chandrashekhar, Campbell, 2008/0019525 A1* /2008 Kruegel HO4L g;i%%g
CA (US); Sanal Pillai, Sunnyvale, CA 2008/0075073 Al* 3/2008 SWartz HO4L 63/162
(US); Kishore Kankipati, Palo Alto, 170/380
CA (US); Sujatha Sundararaman, San 2013/0103940 Al* 4/2013 Badeacoccovvvnnr... HO41. 43/50
Jose, CA (US) 713/160
2015/0295899 A1* 10/2015 Chencooove...... HO4L. 63/0428
(73) Assignee: Nicira, Inc., Palo Alto, CA (US) 713/160
2017/0063808 Al* 3/2017 Manapragada HO4L 67/2804
x . - 1o - 2017/0085502 Al* 3/2017 Biruduraju HOA41. 49/354
(%) Notice: Sutbjeft. 10 altly (élsglalmeg’; thf germéjftglg 2017/0295019 Al* 10/2017 Fukudaoooooo....... HO4L 9/3226
%as‘ﬂ(l: IISSZ}Ebinbe 2;‘; 3 Justed undaer 2018/0139123 Al* 5/2018 Qiangccco....... HO41. 45/308
S.C. y ays.
(21) Appl. No.: 15/649,620 OIHER PUBLICATIONS
i “Encapsulation Techniques: Generic Network Virtualization Encap-
(22) Filed: Jul. 13, 2017 sulation, VXLAN Generic Protocol Extension, and Network Ser-
ice Header” (2014), Cisco. p. 1-3 (Year: 2014).*
(65) Prior Publication Data vice Header™ (- Cisco. p (Year)
US 2019/0020684 A1 Jan. 17, 2019 * cited by examiner
(51) Int. CL Primary Examiner — Shewaye Gelagay
GO6F 21/00 (2013.01) Assistant Examiner — Kevin Ayala
HO4L 29/06 (2006.01) (74) Attorney, Agent, or Firm — Patterson + Sheridan,
(52) U.S. CL LLP
CPC HO4L 63/164 (2013.01);, HO4L 63/0272
(2013.01); HO4L 63/102 (2013.01); Ho4L. ~ (37) ABSTRACT

63/166 (2013.01); HO4L 63/205 (2013.01); Certain embodiments described herein are generally
HO4L 63/06 (2013.01); HO4L 65/10 (2013.01) directed to a first host machine exchanging a Security

(58) Field of Classification Search Parameter Index (SPI) value with a second host machine by

CPC ... HO4L 63/164; HO4L 63/166; HO4L 63/102; storing the SPI in an options field of an encapsulation header
HO4L 63/205; HO4L 63/10; HO4L 63/06 of an encapsulated packet.

USPC e 713/153
See application file for complete search history. 25 Claims, 6 Drawing Sheets

500

S

ENCAPSULATE A DATA PACKET USING THE GENEVE ENCAPSULATION | 510
PROTOCOL -

STORE AN 5P| VALUE CORRESPONDING TO THE DATA PACKET IN A GENEVE; 520
HEADER OF THE GENEVE ENCAPSULATED DATA PACKET

ENCRYPT THE GENEVE ENCAPSULATED DATA PACKET USING THE L~ 530
ENCAPSULATION SECURITY PROTOCOL {ESP) =

l

TRANSMIT THE GENEVE ENCAPSULATED ESP ENCRYTED PACKET TO A <~ 540
DESTINATION ENDPOINT

U.S. Patent Aug. 25, 2020 Sheet 1 of 6 US 10,757,138 B2

-
q
L

110

100

Fig. 1

US 10,757,138 B2

Sheet 2 of 6

Aug. 25, 2020

U.S. Patent

¢ ‘34
pai1dAiou3]
....................................... A
96¢ = G6¢C ___ ___ - 082daN | _ __ _

191004 | UOIEIRUAYINY . _MLmN ke G8T /dDL JopesH mmmmw_wﬂwz AMNN ._kutwmw_._ | W4 LM_me_._ ommuww_wmm@_._

7 1oke | 467 ledl dS3 | peoj a%:\%f pishey | dIBUSHO | (dS3)295dl | dI MmN ¢ J9he]
q00¢

mﬂﬁeze_uw;u yseH) €G¢ (dan/dol) ¢GC Y13uan mﬂmc_%ma | TC¢equinN | TZE (1dS) xapul |

. eleQ uolediuaylny JopeaH 1xaN | 3duipped . 3Juanbag Ja1aweled A11und3S
59 09T === eopheq | OEC 40N 02z 0T | S0
J21004 | uolEdIUBYINY | (OST J3]led] dS3 1an/doL - /dD1 J9peaH JopeaH | JapesH JapesH |
Z Jake dS3 “ - p ke (dS3)23sdl i d ¢ Jaker |

\/ "

paidAioujl 2007

U.S. Patent Aug. 25, 2020 Sheet 3 of 6 US 10,757,138 B2

L L N R N NN NN N NN R LR L N L P P P R L RN R L L L L TP P PR B B L P L L L N U L L L L TP T P R PN P L L LN L L L T T B L L LR L LN R N L L L P P L L LB PP L L LR U T L L P B T P L P L P L R L P L

VM ' VM

1 f 330, 330, §
Applications Applications Applications
334 ? 334 334 ;
VNIC336 ||

4d &k A k4 k FEFE

L &4 & LELELEESEEEESY B B B4 B4 B R b A kAR EFE SR AR AR EE RS RS R R R AR AR AR AR AR AR FRE S YR RAER

RULES REPOSITORY 322

w m w h rm e rw

DATA STORE

L F Fdl FE

FrFE PR FREFREFS PR PR F R R R

4 R F¥F SR FYEYyFFYFFYFLPTFYRTYTFESRETOY RSRERSFTERSFRSFFEFSRE PRl R PR FSRFTRNY OFTRSFRTYTERSFFY R R Ry PR PR FYRFREY RYFFSFYTRSFERTRSFFYIYFYFFFYFYRTFYETAFYFSFFESFFTERSERSRSFS R PRy R PP RYTRSSRTERSRTNSYSESFFT RS FYrY FFrYYRrFNCLSRTRNYFTERSERTYT NSNS FFY R YR P RN RFRSARTRSFRTOYSENSERT YRR AR PR ERYRFYERTRY RSRSETTNSERTRYTYFRYFY R FYTRFY A FrAFP RN PRYFFSAFRT PSR RS E PR YRR PP R R RN

VIRTUALSWITCH 314 | FIREWALL
HYPERVISOR 310
. PHYSICAL NETWORK INTERFACE 302 |

HOST MACHINE 300

TO PRHYSICAL NETWORK Flg‘ 3

US 10,757,138 B2

Sheet 4 of 6

Aug. 25, 2020

U.S. Patent

) T " o Commmmm—— ” .m_
op¥ eieq uoildQ s|qelep v 2
=A% vy | vhP A% A4 A4 w
yisua Y Y ¥y | @dAj uondQ | sse)puondQ
Tvy =
Oty suoildQ yidual ajgeliep anauan
SEV PanJasay | ZEV (INA) J31J13Up]| 3JOMIBN [BNLIA
S NI — wa —
. O¢y adA] |jodo104d | meme VeV | EEV - U13ua ey
m | m m m | |
___ I B N 1 2« [N 4= 2 R I GTT W1%7 GOV |
— 081 SLY ¢+ S9Y 01°) 2N M - 0Sh | 0ty OclY v
OLY i ~ /dD1L | Jepe9dH m JOPEIH | JopPEIH | J9PEIH
- uol1ed1nusyiIny | J9jied] ; 431004 peojAed - Jopeat m g - J9peaH | JapesH JopeaH | (453) _ a1 v |
_ . 7 JaAe 7 JaAe7 | anaua 191IN0 | |
dS3 dS4 ¢ 71 ddN/doL puske] | Jsouu| C] 5 | ddN 21IN0 . %agq) 1IN0 * 13IN0
00t

U.S. Patent Aug. 25, 2020 Sheet 5 of 6 US 10,757,138 B2

500

Y

ENCAPSULATE A DATA PACKET USING THE GENEVE ENCAPSULATION ¢+~ 510
PROTOCOL |

STORE AN 5Pl VALUE CORRESPONDING TO THE DATA PACKET IN A GENEVE} 7 520
HEADER OF THE GENEVE ENCAPSULATED DATA PACKET |

ENCRYPT THE GENEVE ENCAPSULATED DATA PACKET USING THE .o 530
ENCAPSULATION SECURITY PROTOCOL (ESP))

% % E k445 AAAAEFRESR S EFE SN A RS AR AE SRR RS d TS A AR SRR AT Y AAAR Y SR R EEF S S A AARAEA SRR RS TS AR A EFEFESE AL AYY S AR AERE S SR A S S A AR RS E YA AT AAARER Y S EE YA A AT S A AR SE SRS E RS SY A, AR R KRR R EE RS

TRANSMIT THE GENEVE ENCAPSULATED ESP ENCRYTED PACKET TO A o7 540
DESTINATION ENDPOINT |

ll

Fig. 5

U.S. Patent Aug. 25, 2020 Sheet 6 of 6 US 10,757,138 B2

600

Y

RECEIVE A GENEVE ENCAPSULATED ESP ENCRYPTED DATA PACKET FROM A}~ 610
SOURCE ENDPOINT |

DECRYPT THE PACKET AND REMOVE THE IPSEC ESP HEADEROF THE ¢ 7 620
PACKET |

o 630
EXTRACT THE SPI VALUE STORED IN THE GENEVE HEADER OF THE PACKET feee”

% % P kA ¥F%T% % AAAKAEFAEFSE SRR E S Sd 4TS A AR A S SRS SRR ddT S S EFF TSRS AR S FEFFEA AT ARAEAE SRS EFEEFAA TS A AR SRR R EEE 4SS A AR SRS SRR A S RN EEFEFFEFA AN AR Y S AAREAR S S EE YA AR RA SRS S S A S AR Y EEE RS

640

lll

Fig. 6

US 10,757,138 B2

1

SYSTEMS AND METHODS FOR STORING A
SECURITY PARAMETER INDEX IN AN
OPTIONS FIELD OF AN ENCAPSULATION
HEADER

BACKGROUND

Software defined networking (SDN) comprises a plurality
of hosts (e.g., endpoints) 1n communication over a physical
network infrastructure, each host having one or more virtu-
alized computing instances such as virtual machines (VMs)
or containers that are connected to one another over logical
overlay networks that are decoupled from the underlying
physical network infrastructure. SDN may utilize distributed
network encryption (“DNE”), which 1s a functionality cre-
ated within the SDN framework to simplify key manage-
ment associated with IP Security (IPSec). Using DNE, each
endpoint within a network of endpoints receives or derives
security parameter mdex (SPI) values, used to identify a
corresponding security association established with other
endpoints, as well as encryption/decryption keys to utilize 1in
exchanging data packets with other endpoints 1n the network

in an IPSec secured manner. For example, data packets may
be encrypted at a source endpoint using a symmetric encryp-
tion/decryption key, transmitted to a destination endpoint,
and decrypted at the destination endpoint using the same
encryption/decryption key. In some cases, an SPI value 1s
stored 1n an IPSec header of a data packet when the data
packet 1s being encrypted at the source endpoint using the
encapsulating security payload (ESP) protocol. After receiv-
ing the encrypted packet, the destination endpoint may
extract the SPI value from the IPSec header and use it to
identify a security association that stores the encryption/
decryption key that the data packet was encrypted with at the
source endpoint. In some cases, however, after the destina-
tion endpoint decrypts the data packet using the encryption/
decryption key, 1t strips the IPSec header off the packet. This
may then leave other modules in the operating system
environment of the destination endpoint without access to
the SPI value and, therefore, unable to perform some func-
tionalities.

SUMMARY

Herein described are one or more embodiments of a
method for use by a first host machine for exchanging a
Security Parameter Index (SPI) value with a second host
machine. The method includes encapsulating, by the first
host machine, a data packet using an encapsulation frame
format with an encapsulation header that includes an options
field. The method also includes storing, by the first host
machine, the SPI value corresponding to the data packet in
the options field of the encapsulation header of the data
packet. The method also includes encrypting, by the first
host machine, the data packet using one or more security
protocols and storing the SPI value 1n a security protocol
header of the data packet. The method also includes trans-
mitting, by the first host machine, the data packet to the
second host machine.

Also described heremn are embodiments of a non-transi-
tory computer readable medium comprising instructions to
be executed in a computer system, wherein the instructions
when executed in the computer system perform the method
described above for use by a first host machine for exchang-
ing a Security Parameter Index (SPI) value with a second
host machine.

10

15

20

25

30

35

40

45

50

55

60

65

2

Also described herein are embodiments of a computer
system, wherein software for the computer system 1s pro-
grammed to execute the method described above for use by
a first host machine for exchanging a Security Parameter
Index (SPI) value with a second host machine.

Also described herein are embodiments of a computer
system comprising means for executing the method
described above for use by a first host machine for exchang-

ing a Security Parameter Index (SPI) value with a second
host machine.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a network, in accordance
with some embodiments.

FIG. 2 illustrates an example of an ESP encrypted data
packet, in accordance with some embodiments.

FIG. 3 illustrates an example block diagram of host
machine (e.g., a source/destination EP) for use 1 a virtual-
1zed network environment, according with some embodi-
ments.

FIG. 4 illustrates an example of a Geneve encapsulated
ESP encrypted packet, in accordance with some embodi-
ments.

FIG. § illustrates example operations for use by a source
EP for saving an SPI value corresponding to a data packet
in a Geneve header when encapsulating the data packet
using the Geneve encapsulation protocols, in accordance
with some embodiments.

FIG. 6 illustrates example operations for use by a desti-
nation EP for decapsulating the Geneve encapsulated ESP
encrypted data packet of FIG. 5, received from a source EP,
in accordance with some embodiments.

DETAILED DESCRIPTION

Embodiments presented herein relate to systems and
methods for storing an SPI value in an options field of an
encapsulation (e.g., Geneve) header of a packet.

FIG. 1 illustrates an example of a network 100. In certain
embodiments, network 100 represents a physical network.
As shown by FIG. 1, network 100 connects a plurality of
endpoints (EPs), including EP 110, EP 120, and EP 130. An
EP refers generally to an oniginating EP (*source EP”) or
terminating EP (“destination EP”) of a flow of network
packets, which can include one or more data packets passed
from the source to the destination EP. In practice, an EP may
be a physical computing device (e.g., physical server, physi-
cal host). In certain embodiments, the EP may be configured
to host one or more virtualized computing instances (e.g.,
virtual machine, container, data compute node, 1solated user
space 1nstance) as further discussed herein.

In a network, EPs may communicate with or transmait data
packets to other EPs. For instance, EP 110 may transmit data
packets to EP 120 1n a secured fashion, such as by utilizing
IP Security (IPSec) protocols. However, 1n some embodi-
ments, before any data can be securely transferred using the
IPSec framework, security associations may need to be
established between the two EPs. In some embodiments,
cach security association 1s a one-way or simplex connec-
tion, and therefore at least two security associations, one for
cach direction, are established between two IPSec peers
(e.g., EPs). These security associations are a form of contract
between the EPs detailing how to exchange and protect
information among each other. In some embodiments, each
security association 1s comprised of a mutually agreed-upon
key, one or more security protocols, and/or an SPI value.

US 10,757,138 B2

3

The mutually agreed-upon key (e.g., encryption/decryp-
tion key), in some embodiments, 1s generated by a server
(e.g., server 140) and subsequently distributed to EPs. Also,
the one or more security protocols, described above, may be
one or more IPSec security protocols such as Authentication
Header (AH), Encapsulating Security Payload (ESP), etc., as
turther described 1n relation to FIG. 2. After security asso-
ciations have been established between two IPSec peers, one
or more of these security protocols may be used to protect
data packets for transmission. Though certain embodiments
are described herein with respect to the ESP security pro-
tocol, other suitable IPSec security protocols (e.g., AH
protocol) may, either 1n combination with ESP or alone, be
used 1n accordance with the embodiments described herein.

In addition to a mutually agreed-upon key and security
protocol, a security association includes an SPI value. In
some embodiments, each SPI value 1s a binary value asso-
ciated with a security association, which enables an EP to
distinguish among multiple active security associations. As
an example, SPI values may be used to distinguish between
the inbound and outbound security associations running on
an EP. In some cases, the Internet Key Exchange (IKE)
protocol 1s used to generate these SPI values and encryption/
decryption keys 1n the IPSec framework. For example, prior
to any data exchange, IKE performs a two-phase negotiation
session, which results 1n establishing two security associa-
tions between two IPSec peers. These security associations
may not only contain mutually agreed-upon encryption and
decryption keys to be used for incoming and outgoing traflic,
but also maintain sequence numbers for each data transfer.
These sequence numbers are maintained to ensure anti-
replay, which prevents hackers from imjecting or making
changes 1n data packets that travel from a source to a
destination EP. However, 11 the IKE protocol 1s used to
establish these security associations 1n a network with, for
instance, (N) number of hosts, then each host may need to
set up (N-1) IKE negotiation sessions.

Accordingly, in some cases, mnstead of using IKE, DNE
may be utilized to simplily key management, including key
generation and exchange, and SPI allocation. DNE provides
a central unit, e.g. server 140, that generates and distributes
encryption/decryption keys and SPI values to EPs in a

network. DNE also simplifies protecting network trailic of

EPs (e.g., virtual machines running on EPs) by allowing
users (€.g., network administrators) to define simple security
rules and key policies. For example, 1n some embodiments,
server 140 may store, in 1ts memory, a plurality of security
rules and key policies. Security rules may be user-defined
rules that users input ito the central umit through an
interface (e.g., via a manager, which may be a physical
computing device or a virtualized computing instance sup-
ported by a physical computing device). Security rules may
define what key policy 1s used by server 140 to generate an
encryption/decryption key for data transier between EPs 1n
a network. In some embodiments, each key policy may be
associated with one or more EPs and include certain speci-
fications (e.g., one or more of an algorithm, action, strength
of the key, etc.) that define properties of an encryption/
decryption key.

As described above, IPSec may use the ESP protocol to
provide data confidentiality (encryption) and authentication
(data integrity, data origin authentication, and replay pro-
tection) services to EPs 1n their transmission of 1P packets to
one another. Accordingly, as described in relation to FIG. 2
below, a source EP may, 1n some embodiments, use the ESP
protocol to encrypt an original IP packet and thereby protect
the confidentiality of data carried by the IP packet and

5

10

15

20

25

30

35

40

45

50

55

60

65

4

enable verification of 1ts authenticity by the destination EP
(1.e., the receiver of information).

In general, prior to the application of the ESP protocol, or
other security protocols, each original IP packet may include
an IP header and IP payload (or data). An IP header 1s header
information at the beginning of an original IP packet, which
contains information about the IP version (IPv4, IPv6, etc.),
IP protocol, source IP address, destination IP address, etc.
The IP protocol field of the IP header indicates the next
higher layer protocol being carried as the IP payload. For
example, an IP protocol field having an IP protocol type code
or value of six indicates that the IP payload 1s a Transmission
Control Protocol (TCP) segment. The TCP segment includes
a TCP header and TCP payload. The TCP header includes
source and destination port values. In another example, an IP
protocol field having an IP protocol type value of seventeen
indicates that the IP payload 1s a User Datagram Protocol
(UDP) datagram. The UDP datagram includes a UDP header
and UDP payload. The UDP header includes source and
destination port values. In addition to the IP header, as
described above, an original IP packet also includes an IP
payload field, which 1s the data or message within the
original IP packet that 1s intended for the recerver (e.g. a
destination EP).

In the process of applying ESP to an IP packet, the
original IP packet may be modified. More specifically, the
source EP may reconstruct outbound IP packets with addi-
tional IPSec headers. Once received by the destination EP,
the inbound IP packets may be stripped of their IPSec
headers. In some embodiments, the manner in which the
source EP modifies or reconstructs the original IP packet
depends on the mode used. There are two ESP modes, which
are transport and tunnel modes.

FIG. 2 first 1llustrates ESP packet 200q, an example of an
IPv4 packet encrypted by the ESP protocol using the trans-
port mode, 1n accordance with some embodiments. ESP
packet 200aq includes Layer 2 header 205, IP header 210,
IPSec (ESP) header 220, Layer 4 header TCP/UDP 230,
TCP/UDP payload 240, ESP trailer 250, ESP authentication
260, and Layer 2 footer 265. Using the transport mode of the
ESP protocol, the value of the IP protocol field of the
original IP header of the IPv4 packet may be changed to fifty
to 1ndicate encryption using ESP. The changed IP header 1s
shown as IP header 210 of ESP packet 200a. IPSec ESP
header 220 1s then placed after IP header 210 of ESP packet
200a. As shown 1n FIG. 2, IPSec ESP header 220 further
includes SPI value 221 as well as sequence number 222,
whose functionalities were described above. Subsequent to
placing ESP header 220 after IP header 210, the IP payload
of the original IP packet may be encrypted using an encryp-
tion/decryption key received, in some embodiments, from a
server (e.g., server 140), as described above. For example,
where the IP payload of the original data packet 1s a TCP
segment or UDP datagram, the header (with source and
destination port values) and payload of the TCP segment or
UDP datagram may be encrypted. The result may be
encrypted Layer 4 header TCP/UDP 230 (with encrypted
source and destination port values) and encrypted TCP/UDP
payload 240.

Following TCP/UDP payload 240 1s ESP trailer 250,
which 1s appended to the IP payload of the original IP packet
and 1s also encrypted. ESP trailer 250, as shown in FIG. 2,
comprises padding 2351, padding length 252, and next header
(TCP/UDP) 253. Padding 251 1s a 0-255 byte field used for
encryption or alignment. Padding length 252 indicates the
length of padding 251 in bytes. In addition, next header
(TCP/UDP) 253 identifies the nature of the payload, such as

US 10,757,138 B2

S

whether 1t 1s a TCP segment or a UDP datagram. ESP packet
200a also includes ESP authentication 260, contaiming an
Integrity Check Value (ICV) and authentication data (hash
checksum) 261, used to verity the identity of the sender (e.g.
source EP) and the integrity of the message.

ESP packet 200aq also includes Layer 2 header 205 and

Layer 2 footer 2635. In certain embodiments, Layer 2 header
205 1ncludes a source media access control (MAC) address
of the source EP and a destination MAC address of the
next-hop in the network for ESP packet 200a. In addition,
Layer 2 footer 265 includes error detection information that
allows the destination EP to determine whether the packet

includes an error.

As described above, an ESP packet may be generated
using one of two modes, including transport and tunnel
modes. In contrast to the transport mode, instead of using the
original IP header (e.g., IP header 210) for routing, the
tunnel mode may encapsulate the original IP packet and

build a new IP header, containing the source and destination
IP addresses of the EPs for routing the ESP packet. FIG. 2

shows ESP packet 2005, an example of an ESP packet
encrypted and encapsulated using the tunnel mode. ESP
packet 2005, as shown, includes the following fields: Layer
2 header 270, new IP header 271, IPSec ESP header 273, the
original IP header 276, Layer 4 header TCP/UDP 280,
TCP/UDP payload 285, ESP trailer 290, ESP authentication
data 295, and Layer 2 footer 296. Also, similar to an IPv4
packet, an IPv6 packet may also be encapsulated using the
ESP protocol.

In some embodiments, after a data packet (e.g., IPv4,
IPv6, etc.) 1s encrypted at a source EP using the ESP protocol
(or ESP protocol 1n combination with the AH protocol), 1t 1s
then transmitted by the source EP to a destination EP over
a network (e.g. network 100).

In some embodiments, the destination EP 1s a physical
computing device, as further described 1n relation to FIG. 3
below, that operates a firewall (e.g., 1n a virtual switch 1n a
kernel space of 1ts operating system). The virtual switch
implementing the firewall performs policy enforcement by
monitoring and controlling inbound data packets (e.g., ESP

packet 200a, ESP packet 2005, etc.) based on a set of

security policies. It should be noted that though the firewall
1s described as being implemented in the virtual switch, 1t
may be implemented external from the virtual switch 1n the
physical computing device, such as somewhere before or
alter the virtual switch along a processing pipeline of the

physical computing device for processing inbound data
packets. Also, 1n order to recerve and process IPSec secured
packets (e.g., ESP packet 200a or ESP packet 2006) from the
source EP, 1n some embodiments, the destination EP inte-
grates the IPSec protocol 1n the network layer of 1its kernel
space.

In some embodiments, on the receipt of the ESP packet,
such as ESP packet 200a, the network layer of the destina-
tion EP’s kernel extracts SPI value 221 from IPSec ESP
header 220 as well as the source and the destination IP
addresses and protocol from IP header 210. Using SPI value
221, the network layer then fetches a relevant security
association, ii any, from a security association database
stored 1 the memory of the destination EP. The fetched
security association contains the encryption/decryption key
that the ESP packet was encrypted with. Using this encryp-
tion/decryption key, in some cases, the network layer
decrypts the TCP/UDP payload 240, aifter which the network
layer then strips ofl IPSec ESP header 220 and passes the
remainder of ESP packet 200a to the virtual switch.

10

15

20

25

30

35

40

45

50

55

60

65

6

However, in some embodiments, 1n order for the virtual
switch implementing the firewall to perform policy enforce-
ment, 1t requires access to SPI value 221 stored in IPSec ESP
header 220. This 1s because, some of the security policies
that the virtual switch implementing the firewall may use to
control the mmbound ESP packet 200a are based on the type
of encryption used to encrypt ESP packet 200q at the source
EP. Therefore, without SPI value 221, the virtual switch
implementing the firewall may not be able to i1dentity the
encryption key that was used to encrypt ESP packet 200q
and, therefore, may not be able to determine 11 ESP packet
200a matches one of the security policies stored in the
memory resources of the destination EP.

Accordingly, certain embodiments described herein relate
to utilizing the General Network Virtualization Encapsula-
tion (Geneve) frame format to store and carry SPI value 221
to the virtual switch implementing the firewall even after the
IPSec ESP header 1s stripped off. Geneve 1s a generic and
extensible encapsulation protocol designed to offer control-
plane 1ndependence between tunnel endpoints 1 a virtual-
1zed network environment. This frame format, as further
described 1n relation to FIG. 4, allows for current and future
network 1mplementations to carry metadata encoded in a
Type-Length-Value (TLV) format as option headers. Though
certain embodiments are described herein with respect to the
Geneve frame format, other suitable encapsulation frame
formats that include an options field or other suitable field
for storing and carrying SPI value 221 may be used 1n
accordance with the embodiments described herein.

FIG. 3 illustrates an example block diagram of host
machine 300 (e.g., a source/destination EP) for use 1 a
virtualized network environment, according to some
embodiments. In some embodiments, host machine 300 may
be a source EP utilized to generate a Geneve encapsulated
packet and store an SPI value therein for transmission to a
destination EP. As illustrated, host machine 300 includes a
physical network interface controller (PNIC) 302, a hyper-
visor 310, a data store 320, and a plurality of wvirtual
machines 330. Hypervisor 310, 1n some embodiments, oper-
ates 1n the kernel space of an operating system residing on
host machine 300. In some embodiments, the operating
system 1s a Linux operating system and hypervisor 310 1s a
Kemnel Virtual Machine (KVM). KVM 1s a virtualization
infrastructure for the Linux kernel.

Host machine 300 may provide part of the computing
infrastructure 1 a virtualized computing environment dis-
tributed among multiple host machines. Though certain
embodiments are described herein with respect to VMs, the
same principals and techniques may also apply to other
appropriate virtual computing instances (e.g., virtual
machine, container, data compute node, 1solated user space
instance). In certain embodiments, host machine 300 1s a
hardware computing platform (e.g., a server). Each hard-
ware computing platform may include (not shown) one or
more central processing units (CPUs), system memory, and
non-volatile data storage. The host machine 300 further
includes one or more network intertaces, such as PNIC 302,
for communicating with other hardware computing plat-
forms within host machine 300 and/or network destinations
outside of host machine 300.

Host machine 300, as 1llustrated, has access to a physical
network (e.g. network 100 of FIG. 1) through PNIC 302.
Through the physical network, host machine 300 1s able to
communicate with other host machines. For example, 11 host
machine 300 1s a destination EP, it 1s able to receive and
process data packets from a source EP through the physical
network. In addition, as described above, host machine 300

US 10,757,138 B2

7

may implement the IPSec protocol 1n 1ts kernel space, which
also enables 1t to process IPSec secured data packets (e.g.,
ESP packet 200a or ESP packet 2006) received from a
source EP.

Hypervisor 310, as illustrated, includes a virtual switch
314 that implements a firewall 312. In alternate embodi-
ments, virtual switch 314 and firewall 312 may execute 1n a
privileged virtual machine (not shown). Such privileged
virtual machines are often referred to wvariously as a
“Domain zero,” “root-partition,” or “parent-partition.” In
some embodiments, firewall 312 is outside of virtual switch
314 (¢.g., before or after virtual switch 314 along a process-
ing pipeline for data packets 1n host machine 300). In some
such embodiments, SPI value information may be extracted
from the Geneve header and passed to the firewall 312 for
enforcing firewall rules. Hypervisor 310 serves as an inter-
face between guest virtual machines 330 and PNIC 302, as
well as other physical resources available on host machine
300. Each virtual machine 330 includes a virtual network
interface card (VNIC) 336 which 1s responsible for exchang-
ing packets between virtual machine 330 and hypervisor
310. VNICs 336 may be, in some cases, a soltware abstrac-
tion of a physical network interface card. Each wvirtual
machine 330 1s connected to a virtual port (vport) provided
by virtual switch 314 through the VM’s associated VNIC
336. Virtual switch 314 may serve as physical network
switch, 1.e., serve as an edge device on the physical network,
but implemented 1n software. Virtual switch 314 1s con-
nected to PNIC 302 to allow network traflic to be exchanged
between virtual machines 330 executing on host machine
300 and destinations on an external physical network.
Accordingly, virtual machines 330 may be interconnected as
part of a logical overlay network. Logical overlay networks
may be mmplemented by an EP by encapsulating egress
packets from the virtual machines and decapsulating ingress
packets. For example, Virtual Extensible Local Area Net-
work (VXLAN) tunnel endpoint (VTEP) services for encap-
sulating packets (e.g., Geneve packet, VXLAN packet, etc.)
may be implemented in software by the virtual switch 314
(or outside of virtual switch 314 and functionally coupled to
virtual switch 314 using forwarding tables), as further
described below.

While hypervisor 310 1s illustrated as including virtual
switch 314, 1t should be recognized that hypervisor 310 may
additionally expose virtual ports to one or more virtual
machines 330 using a virtual router or other virtual network-
ing 1nfrastructure provided by hypervisor 310. In some
embodiments, an example of virtual switch 314 1s the Open
vSwitch (OVS), which 1s an open-source implementation of
a distributed multi-layer switch. The OVS provides a switch-
ing stack for hardware virtualization environments, such as
KVM.

In some embodiments, firewall 312 operates 1n a kernel
space of hypervisor 310 and monitors virtual ports provided
by infrastructure components (e.g., virtual switch ports of
virtual switch 314, virtual router ports, and so on) in host
machine 300 for the establishment of new connections
between a virtual machine 330 and a virtual port. As
described above, firewall 312 implements security rules that
define, for example, network destinations that applications
334 executing n a VM 330 are allowed to communicate
with, network destinations that are blocked from communi-
cating with the VM 330, and so on. In some embodiments,
these security rules are stored 1n rules repository 322 of data
store 320 and may be enforced as rules generated by a
system administrator and applied to the appropriate VM 330
by firewall 312. In certain embodiments, security rules for

22

10

15

20

25

30

35

40

45

50

55

60

65

8

one or more host machines that are stored 1n respective rules
repositories 322 may be configured and received from a
central controller (not shown) that configures security rules
and distributes them to host machines. In certain embodi-
ments, firewall 312 follows the OVS OpenFlow protocol.
OpenFlow 1s a communications protocol that gives access to
the forwarding plane of a network switch (e.g., OVS) over
the network.

As described above, host machine 300 may be a destina-
tion EP that recerves an ESP packet (e.g., ESP packet 200a)
from a source EP. However, as also described above, when
processing the ESP packet, the IPSec protocol within the
network layer in the kernel space of host machine 300
decrypts and strips ofl the IPSec ESP header (e.g., IPSec
ESP header 220). This prevents other modules (e.g., firewall
312) 1n the kernel space of the operating system from having
access to the information (e.g., SPI value, etc.) stored in the
IPSec ESP header, unless the kernel space 1s configured to
share the SPI value with other modules. For example, 1n
some cases, modules 1n the kernel space (e.g., network layer
of the destination EP and firewall 312) may be modified to
share the SPI value with each other.

However, configuring the kernel 1n certain environments
(e.g., open-source environments, such as the KVM), may
not be feasible. Accordingly, as described above, a data
packet may first be encapsulated (e.g., by a VIEP imple-
mented by virtual switch 314 or coupled to virtual switch
314) using the Geneve encapsulation protocol, while saving

the SPI value 1n an options field (e.g., Geneve option 441 1n
Geneve variable length options field 440 of FIG. 4) of the

Geneve header (e.g., Geneve header 430 of FIG. 4), and then
further encrypted using the ESP protocol. As described
above, 1n some embodiments, Geneve encapsulation 1s per-
formed by a VIEP implemented by or coupled to virtual
switch 314 (e.g., referred to as an edge VTEP or hypervisor-
based VTEP). While the term “VTEP” refers to “VXLAN”
tunneling protocol, 1t 1s now often used regardless of the
tunneling protocol.

For example, a source virtual machine (e.g., VM 330,) on
a source EP may generate an IP/MAC packet (e.g., the
original IP packet, as described in relation to FIG. 2 or the
Layer 2 frame of FIG. 4) with the address (e.g., MAC
address and/or IP address) of the source virtual machine set
as the source address and the address (e.g., MAC address
and/or IP address) of the destination virtual machine on a
different destination EP set as the destination address. The
source virtual machine may send the packet to a virtual
switch (e.g., virtual switch 314) implemented 1n the source
EP. The virtual switch may implement a VIEP (e.g., source
VTEP), which encapsulates the packet received from the
source virtual machine to generate a Geneve encapsulated
packet. The original packet may be referred to as an inner
packet, and the encapsulated packet may be referred to as an
outer packet. Further, a header of the mner packet including
the address of the source virtual machine set as the source
address and the address of the destination virtual machine
set as the destination address may be referred to as an inner
header. The source VIEP may further include an outer
header as part of the outer packet. The outer header may
include a source address of the source VIEP generating and
transmitting the encapsulated packet, and further may
include a destination address of a VIEP (e.g., destination
VTEP) associated with the destination virtual machine. The
source VIEP implemented by virtual switch 314 passes the
encapsulated packet to the network layer of the source EP,
which encrypts the packet utilizing ESP protocol. Accord-
ingly, in the overlay network, the outer header 1s used to

US 10,757,138 B2

9

torward the encapsulated packet through the overlay net-
work from the source VIEP to the destination VITEP. The
network layer of the destination EP (e.g., implementing
virtual switch 314 that implements the destination VTEP)
may then decrypt the packet utilizing the ESP protocol. The
network layer of the destination EP passes the encapsulated
packet to virtual switch 314 implementing the destination
VTEP. The destination VTEP extracts the mnner packet, and
virtual switch 314 on the destination EP implements security
rules (via firewall 312) before forwarding the original packet
to the destination virtual machine based on the inner header
of the decapsulated original packet.

FIG. 4 1llustrates an example of a Geneve encapsulated
ESP encrypted packet 400, which 1s a Layer 2 frame or
packet first encapsulated using the Geneve encapsulation
protocol and then further encrypted using the ESP protocol
in transport mode. Though not shown, a packet encapsulated
using Geneve may instead be encapsulated and encrypted
using the ESP protocol tunnel mode. As shown 1n FIG. 4,

Geneve encapsulated ESP packet 400 comprises fields
including outer MAC header 405, outer 1P header 410, outer

TCP/UDP header 420, Geneve header 430, and frame check
sequence (FCS) 470 added by the Geneve encapsulation.
Geneve encapsulated ESP packet 400 further comprises
fields IPSec ESP header 415, ESP trailer 475, and ESP
authentication 480 added by the ESP protocol 1n transport
mode. The ESP packet 400 further comprises fields Layer 2
header 450, inner IP header 452, Layer 4 header TCP/UDP
455, TCP/UDP payload 460, and Layer 2 footer 4635 corre-
sponding to the original Layer 2 frame. IPSec (ESP) header
415, outer MAC header 405, outer IP header 410, outer
TCP/UDP header 420, ESP trailer 475, ESP authentication
480, and FCS 470, correspond to IPSec (ESP) header 220,
Layer 2 header 205, IP header 210, Layer 4 header TCP/
UDP 230, ESP trailer 250, ESP authentication 260, and
Layer 2 footer 245, respectively, of FIG. 2.

To encapsulate the original Layer 2 frame using the
Geneve encapsulation protocol, a source VIEP receives the
Layer 2 frame from a source VM and adds Geneve header
430. Geneve header 430 1s a tunnel header that comprises
fields including V 431, option length 432, O 433, C 434,
Reserved 433, protocol type 436, virtual network identifier
(VNI) 437, reserved 438, and variable length option 440. V
431 represents the Geneve header version number. Option
length 432 represents the length of the option fields. O 433
1s a field that indicates whether the packet as a whole
contains a control message or data payload. C 434 indicates
if critical options are presents. If this bit i1s set, tunnel
endpoints may parse an options list to interpret any critical
options. Reserved 4335 1s a field that may be zero on
transmission and i1gnored on receipt. Protocol type 436
indicates the type of the protocol data umit appearing after
Geneve header 430. VIN 437 1s an identifier for a unique
clement of a virtual network. Reserved 438 i1s the same as
reserved 435.

In vaniable length options field 440, Geneve header 430 1s
followed by zero or more Geneve options (e.g., Geneve
option 441) in the TLV format. In some embodiments, each
option 1s comprised of a two-byte option header and a
variable amount of option data interpreted according to the
type. FIG. 4 provides an illustrative example of Geneve
option 441 stored in variable length options field 440,
according to some embodiments. Geneve option 441 com-
prises a number of fields including option class 442, option
type 443, R 444, length 445, and variable option data 446.
Option class 442 1s a namespace for option type field 443.
A namespace 15 a set of symbols used to organize option

10

15

20

25

30

35

40

45

50

55

60

65

10

types (e.g., option type 443), such that they may be 1dentified
by name. Option type 443 indicates the format of the data
contained 1n variable option data 446. R 444 1s an option
control tlag reserved for tuture use. Length 445 indicates the
length of variable option data field 446. Vanable option data
field 446, 1n some embodiments carries actual data and 1s
interpreted according to option type 443.

The source VTEP further adds to the Layer 2 frame outer
UDP header 420 that includes a UDP source port of the
source VITEP, UDP destination port of the destination VITEP,
UDP length, and UDP checksum. In addition, the source
VTEP adds outer IP header 410, which includes, among
other information, the source IP address of the source VIEP
and destination IP address of the destination VTEP. Outer IP
header 410 1s used by the physical network (e.g., physical
network 100) to deliver packets between V1EPs.

Outer MAC header 405 includes a source MAC address
of the source VIEP as well as a destination MAC address of
the destination VTEP or a next hop destination. At the tail of
frame 400 1s FCS 470, which 1s a frame check sequence for
error detection. After the source VIEP encapsulates the
Layer 2 frame using the Geneve encapsulation protocol, the
Geneve encapsulated packet 1s further encrypted by the
IPSec protocol in the network layer of the source E
implementing the source VIEP. Accordingly, the network
layer may then add IPSec (ESP) header 415, ESP trailer 475,
and ESP authentication 480, which were described above 1n
relation to FIG. 2. The network layer may further modify the
outer IP header 410, and encrypt outer TCP/UDP header
420, Geneve header 430, Layer 2 header 450, inner IP
header 452, Laver 4 header TCP/UDP 455, TCP/UDP
payload 460, Layer 2 footer 465, and ESP trailer 475.

As described above, 1n some embodiments, Geneve
encapsulated ESP packet (e.g., packet 400) 1s capable of
passing the SPI value from the network layer of the desti-
nation EP to the virtual switch 314 implementing firewall
312 of the destination EP even after the IPSec ESP header
1s stripped off by the network layer. More specifically, 1n
some embodiments, the SPI value 1s saved 1n variable option
data field 446 of a Geneve option 441. In such embodiments,
alter Geneve encapsulated ESP packet 400 1s received by a
destination EP, the network layer of the destination EP’s
kernel decrypts the encrypted portions of the Geneve encap-
sulated ESP packet 400 and strips ofl the IPSec ESP header
415. Subsequently, the virtual switch 314 implementing
firewall 312 and the destination VTEP receives the remain-
der of packet 400 and extracts the SPI value from variable
option data field 446 of Geneve option 441 1n Geneve header
430.

FIG. 5 illustrates example operations 300 for use by a
source EP for saving an SPI value corresponding to a data
packet in a Geneve header when encapsulating the data
packet using the Geneve encapsulation protocols.

At 510, a source VITEP implemented by a virtual switch
of a source EP encapsulates a data packet using the Geneve
encapsulation protocol, as described 1n relation to FIG. 4.

At 520 the source VTEP stores an SPI value (e.g., SPI
value 221) corresponding to the data packet in a Geneve
header (e.g., Geneve header 430) of the Geneve encapsu-
lated data packet.

At 530 a network layer of the source EP encrypts the
Geneve encapsulated data packet using the ESP protocol.
The network layer further stores the SPI value 1n an IPSec

ESP header generated as a result of the encryption.

US 10,757,138 B2

11

At 540 the network layer of the source EP transmits the
Geneve encapsulated ESP encrypted data packet (e.g., data
packet 400) to a destination VIEP implemented by a des-
tination EP.

FIG. 6 1illustrates example operations 600 for use by a
destination EP for decapsulating the Geneve encapsulated
ESP encrypted data packet (e.g., data packet 400) received
from a source EP.

At 610, the destination EP receives the Geneve encapsu-
lated ESP encrypted data packet (e.g., data packet 400) from
a source EP.

At 620, a network layer of the destination EP decrypts
(e.g., using the IPSec protocol) the Geneve encapsulated
ESP encrypted data packet using an SPI value stored 1n an
IPSec ESP header (e.g., IPSec ESP header 415) of the packet
and further removes the IPSec ESP header. Subsequently,
the decrypted Geneve encapsulated packet 1s passed to the
virtual switch implementing the destination VTEP and fire-
wall on the destination EP.

At 630, the destination VTEP extracts the SPI value (e.g.,
SPI value 221) stored in the Geneve header (e.g., Geneve
header 430) of the packet.

At 640, the virtual switch implementing the destination
VTEP, uses the SPI value to apply security rules to the
packet by the firewall implemented by the virtual switch.

It should be noted that the order of certain operations 500
and 600 may be changed, additional operations added,
operations removed, etc.

In host machine 300, processing unit(s) may retrieve
instructions to execute and data to process in order to
execute the processes discussed herein. The processing
unit(s) may be a single processor or a multi-core processor
in different embodiments. The read-only-memory (ROM)
may store static data and instructions that may be utilized by
the processing unmit(s) and other modules of the electronic
system. The permanent storage device, on the other hand,
may be a read-and-write memory device. The permanent
storage device may be a non-volatile memory unit that stores
instructions and data even when the host machine 1s off.
Some embodiments use a mass-storage device (such as a
magnetic or optical disk and its corresponding disk drive) as
the permanent storage device.

Some embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like permanent storage device, the system memory
may be a read-and-write memory device. However, unlike
permanent storage device, the system memory may be a
volatile read-and-write memory, such as a random access
memory (RAM). The system memory may store some of the
instructions and data that processing unit(s) utilize at run-
time. In some embodiments, processes discussed herein are
stored 1n the system memory, the permanent storage device,
and/or the read-only memory.

Certain embodiments as described above involve a hard-
ware abstraction layer on top of a host computer. The
hardware abstraction layer allows multiple contexts or vir-
tual computing instances to share the hardware resource. In
some embodiments, these virtual computing i1nstances are
1solated from each other, each having at least a user appli-
cation running therein. The hardware abstraction layer thus
provides benelits of resource 1solation and allocation among,
the virtual computing instances. In the foregoing embodi-
ments, virtual machines are used as an example for the
virtual computing instances and hypervisors as an example
tor the hardware abstraction layer. As described above, each
virtual machine includes a guest operating system in which
at least one application runs.

10

15

20

25

30

35

40

45

50

55

60

65

12

It should be noted that these embodiments may also apply
to other examples of virtual computing instances, such as
containers not including a guest operating system, referred
to herein as “OS-less containers” (see, e.g., www.docker.
com). OS-less containers implement operating system-level
virtualization, wherein an abstraction layer 1s provided on
top of the kernel of an operating system on a host computer.
The abstraction layer supports multiple OS-less containers
cach including an application and 1ts dependencies. Each
OS-less container runs as an isolated process 1n user space
on the host operating system and shares the kernel with other
containers. The OS-less container relies on the kernel’s
functionality to make use of resource isolation (CPU,
memory, block I/0, network, etc.) and separate namespaces
and to completely 1solate the application’s view of the
operating environments. By using OS-less containers,
resources can be 1solated, services restricted, and processes
provisioned to have a private view of the operating system
with their own process ID space, file system structure, and
network interfaces. Multiple containers can share the same
kernel, but each container can be constrained to only use a
defined amount of resources such as CPU, memory and 1/0.

The various embodiments described herein may employ
various computer-implemented operations nvolving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to 1n terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various gen-
eral purpose machines may be used with computer programs
written 1n accordance with the teachings herein, or 1t may be
more convenient to construct a more specialized apparatus
to perform the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, miCroproces-
sor-based or programmable consumer electronics, minicom-
puters, mainirame computers, and the like.

One or more embodiments of the present invention may
be implemented as one or more computer programs or as one
or more computer program modules embodied 1n one or
more computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system—
computer readable media may be based on any existing or
subsequently developed technology for embodying com-
puter programs 1n a manner that enables them to be read by
a computer. Examples of a computer readable medium

include a hard dnive, network attached storage (INNAS),
read-only memory, random-access memory (e.g., a flash

memory device), a CD (Compact Discs)—CD-ROM, a
CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage
devices. The computer readable medium can also be dis-

US 10,757,138 B2

13

tributed over a network coupled computer system so that the
computer readable code 1s stored and executed 1n a distrib-
uted fashion.

Although one or more embodiments of the present inven-
tion have been described 1n some detail for clarity of
understanding, 1t will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as 1illustrative and not restrictive, and the scope of the
claims 1s not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated in the
claims.

Virtualization systems in accordance with the various
embodiments may be implemented as hosted embodiments,
non-hosted embodiments or as embodiments that tend to
blur distinctions between the two, are all envisioned. Fur-
thermore, various virtualization operations may be wholly or
partially implemented 1n hardware. For example, a hardware
implementation may employ a look-up table for modifica-
tion of storage access requests to secure non-disk data.

Many variations, modifications, additions, and 1mprove-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include compo-
nents of a host, console, or guest operating system that
performs virtualization functions. Plural instances may be
provided for components, operations or structures described
herein as a single instance. Finally, boundaries between
various components, operations and data stores are some-
what arbitrary, and particular operations are 1llustrated in the
context of specific illustrative configurations. Other alloca-
tions of functionality are envisioned and may fall within the
scope of the mvention(s). In general, structures and func-
tionality presented as separate components 1n exemplary
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements may fall within the scope
of the appended claim(s).

We claim:

1. A method for use by a first host machine for exchanging
a first Security Parameter Index (SPI) value and a second
SPI value with a second host machine, comprising:

encapsulating, by the first host machine, a data packet,

using an encapsulation frame format, with an encap-
sulation header that includes an options field to gener-
ate an encapsulated data packet;

storing, by the first host machine, the first SPI value

corresponding to the data packet 1n the options field of
the encapsulation header of the encapsulated data
packet;

encrypting, by the first host machine, the encapsulated

data packet using one or more security protocols to

generate an encapsulated encrypted data packet with an

added security protocol header and storing the second

SPI value 1n the security protocol header of the encap-

sulated encrypted data packet, wherein:

the encapsulated encrypted data packet comprises an
encrypted portion and an unencrypted portion,

the options field 1s 1n the encrypted portion, and

the security protocol header 1s in the unencrypted
portion;

the first SPI value and the second SPI value are the
same; and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

transmitting, by the first host machine, the encapsulated

encrypted data packet to the second host machine.

2. The method of claam 1, wherein the encapsulation
frame format comprises a General Network Virtualization
Encapsulation (Geneve) frame format.

3. The method of claim 1, wherein the one or more
security protocols comprise Internet Protocol Security (IP-
Sec) protocols.

4. The method of claim 1, wherein the one or more
security protocols comprise an encapsulating security pay-
load (ESP) protocol.

5. The method of claim 1, wherein the security protocol
header comprises an encapsulating security payload (ESP)
header.

6. The method of claim 1, wherein the encapsulating 1s
performed by a Virtual Extensible Local Area Network
(VXLAN) tunnel endpoint (VTEP) implemented by a virtual
switch executed by the first host machine, and wherein the
encrypting 1s performed by a network layer in a kernel space
ol an operating system executing on the first host machine.

7. The method of claim 1, further comprising:

recerving, by the second host machine, the encapsulated

encrypted data packet;

decrypting, by the second host machine, the encapsulated

encrypted data packet using the second SPI value
stored 1n the security protocol header to obtain the
encapsulated data packet;

removing, by the second host machine, the security pro-

tocol header:;

extracting, by the second host machine, the first SPI value

stored 1n the options field of the encapsulation header;
and

using, by the second host machine, the first SPI value to

apply one or more security rules to the data packet.

8. The method of claim 7, wherein the decrypting and the
removing are performed by a network layer 1n a kernel space
of an operating system executing on the second host
machine.

9. The method of claim 8, wherein the operating system
1s a Linux operating system implementing a Kernel Virtual
Machine (KVM) as a hypervisor.

10. The method of claim 7, wherein the extracting and the
using are performed by a virtual switch implemented by the
second host machine.

11. A non-transitory computer readable medium compris-
ing instructions to be executed 1n a computer system com-
prising a first host machine, wherein the instructions when
executed 1n the computer system perform a method for
exchanging a first Security Parameter Index (SPI) value and
a second SPI value with a second host machine, the method
comprising;

encapsulating, by the first host machine, a data packet,

using an encapsulation frame format, with an encap-
sulation header that includes an options field to gener-
ate an encapsulated data packet;

storing, by the first host machine, the first SPI value

corresponding to the data packet in the options field of
the encapsulation header of the encapsulated data
packet;

encrypting, by the first host machine, the encapsulated

data packet using one or more security protocols to

generate an encapsulated encrypted data packet with an

added security protocol header and storing the second

SPI value 1n the security protocol header of the encap-

sulated encrypted data packet, wherein:

the encapsulated encrypted data packet comprises an
encrypted portion and an unencrypted portion,

US 10,757,138 B2

15

the options field 1s in the encrypted portion, and

the security protocol header 1s in the unencrypted
portion;

the first SPI value and the second SPI value are the
same; and

transmitting, by the first host machine, the encapsulated

encrypted data packet to the second host machine.

12. The non-transitory computer readable medium of
claim 11, wherein the one or more security protocols com-
prise an encapsulating security payload (ESP) protocol.

13. The non-transitory computer readable medium of
claam 11, wherein the encapsulating 1s performed by a
Virtual Extensible Local Area Network (VXLAN) tunnel
endpoint (VTEP) implemented by a virtual switch executed
by the first host machine, and wherein the encrypting 1s
performed by a network layer mn a kernel space of an
operating system executing on the first host machine.

14. The non-transitory computer readable medium of
claim 11, wherein the method further comprises:

receiving, by the second host machine, the encapsulated

encrypted data packet;

decrypting, by the second host machine, the encapsulated

encrypted data packet using the second SPI value
stored 1n the security protocol header to obtain the
encapsulated data packet;

removing, by the second host machine, the security pro-

tocol header:

extracting, by the second host machine, the first SPI value

stored 1n the options field of the encapsulation header;
and

using, by the second host machine, the first SPI value to

apply one or more security rules to the data packet.

15. The non-transitory computer readable medium of
claam 14, wherein the decrypting and the removing are
performed by a network layer mn a kernel space of an
operating system executing on the second host machine.

16. The non-transitory computer readable medium of
claim 14, wherein the extracting and the using are performed
by a virtual switch implemented by the second host machine.

17. A computer system comprising a first host machine,
comprising:

a non-transitory memory comprising executable instruc-

tions; and

a processor 1 data communication with the memory and

configured to execute the instructions to cause the

computer system to execute a method for exchanging a

first Security Parameter Index (SPI) value and a second

SPI value with a second host machine, the method

comprising;

encapsulating, by the first host machine, a data packet,
using an encapsulation frame format, with an encap-
sulation header that includes an options field to
generate an encapsulated data packet;

storing, by the first host machine, the first SPI value
corresponding to the data packet 1n the options field
ol the encapsulation header of the encapsulated data
packet;

encrypting, by the first host machine, the encapsulated
data packet using one or more security protocols to
generate an encapsulated encrypted data packet with
an added security protocol header and storing the
second SPI value 1n the security protocol header of

the encapsulated encrypted data packet, wherein:
the encapsulated encrypted data packet comprises an
encrypted portion and an unencrypted portion,

10

15

20

25

30

35

40

45

50

55

60

65

16

the options field 1s in the encrypted portion, and
the security protocol header 1s in the unencrypted
portion;
the first SPI value and the second SPI value are the
same; and
transmitting, by the first host machine, the encapsulated
encrypted data packet to the second host machine.
18. The computer system of claim 17, wherein the secu-

rity protocol header comprises an encapsulating security
payload (ESP) header.

19. The computer system of claim 17, wherein the encap-
sulating 1s performed by a Virtual Extensible Local Area

Network (VXLAN) tunnel endpoint (VTEP) implemented
by a virtual switch executed by the first host machine, and
wherein the encrypting is performed by a network layer in
a kernel space of an operating system executing on the first
host machine.

20. The computer system of claim 17, wherein the method
turther comprises:

receiving, by the second host machine, the encapsulated

encrypted data packet;

decrypting, by the second host machine, the encapsulated

encrypted data packet using the second SPI value
stored 1in the security protocol header to obtain the
encapsulated data packet;

removing, by the second host machine, the security pro-

tocol header:

extracting, by the second host machine, the first SPI value

stored 1n the options field of the encapsulation header;
and

using, by the second host machine, the first SPI value to

apply one or more security rules to the data packet.

21. The computer system of claim 20, wherein the
decrypting and the removing are performed by a network
layer 1n a kernel space of an operating system executing on
the second host machine.

22. The computer system of claim 20, wherein the extract-
ing and the using are performed by a virtual switch imple-
mented by the second host machine.

23. A computer system comprising a first host machine,
comprising:

means for encapsulating a data packet, using an encap-

sulation frame format, with an encapsulation header
that includes an options field to generate an encapsu-
lated data packet;

means for storing a first Security Parameter Index (SPI)

value corresponding to the data packet in the options
field of the encapsulation header of the encapsulated
data packet;

means for encrypting the encapsulated data packet using

one or more security protocols to generate an encap-

sulated encrypted data packet with an added security

protocol header and storing a second SPI value 1n & the

security protocol header of the encapsulated encrypted

data packet, wherein:

the encapsulated encrypted data packet comprises an
encrypted portion and an unencrypted portion,

the options field 1s 1n the encrypted portion, and

the security protocol header 1s 1n the unencrypted
portion;

the first SPI value and the second SPI value are the
same; and

means for transmitting the encapsulated encrypted data

packet to the second host machine.

24. The computer system of claim 23, wherein the encap-
sulating 1s performed by a Virtual Extensible Local Area
Network (VXLAN) tunnel endpoint (VITEP) implemented

by a virtual switch executed by the first host machine, and

US 10,757,138 B2

17

wherein the encrypting i1s performed by a network layer in
a kernel space of an operating system executing on the first
host machine.
25. The computer system of claim 23, further comprising;:
means for recerving the encapsulated encrypted data
packet;
means for decrypting the encapsulated encrypted data
packet using the second SPI value stored 1n the security
protocol header to obtain the encapsulated data packet;
means for removing the security protocol header;
means for extracting the first SPI value stored in the
options field of the encapsulation header; and
means for using the first SPI value to apply one or more
security rules to the data packet.

x x * Cx x

10

15

18

	Front Page
	Drawings
	Specification
	Claims

