12 United States Patent

Luo

US010755026B1

US 10,755,026 B1
Aug. 25, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(60)

(1)

(52)

(58)

CIRCUIT DESIGN INCLUDING DESIGN
RULE VIOLATION CORRECTION
UTILIZING PATCHES BASED ON DEEP
REINFORCEMENT LEARNING

Applicant: Synopsys, Inc., Mountain View, CA

(US)
Inventor:

Assignee:
(US)

Notice:

Jianfeng Luo, Foster City, CA (US)

Synopsys, Inc., Mountain View, CA

U.S.C. 154(b) by O days.

Appl. No.: 16/179,342

Filed:

Nowv. 2, 2018

Related U.S. Application Data

Provisional application No. 62/583,773, filed on Nov.

14, 2017.

Int. CI.
GO6F 30/00
GO6F 30/398
GO6N 20720
GO6F 30/327

U.S. CL
CPC

(2020.0°
(2020.0°
(2019.0°
(2020.0°

)
)
)
)

Field of Classification Search

CPC
USPC

See application file for complete search history.

(2}
-

Viniation Qepth =

{?Z} e 1

-

teration 43

Heratian 1.

Ve

Rarouis..,,

GO6F 30/398 (2020.01); GOGF 30/327
(2020.01); GO6N 20/20 (2019.01)

GO6F 30/398
716/112

R R

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0305933 Al1* 12/2010 Chang GOO6F 30/331
703/15

2011/0289472 Al* 11/2011 Finkler GO6F 17/5068
716/136

2016/0378902 Al* 12/2016 Grauroou.... GO6F 30/39
716/52

2017/0076116 Al* 3/2017 Chencconven..., GO6N 20/00
2019/0065630 Al* 2/2019 Kim HO1L 29/66795
2019/0067060 Al1* 2/2019 Plihal GO6T 7/001
2019/0370432 Al1* 12/2019 Sha GO6F 17/5072
2020/0104457 Al1* 4/2020 Chuang GO6F 30/392

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

OTHER PUBLICATTONS

Juliani, Arthur, “Simple Reinforcement Learning with Tensorbow
Part 0: Q-Learning with Tables and Neural Networks,” published on

Medium, Aug. 25, 2016. downloaded from on (7 pages).
L1, Yuxi, Deep reinforcement learning: an overview. Nov. 28, 2018.
arX1v:1701.07274v6 (85 pages).

(Continued)

Primary Examiner — Suchin Parihar

(74) Attorney, Agent, or Firm — HIPLegal LLP; Judith
Szepesl

(57) ABSTRACT

A method of improving a design rule fixing process com-
prises receiving an integrated circuit design, including lay-
out elements, and identifying a plurality of design rule
violations 1n the mtegrated circuit design. The process then
identifies a plurality of possible actions, each action com-
prising fixing a design rule. The process then uses a deep
learning algorithm to select an action, the action represent-
ing fixing of a particular design rule violation. The process
then comprises applying a first patch, based on the order
returning to step (b) to select a next patch to apply.

20 Claims, 22 Drawing Sheets

rufe 2 {3dirutes [i violation fist

t Patching
Vichation Depth = 3

: Patehing

US 10,755,026 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Mnih, Volodymyr, et al., “Playing Atar1 with deep reinforcement

learning,” NIPS Deep Learning Workshop 2013. Downloaded from
(9 pages).

Silver, D. et al., “Deterministic policy gradient algorithms,”Proceed-
ings of the 31th International Conference on Machine Learning,
Beijing, 2014. (9 pages).

Silver, David, et al., “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, Jan. 28, 2016. (20
pages).

Sutton, Richard S. and Barto, Andrew G., Reinforcement Learning:
An Introduction., Nov. 5, 2017.

* cited by examiner

| Ol

TEInAg Y

US 10,755,026 Bl

X X

suiyned |

c1 UCIBIa Y

Sheet 1 of 22

duymied |

Aug. 25, 2020

SUONEJOIA [BUOIIPRY

{3 = Yidac uoneIoIA

LY

1 uonen

U.S. Patent

US 10,755,026 Bl

Sheet 2 of 22

Aug. 25, 2020

U.S. Patent

m_N HHHHHHHHHHH
XXX X XXX
x HHHHHHHHHHHHHHF
xx HHHHHHHHHHHHH

-

. E N
. .'..T.Tl..f & b & .T.T.T.:..T.:..Tb..fb..fb..fb..fb..fb..fb..fb..fb..fb..f

I
N

L
A
E

.-.. SR
.__.“.._.“...“...“...“...“...“...“...“...H.........“...H.......“.__..,.__. Y

dr it B dr b o dr Jr B dr b o dr e 0 dr 0 0 0 0 0 N
& dr

- .-IHLIHI. __......r....r....r.....r....r....r.._..r....r....r.....r....r.r..)
) ' L] .-l.l..Tb..'b-.'....fb..'b-.'....fb..'b-.'....fb..'b-.'ll

. . l.}..T.'..T.'..Tb..T.'..T.'..Tb..T.'..Tb..Tb..Tb..Tb..Tb..T....-.l.-.
B e

e

---.
dr e e e e e
._.....qk...k*.._...qk...k...#kk#kk#tnk*k#tktkh..tﬂ.._

i .

N
X b dr b b b de d b b A odr

A A
i
XA

U.S. Patent

F rrrrbr rrbrbrfrbrbrrrrir

"y

---'
F e rr e g rlp ke r ek
LB L L Ly ko

X &k

)
k*k:t*#*k:#*k k:k:#:t:#:t:#:r:
e e e e e e e e e
e

i a i

Ky

oA dp ok e A

¥
Ea ¥ Ay
e T T e e e e e
¥ ok kK k kKK X ¥
#:k:#:*:k:#***k*k***k*
o dr ke a e a
e e e e e
i

¥ &k k¥
T
EE
NN
i

aodr o dr

i a i

i
L

X
L)

¥
L}

Ky

Fo)

Ea o a N
e T e T e T e e T
N NN e
#:#:#:#:#:#*#*#*#*#*#*#*#*#tﬁ*
o dr i ara
e

i
s Pl
e

X x

EE
Pl
™

aodr o dr

Xk x kN kK X kik Kk
yod oy i ¥
NN

Fo)

:k k:# k:k t:# Ky
LML NN N LN SN NN
row

PN NN

L L N

i
o
Xk i

M

i
N N N
PN

X
NN N LN NN N NN N

¥
™

i

¥

¥

i

¥

¥k kK ¥ ¥
PN AL NN NN N LN NN
Pl X
T xx ¥
i

¥

™

i

¥

¥

ioa ke X
PO L NN NN NN

N N N N NN

¥k kK ¥
¥ a iy gy

i

L
LALLM NN NN N

i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
#i’#i’#\'#i’#i’#i':#

X
)
X
X
X
X
X
)
X
X
X
X
X
)
X
X
X
X
X

FUat g

¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥ ¥
LN LML L NN
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
L kN #:t ¥ t:#

Xy
¥

¥
¥
¥
X
¥
¥
¥
¥
¥
X
¥
¥
¥
¥
¥
X
¥
¥
¥
¥
aaa o a g
X

i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
¥
IS
i
X

i
i
¥
i
i
¥
i
i
¥
i
i
¥
i
i
¥
i
i
¥
i
i
¥
i

Foay

PN
N

¥
i
Xy

N N N N NN

)
)

s
E
Pl

Jr: 'r:lr: 'r:lr: 'r:lr o
EL

X

dok koK d ki

:#:I':#*I':#:I':#:I"r# L)
*\' o r b ko ko i
)

o
A A
e e

i
Xk
Pyl il g iy

Foay

#:t:# W Ty
L)
i&t
M NN
Xk
:t*#*t X
AL

x

a ok ik a

drodp A dr o dr o dp dr e dr dpodp e dp o dr e e g e g A

#*t:#:t:#:t*# LN
Ll o ol
e e e e ey
¥

El
¥

X x N

s

r
I
K od ok dok i
M

k& k& ki

X
e e ey

L)
:Jr:'rJr'rJrlrlr
ok ki koo
\'*k*i'#l'#\'ki'# NOUNN

'r:lr'rlr'rlr'rlr'r
Jr'r*lr*'r#'rlr'rlr'r#
ok bk bk kdr ki ki
::Jr:'r#'rlrlrlr'r#'rlr
Jr‘r*'r*lr'rlr'r#'r#'r#'r
kb bk
:Jr:'r:lr'rlr'rlr'rlr'rlr'r#'rlr
J‘_'I'Jl_JI'J‘_'I'JI''I'Jl"l'Jl"l'Jl"l'Jl''I'Jl'
ok bk bk ko kdr ki
:'r*lr*'r#'rklrlr'r#'r#'rlr
Jr‘r*'r*lr'rlr'rlr'rlr'rlr'r#'r#
Fh kbbb ii
ok A kod kodo o ko
ko kb k& ki
¥ kA ki ki ki
L

:#:t:# ¥

o

Xk

Wi
L ki
¥

PN

*k:#:t)

N N N NN

i
P
s
P
i
o dp A Ay Ay

X
LALLM AL NN

X
¥

Fu g gy
¥

W e

i
i

¥
X
¥
¥
X
¥
¥
X
¥
G N
X
¥
¥
X
¥
¥
X
¥

Foy
P A i g el gl

x

EaNCE N
e

Foay
i

W Ty

¥
N

i
e o]

Fu g gy
i

L

i
Par ol al ol
A

P N N N N S N)
P

Xy

P

T
i

Fo)
P

F e gl i e e g
X oa

i

o o d
Fo e g iy
ENC AT Al et gy

Ear ey

n
NN

x

i
N e a a a a a]

aodr o dr
Foy

L N N R

i

¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
X

F N g g g g)
P g i g g s
N e g g g e)

I dr

X a

N gt i g g
i

o

o g g g

P i g

Ay A ap Ay

Sy A e p ey

ar ap Ay

R N

F e e

o a a

oy dr Ay

N N N N NN

ey dr
P
i

X
o
X
x
¥
x
X
x
X
x
¥
x
X
x
X
x

EC)

S b)

e e e e e e e e e T
X X

X e

o o o o o k)
x x

W e e e e e e e e

X
X
X
X
X
#\'#i‘#I'#I'#I'#I'#I'#I'#E#\'#i‘#k#\'#i‘#l‘#\'#l‘#l‘#l‘#l‘#I'#\'#i'#E#\'#i‘#l‘#\'#l‘#l‘#l‘#l‘#l‘#\'#l‘#I'#\'#i'#l'#:\'#l'
X
X
X
X
)

Fdh b bbb kbbb bbbk iy ikili
K k& bk bk kb kb b r kbbb ik
Fod bk dr kb b b b d kod e b g b A b b i bk dr b g

i

X

'

i

¥

IS

i

X

'

i

¥
'rJr'rJr\'Jr'rJr'rJr\'Jr'rJr'rJr\'Jr\'Jr\'Jr:\'Jr'r

X

'

i

¥

IS

i

X

'
\'#i‘#l‘#\'#i‘#l‘#I'#I'#I'#I'#I'#:I'#\'#

IS

X
X
)
X
X
X
X
X
)
X
X
X

k#t#:t#k#t#k#k#t#\'#k#t
)
X
X
X
X
X
)
X
X
X
X
X

P L L R R N R R L L L LR R P R

)
X
X
X
X
X
)
X
X
X
X
'r‘r'rJr'rJr'rJr'r:Jr'rJr'rJr'r‘r'rJr'rJr'r‘r'rJr'rJr'rJr\'Jr'rJr'rJr'rJr'rJr\"r'rJr'rJr'r‘r'r‘r'rJr'r‘r'rJr'rJr'rJr\'#'r’r\"r\"r\"r\"r\"r'r‘r\"r\"r'r’r'r#'rJr'rJr
X
X
X
X
X
)
X
¥ ki kb kb irdr ik ik
X
X
X

¥
¥
X
¥
¥
X
¥
¥
X
¥
¥
\'#i’#i’#\'#:k#i'#i'#i'#i'#t#i'
¥
X
¥
¥
X
¥
¥
X
¥
¥
X

X
) ¥
: s k& ko k& ki ik Jr'r*
Jr#Jri'*#*l'#\'#i'#l'*#I'#*I'#I'#I'#I'#I'#k
ﬁ'i'#i'*#i'#i'#i'#k#i'*#\'#k#i'#\'#i'# ok
X

X

¥
i
i
i
i
i
¥
i
i
i
i
i
i i g g 0
i i i i k k*#*#*k*#* ¥
T T T e e T e e T T e T e T e T T e T T gl e
T e e e e e o o e o T ¥y o dr i dr i
L . i
i
L
¥
i
L
i
AL #:k L LN L LN L LN
AN L PE N N PE DL N P N SN
T T T T r o ey A
i
L
L

ko kb hr kb ki ki

P& r & bk P P b ir bk
L L N N R R N R R R
ok dr kb Ak dr o e dr

N N NN
KX R K
W e e e e e e
N)
)
W e e e e e e e

LN LN N

N
LN AL NN LN AL LN AL N LN N
EN N
AL NN
e
LALLM LN NN NN NN NN NN
Xk

AL NN

e e e e e e e e e e ey
™
X
W e
N A)
N N N N N N)

e e e e e e e e e e e e e e e T e e e e e e e e e e e e e e e e e e e T e o e e e e e T e e e T

Aug. 25, 2020 Sheet 3 of 22

r
r
'

%

e
x ¥ '..
2
i

o

i

x
x
i
i
ﬂr*-i'*dr*-l.

g e Sal it

Rl
;
.

o
Pty
X
k?#f
Tty
& 4 5

X ur ok X
d ar b Xk
X oa e
‘r""q. ax
i
¥
Pl
_‘_dr I
#:#:#
A
-i'*#*-l'*q'*-\'
& o oo
]
- n
. r
.

oy
Pty
i
i
err
¥
i
x
X
o k x i
x

XX
i

o

i
P

a A oar

o o A

drar dr ar Ay
P EF

tp

P
ax
ax

Py
oo oo ko i ko ko i
a i
ir o A
o o
'I"l"l"l"'l"l"l"l"l"l"l"l"l"l"l"l"l‘

-
L
r

Foay
ax
Fuat g
i
¥
o

’

s
s

dr o dp r dp r e dp dr dpddp e dr
i

-'r*ﬂrJr-'r*ﬂrJr#*#*#'*#*#*#*#*#*#*#*#*#*

T T T T e T e T T

T e T e T e T T Ty

L P A P P A S E S S A

Pyt
dr*-'rdr-'rdr-i'dr-i'

N N
L

D

N a3

¥
P

#*-tq'-tq'-\'#-l'q'-l'q'-'rq'-l'q'-'r

a
¥
- .t*
-

-i'*dr-i'dr-'rﬂr-'rdr-i'dr-'rdr-i'dr-kdr

I
a i x b by drox dor o doa i
x
s
x
I
x
I3
x
I
I

a
a

$1%:

ve'r'e'e e e e e e e e e e e e
b) EEEEEEEEEEEEEE

I, dr U r e e U
N)
CE) Fxr

ok
L g
L
L)
L

L]
X ¥

et e
EEER

G, e U U e e e e e U U e e e e U e e e e e e e e e e e e e e e e e i e
L b al aa a a a a a a lral a aa a aa a a a
N N N N

-
E
o
-

v
e e e e e e e e e o e o o e e o e o e o o e o o e e o e o e e o e o e o e o e
oy

N g g g g g N g

m

e e e

P

¥ N N)
¥

e e e T e e o e e e e T e e e e e e e e T e e e e e T e T e e e e e e e T e e e

¥

¥

ok k
LA
L
L)

L r

o
X
X
x

D N

§
L4
¥
L}

)

1
L
L]
L

]
Ly
r
r

a dr
o o
x

[]
L L
L4
L}
r

X
X

N N o N o N ol ko M
N g a a a a A a

¥
N N N N N N N NN)
.
)
X
K N N N N N N N R N N N N)
i

o o
ax dr x ko
x

N : *: : : *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: k:*: *:*: *:*: k:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: k:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: *:*: : : :
L ke
L g g g
Ay L N N N A U
I N A DE NN N D N N I D N N D N N D D N N D D N N N D D N N D N N D MM M NN N D N :

L]
e a2l e '#:t:#:t:#:k:#:t: : N
N) el N)
:k** LN M N L M L L ML ML L L L L L LN LN L L ML ML ML L N N L NN NN NN N NN L N o

B N N) e X e e e e e
L) o N N N N) Ll Rl S sl e el o

B A A A e T e e e e e e
L) R N s W W

B g a a a a a a a WN WA N A e)
N i a a a a N a aa a)

g g g g)
L) N a a a a a a a a aa aa a aa a

B A A el S A e
'y o A)
L L L A NN I N I L A I L M L L L L L L L L ML L ML L L L ML LN L N NN N N NN N

oy
S : A NN A NN N e D DN NN D DN NN D D D NN D D B M D D D MM D D M NN N S S NN S D MMM NS D NN

L N g g
L o N ol kN Nl N

a i ox

ar irox i
oo oo g o
ar ik x i

-
q'-l'q'-'rq'-'rq'-l'q'-t*q'-'r

-'rdr-'rdr-i'dr-'rdr-i'dr*-'r

'S

I

i

I3

I

s

'S

I

i

I3

I

i

I3

I

s

'S

I

i

I3

I

i

'S

I

s

I3

I

i

I3

I

s

'S

I

i

I3

I

i

I3

I

s

I3

I

i

I3

I

i

'S

I

i

I3

I

i

I3

f:}

L) :

YTy

:#

I3
o o oy oo ko iy
b or rx ki xik

Tk ko bk kbbb bbb bbbkl

i
x

: r :Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:#:#:Jr:lr:k:k:lr:#:#:lr:lr:lr :ﬂJr:Jr:Jr:lr:lr:#:k:k:lr:lr:lr:l’:l’:lr 'rJr:Jr :Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:Jr:k:#:lr:lr:#:lr:#:lr:lr:lr:lr
L g e N
e e T e T e o e T T T e e e
Ll ol o Nl kN o N N N ATl o o M
R L s N e kN
ey e ek dr e e dr ek e dr kk d kK Ak koK N N W N e
S C Nk Nl kNN ek Rk k)
L g g e
L L kN N L S e e Nk N
L T NN D0 0 S0 NN DU 0 S0 NN D E S0 D NN D S SE N O N B N e D D N N N B N N I D N N D B T S N N D S S NN

i i I i e e e Rl e de e dr ke d e dr de ke dr kU k d kK ko kN
:t:# ¥ k:#:*:k:*:*:k:#:*:k:k:*:#:k:*:k:#:*:k:*:#:k:#:*:k:k** ¥ #:#:#:#:#:#:#:#:4:I:#:k
L ol o Nl Nl el kN #ﬂq€#########k#####k###########k############
s
Ll

o o
T
M
X

:k:#:#:k:#:#:#:k:#:k:#:k:#:k:#:#:k:#:k:#:#:#:k:k:#:#:#:&:k* k:#:#:#:k:k:#:k:#:k:k:#:#:k:#:#:#:k:#:k:#:#:k:#:k:#:#:#:k:k:#:k:#:#:k:#:#:&:#:#
L e L
AR R kR kR kN k Ak k ko k ko ko kK L N N N N N N
L N N o kN L o Nl ke kN Nk N N
RN N N A A N N N NN A
L ol N g MO Jrodr dr e e dr dr e ey dr ke e e o dr de e e dr d ko dr ok ke ko ko ke ke odr Kk ko kKX
R L ko L o N ki
QT e e p e e e e e e p e e e e e e e e W e

Y N N N N N N N N AN
¥ e e e e e e e e e e e e e N N A)
:k######k#####k##k###k#kk##k#k#E#k##k#kk#kk#kk#kk##k#kk#kk##k#kk#kk#kk#k

x
X
x
X

X ¥

o i
x

e e e a s e o A s A e
g R g a a a a a aa a aa a N
R o A e i a a a a a a a a a a ar a a a a a al a a al a)
L N AR NN & D N N N N N N
R L e
B A N A A A A A A PR A ey e e ey e e e e e e e e e e e T e T e o e T e T e T e T e T e T
CR N N N o R N o A)
N a1 a a a a a a a a a a a al a a a)
e R)
b#k##kkkk###kk##k#####k#####k:&ﬁs{###k##k##k##k#####kk##k##kkkkkk#kk#kk##
CR o U e o)
L A N A ey e e e e e e e e ey e e e ey e e e e e e e e e e T
R e R R e e e e e e e N N N N N N N R N NN
L N N N N N N N N A
e e e e e e e e e e e e A N)
1kt#t#*# AL N NN L N MM SE NMMEESE N N e
iy X
N e e e e e e e e e e e dl e e e e e e e e e e e e e e e e e e e ke ek

.
NN NN NI NN NN N NN NNRNIN, - 7 M NRN IO N I NN NN NI NN NN NNNN NI NN NN
L e e el kLl kb)
L g N g aa a ara aa N g N A)
¥ L N N N o N N N N Nk Nk N kN
L I A NN N D N N B NN MR P NN N DE N IS SN N D0 NN DE ST DO NN DE ST NN N DE S0 D NN DE e S NN
L N N g N N N N)
L k)
g a a a a NEa aa
R N N N N
o Nl o o Tl o M M
L A A e
o g g g N
o k aal a h Ea a aE
N
L N N N N)
L ol kot N
N el
N N N g N N N)
G LN N N I LN ML E LN NN E L L NN E LN N N IE ML NN

X
x

¥ I dr e dr de e dr d d Ak ke d ok Nk koK o N)
e e e e e e e e e e e e o e T e e e e k*ﬁ# o o e o o e e o o o e o o e o e o o o e o e e o e T e

& o
o i

)

_'r-'rdr
X

i a
ar i

A) N NN
LR e e r e e e e e B B e e
L N N A g i
L krktkkktktkk-t#qikkrktktk ¥
L ol T NN M W

Ay N NS N e A

LN N A N S
L L NNtk
by e e e e e e e B e e e e e e
¥

i

¥
X

T T
I
oo & ox i
i

i
- i
o

x
i

dr oo i x
T
i

i

x
¥
¥

b o rx ko

: : : :":":":":":":*:*:*:":*:':*:":*:*:*:*:*:*:*:*:": *:":":ﬂ-"’f
L Ll N N o
L g

¥ L N N N
:k*# L o N N
W : e e e e e e e e e e e e e e e e e e

~:k: N :k:#:k:#:b:k:k:k:k:#:b:k:k:k:k:#:k:k:k:#:k:#:k:#:k:#:k:# iy
- i a)

i
i

X
-

L4

)
L)

Foy
Foay
x

i

X

o o
o
i
¥
-
X
i
-
i
i
-
i
]
¥
i

)

x
'S
T
i
x
I
T
I3
T
s
T
I
T
I3
T
s
T
I
x
I3
T
i
x
I
x
'S
T
i
x
I

4'*-'1'*4'
T
s
x

¥
IS

¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
ity

s

T

*-l'*dr
dr:-'r
i -'r‘r
ar i
-'r:dr
T _'r-'r
i
dr:-'r
i -'r‘r
ar ir
-'r:dr
ax _'r-'r
i
dr:-'r
i -'r‘r
ar ir
-'r:dr
T _'r-'r
i
dr:-'r
i -'r‘r
ar ir
-'r:dr
T _'r-'r
i

d i

_ -'r*dr
o
i
o
q_-'r

oo -'r*ﬂr &

x
&
i
-

o
-
X
-
i
-
)
-
X
-
i
e
)
-
)
-
i
e
)
-
X
-
i
e
)
-
X
-

Xx
-
X
x
i
PN

¥
¥

X

¥ ¥
NN W e e e e e e e e e e e e e e e
e e s
L) o R N o a
T T e T e e e e e e e e e T T e e e T e T e T e T
o e W e Mk e g by e e ki e dr ki dr ke dd ko dr dr U e dr i e dr ke drod e e dr ko kb k kKN Ok kK X koK

:t:# NN **&*#*k*#*k*k*k*k***&*#*k*#*k***k*#***&*k*k*#*&***k: : : :#:#: e e o e e e e e e e e e e e e e e e e T e
L ¥ Pl
- X &
s

X
'
i
¥

L]
IS
b*

X
X
X
X
¥
X
X
X
X
X
X
X
X
X
X
X
X
X
X
¥
X
X
X
X
X
X
X
X
X
X

a & oa g
b o ik x
- i
i b ok X
i dr
o & d bk ko koA
T
x

X
¥
X

-
-
i dr
i
P el e Y
i A
N N N)
oo g
#*-k*q'*-t

X

L
a ir o ax
i

[y
a
i

N e i a
b* b* b* b* b* b* b* b* b* b* b* b* b* b* b* r
LI I I B T] LI L L B B B I

r b*b*b:.b:-b:.b:-b:-bfb:.b:’b:’b:’bfk*b*b*b*b*b*b*b*b*b*b*b*b*b F

I
rx bk xr i

x
oo
T
i
x
I
x
'S
T
i
x
I
T
I3
r
s
T
I
T
I3
T
i
x
I
T
I3
T
i
x
I
x
'S
T
i
x
I
T o o

P)

T

L] LI I

-
-

.
.
.
'
.
.
.
.
'
'
.
.
'
.
'
.
.
14 144 41T F

'
.
.
'
.
'
'
.
.
'
.
.
.
.
.
'
.
.

-

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'
[
'
'
[
'
[
'
'
'
[

rFrrY¥rrrrrr
'
[
'
'
[
'
'
[
'
[
'
'
'
[
'
'
[

Ll

. . . a
LA O B B O B B L I A A A A

ot ey

L)
o e

X ¥

T,

LML M NN NN M I N M NN N

Xk X
i

) i) i
R R R A R T A
ar ok d droa e i i drar e e e e

X X
X X LR ol
Xy ey Xy ey
X X

Ik b drd ik

X X
x x L N)

X

Ea)

¥ ¥
) L)
X X

™
Xk
i

i

e e Ty e e e e e e e o e
X e e e e e E N N) N) PN Xy

X X x

¥

X
¥
i
ity

L N L

X s

i
LA

X
¥
iy
LAE N L
¥

x
o o o o)
x e e e e e ey k*r*k*t*&*t:k e e e e e e e e e e e e e e e e e

Jr.r:*‘r'r* L 'r:lr L 'r:lr L L 'r:lr Lt 'r:lr L L 'r:Jr 'r*#*'r***
'r‘r'r‘r'r‘r'r‘r'r#\"r'r‘r\"r\"r'r‘r\"r\"r\"r‘r\'*‘r\"r
\'#I'#I'#E#I‘#k#\'#l‘#l‘#\'#i‘#k*#\'****

E
s
¥
i
s
¥
i
E)

-h'_‘_q'-i'q'-\'q'-'rq'

N

xTx'y

kb & ki i

i

™

s X
R
X kK

¥

¥ X oa
L

¥ t*#:t ¥ k:#:t:# L

RN o

P

¥

KXk xRy
X

PN

RO AL LN LN AL NN NN
PN

M

'rJr'rJr'rJr'rJr'r:Jr'rJr'r:Jr'rJr'rJr
K& k& bk bk & kb kb ird ki
Fh kb kb ki iird i

¥
¥
X

-h'q'-l'*q'-l'q'-i'q'-l'q'-'r

L C

X
x

& k& ki ki i

Ky

X
I3
s
X

™

s

s

X X
¥ s
AL LN LN LN NN
X x
s
s
M

e ey
¥
T

¥
i
LA N LML

x

XX A NN

drok ke ke x k

™
¥

k#t#t#k#t#t#t#t#t#t#t#t#i#t#t#k#t#t#k#t#t#t#t#t#k#t#t#k#t#t#k#t#t#t#t#t#
i ok
¥

i

i
Fyrrrkrrrxrrrrkrrrryrrrrrrrrrrrrrrrrrrxrrrrrrrrrryrrrrrrrrrrrrrrrrrxrrrrrkrrrrhyrrxrirrikrirxi

PN)
ar

Foly
i

ot el iy

PN NN

'rJr'rJr'rJr'rJr'r‘r'rJr'rJr'l"r'rJr'rJr'r‘r'rJr'rJr'rJr'rJr'rJr'r‘r'rJr'rJr'r‘r'rJr'rJr'r‘r'rJr'rJr'rJr'rJr'rJr'r‘r'rlr'rlr'r‘r'rlr'rlr'r‘r'r:lr

ok ke aa N

X

i
X T T

FUay

drd e e e

X
X
X
)
X
X
X
X
X
)
X
Jl''I'Jl''I'Jl"l'Jl''I'Jl''I'JI':'I'JI''l"l"l"l"l"l"l"l’'I'Jl"l'Jl''I"l"l"l"l"l''I'Jl''I'JI"I'JI''l"l''I'JI''I'Jl''l"l''I'JI"I'JI''l"l"l"l"l"l"l'Jl''I'Jl"l'Jl"l'

i
\'#i'#i'#\'#i'#i'#i'#i'#i'#i'#i'#i'#\'#i'#i'#\'#i'#i'#\'#i'#i'#i'#i'#i'#\'#k#i’#\'#i’#i’#\'#i’#i’#i’#k#:t:#
i

X

M
N A A A
X

I'#I'#*I'*#*I'*#*I'*#E#I'#\'#E#I'#\'#I'#I'#\'#I'#I'#I'#I'#I'#\'#i‘#l‘#\'#l‘#l‘#\'#l‘#I'#I'#I'#I':#
i

!'#i'#i'#i'#i'#i'#!'#i'#i'#i'#k#i’#i’#i’#i’#i’#i’#i’#i’#i’#i’#k#k#k#!’:#i'

i

i
¥
i
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
L Lk N k:k o N N N k:# LN Nk NN
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥ ¥
¥
¥ ¥
¥

¥ ¥ ¥ ¥ ¥ ¥ s
¥ ar e ke A N

a0 ol Jrodr dr ke dar e k ar i EaE Nl

Jr dr U e dr i e dr ki e e ke dr dr bk bk k ke ko kb od Nk ¥k kK k kKK X
g a a a p a
Nl e e g A o N Nl
dr dr U e ey dr e ek dp dr g e e dp dr O ey dr ke b e dr e e dr ko bk kok kNN kK
N
P N N o Nl e N ks
A e
g
N g Al A Nt kM
dr dr U e ey dr e ek dp dr g e e dp dr O ey dr ke b e dr e e dr ko bk kok kNN kK
N
N N e g Nl N A ol a a)
N g g g g R NN N
A g

EaE
PN
¥

i

X x
LN LN LN AL NN

X

'rJr'rJr'rJr'rJr'rJr'r‘r'rJr'rJr'r‘r'rJr\'#\"r\"r'r’r'r#\"r'r’r\"r\"r'r’r\"r\"r'rJr'r‘r'r:Jr

i

X
X

#I'#\'#I'#I'#I'#I‘#I'#\'#i'#k#\'#i‘#l’#\'#l‘#l‘#kkl‘#l‘#\'#l‘#l‘#\'ki‘#l‘#\'*#l'

N e
)

N N s

¥
i o d
i
¥

X
o

i
e e e e e e T e e e T e e T e e e T e T e e o e e e e T o e e e e o e e e o e o e e e e e e e e
N kL U M N N N N N N
L N N N N N R N R N N N
N N N N N N N N

LN L N N R L L P L R R R R L R R R R R R L L R R R R

P N e)

s
o
o a
Foly
¥
o a
s
¥
o
s
¥
o
s
¥
o a
Foly
¥
o a
s
¥
o a
s
¥
o
s
¥

Fd k& k& kb ki ik ii

X kN
i
™

X

P
i
i
i
i
i
N
i
i
e
i
i
N e e e e e e e e e a a a aa a a a aa a a a a a a a a a a aa a)
i
i
i
i
i

kb b kbbb iribkiri

o

oy
o a
X a

i
)
X a

X
)
X
X
X
X
X
)
X
X
X
X
X
)
X
X
X
X
. ¥

Foay
¥

Ko k& kb Fd P b bbb ki kbbb

P)
i

e e
¥
X

i
P)

e

kb bbb e bbb irdirdrbrbrdbrdbrdird bbby

)

kb kb e bbb bbb bbb bbb bbb iredirdbidiediedbrdied

N N N N N M)

X
™
s
Pl
X &
s
Pl
X
s
Pl
X &
s

AL LN LN L
X
s
Pl
X &
s
Pl
X
s
Pl
X &
i

¥
X
P)
P)
Pl Al ol ol oy

P N e s

Fh & bk ik

i
X
'
i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
¥
IS
i
X
'
i
¥
IS
: L L S A P N L AT B L A S R L A R R L A P R A R R P L A B R A N

e e e e e e
e e e e e e

O A Ay
ar T a Ay

X

i
Fot agr il iy

Xy

ok o kb k& ko koo

i

¥

i

i

¥

i

i

¥

i

i

¥

i
'rJr'rJr*'rJr'rJr'r‘r

¥

i

i

¥

i

i

¥

i

i

: P kb &k bk b b p b F bbb b r e bk p e b b & b b b &b dr F 4o bp br ir r i br i i

FUat g
P)

i
o

Ko k& & bk kb rd ik P L L R N R R N R L LR R P R R L L L R R R L R R R
ko b b kbbb pdrib bbbk ii

)

X
P

P)

i

i

P M M)

¥
¥
¥
¥
X
¥
¥
¥
¥
¥
X
¥
¥
¥
¥
¥
X
¥
¥
¥
¥
¥
X
¥
¥
¥
¥
¥
X

e e e e

)

i
A A A A A

Py

P bk b b bbb bbb ird bk

Pl i
A A

¥
¥
¥
I
>

X

Xy ¥ L e e

oy ey e Ay
F e g g

X
P

NS

ok e

¥
P
i

L)
i
L]

kb kb ki ik i RPN L RN R N R R R R R R R R R R R LR R R R R LR R N

X

X T T

ko bk b kbbb kb bbb bbb bbb bbb i idiiid ki

PN A)

o o o i
ax

i
dr dp dr dp dp dp e o dp dp dp dp dr dpdp
r rxr ki

X

PN NN

P L L R R R P R L L R L R R R L R R L R R R L L R R L R R)

P A S A aF 3 3 3 S ol g gl gl iy

X
¥
X

NN

o b oo i
i

N N

i
P
oy
o

T

ke e dr b b e bbb bbbk ili
r

x
X
x
X
x
X

o kb b b bbb bbb bbb irdbirdird i

P e e el
F g g a)

P

L} L L L L RN R N R R L LR R R L R P R R R L R L R R R R R L R

X
¥

i

)

M

¥

T e e e e e e e

¥ ¥ N N N o N N NN N)
:#*t:#* *#:t:#:t:#:t:#:t:#:k:#*t N N N N NN
horr NN NN N ML)

) XK

¥

X

¥

i

)

M

¥

X

T i
i

T T e T T e T T e T T T e T

i
P N N N N N M N N N M N M)

ax

K& k& kr ki i

xu}

x
x
)
x

P L R L R N P R N R R L L L R R L R L R R R)
ko b bbb bbby

X
X
X

S

t#*k:#:k:#:t:#:t:#:k:#:t:#:k:#:t:# ol o S el o s sl el o
¥ N N)

x : o e e

i
e e A e e e e a a a a a a)

k& b k& ki irdr

¥
ax
'
x
X
o
¥
o
X
x
X
o
X
ax
X
o
X
o
X
ax
X
x
X
o
X
ax
X
x
X
o
¥
o
X
x
X
o

P N N N A N A N A S N A N A A N A ety i e gl g gl i el gl el i e eyl e el i ae e

e
A A

g)

ML N o N N N N N)
EaL) o N NN
oK o

T T T

P
i

-
i

. #:# :#:t:#:t:#:k:#:k:#:t:#:k:#*k N N N N N N)
UL e NN N NN LML N LML N NN N NN NN NN NN N NN NN

)

)

s
X
I3
s
s

i
P)
P N N N N N N N N N A R N A N A)

Foay

s

ax

ENE N NN)

X

¥
PN i g e g g g i g al

s
X
o

g g g g i g g
o g g

N g e at a a r

F N g g g g)

P g i g g s
N e g g g e)

o g g g

P A N el gl gl iy

kb kb ki ik
L4

X

L)
)
L)

Foay

k& k& kb ki ir

P
o
P e A A A e A e A e e aa a a a aa a)

X

P N N N N N N N N N N N N S N N N N N M M)

L L L N N N N N N R R N R R T T S N R
Jr:'r:’r:** . :'r:‘r:'r:‘r:'r:‘r:'r:’r:'r:’r:'r:‘r:'r:’r:'rJr L L L N L R L L R R R R R R L LR R R R R L)
F ke ik ik i RPN L RN R N R R R R R R R R R R R LR R R R R LR R N
L L 'r:lr:'r:#:'r* *lr:lrkl'* :'r:lr:'r:lr:'r:lr:'r:lr:'r:lr:'r:lr:'r:lr:lr:lr L N N N N S N N R N N R R R N
¥ ki ki 'r‘rlr*k*#*k*#*k*#*k*#*k*#*\'*#*\'J‘_Jr*\'*‘r*\'*#*'r*#*\'*‘r*\"‘fr LN N L L R L R R R R L R R R R R)
kb bbb e bbb irdirdrbrbrdbrdbrdird bbby
L S N N L N S R 'r‘rlr:'r:lr:'r:lr:'r:lr:lr:lr:'r:#:'r:lr:lr:#:'r:#:'r:lr:lr:lr:'r:lr:'r:lr*'rJr L NN N N N S R N N R R
¥ 'I'*Jr*'r*#*'r*#*'r*‘r*\'*#*'r*#*'l'*‘r*'r*#*\'*Jr*'r*‘r*'r*#*'r*#*'r*# LN L N N R L L R R R R R L R L R R R R L)
Fh b kbbb bbbk bbby
i 'rJr:'r:lr:lr:lr:'r:lr:'r:#:'r:lr:'r:lr:'r:lr:'r:lr:'r:lr:'r:lr:lr:lr:'r:#:'rJr Fod & kb dr b b bd kod e bk ko ko i
L P L L R N L L R R R R L L LR R R P R R L R L R L R R L R R R L R R L R R R R P R L LR R
ko kb kb ird ki
Fod bk d ko ko bk d kAo

)
N g g i

e e e e T e e e T e
¥ #*k:#:t:k:k:#:t:#:t:#:t:#:t:#:t:#:k:#:t:#:t:&:t:#:r*# N N N
L ks
LNk L N N)

S N N
LNk 0 ke N

P I g g

T

XX
o g el gl el i
i
i

)

*#*Jr‘_#*lr*Jr*Jr*Jr*lr‘_Jr*Jr*#*#‘_#*#‘_Jr*#*#*#‘_#*#‘_#*#‘_Jr*lr‘_lr* ko bk bbbk
i 'r:lr:'r:lr:'r:#:'r:lr:'r:lr:'r:lr:'r:Jr:'r:lr:'r:lr:'r:lr:'r:#:'r:lr:'r:lr koA dr bk b kod b od e bk kg o i
¥ k¥ 'r*#*'r*#*'rJrJrJr'r‘rJrJrk*#*\'*‘r*\'*#*k*#*\'*‘r*\'*#*'I'*Jr*'r*‘r*\'*# LG L P R L R N R L R R R R R R)
Fh b kbbb ird bbb bbby

ko b kb b e bbb bbbk i 'r*Jr*'rJrJr*'rJrJr*'r*Jr*'r*Jr‘r'r*#*'r*#*'r*#*'r*#*'r*#*'r*#*'r*#*'r*lr ko b bk b bbb ik
Fd r & kb kbbb k

x k:#:t:#:t:#:k:#:t:#:k:#:k:#:t:#:k:#:t:#:t:#:k:#:k:# N S S el o
ML LM ML NN NN NN NN N NN DN AL N LM NN N LN NN NLE NN MM 0 2C LML NN LML N NN NN
e e e e e e e e e e e e e e e e e ey

e e T e T e T e e T e e e e e T T e T e e e e e e e e e e e e e e e e e e e T

N A A N
LN x
N S A N N N N N N

¥
P N N N N N N N A N A M A A AT A A M A 3 A e ar gl b el gl gl gl gy

i

o g g g a i r a aa ra yrs

D o s

P
i

Xy
A A A A A A A e e

X

i
e e e e e e N e e e e e e A O A A)

i

P N N N N N N N N N)

g i

Foal el gty

ar
N B B I O B O B O O e)

)

Foay

Foa)
N i g a a a a r a r a r a ar al al r al gy

\'*Jr*'r*#*'r*#'r#'r‘r'rJr'rJr'rJr'rJr'rJr'rJr'r

NOUNN ko bk kbbb i

P A A A A Al i i g g g g a a ar ar a r a a rag

i
i

L4

N e g e g g

PN
e

N O e o 3
X

)

F
Pl
i

T e e ATy T Ao T A o A e
¥ #:t:#:k:#:t e a0 kN #:t:#:k:#:t:#:k:#:t:#:t:#:k:#:t:#:t:#:k:#:k:#:t:#:t L kNl
SO LN M L M LN M N LN M LN N L L L ML LN N L L N M LN LN M L LN M L NN NN L
N LN ML N L N M N N L N N M N L L M N L L L A L N M AL L N N AL LN LM ML ML NN AL NN LN
R RN N N LN N N 0 L L N L L M N L L N L LN L L N L L E L N L E LN L0 N E L N N0 N LN N
L LML M M LML M L LM L L LN M N L N M M L N M LN LN M LN LN N LN LN ML NN N
LR LN M L LN M AL L N N M B N L AL M AL LN A AL D M AL LN M AL LA N DM AL M AL LN M LM NN N LN

Xy
P N N)

el gl gl el g
g i i a a ai al gh

IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly
IS
r
X
L
i
Ly

g g g g g g)
R e i e i
O N g g g gy
g g g g g g e
g g g
L g g g g g)
g g g g g g)
R e i e i

D N N g g g g)
g e g i)
P g g g g g
L g g g g
g g g g g g)
D g g)

D N N g g g g)
g e g i)
i

N N N N N

P
N
Xy Ak A

Py ar e ey

drd a oy o g
RGP L DL M L M L LN N L L M M L L M L L M L L L M N LN M ML N MM LN L ML NN LN

D

N O e 3
e e e e e e e

x

¥
X
¥

L P N LR R L R R R R L L LR R R R R P R L R R L L R R R R R R L LR R R R L R R R R R R R R)

e T T e e
o dr e b e e e b e e e b e e e i b e e e b i e e e b e i e i e i b b i e i i e b e e b b e i e b e e e i e e b b i e e i e b e i e i e e e b e e i i e i i

F e rrrrrbrrbrrrrbrr

M = 3 = a7 = m = == -
FrrrrrrrlrrkFrbrFrbkFrikFr

'
'Y YT Y YT YTYTYTYTrYTrTrrTrrrrrrnrTrr
T T erTErTErTErTErETEFETETE T

US 10,755,026 Bl

FIG. 3

US 10,755,026 Bl

Sheet 4 of 22

Aug. 25, 2020

U.S. Patent

7 Old

LY S S S N S S A e S S S S A N S A N S S S A N S S S A S
) e i
- []
b P . [
r M . -
L . []
P . [
r M . -
r . []
b P . [
r M . -
L . []
P . [
r M . -
r . []
b P . [
r M . -
L . []
P . [
r M . -
r . []
b P . [
r M . -
L ITIlhl L]
P T T T T TSR 2
. 2 el el gyl Ul U S S S o e e e n)
[- .. .-.tllliln.Lil..l.l.l..-_..-_. Bl e W o o o o ko F FE R FFFI
r M e e ...-_.._.I..__.I_.__.I.-..-..rl_! Y —.l » [> & 2k F F F F - . -
. e
. " ..l...,..l.”.l.._._.l__.l.._.__..-_.nq N ll.l.l.l_l..l_-.v_..-_.—._._. " [
4 CRSE RN N I I Al . - .
E . ,
) I N e Pl -3 B
- e . -
A P .
FFEFEEFEEFEFEEEEEFEEFEEFEEFEEFEFEEEFF F B r . []
a Ee
. . . . -
a Ee .
e . -
a .
r . []
a Ee .
b i . [
a .
e . -
a . .
r . []
a Ee
i . [
a . .
e . -
a .
r N -
a Ee .
b i . [
a .
e . -
a P . .
- H L] b
a . - a
R r . i . [
a] . .
B - e . -
a h .
L] . r . []
a " vl -
b B . i . [
a R e
B - e . -
a] . .
F . r . []
a - h - a
L] i . [
a] . .
B e . -
a h .
L] r . []
a " - a -
. B i . [
a R .
-_:. . g . -
a . PN .
1 .) r L] L]
a ..-_l vl . .-.IIE‘E.-._.1 [
. L] . Lm A ko r . []
a . Com r .
.-_”. - ...__.IIIEIEI.".IIEIEI-1 e . -
a . . - v aa ' [
L - ..__.._llllll-_ ¥ r H L] b
Bl] A ll..-_.-. & -
b B T T T T T T T L L e T T e T Y W - S E R i . [
a . .
-_l. : : - e . -
a F - %] .
.-_?. _.-....... r . []
4 - A 4 4 A 4 4 A A A A A 4 A4 4 A4 4 4 4 A 4 4 4 4 4 4 4 4.4 CIE I | - 4
. [- . [
Fl '.T‘.T*.T‘.T*.T‘.T‘.T*.T*.T‘.T*.T*.T‘.T*.T‘.T‘.T*.T*.T‘.T*.T*.T‘.T*.T*.T‘.T*.T*.T‘.Tﬁ." -.*.T*.T‘.T*.T*.T‘.T*.T - = i .
- . . - e . -
a] .
- - . r N -
a i vl -
b - - . i . [
a [] .
T - e . -
a [] . .
- - . r . []
a h vl
- - . i . [
a [] . .
. . - e . -
a [.
- . . r . []
a i vl -
- - - . r . []
a] e
T - e . -
a [] . .
- - . r . []
a h vl
- - . i . [
a [] .
. . - e . -
a [.
- . . r . []
a i vl -
. - - . i . [
a [] .
T - e . -
a [] . .
- - . r N -
a h vl
. - - . r . []
a [] . -
. . . x " . -
a o) . . L. Y
. . X .
a Fa - a '.-..-. f r.
. - - h i . [
a [] .
T e . -
a [] . .
- - r . []
a h vl .
. - - . r . []
a Ee . .
- . e . -
a [] .
- -] o
. .
- ! e g g g g g P P g g g g g g g g g g Py | L Ty ...-... - - -
a] r
S L . "
. [o e e i e i el i et e b i e S il Cipil .
.-_.... r . []
a
- . i . [
a [3 .
F e . -
a
.-_}. r N -
Fl [4 .
- - . r . []
a
.-_.... e . -
a [3 .
.-_.... r . []
a
- . i . [
a [3 .
.-_.... e . -
a
. ! []
" l_.-. "o e
- . i K -
i}. r el i bl bl el bl bl el el b el - lal bl el bl bl bl el el bl el Ll Rl bl bl el Ll bl Ll bl bl e il i el i el el Ll el Ll el el Ll bl Ll bl bl el bl bl bl Ll Rl el Ll el Ll bl e L o Ul bl el il el bl el Ll el Ll el Ll bl el bl bl Ll bl bl bl bl il
a [3 .
* - L
a ” J
' L - I
a [3 .
* - - '
a [[
L] L
Fl [4 .
‘. L LA
. "y
* - '
a . -
13 r
a -
. P |
a [- -
P
a -
F 1
.L .. L
F .,
4 3
'
a . 1
L
a
P
. .
ki 1
a
F 1
. .
b P |
a
ki 1
A .
L
a
P
. .
ki 1
a
F 1
. .
b P |
a
ki 1
A .
F 1
a
. P |
. .
ki 1
a
r
. .
E .,
a
ki 1
A .
F 1
a
. P |
. .
ki 1
a
F 1
. .
E .,
a
ki 1
. .
L
a
. P |
. .
ki 1
a
F 1
. .
b P |
a
ki 1
A .
L
a
P
. .
ki 1
a
F 1
. .
; P |
a
ki 1
A .
F 1
a
. P |
. .
ki 1

G Ol

F

US 10,755,026 Bl

FHLMEAY B

-

e -

1 . F

] [I | . X = = onor] [] K
" a . g .. P e e T e T T e e - - - - - - - - T T T T T T T T -
uM.W o - " ¢ 4 e e R R R 1...ﬂnx.nnnxnnnxnnﬂ_. e
.
1

ﬁ%ﬁﬁﬁ.mﬁw

4 - 4

f oy u

[

£33

L

Sheet 5 of 22

¢ X

i

aaaaaa

3 a T
e o RN AN EMNNKEEMN S
rrorr

Aug. 25, 2020

..........
..........
rrrr X ERET R
ar oar CE N s
..............
.................
..........
NN ' R
................
.................
........
PR
11111 T R
e PR .
R A i

B s r o omw ! ron oW fror
111111 W i N i
...... A A A A A K w owowowom WA w A
1111111 i i R i i
111111 ol i N A N N
y A rrr o r X R ERERET o oy -
' I r s s a o n A A A M W X AW momomomomomomowm F i)
w rrorr 2 X E YT EE Y e oo e
s e s o RN s WY r oo Foi i i i C
rrr R EN PP FEFEFEFEFEEOTE N by F 1

|
Al
|
Al
|
|
Al
|
1)

) 1

aaaaaaaa

L]
i ' - 4 .-..Ii
|||||| ". A A A 'S L] LRI ot o “ i” - : “.__ .-.I.-_ - P SR 2t “a it 4 .__..-.l.-. -_._
S -.n H l-. u L. mm.l “' n.'.ll v .“m. a.”' l”.'“ l—..ll.- I“ *, - r...T...r...r.-. . l-. . II “ !"I M . —.l‘” I'- ' . ..".In..... h l.l - l".I 'I.I—. ll
A e e - . . AL -] Bk . .] [} i ad a rd (] .
E LAII”'.-. s ; t “'. .-%l.“.._ ..--..‘..-...l.' S hI....l-. Ay el " _-liw.._ Tt .1..1.-.".-. “I....._.”-. r'-..__hl". .-".__ -._..'..1l lI.-..__”l o ol .-" .-.“i. HI....__“I an -_H. .
1.-|h.._h...h.._h.__ll. l-.. “" * - * lﬁll..r el
h n._.n.._n.._i.._l..l. A ..r!. s i ™ - __.hl...
..-l - & = l-.) L " ..I
& b b & .Il.l F L] .-..-. [
h h.._n.._n.._.-_.rlll.. - Il.r .-....l.l.
...lla.---.._n...-u .L-.._t . - 'i.'.l..—i.'i..'.l.— L "y !||
et At e
.-_I._. st .l-Ill .-_ ‘m -~ - ar
v.q.l“...i.._.l.._ .-_l_l - [] __.I. » .II.__ |..-_l -
Ill - 4 & -.II i I:_. [o & |
- .Il.._i.._..__.._n .rll.-l..__ ira L] l....-..! - .-_I-:. r

-, o
» . . :
e A ..) .v__.-_...ln.-.-_..v..... POl
LR x I..l.._l.lni...-..r I—..l.lll..l_ L
T
. L e L
...l.-r..-..r T e

LT,

e e e e i-i.t.i.l”l'.-ﬁ% s

FFEFF &S FF

-"'
N
b:b b.t-j
F r
ae”

[
_a-"#"‘-r.
e
v
vy e
g _n_n ¥

U.S. Patent

Aug. 25, 2020

ldentify design rule

Sheet 6 of 22

violations {(DRV) in circuit

620

| Select top design rule
| violation for patching (using
f deep reinforcement
learning)
630

Use rip-up and reroute to
route the patched partition |

ldentify design rule

| violations in rerouted circuit

NO

650

Calculate reward for action
based on delta & update |

s

Yes

680

“number of DRV
~~._ below threshold

Calculate final reward
values for event

- .

hh

US 10,755,026 Bl

FIG. 6

US 10,755,026 Bl

SEPON $201

DEISULOTY AN

i Yy

v

a -

Sheet 7 of 22

Pemimppad g ¢

EE NN s

Aug. 25, 2020

aaaaaaaaaaaaaaaaaaa

b -

Bk b e e

R0

U.S. Patent

. L] - L]
*RE - BE LN -

.llI-..

L 9Old

.I.._ ¥,
. HE

Sl]

C e e]

bk kb

EROELIRT O = P}y

GIROCEITD = (L1003

> d b

»
ﬁ.
.

&

% X
* d B

CELLGI0T 0 = {1y

L]
.'—..”.—..—.

‘we's's
F F F -

(Ve

EOOUILLD

i

SaIEnd g SEHERg 91 BOT X 00T and

o
-y 1

LS

0, 00 00 0,0, 0, 0,0,

S R E R e’

nlelsasa's's's"a's"s'n'n's n'nlsln'n e ln s n s sl s s T w0 s

ORI OAY

GOHTHCAUDTY

US 10,755,026 Bl

Sheet 8 of 22

Aug. 25, 2020

U.S. Patent

o P

SHTHAYS Y Bu

4 - a4

seinyes) 91 403 {1711

A

BOT00T

DOT 001

¢

oo %

-

F

8 Ol

@) 30§ H3H

SN T

Ll

o

'

(0101 T) 10 193,

ety

MMM

6 Old

US 10,755,026 Bl

SIBIIBYT LIRULBUR ¥ SRS R SIBIPUY OT
"o et patiee ety et gy R SOy Y T F et Congh v ie,
G087 LOEOEY) COnIBoTe LOOTO0T

e R T L e e

Sheet 9 of 22

oy

(910701} 8 B

.
-
.‘ L R TR TR O TR L R TR T I » l.l“ l.I
4 -
- L L & - L
g i“ * !l..-. I-_.-__..-__..-_-..-._.I_..-_-.l_.l_.l_..-._.l-..“. !l.-. Ill-_l.._l._l.__l-_l.__l._l.._l._l.__l-_l...
A
*a - o r #]
V ' artatatatatatatat ettt ' .l- o -1. -..
.-_l.il_. L] 1.. -_.-. -.. J
A ' -._-..H ol ______..... t..,.._._..___..._...._._...___.._....._._..___...__...___...___..__..__ _ﬁ
" " .

G e ke

AR A

Lot W
o,

Aug. 25, 2020

Y
0 5 ol

A A g

M
w

ST R
PHP Ly

m.mw#.m S W.\w Y A8y

Y - - a

{1 #,W__ﬁmw Tt sapias g Sunod wepy SEREvREy g 08 {171 w HSPIEY WA UOITTHOALGTS

U.S. Patent

US 10,755,026 Bl

Sheet 10 of 22

Aug. 25, 2020

U.S. Patent

0L 9ld

wwﬁmwﬂwﬁw M..w. Mwm...w‘ﬂm;mﬁ.wwwm.m .m”wm.m.w m“ : Mﬁ\ww\wm@ﬁ .Wm..MM.WM w.“.a e M...,.. M.W % .,..w. M.m

. l.__.lllu- ol

~eo. (05057

1r.lI_-.__ '

TR

-
s

e

L
g
B
w
8

L - .

. . '
[] -
. ' e 'y i » a [] .
.__.-.. &.l-_.ﬂ.lm. .__v”_ . .i.-.. v [3 w.!n

'
l-:'i-'

ln P - - .l..l '.II..II_.I”..II..I I_.I l_.l I..I I_.I l_.l I..I I_.I 4.' ”..' ”..' ”..' ”..' ”..' ”..' ”..' ”..' ”..' ”..' ”. .
¥

¥

*

. - _.___.....- FEREEEE T) e .1.. 1_-._.. ..” ..f..____ iy -.....___.ln.__...-_..___-.....___..._-.__...-_..___t-".
Ak B . - - i,
L2 ' LTy . - M

¥
Y . ' .-._- - i .
- - ¥ h w - . .'l. hxb - l_ y — T 2 '

¥, v ____ ., ., ..L..- .-_.- lh_ .-_L . 'S A M ‘a wor

-\W.—. EX NN N N Y
-nnnn -

ji.-i .-I_.-l.-l.-l.-l.-i.-l.-l.-l.-i.-l.-i.-u.
., M

T

.ll. " _ . ”_.a..”h "..I”rl..l.-_.l.-_.l.-_.l.-_.l.-..l.-..ll..ll..ll..ll..l.-_l
n .-.._ ol - _.h--
») .

. "a l.-__. - P e i e
l. - .__.. -. l .

o
W,

L]
.
L]
L]

™ .
Pl T
B ofpa _I.-.ln.-.

P .
DR I R
l_.. - .l__.

PR i.-...l.”.l. -

! * -.'... Fl l"..-.

U.S. Patent Aug. 25, 2020 Sheet 11 of 22 US 10,755,026 B1

FIG. 11

US 10,755,026 Bl

Sheet 12 of 22

Aug. 25, 2020

U.S. Patent

¢l Ol

e L A A A ALAAALAAAAAREAALAALAAAAAAARAALAAAAAAAEAAL AL ARLRER AR R

. o
w
. o
.
. o
.
=,
T
- SN - m L N ey, k
-
. N
" /
a u
L] k.
K - u
L]
. u
-]
. u
.
L] u
L h
L] u
=
L =,
L3 -
=
r
r
a ..n
.
T *
A r

o da I 4 & 4 o 4 4 4 4

U.S. Patent Aug. 25, 2020 Sheet 13 of 22 US 10,755,026 B1

Partittion | # vios by V10s V108 by
| heuristic mndom model _

1530 | 18 | 426 | 196 |

2430 | 150] 381 | 147

28/30 | tso | 38t | 147 |
29/30 | 150 | 38t | 147 |

FIG. 13

U.S. Patent Aug. 25, 2020 Sheet 14 of 22 US 10,755,026 B1

| heuristic | random | model

238/6882 | 4268
272/6882 | 4979 | 9298
..........

340/6882 | 6669 11617 6843
aessa| o | osDd 516

476/6882| 9252 | 16291
510/6882 | 9617 | 17422 9796

714/6882 1 11781 | 23264 12234
748/6882 | 12049 | 23971 12534

384/6882 | 13396 [27805 13915
918/6882 | 13482 | 28313 14114

osp6ss2| 13870 | ososs | rasan |

FIG. 14

US 10,755,026 B1

Sheet 15 of 22

Aug. 25, 2020

U.S. Patent

¥ ¥ ¥

Fyisen

R3S 4

A UOHBN

L)

L

»

; (w L ;
4 E--I.r.r

GE

9=

91 Ol

026 Bl

2

US 10,755

EHEAREEREISEEML

Sheet 16 of 22

SLQINDL §1

SUNaU B K G X 1

__.,....
i
-“”..-_. f
i
WP
W
i
y
s
i
W
W
i

.-..-.-:.-...W._..

::3,'.-_ .

aaaaaa

sueysay (52058

Aug. 25, 2020

(476 sopus Yum Suood xepy {171) 150PLIS I UOuNIoaunT

(0GR) 1T egtd

U.S. Patent

L1 Ol

US 10,755,026 Bl

|
g |
T
&
I~
o
A_ﬂlw : !
2 —ser T erer ovwser T wer e | oe
” % __________________ 099L | ©889LE | 961 | Tic | ogel
................... S T N 712 S N S AN 3
_ 7209 1219 Z889/90¢ | ot | ze¢ | 0€/01
S 8¢1s | occs | w889Ti | o | Ter | 08/6
> [eivp | eeov | zesomec | Tec | el |
< E ST 7 N 5 7 137
o
—
2
gE Z889/39 E! 0E/€
EE __________ ggm _________ EE ___________________ 0¢/C
0L/ 1
GOSSH@&
—_af | at c L v [de T dr |_womed

U.S. Patent

U.S. Patent Aug. 25, 2020 Sheet 18 of 22 US 10,755,026 B1

FIG. 18

US 10,755,026 Bl

Sheet 19 of 22

Aug. 25, 2020

U.S. Patent

LY T T T T O O T T O T T T T PO T O O TN O O T O O O O T O O O T O T O T O O O T O O O T S O T R R R |

T T T T O T T O T T O O T T O O O T O OO T T O TN T T OO OO O T OO N O T O O O O O O O T O O O O O T O O P O |

a8 1 8 8 8 5 N _q N8 _*

.

S,

-

AL A A

6l Old

=R OF F % F F % F R

% ¥ F % F 5 ¥ F F B

R OF F R F R R W

0T "Dl

$S820.d
dQiN

US 10,755,026 Bl

Buiyoled 10} 9181 BuiNoy + :Bm g

{(e1noBs dn-du}
L{OIB8S
ozZew AQ

DUIINO

adInog

0 uoiilied ﬁlr 10bae]

W uogied

2 : 0
| Uohiljed | uoilijed | uohilied

[9ijesed Ui PBINOY aje suoiied diyD sloym

Sheet 20 of 22

Aug. 25, 2020

U.S. Patent

US 10,755,026 Bl

Sheet 21 of 22

. 2020

Aug. 25

U.S. Patent

N =
‘dald Bleq

ASEN

8¢l
‘oUBYUS
UOIIN|OSaY

Ocld
UOIIEOLLIDA

[edISAyd

0/13
sdiyd

veld
‘10B41X3

® SISAjeuy

0914
AJQUIOSSY

s
buibeyoed

=
‘Juswisjadwi|

[ed1sAyd

0G4
uolyedqe

1 /13
sAiyo

0213
LOITEDILISN

1SI[ioN

O 13
no
-ade|

8L
buluue|d

ubisa

0L
2/2M)J0S

vdid

LLid
9JBM)0S

Va3

oLl
1S9] 40}

ubiseqQ %
SISOUIUAG

Y=

71 13 AJISA

0013

Beap] ISV
1oNP0I4

0=

eop| VOd

10NP0Id

US 10,755,026 B1

Sheet 22 of 22

Aug. 25, 2020

U.S. Patent

a0IND(]
abe.lois

eled

abeiols
o}118]OA-UON]

0CzZ A 0cCZ A

LIO[}OBUUOND

:
MIOMISN

G8CC

snNg

A Ovlce

00cc

.

v - Y

UM

AJIOWBN buisse00id

0222 Olec

»| INAU| SAlBUIBYHY

08¢c¢

> INdu| 321Aa(d

GLCC

4.

» INdINQO 991A8Q

09c¢c

0LCC

Ze b

US 10,755,026 Bl

1

CIRCUIT DESIGN INCLUDING DESIGN
RULE VIOLATION CORRECTION
UTILIZING PATCHES BASED ON DEEP
REINFORCEMENT LEARNING

RELATED APPLICATION

The present application claims priority to U.S. Provisional

Application No. 62/583,775, filed on Nov. 14, 2018, and
incorporates that application 1n its entirety.

FIELD

The present invention relates to circuit design, and more
particularly to an improvement in correcting design viola-
tion rules

BACKGROUND

In integrated circuit design, during detail routing, design
rule checking (DRC) 1s applied to check if there 1s any
violation under different design rules. Design rules specily
geometric and connectivity restrictions to enable manufac-
turing, accounting variability in semiconductor manufactur-
ing processes. If there are violations, the system will try to
fix them. The easiest way to do this 1s patching, by adding
additional metal at the place where violation occurs.

In the prior art, the order of violations to be patched 1s
predefined by heuristic method. These violations are sorted
according to the design rules that they violate. The program
tries to fix these violations one by one. However, some
additional violations may be generated while patching one.
As a result, this procedure repeats until all the violations
have been fixed by patching.

FIG. 1 briefly shows how a prior art patching process
works. First, the violation list 1s sorted. Then the process
starts at the very beginning of the list, and patches through
the whole list. Often, one or more violations are generated
during the patching process, and they will be sorted based on
the same order and processed at next iteration. The number
of 1terations to finish patching until there are no violations
can vary. Note that after patching through all depths of
violations, rip-up reroute will be applied. Thus, the effect of
rip-up reroute will be taken into consideration.

Some violations cannot be resolved by simply patching or
applying rip-up reroute. Therefore, these violations will
remain in the design. By observation, the number of viola-
tions which remain after patching varies, and 1t 1s highly
correlated to the order of rules to sort the violation list.

BRIEF DESCRIPTION OF THE FIGURES

The present invention 1s illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and 1n which like reference numerals refer
to similar elements and 1n which:

FIG. 1 1s an illustration of a prior art patching process.

FI1G. 2 1llustrates one embodiment of how a reinforcement
learning framework works.

FIG. 3 1s a diagram providing an illustration of how
convolution works.

FIG. 4 illustrates one embodiment of two partitions, and
shapes that pass through the partitions.

FIG. 5 illustrates one embodiment of how the value
gradient model interacts with the policy gradient model.

FIG. 6 1llustrates one embodiment of the behavior of an
action.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 7 shows one embodiment of a structure of a network
of last two dimensions.

FIG. 8 1illustrates one embodiment of the output of layer
1.

FIG. 9 illustrates one embodiment of the second convo-
lutional layer.

FIG. 10 shows one embodiment of the structure of the last
two fully connected layers.

FIG. 11 shows an exemplary set of results of predictions
alter training.

FIG. 12 1s a flowchart of one embodiment of the overall
flow of tramning the model and collecting data.

FIG. 13 1illustrates a table which shows the results of
running first test case at iteration O.

FIG. 14 shows the results of the second test case.

FIG. 15 shows one embodiment of a modified structure of
2-dimensional convolution at first layer.

FIG. 16 shows one embodiment of the fully connected
layers.

FIG. 17 shows the results of the performance for two test
cases applying the 2-dimensional and 3-dimensional models
respectively.

FIG. 18 shows a calculated action probability.

FIG. 19 1s a flowchart of one embodiment of the order of
operations.

FIG. 20 1s a block diagram of one embodiment of design
rule violation fixing using patches.

FIG. 21 1s a diagram of one embodiment of electronic
design automation (EDA) tools processes, in which the
present system may be used.

FIG. 22 1s a block diagram of one embodiment of a
computer system that may be used with the present system.

DETAILED DESCRIPTION

The present application utilizes a methodology to apply
deep reinforcement learning to optimize the decision making
in the fixing of design rule violations aspect of integrated
circuit design. In design rule checking, one solution to fix
design rule violations 1s to apply a patch. The present
application uses deep reinforcement learming help to make
routing decisions in an integrated circuit design system.
Although one approach to deep reinforcement learning 1s
described 1n detail 1n this application, one of skill 1n the art
would understand that other machine learning techniques
can be applied when they fit the framework proposed
without departing from the scope of the mvention. Addi-
tionally, the deep reinforcement learning techniques dis-
cussed may be applied to other aspects of integrated circuit
design, such as re-clocking.

The following detailed description of embodiments
makes reference to the accompanying drawings in which
like references indicate similar elements, showing by way of
illustration specific embodiments of practicing the process.
Description of these embodiments 1s 1n suflicient detail to
enable those skilled in the art to practice the invention. One
skilled 1n the art understands that other embodiments may be
utilized and that logical, mechanical, electrical, functional
and other changes may be made without departing from the
scope of the present disclosure. The following detailed
description 1s, therefore, not to be taken 1n a limiting sense,
and the scope of the present invention 1s defined only by the
appended claims.

Introduction to Reinforcement Learning,

Reinforcement Learning 1s a type ol Machine Learning
which allows software agents to automatically determine the
ideal behavior within a specific context to maximize the

US 10,755,026 Bl

3

performance. Since 1t 1s neither supervised nor unsupervised
learning, simple feedback (reward) 1s required for the agent
to learn 1ts behavior. In such model, no correct answers are
provided, so the agent learns the best policy by tnial and
eITor.

FIG. 2 illustrates how a reinforcement learning frame-
work works. The observations represent states which an
agent can see. Based on those states, the agent makes a
decision on what action to take. After an action 1s taken, the
state changes. The environment also gives feedback (a.k.a.
reward) to the agent based on the chosen action, so that the
agent can evaluate how good the previous action 1s. Mean-
while, the agent gets a new state by observation, allowing it
to decide the next action to take.

In machine learning, convolutional neural networks are
widely used 1n computer vision to analyze images. Some of
the common terms used 1n convolutional neural networks
are defined as follows:

Filter. The filter 1s used to extract the features inside a
window. This window will go through the mput image,
calculating the features of each part. Unlike fully connected
network, all inputs share the same weights 1nside the filter,
thus i1t reduces the complexity of the network significantly.

Strides. The strides define how far the filter moves at each
step. For example, 1f an 1mput size 25x25 and filter size 5x5
1s used, then the system will calculate a value for every 25
digits, and move 5 digits per convolution. Consequently, the
output size will be 5x5. FIG. 3 briefly shows how convo-
lution works. As can be seen, the larger the strides are, the
smaller the outputs will be. However, if the strides are too
large, some 1nformation of the inputs might be lost.

Padding. When the mput size 1s not divisible by the filter
s1ize, padding will be applied, which typically adds zeros
around the mputs.

Channel. Every channel contains 1ts own filter.
Applying Reinforcement Learning to Patch Ordering.

Using a traditional patching process, as shown 1n FIG. 1,
some violations may not be eliminated by the patching. By
selecting the order that the violations are addressed, the
number of violations that are not eliminated can be mini-
mized. As noted above, the prior art uses the same order for
patching each time. In contrast, the present process uses
smart ordering to minimize the final number of violations.

In one embodiment, an agent consists of two parts: (1)
policy gradient model, and (2) value gradient model. The
policy gradient model 1s used to decide which action to take,
while the value gradient model provides a baseline for the
policy model to evaluate the quality of the policy.

FI1G. 20 1llustrates one embodiment of the overall process
of routing, and addressing design rule violations using
patching.

Initially, the system partitions the integrated circuit (or
chip) 1mto a plurality of partitions.

Within each partition, the system performs routing. In one
embodiment, the routing of multiple partitions may be done
in parallel.

For each partition, a maze search 1s done for routing,
involving rip-up reroute, and connection to connect each net
from a source to a target. The process of such routing is
known 1n the art.

After the maze search, the process determines whether
there are design rule violations, and 11 so, the system patches
those design rule violations. As will be discussed 1n more
detail below, selecting which design rule violation to address
next utilizes the deep reinforcement learning system.

After a patch 1s applied, the process returns to do a new
maze search involving the rip-up and reroute, and again

10

15

20

25

30

35

40

45

50

55

60

65

4

evaluates the design rule violations. This process 1s repeated
until the number of open design rule violations 1s below a
threshold.

This process may be performed 1n parallel for a plurality
of partitions of a chip. In one embodiment, 1t may also be
performed for the chip as a whole, or larger partitions. The
process described below 1s focused on the selection of the
patch for fixing.

In the region where the system 1s set to optimize patch
selection, the state 1s represented as a three-dimensional
array, which has the size (layerCnt, STATE_X_SIZE, STAT-
E_Y_SIZE). In one embodiment, the system can restrict the
size of the array. In one embodiment, the first 8 layers are
considered, as they have the most significant influence on
the result. The state 1s then an 8xSTATE X SIZExSTAT-
E Y SIZE matrix. In one embodiment the State X and State
Y variables may be set to a value that provides suflicient size
for the matrix. In one embodiment, and the second and third
dimensions are set to 100. No matter how large the region 1s,
it will be divided into a number of cells per layer and
mapped 1nto one of the elements 1n the state matrix. In one
embodiment, the region 1s divided into 10,000 cells per
layer. This number may be larger or smaller, and 1s restricted
by the processing power and memory available.

The value of an element in the matrix 1s equal to the
number of shapes passing through the corresponding cell in
the region. For example, in FI1G. 4, there are two shapes 430,
440 that overlap with the upper cell 410, so the value of the
corresponding element in the state matrix will be 2. Simi-
larly, the value of the element associated with the lower cell
420 will be 3, as three shapes 430, 440, 450 pass through that
region.

Optimization 1s based on maximizing a “reward.” Gen-
erally, the reward 1s the number of violations reduced by a
particular action. For example, 11 there are 5 violations
climinated and 2 additional violations generated when a
certain action 1s taken, the reward for such action 1s 3 (total
reduction 1n the number of violations). Consequently, the
reward could be a negative number as well.

In one embodiment, the whole patching process, shown 1n
FIG. 1, 1s referred to as an “episode.” Each episode consists
of several actions. By summing up the reward of each of the
actions 1n an episode, the total number of active violations
which remain 1n the list 1s obtained. Minimizing this number
1s the objective.

In one embodiment, the policy gradient model 1s a neural
network which takes the state as an nput, and outputs a
distribution. This distribution indicates the probability of an
action being the best action 1n a given state. As noted, the
best action 1s the one with the highest reward, e¢.g. the largest
reduction 1n the number of design rule violations. In other
words, actions are selected from a distribution parameter-
1zed by the policy model. By using such stochastic model,
the policy gradient integrates over both state and action
spaces, whereas the deterministic one only integrates over
the state space.

In one embodiment, the value gradient model 1s a neural
network which takes the state as an mput, and outputs an
expectation of total reward from this state under current
policy.

The routing process, 1n one embodiment, has a Markov
property, which means that the next state only depends on
the current state, independent of the previous states. As a
result, the value gradient model estimates the total future
reward by considering only the current state. By doing this,
the value gradient model offers a baseline for the policy
gradient model to evaluate the quality of the policy. For

US 10,755,026 Bl

S

example, after an episode (full patching process), the reward
of each step 1s known. Thus, the total reward after taking
action O 1s equal to 2,_,"reward.. The value gradient model
shows that the average total reward for an action which starts
from state 0 1s equal to Er[a,]. Therefore, the advantage of
taking action O equals to:

advantage, = Z reward; — Er[ap]
i=0

This number represents how much better this action 1s
compared to the average expected reward. If this number 1s
positive, 1t means the action 1s a better than average move.

In one embodiment, an additional discount variable r 1s
added to the actual reward. This discount variable 1s used to
decide the importance of the future rewards as compared to
the present reward. The discount factor will be r for reward
at time step 1 away from current time. Consequently, the
advantage will be defined as follows:

advantage, = Z ¥ X reward: — Er[ao]
i=0

FIG. 5 illustrates one embodiment of how the value
gradient model interacts with the policy gradient model. In
one embodiment, the value gradient model 1s trained with
hundreds of episodes before training the policy gradient
model. This prevents the value gradient model from offering
a useless baseline, making the policy gradient model mis-
judge how good a certain action 1s. As shown in FIG. 5, the
episode consists of a plurality of actions, taken from state O
to state n. An action changes the global status by removing,
(and sometimes adding) design rule violations. The result of
cach action 1s a change to the next subsequent state (e.g.
from state O to state 1) and a reward, e.g. the actual reduction
in the number of violations. As noted above, the reward may
be negative, if the overall eflect of a particular action 1s to
add more violations than it removes.

In this way, using the interplay between the policy gra-
dient model and the value gradient model, the system can
determine the eflect of each action from each state.
Implementation of the Model

In one embodiment, an action defines the first rule to sort
the violations for patching. For simplicity, in one embodi-
ment, the rest of the rules are assigned the same priority
which 1s lower than the priority of the chosen first rule. The
possible number of actions equal the number of rules that
may be used. In one embodiment, there are 9 rules to choose
from and thus the possible number of actions 1s 9.

FIG. 6 1s a flowchart of one embodiment of the behavior
ol an action.

The process starts at block 610. In one embodiment, this
process starts aiter both the policy gradient model and the
value gradient model have 1nitially been trained.

At block 620, a plurality of design rule violations are
identified 1n a circuit that 1s mitially routed.

At block 630, the agent which includes the policy gradient
model and the value gradient model, selects the top design
rule violation to patch. In one embodiment, the process
analyzes the design rule violations based on a current state,
and selects the action/patch which has the highest reward.

At block 640, the process utilizes rip-up and reroute to
route the newly patched partition.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

At block 6350, a plurality of design rule violations are
identified in the patched circuit. In one embodiment, at block
660, the difference between the count of design rule viola-
tions at this stage, and the prior count, 1s used to calculate the
reward for the selected action. In one embodiment, after
cach iteration this data 1s updated.

At block 670, the process determines whether the number
of design rule violations left 1s below a threshold. If so, at
block 680, the rewards are updated for the actions selected
in this event. The process ends at block 690. Otherwise, the
process returns to block 630, to allow the agent to select
which design rule violation to patch. This process iteratively
routes, patches, and reroutes to reduce the number of design
rule violations below the threshold.

In addition to episode and reward, previously defined, the
system 1n one embodiment also takes into account the
advantage. The advantage 1s the difference between the
immediate reward and the expected immediate reward. This
1s the special case when setting the discounted rate zero.

As noted above the state 1s a 3-dimensional matrix, with
the first dimension being the layer (1in one embodiment 8
layers) and the other two dimensions set to a number whose
multiple accounts for the number of cells. Thus for 10,000
cells the second and third dimensions are 100x100, which 1s
equal to 10,000. For a system with 1,000,000 cells, the
second and third dimensions would be 1000x1000.
Although the dimensions may be kept the same, 1n one
embodiment, they may be diflerent. For example, for 100,
000 cells, the dimensions may be 400x250.

As noted above, a policy model predicts the probability of
an action having the highest immediate reward, while the
value model calculates the expected reward for a given state
and policy.

Convolutional Neural Network

As discussed above, in one embodiment, the state 1is
obtained by calculating the number of shapes overlapping 1n
cach cell. That 1s, the state looks like an 1mage representing
the density of each portion of the partition. This 1s similar to
a congestion map. Consequently, this property can be uti-
lized by applying convolution for feature extraction. By
doing this, the system can reduce memory use for weights
and biases, and build a deeper network with acceptable
runtime.

FIG. 7 shows one embodiment of a structure of a network.
From a starting point of one state, in one embodiment 1t will
be first transformed to 16 features with the same size, and
converted to 8 features by another convolution. In one
embodiment, the number of features may be larger or
smaller. Then, 1n one embodiment, max pooling 1s applied to
the neural nodes 1n previous layers. In one embodiment, max
pooling down-samples by dividing the input into rectangular
pooling regions, and computing the maximum of each
region.

Lastly, 1n one embodiment, two fully connected layers are
applied.

Since one layer 1s not enough to represent the state of a
partition, eight layers are applied 1in one embodiment. For
this exemplary configuration, with 10,000 cells per layer, the
input will be a 3-dimensional matrix, which 1n one embodi-
ment has the size: (layers,X_SIZE.Y_ SIZE)=(8,100,100).
It’s well known, and intuitively clear, that the geometric
relationship between close shapes 1s a big factor 1n causing
violations. As a result, the system does not need a large
window to extract the features. In one embodiment, the filter
size 1s defined as (1,10,10). Recall that a filter 1s used to
extract the features inside the window. In one embodiment,
the size of the strides will be (1,1,1), which makes the filter

US 10,755,026 Bl

7

move one unit per convolution. Finally, in one embodiment
the max pooling 1s applied along the dimension of the layer.
To extract 16 features from the mput, one embodiment of the
output of layer 1 1s shown in FIG. 8.

As shown 1n FIG. 8, one filter corresponds to a feature.
The 16 filters introduce only 16x10x10 weights and 16 bias.

The system can save a lot of weights by applying a convo-
lutional layer. In one embodiment, the strides of the max
pooling 1s (2,1,1), as the dimension of the layer 1s less
important than others. Thus 1n one embodiment, the system
combines two layers mnto one, which makes the output of

one feature become (4,100,100). Since 16 features are used,
the output of layer one will be (4,100,100,16).

The second convolutional layer 1s similar to the first one.
However, 1f the first layer calculates 16 features of the 1nput,
there will be 16 channels or features 1n the mput of layer 2.
Each channel stores the values of the specific feature cal-
culated by corresponding filter. For example, there could be
red, green and blue channels when processing 1image rec-
ognition. In one embodiment, the system uses 16 channels.
The number of channels may be changed based on the
complexity of the layout.

FIG. 9 shows the structure of the second convolutional
layer. In one embodiment, the size of the filter 1s (10,10,16),
as there are 16 channels contained 1n the mput provided by
layer 1. In addition, 1n one embodiment, there are 8 filters
resulting 1n 8 channels after the convolution. Then, 1n one
embodiment max pooling with strides (1,2,2) 1s applied to
reduce the size of data, which becomes (4,100/2,100/2)=(4,
50,50). Last, in one embodiment, max pooling along the
layer dimension 1s applied, making the size of the output
(2,50,50).

FIG. 10 shows one embodiment of the structure of the last
two Tully connected layers. Before connecting convolutional
layer to a fully connected layer, the matrix 1s reshaped since
the dimensions of the two matrixes do not match because the
output of convolutional layer 1s four. After reshaping the
matrix, there will be 2x8x50x350 neurons (neural nodes). In
one embodiment, this number can be reduced, however this
does entail some information loss.

The output a distribution indicates the probabaility that one
particular action 1s a good action to take. The final deter-
mination of which action to take in one embodiment 1s
generated by randomly choosing one among the available
set of actions, based on the calculated distribution. That 1s,
even 11 one action has a high probability of being a good one,
it may not always be taken. This can help the exploration of
other actions. By doing this, the system can avoid getting
stuck at local maxima.

In one embodiment, rectified linear units are used as
activation functions after each layer in convolutional neural
network. The rectified linear units function returns O 1f 1t
receives any negative mput, but for any positive value x it
returns that value back. So it can be written as 1(x)=max(0,
x). However, weights and biases must be carefully initialized
when using rectified linear units. When the input 1s negative,
it will have a O gradient, and the weights relating to this
neuron do not get updated anymore. This 1s known as a dead
neuron. When weights are randomly nitialized, a significant
number of dead neurons may be present after the first
convolution. Therefore, instead of using rectified linear
units, in one embodiment, hyperbolic tangent units are used
as activation functions for each layer. Hyperbolic tangent
units select for the center values.

In one embodiment, before mputting the matrix to the
model, the input matrix 1s divided by the maximal value

10

15

20

25

30

35

40

45

50

55

60

65

8

appearing in the state. This makes training faster by stan-
dardizing the iputs, and reduces the chances of getting
stuck 1n local optima.

In one embodiment, the loss function, which 1s a measure
of how good a prediction model does 1n terms of being able
to predict the expected outcome, of the policy model 1s the
cross entropy. It measures the dissimilarity between good
actions and the predicted probabilities. As for the value
model, L2 norm between actual reward and expected reward

1s applied to obtain the error.

Besides convolutional neural network, 1n one embodi-
ment, the system can utilize recurrent neural network includ-
ing LSTM (long short-term memory machine) to capture the
time dependency across a series of routing states.

An asynchronous actor-critic agent (A3C) 1s a reinforce-
ment learning method taking advantage of multithreads.
Most EDA applications are multithreaded. For routing, the
multithreads are partition based, as shown 1n FIG. 20. In one
embodiment, A3C 1s utilized in the remnforcement learning
system as well to take advantage of existing multithreaded
capability.

Training the Model

After creating a new policy and value model, the weights
and biases are initialized randomly, in one embodiment.
That 1s, the output of the policy model will look like a
uniform distribution. Before starting the training process, the
system first trains the value model to a certain accuracy. In
one embodiment, ten thousand data are collected for training
the value model with two hundred data 1n each a batch. FIG.
11 shows an exemplary set of results of predictions after
training. As can be seen, the actual reward of each step
varies a lot (from -8 to 931).

The value model learns the average reward of each action,
as the policy outputs a uniform distribution. Therefore, since
the system does not know the variance of the reward 1t
would be hard to evaluate whether the value model 1s
accurate or not. The value of the loss function 1s not a good
measurement initially. However, 1t 1s possible to judge the
value model roughly by the trend of the output. For example,
there 1s a big outlier, a bump of reward of 931. The
exemplary value model predicts 790 at such state, while 1t
only predicts 12 at the previous state. That 1s, based on the
training, the value model can sense the differences between
the states. Therefore, this value model 1s ready for the next
stage of traiming.

In one embodiment, for training data, each step forms a
data for training as the system uses immediate reward as a
baseline. However, in one embodiment, the policy and value
network are updated once per episode. In other words, a
batch of data 1s collected after an episode, and subsequently
used to train the model. There are two advantages to doing
this: (1) saving time 1n collecting data. (2) as the model takes
a batch of data, 1t takes a deeper look at the error surface, and
it will be easier to find global optima.

FIG. 12 shows one embodiment of the overall flow of
training the model and collecting data.

Reinforcement learning 1s different from supervised
learning, as there are not separate training data and testing
data. In addition, as the problem size of this project 1s fairly
large, there 1s 1ssue about overfitting. Conventionally, drop
out 1s adopted for regularization, which prevents the model
from overfitting. In one embodiment, this system utilizes a
slight drop out at each layer. In one embodiment, the keep
rate=0.93. This gives a better chance for the model to find an
optima. Note that the keep rate should not be low, as that
may cause oscillation.

US 10,755,026 Bl

9

In one embodiment, as discussed above, 1mmediate
reward 1s used to calculate the advantage or value of each
taken action. In other words, each state 1s independent from
every other state, and can be used as a data point to train the
model. In one embodiment, the transitions (i.e. the set of
states and actions) 1n an episode are recorded and used for
training after the episode 1s finished. In one embodiment, the
transitions are packed as a batch to train the model. The
average number of transitions 1n an episode at partition one
1s 200. By feeding more than one data set to the optimizer,
it will have a more global sight to minimize the loss.

The result from training the model being run once with a
large learning rate which determines how fast weights in the
neural network change, 1s not as good as training the model
to run multiple times with a small learning rate. For
example, moving one big step on the error surface could
make the result worse, however, taking several steps toward
the gradient has a better chance to optimize the problem.
Therefore, 1n one embodiment, the learming rate in this
project 1s set fairly low, and the same data would be used to
train the model multiple times. In addition, 1n one embodi-
ment the rate can be tuned dynamically based on the
magnitude of the loss. When the loss 1s large, a large
learning rate 1s used. When the loss 1s small, a small learning
rate 1s used.

Experimental Results

FIG. 13 illustrates a table which shows the results of
running first test case at iteration 0. At iteration 0, all the
partitions have the same size, so there i1s no 1ssue about
resolution. The first column indicates the number of the
partition being patched. The second, third and fourth col-
umns are the numbers of violations by applying heuristic
method, random ordering and the prediction model
described 1n the present application, respectively. Note that
these DRC numbers are global DRC numbers among all
partitions. By applying model prediction, the DRC number
can be as small as the one by heuristic method, and even
better sometimes.

FIG. 14 shows the results of the second test case. Note
that 1n one embodiment the partition size 1s fixed no matter
what the design 1s for the same library. Consequently, the
second test case 1s much bigger than the first case. The
model performs almost as well as the heuristic method.

To reduce the runtime overhead to less than 30%, the
policy model may be simplified for a faster prediction.
However, the value model can remain the same, as it 1s only
involved 1n the training stage, causing no runtime overhead.
In addition, the value model should be accurate enough to
provide a useful baseline for the policy model to update.

The 1mitial design described above utilized 8 layers, so the
convolution was 3-dimensional. However, 3-dimensional
convolutions on CPU are slow. On the other hand, 2-dimen-
sional convolutions 1n TensorFlow are well-optimized. As a
result, 2-dimensional convolutions are more desirable. By
changing the convolution from 3-dimensional to 2-dimen-
sional, the runtime overhead may be reduced. However, to
do this, the filter 1s reshaped to 3-dimensional.

FIG. 15 shows one embodiment of a modified structure of
2-dimensional convolution at first layer. As the dimension of
the mput and the filter are the same, the filter only has to
move along the x-y plane. By doing this, each layer of the
mput can be seen as a leature, and the filter has the
corresponding weights for them to do the convolution. In
addition, 1n one embodiment, the strides are defined as (2,4)
for the filter. In other words, the filter moves 2 units
horizontally (or 4 units vertically) after every calculation.
Consequently, for this configuration the output would be

5

10

15

20

25

30

35

40

45

50

55

60

65

10

(50,25) for each feature. FIG. 16 1illustrates the rest of the
structures of the network, moving to fully connected, and
finally a single action to take, based on the analysis.

After thus simplification of the model, the size of the
weights and biases stored decreases from 966 megabytes to
123 megabytes, which significantly reduces the time for
loading weights into the memory. In addition, the prediction
time overhead drops as well, from 0.3 seconds to 0.009
seconds per prediction.

Obviously, the runtime overhead drops when the structure
of the neural network 1s simplified. However, this must be
done carefully, as the model could be too simple to solve the
problem once 1t 1s simplified.

FIG. 17 shows the results of the performance for two test
cases applying the 2-dimensional and 3-dimensional models
respectively. The performance diflerences of the two model
are not significant, but the speed differs significantly. There-
fore, the 2-dimensional model which 1s much simpler than
3-dimensional one 1s preferable.

The value gradient model plays the most important role 1n
the present system, as 1t provides a baseline for policy
model. Consequently, it should be trained carefully to make
sure the loss values stay within certain region.

As mentioned before, in one embodiment the value model
1s trained thousands of times before training the policy
model, after mitialization. Typically, one can stop training
the value model once the loss of rewards 1s under 20,000. As
noted above, the reward 1s based on a diflerence 1n the total
number of design rule violations before and after the action.
Recall that the loss function of the value model 1s .2 norm,
and the average number of transitions 1s 200 per episode.
Thus, a loss under 20,000 implies an average difference of
100 between the prediction and the real reward.

If the policy model starts training when the value model
1s not accurate, can cause problems. For example, if the
value model predicts the rewards for the first three transi-
tions as (pr,=200, pr,=13, pr,=-3), while the real rewards
are (r,=1010, r,=13, ry=12) then, the advantage for each
transition will be (ad,=810, ad,=-2, ad,=15). As can be
seen, the advantage of the first action 1s relatively high
compared to the others. Consequently, the gradient will be
much deeper along the axis which belongs to that action.
That 1s, the optimizer will only try to increase the probability
of that action, no matter what actions are taken in other
states, as the advantage of one of the actions 1s too high. This
will result 1n an incorrect output distribution for the policy
model, and the distribution will remain consistent no matter
what the state 1s. The system 1s designed to avoid this error
by first traiming the value model to a reasonable level of
accuracy.

Once the value model has a certain accuracy, the policy
model can be tramned. At this stage, the learning rate should
not be too high to avoid oscillation. Specifically, in one
embodiment, the value model 1s set to learn slower than the
policy model. It 1s still possible that the policy model
chooses a bad action at this stage, making the value model
decrease the expected reward of such state. If the policy
model 1s properly trained, the predictions made by value
model will increase over training.

After many rounds of batch training, the policy model will
have a great confidence on taking a specific action under
given state. For example, the confidence level may be 85%
to take action 1 at the current state and 52% to take action
3 at next state, as shown 1n FIG. 18. At this stage, the system
may suflfer from oscillation, which causes the value model
not to converge because there 1s a chance to select bad

US 10,755,026 Bl

11

actions and drop the baseline. Once the baseline decreases,
there could be more than one action assumed to be “good”.
In order to avoid oscillation and make the design converge
faster, in one embodiment an additional procedure 1s added
before updating the value model.
This additional procedure 1s as follows:

Procedure 1:

reward < actual reward
calculated < expected reward calculated by value model
if reward > calculated
update_value < reward
else
update_value < (reward + calculated) / 2
end
update the model using update value

In one embodiment, 1 the reward 1s higher than the
calculated reward, the baseline 1s moved to that value.
However, 1f a reward 1s lower than the calculated one, it may
be the result of an unlucky choice, so the change in the
baseline should be reduced. Therefore, 1n one embodiment,
the system averages the value of the real reward and the
calculated reward, and sets the result as the value for the
value model to update. By doing this, the value model will
give a better baseline for policy model to reference

If the value model provides a reasonable baseline to
update the policy model, the policy converges over time.
This results 1n the policy model outputting a distribution
which has one action with probability near 1. However, there
can be some difliculties prevent the model from converging.

At the training stage, the value model provides the base-
line which 1s the average reward under certain states. On
average, Tour actions are assumed to be good, based on this
baseline. Assuming the system encounters the same state
twice, 1t 1s possible that different actions are chosen. Con-
sequently, the policy model increases the probability of one
action first, when 1t 1s chosen, and then increases the
probability of the other action, when that 1s chosen. This
may decrease the probability of the first action, causing the
model to oscillate. In order to avoid such situations, 1n one
embodiment, the policy model 1s updated frequently. In
other words, the action which 1s assumed to be good 1s given
a relatively large probabaility. This helps the value model to
be stable first, and once the value model 1s stabilized, the
policy model tends to converge.

However, this action might not be the best one. The
probability for that first chosen action 1s set at greater than
50%, to reduce the risk of oscillation. In one embodiment,
the probability 1s set between 50% and 80%, making 1t still
possible to explore a better solution but strongly biasing the
system toward choosing that first chosen action 1n a subse-
quent iteration. This can be done by adjusting the learning
rate dynamically 1n one embodiment.

At the late stage, the probability of choosing an action
under a certain state 1s large. However, the possibility to
explore other good actions starts playing a role in causing
oscillation. If a bad action 1s accidentally chosen, the base-
line provided by the value model will decrease. Once the
baseline decreases, more actions at that state will be
assumed good. Therefore, the system 1s designed to enhance
the probability that the action chosen has a high confidence
of being a good one.

Procedure 2 shows one embodiment of a method to
increase the probability that the action with the highest
probability 1s selected. In one embodiment, the system

5

10

15

20

25

30

35

40

45

50

55

60

65

12

chooses the action with the highest probability with a
probability 0.5, and otherwise chooses an action based on
calculated distribution, which will possibly choose the same
action as well.

Procedure: 2 probability enhancement

probs < probability distribution calculated by policy model
rand <— one random number between [0,1]
if rand > 0.5

randomly choose one action to take based on probs
else

choose the action with the largest probability in probs
end

In one embodiment, the system determines an order to
patch when the depth 1s equal to zero, which is the beginming
of the iteration. In one embodiment, rerouting 1s following
up after the 1teration 1s fimished, and the reward 1s calculated
alter rerouting, as shown in FIG. 19. That 1s, the model
learns not only the behavior of patching but also the effect
of rerouting. In one embodiment, resolution can be increased
by deciding the order at each depth when patching.

FIG. 21 illustrates some EDA processes and software
tools 1n which the present mnvention may be utilized. In one
embodiment, the patch ordering system described 1s part of
one or more electronic design automation (EDA) tools,
which are used to design, calibrate, and adjust circuit
designs, and circuit blocks. An EDA flow can include
multiple processes, and each process can involve using one
or more EDA software tools. These examples of EDA steps
and software tools are for 1llustrative purposes only and are
not mtended to limit the embodiments to the forms dis-
closed.

To 1llustrate the EDA flow, consider an EDA system that
receives one or more high level behavioral descriptions of an
IC device (e.g., in HDL languages like VHDL, Verilog, etc.)
and translates (“synthesizes”) this high level design lan-
guage description into netlists of various levels of abstrac-
tion. A netlist describes the IC design and 1s composed of
nodes (functional elements) and edges, e.g., connections
between nodes. At a higher level of abstraction, a generic
netlist 1s typically produced based on technology indepen-
dent primitives.

The generic netlist can be translated into a lower level
technology-specific netlist based on a technology-specific
(characterized) cell library that has gate-specific models for
cach cell ({unctional element). The models define perfor-
mance parameters for the cells; e.g., parameters related to
the operational behavior of the cells, such as power con-
sumption, delay, transition time, and noise. The netlist and
cell library are typically stored in computer readable media
within the EDA system and are processed and verified using
many well-known techniques.

Belore proceeding further with the description, 1t may be
helptul to place these processes 1n context. At a high level,
for an application specific integrated circuit (ASIC), the
process starts with the product idea (step E100) and 1s
realized 1n an EDA software design process (step E110).
When the design 1s finalized, 1t can be taped-out (event
E140). After tape out, the fabrication process (step E150)
and packaging and assembly processes (step E160) occur
resulting, ultimately, in finished chips (result E170). For a
field programmable gate array (FPGA), the process starts
with the product 1dea (step E101) and 1s realized 1n an EDA
software design process (step E111). When the design 1s
finalized, the FPGAs may be configured (event E151),

US 10,755,026 Bl

13

applying the code to the FPGA circuits, resulting, ultimately,
in finished chips (result E171).

The EDA software design process (step E110/E111) 1s
actually composed of a number of steps E112-E130, shown
in linear fashion for simplicity. In an actual design process,
the particular design might have to go back through steps
until certain tests are passed. Similarly, 1n any actual design
process, these steps may occur in different orders and
combinations. This description 1s therefore provided by way
of context and general explanation rather than as a specific,
or recommended, design flow for a particular circuit design.

A briefl description of the components steps of the EDA
software design process (step E110) will now be provided:

System design (step E112): The designers describe the
functionality that they want to implement and can perform
what-11 planning to refine functionality, check costs, efc.
Hardware-software architecture partitioning can occur at
this stage. Exemplary EDA software products from Synop-
sys, Inc. that can be used at this step include Model
Architect, Saber, System Studio, and DesignWare® prod-
ucts.

Logic design and functional verification (step E114): At
this stage, the VHDL or Verilog code for modules in the
system 1s written and the design 1s checked for functional
accuracy. More specifically, the design 1s checked to ensure
that 1t produces the correct outputs. Exemplary EDA soft-
ware products from Synopsys, Inc. that can be used at this
step mnclude VCS, VERA, DesignWare®, Magellan, For-
mality, ESP and LEDA products.

Synthesis and design for test (step E116): Here, the
VHDL/Verilog i1s translated into a netlist. The netlist can be
optimized for the target technology. Additionally, the design
and 1mplementation of tests to permit checking of the
finished chip occurs. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include
Design Compiler®, Physical Compiler, Test Compiler,
Power Compiler, FPGA Compiler, Tetramax, and Design-
Ware® products.

Design planning (step E118): Here, an overall floorplan
for the chip 1s constructed and analyzed for timing and
top-level routing. Exemplary EDA software products from
Synopsys, Inc. that can be used at this step include Jupiter
and Floorplan Compiler products.

Netlist verification (step E120): At this step, the netlist 1s
checked for compliance with timing constraints and for
correspondence with the VHDL/Verilog source code. Exem-
plary EDA software products from Synopsys, Inc. that can
be used at this step include VCS, VERA, Formality and
PrimeTime products.

Physical implementation (step E122): The placement (po-
sitioning of circuit elements) and routing (connection of the
same) occurs at this step. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include the
Astro product.

Analysis and extraction (step E124): At this step, the
circult function 1s verified at a transistor level, this 1n turn
permits what-11 refinement. Exemplary EDA software prod-
ucts from Synopsys, Inc. that can be used at this step include
Star RC/XT, Raphael, and Aurora products. For FPGA
design, 1n one embodiment the process ends here. Because
FPGA programming 1s done through software, there are no
physical configuration, resolution, and mask design 1ssues.

For ASICS, next comes the Physical verification (step
E126): At this step various checking functions are performed
to ensure correctness for: manufacturing, electrical issues,

10

15

20

25

30

35

40

45

50

55

60

65

14

lithographic 1ssues, and circuitry. Exemplary EDA software
products, Inc. that can be used at this step include the
Hercules product.

Resolution enhancement (step E128): This step involves
geometric manipulations of the layout to improve manufac-
turability of the design. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include
iN-Phase, Proteus, and AFGen products.

Mask data preparation (step E130): This step provides the
“tape-out” data for production of masks for lithographic use
to produce finished chips. Exemplary EDA software prod-
ucts from Synopsys, Inc. that can be used at this step include
the CATS® family of products. The circuit blocks and
systems may then be manufactured as an integrated circuit
to provide the functionality designed, and built via an EDA
system.

In one embodiment, the patch selection system may be
implemented at the physical verification stage (E126). As
noted above, during physical verification various checking
functions are performed, including verification that the lay-
out meets design rules (DRC). When a design rule 1s not
met, the system applies patches to address these 1ssues. The
ordering of those patch applications takes place as part of the
physical verification stage.

FIG. 22 1s a block diagram of one embodiment of a

computer system that may be used with the present inven-
tion. It will be apparent to those of ordinary skill in the art,
however that other alternative systems of various system
architectures may also be used.
The data processing system 1illustrated in FIG. 22 includes
a bus or other mternal communication means 2240 for
communicating information, and a processing unit 2210
coupled to the bus 2240 for processing information. The
processing unit 2210 may be a central processing umit
(CPU), a digital signal processor (DSP), or another type of
processing unit 2210.

The system further includes, 1n one embodiment, a ran-
dom access memory (RAM) or other volatile storage device
2220 (referred to as memory), coupled to bus 2240 for
storing information and instructions to be executed by
processor 2210. Main memory 2220 may also be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions by processing unit
2210.

The system also comprises in one embodiment a read only
memory (ROM) 2250 and/or static storage device 22350
coupled to bus 2240 for storing static information and
istructions for processor 2210. In one embodiment, the
system also includes a data storage device 2230 such as a
magnetic disk or optical disk and 1ts corresponding disk
drive, or Flash memory or other storage which 1s capable of
storing data when no power i1s supplied to the system. Data
storage device 2230 1n one embodiment 1s coupled to bus
2240 for storing information and instructions.

The system may further be coupled to an output device
2270, such as a cathode ray tube (CRT) or a liquid crystal
display (LCD) coupled to bus 2240 through bus 2260 for
outputting information. The output device 2270 may be a
visual output device, an audio output device, and/or tactile
output device (e.g. vibrations, etc.)

An mput device 2275 may be coupled to the bus 2260.
The mput device 2275 may be an alphanumeric input device,
such as a keyboard including alphanumeric and other keys,
for enabling a user to commumnicate information and com-
mand selections to processing unit 2210. An additional user
input device 2280 may further be included. One such user
iput device 2280 1s cursor control device 2280, such as a

US 10,755,026 Bl

15

mouse, a trackball, stylus, cursor direction keys, or touch
screen, may be coupled to bus 2240 through bus 2260 for
communicating direction information and command selec-
tions to processing unit 2210, and for controlling movement
on display device 2270.

Another device, which may optionally be coupled to
computer system 2200, 1s a network device 2285 for access-
ing other nodes of a distributed system via a network. The
communication device 2285 may include any of a number of
commercially available networking peripheral devices such
as those used for coupling to an Ethernet, token ring,
Internet, or wide area network, personal area network,
wireless network or other method of accessing other devices.
The communication device 2285 may further be a null-
modem connection, or any other mechanism that provides
connectivity between the computer system 2200 and the
outside world.

Note that any or all of the components of this system
illustrated 1n FIG. 22 and associated hardware may be used
in various embodiments of the present mvention.

It will be appreciated by those of ordinary skill 1n the art
that the particular machine that embodies the present inven-
tion may be configured in various ways according to the
particular implementation. The control logic or software
implementing the present invention can be stored in main
memory 2220, mass storage device 2230, or other storage
medium locally or remotely accessible to processor 2210.

It will be apparent to those of ordinary skill in the art that
the system, method, and process described herein can be
implemented as software stored 1n main memory 2220 or
read only memory 2250 and executed by processor 2210.
This control logic or soitware may also be resident on an
article of manufacture comprising a computer readable
medium having computer readable program code embodied
therein and being readable by the mass storage device 2230
and for causing the processor 2210 to operate 1n accordance
with the methods and teachings herein.

The present invention may also be embodied 1n a hand-
held or portable device containing a subset of the computer
hardware components described above. For example, the
handheld device may be configured to contain only the bus
2240, the processor 2210, and memory 2250 and/or 2220.

The handheld device may be configured to include a set
ol buttons or mput signaling components with which a user
may select from a set of available options. These could be
considered mput device #1 2275 or input device #2 2280.
The handheld device may also be configured to include an
output device 2270 such as a liquid crystal display (LCD) or
display element matrix for displaying information to a user
of the handheld device. Conventional methods may be used
to implement such a handheld device. The implementation
of the present invention for such a device would be apparent
to one of ordinary skill in the art given the disclosure of the
present invention as provided herein.

The present invention may also be embodied 1n a special
purpose appliance including a subset of the computer hard-
ware components described above, such as a kiosk or a
vehicle. For example, the appliance may include a process-
ing unit 2210, a data storage device 2230, a bus 2240, and
memory 2220, and no iput/output mechanisms, or only
rudimentary communications mechanisms, such as a small
touch-screen that permits the user to communicate 1n a basic
manner with the device. In general, the more special-
purpose the device 1s, the fewer of the elements need be
present for the device to function. In some devices, com-
munications with the user may be through a touch-based
screen, or similar mechanism. In one embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

16

device may not provide any direct input/output signals, but
may be configured and accessed through a website or other
network-based connection through network device 2285.

It will be appreciated by those of ordinary skill 1n the art
that any configuration of the particular machine i1mple-
mented as the computer system may be used according to the
particular implementation. The control logic or software
implementing the present invention can be stored on any
machine-readable medium locally or remotely accessible to
processor 2210. A machine-readable medium includes any
mechanism for storing information 1n a form readable by a
machine (e.g. a computer). For example, a machine readable
medium includes read-only memory (ROM), random access
memory (RAM), magnetic disk storage media, optical stor-
age media, flash memory devices, or other storage media
which may be used for temporary or permanent data storage.
In one embodiment, the control logic may be implemented
as transmittable data, such as electrical, optical, acoustical or
other forms of propagated signals (e.g. carrier waves, 1nira-
red signals, digital signals, etc.).

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

I claim:

1. A computer-implemented method of fixing design rule
violations 1n an integrated circuit design system comprising;:

(a) recerving a portion of an integrated circuit design at a
processor, including layout elements;

(b) identifying a plurality of design rule violations in the
integrated circuit design;

(¢) utilizing a deep learning algorithm to order the design
rule violations and select an action, the selected action
representing fixing of a particular design rule violation;
and

(d) taking the selected action to apply a first patch to fix
the particular design rule violation, based on the order;
and

(¢) returning to step (b) to select a next design rule
violation to fix;

wherein the mtegrated circuit design i1s used for manu-
facturing an integrated circuit.

2. The method of claim 1, wherein the deep learning

algorithm comprises:

a policy gradient model used to select the first action; and

a value gradient model to provide a baseline for the policy
gradient model.

3. The method of claim 2, further comprising:

training the value gradient model prior to the training of
the policy gradient model.

4. The method of claim 2, further comprising:

selecting a region for optimizing;

dividing the region into a number of cells per layer; and

mapping each cell into a three-dimensional array, the
three dimensions being layer, size in an X-dimension,
and si1ze 1n a Y dimension.

5. The method of claim 4, wherein a value of an element
in the matrix 1s set to a number of shapes passing through the
partition associated with the element.

6. The method of claim 2, wherein:

the policy gradient model 1s a neutral network, with a state
as an mput and a probability of an action being a
highest rated action in the state being an output; and

US 10,755,026 Bl

17

the value gradient model 1s a neural network which takes
the state as an 1nput, and an expectation of total reward
from this state under current policy as the output.

7. The method of claim 1, further comprising:

after applying the patch, re-routing the portion of the

integrated circuit.

8. The method of claim 1, wherein a next state depends
only on a current state.

9. The method of claim 1, wherein a reward 1s set for the
action, the reward comprising a total reduction 1n the num-
ber of the design rule violations in the portion of the circuit
design.

10. The method of claim 9, wherein determining the total
reduction comprises:

identifying a number of violations removed by the appli-

cation of the patch;

identifying a number of new violations created by the

application of the patch; and

subtracting the number of new violations from the number

ol violations removed.

11. The method of claim 1, wherein a plurality of portions
of the mtegrated circuit are evaluated 1n parallel.

12. An electronic design automation (EDA) system to
design integrated circuits, the EDA system including a
physical verification system to fix design rule violations in
a layout of the integrated circuit, the physical verification
system comprising;:

the EDA system to receive a portion of an integrated

circuit design, including layout elements;

the physical verification system to identily a plurality of

design rule violations 1n the integrated circuit design;

a deep learning system to order the design rule violations

and select an action, the selected action representing
fixing of a particular design rule violation; and

the physical verification system to apply a first patch to

the integrated circuit design, to fix the particular design
rule violation, based on the order; and

the EDA system triggering the physical verification to

select a next design rule violation to fix.

13. The EDA system of claim 12, wherein the deep
learning system comprises:

a policy gradient model used to select the first action; and

a value gradient model to provide a baseline for the policy

gradient model.

14. The EDA system of claim 13, further comprising:

the deep learning system including a training system to

train the value gradient model prior to the training of
the policy gradient model.

10

15

20

25

30

35

40

45

18

15. The EDA system of claim 13, wherein the physical
verification system 1s further configured to select a region
for optimizing, divide the region into a number of cells per
layer, and map each cell into a three-dimensional array, the
three dimensions being layer, size 1n an X-dimension, and
size in a Y dimension.

16. The EDA system of claim 13, wherein the policy
gradient model 1s a neutral network, with a state as an 1input
and a probability of an action being a highest rated action 1n
the state being an output.

17. The EDA system of claim 16, wherein the value
gradient model 1s a neural network which takes the state as
an mput, and an expectation of total reward from this state
under current policy as the output.

18. The EDA system of claim 12, wherein the deep
learning system selects the action based on a highest reward,
the highest reward comprising:

a number of new violations created by the application of
the patch minus a number of violations removed by the
application of the patch.

19. The EDA system of claim 12, wherein a plurality of
portions of the mtegrated circuit are evaluated 1n parallel.

20. A computer-implemented method of fixing design rule
violations 1n an integrated circuit design system comprising;:

(a) receiving a portion of an integrated circuit design at a
processor, icluding layout elements;

(b) 1dentiiying a plurality of design rule violations in the
integrated circuit design;

(¢) utilizing a deep learning algorithm to select an action,
the selected action representing fixing of a particular
design rule violation, the deep learning algorithm com-
prises a policy gradient model used to select the first
action and a value gradient model to provide a baseline
for the policy gradient model, wherein the deep leamn-
ing algorithm identifies the action based on an action
with a highest reward, wherein the reward comprises a
total reduction 1 a number of design rule violations
after fixing the design rule violation;

(d) taking the selected action to apply a first patch to fix
the particular design rule violation; and

(¢) returning to step (b) to select a next design rule
violation to fix:

wherein the integrated circuit design 1s used for manu-
facturing an integrated circuit.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

