US010754960B2

a2y United States Patent (10) Patent No.: US 10,754,960 B2

Chhabra et al. 45) Date of Patent: Aug. 25, 2020
(54) SUPPORT FOR INCREASED NUMBER OF (58) Field of Classification Search
CONCURRENT KEYS WITHIN MULTI-KEY CPC ... GO6F 21/6218; GO6F 21/606; HO4L 9/08;
CRYPTOGRAPHIC ENGINE HO4L 9/083; HO4L 9/0877; HO4L 9/0897;
HO4L 9/0819; HO4W 14/04; HO4W
(71) Applicant: Intel Corporation, Santa Clara, CA L 12/04033; HO4W 12/0806
(US) See application file for complete search history.
(56) References Cited
(72) Inventors: Siddhartha Chhabra, Portland, OR .
(US); David M. Durham, Beaverton, U.S. PATENT DOCUMENTS
OR (US) 9,596,243 B2* 3/2017 Van Gestel HO41 63/104
10,303,900 B2 5/2019 Chhabra et al.

(73) Assignee: Intel Corporation, Santa Clara, CA

(Continued)
(US)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS

patent 1s extended or adjusted under 35 Trusted Platform Module, Wikipedia, the free encyclopedia, https://
U.S.C. 154(b) by 333 days. en.wikipedia.org/wiki/Trusted_Platform_Module, 8 pages, retrieved

on Sep. 18, 2017.

21) Appl. No.: 15/815,917
(1) Appl. No Primary Examiner — Paul E Callahan

(22) Filed: Nov. 17, 2017 (74) Attorney, Agent, or Firm — Nicholson De Vos
Webster & FElliott
(65) Prior Publication Data (57) ABSTRACT
US 2019/0156043 Al May 23, 2019 A server 1ncludes a processor core including system
memory, and a cryptographic engine storing a key data
(51) Inmt. CL structure. The data structure 1s to store multiple keys for
GO6F 21/60 (2013.01) multiple secure domains. The core receives a request to
HO4L 9/08 (2006.01) program a ﬁr‘st secure domain in}o .the Cryptpgrap}liq engine.
GO6F 21/31 (2013.01) The request includes first domain information within a first
GO6F 21/78 (2013.01) wrapped binary large object (blob). In response a determi-
HOAW 12/06 (2009.01) nation that there 1s no available entry 1n the data structure,
HO4I, 9/06 (2006.01) the core selects a second secure domain within the data
HOAW 12/04 (2009.01) structure to de-schedule and issues a read key command to
(52) U.S. CL read second domain information from a target entry of the
CPC GOGF 21/602 (2013.01); GO6F 21/31 data structure. The core encrypts the second domain infor-

(2013.01); GO6F 21/78 (2013.01); HO4L 9/08 mation to generate a §econd Wrapped bl(‘:)b and stores the
(2013.01); HO4L 9/0877 (2013.01); HO4L second wrapped blob 1n a determined region of the system

9/0897 (2013.01); HO4L 9/0631 (2013.01); memory, which frees up the target entry for use to program

HO4W 12/04 (2013.01); HO4W 12/06 ~ the first secure domain.
(2013.01) 20 Claims, 16 Drawing Sheets

120 mmmmmmm Lyata Storage 134

Cryptographic Engine 140

PrLruraruras -y uraruy rmraearpr

Communication Circuifry 128

Key Data Structure 142

neCurity Enging 138

Memaory 132

US 10,754,960 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0359047 Al* 12/2014 Leeooevvvveneeen HO4L 67/2852
709/213
2019/0220625 Al1* 7/2019 Durham GO6F 8/63

* cited by examiner

US 10,754,960 B2

Sheet 1 of 16

Aug. 25, 2020

U.S. Patent

+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+

I

* + + ¥ + F F FFFFFFFFEFFFEFEFFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFFEEFFEFFEFEEFFEEFFEFEFFFEFFFEFEFEFEFEFEEFEFEEFEEFEFEFFFFFF R

Ze 1 AJOUIBIA

L N N L N L R
+ + *+ + + F ¥ + F ¥ + F A+

* + + ¥ + F F FFFFFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEEFEFEFEFEFEEFEFEEFEFEFEFEFEFEFFEFEFEFEEFEFEEFEFEFEFEEEFEFFFFFFFF

L N B N L B N L
* + *+ + + F ¥ + F A+ FFFFEFFF

* + F + + F F F o+ FFFFFFFFFFEFEFEFEFEFFFEFEFEFEFEFEFEFEFEFEEFEFEEFEFEFFEFEFEEFEFEEFEFEEFEFEEFEFEEFFEFEFEEFEFEEFEFEEFFEFEFEFEEFEFEFEFEFEFEFEEFEFEEFEFEFFEFEEFEEFEFEEFFEEFFEFEFEFEFEFEEFEEFEEFFEFEFEFEFFEFEFFFEFFFFEFEEFFEEFFEFEFEFEFEFFEEFFFEFFFEFFFFFFFFFEFFFFFFEFF R FFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFF O F R
+* + F + + F FFFFFFFFFEFFEFFFEFEFFEEFEFEFEFEFEEFEEFEFEEFEEFFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFFEFEFEFEFEFEFEFFFFFF
+

L I N N I T I I L L B N I I I I I I D B L L R L B L D R L R L I
+ F + + F F F A+ FFFFEFFFEFFFEFFEEFEFEFEEFEFEFEEFEFEFEEFEEEFEFEFEFEEFEEFEEEEEEEEEEEE
+*

+
+

+*

+ .

_
h S21 Isjjoiucs AIOUWBI M
;

+

+

L BUIRY

+

+
+

+
+ + + F + + F F F FFFFFFFFFFAF

L L N L N N D O O

+ + + + + + * + ++t+t Attt ettt ottt ottt ottt ottt ottt
* + + F F FFFFFFFFFFFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFFEFFEFFFF

* + + F F FFFFFFFFEFFFEFFFEFFEFEFFEEFFEFEFEFEFEFEFEFEEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFFEFFF
LI N B N N RN R RSB E BN BB EEBEEBEBEEBEEEBEERBEEREREBEEBEREBEBEREBEEBEREEBEEREBEEEBERERBEREREBEREBEEEBEEBEREEBREEREEREBEEEBNEEIEINEIBEIESIE.]I

GZT HNOI0 HoaUng
Ljuie b0l auibu3 oldAIn)

* + F F +F F ¥ FFFFFFFFEFEFEFEFFEFEFFFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEEFEFF
+ F F F FFFFF A FFFFFEFEFFFFFFFFFFEFEFEFEFEFE A FFFFEF
+ + *+ + + F F F FF FFFFFEFFFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEAFEFEFEFEFEEFEFEFEFE

+ + + ¥ + + *+ + + Ft+t +F ottt ottt ottt ottt ottt ottt
+ + + + + + + + + + + + + + + + +F + + F +F + F +F F FF A FF A FAFAFAFAFEAFFAFEAFFAFEFEFFAFEFFEAFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEAFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFF

* + + + F F FFFFFFFFFFFFFF

L N N N N L L O D D I D L B L L B O R O O D B R D O R O
+* + F ¥ + F F FFFFFFFFEFFFEFFFEFEFFEFEFEFEEFEFEFEFEFEFEFEFEFEFFEFEFEFEEFEFEFEFEFEFEFFEEFFEEFFFEEFFEEFFEFEFEFEFEFFEFEFEFEFEFEFEEFEFEEFEEFEFEFFFEFFFF R

+* + F ¥ + F ¥ FFFFFFFFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEEFEFEFEFEFEEFEFEEFEFEFEFEFEFEFFEFEFEFEEFEFEEFEFEFEFEEEFEFFFEFF R
+ + + + + + F F FF o+ F A F A FFFFEFFEFEFEFEFEEFEE A FEFFEFFEFEFEFEFEE A FFEFEFEE A FE A F

ST INONIS BIRC Aoy, 71 HNOAY) YOGANG 8ARIZUT 8iN08Q

+* + + + + + + F +F F F FFFFFFFFF
+ + + + +F FFFFFFFEF A F A+
+ + + + + + + + + + + + + + + & + + + +

+ + + + F FFFFFFFFFFEAFFFEAFEFAFEFFFEFEFAFEFEFEFEFEFEAFEAFEFEAFEFEFFEAFEFEAFEFEFEFEFEFEFEAFEFEFEFEFEFEFFEFEFEFFEFEFFEAFEFEFEFFEFEFEFEFEAFEFEFEFEEFEFEEFEEFEEFEFEEFEFFFFF
LA B N N B N B RSB EEBEEEBEEBEBEEBEEBEEREBERBEBEBEEEBEEBEBEERBEEBEBEERBEREBEEBEEBEEBEBEBEBEEBEEBEEEBEEBEREBEEREBEREBEEEBEEBEBEEBIEEIEEIEINEIEIELELE.]I

L L N N N L R
* + +F + F F FFFFFFFFFFFFFFF

L N N A A I I I I I A B D N B R N O D L I A A D A N N B N N N A I N A N A D I D N N L N O N D D N D N B

OF1 suibuz owdeiboloAl
INOAQ POUGNS UOBZHBIHA MH

* + F F F FF FFFFFFFFFFEAFFFEFEFFEFEFEFEFEFEFEFEFFEAFEFEFEFEFEFEFEFEFEEFEEFFEEFEEEFFFEFFH

+* + + + F F F FFFFFFFFFEFFEFEFFFEFFFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFEFEEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFFEEFEFEEFFEFE A FH
+ + + + + + F F FF F FFFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFEFFEFFFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFEFEEFEFFEEFEFEFEE

L L N D R B
* + + + F F F F FFFFFFFFEFFFHF

071 ($)8107) 108580014

+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+

+ + + + F FFFFFFFFFFFFFEAFEFFEFEFFEAFEFFEAFEFEFEFEFFEFEFFEFEFEFEFEFEFEAFEFFEFEFEFEFEFFEFEFFEFEFE A FF
+ 4+ F o+ FFFFFFFFFFE A FFFEFEFEFFEFEFEFEFFE A F A FEEFFEFEFEFEFE
+ + + + + + F + F F F F o+ FFFEFFFEFFFEFFEAFEFFEFEFFEFEFFEAFEFFEAFEFEFEFEFEFEAFEFEFEFEFEFEFEFFEFEFFEFEFEFEFE A FEF

+ + + + + + + + + + + + + + + + +F + + +F + + +F +F + F +F F FF A FF A FAFE A AFAFAFFAFEAFFAFAFEFFFEFFEAFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFEFFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFFFFEFFEFFFFFFEFEFFEFEFFEFFFEFEFFEFEFFEFFFEFEFFEFEFE

* + + ¥ F F F FFFFFEFFFFFEAFEFAFEAFEFFEFEFEFEFEFEFEEFEEFEFEFAFEAFEFEAFEFEFEFEAFFEFEFEFEFEFEFEAFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEAFEFEFEFEEFEFEEFEAFEFEFEFEFEFEFEFEFEEFEFEFEFEFEAFEFFEFEFEFEFEFFEFEFEFEFEEFEFEFEFEFEEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFFFFFF

US 10,754,960 B2

Sheet 2 of 16

Aug. 25, 2020

U.S. Patent

* + + F F F FFFFFFFFFFEFFFEFFFFFFF

+ * + + F FFFFFFFFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFFF
L I N

¢ Ol

+ + + + + + + + +F F F F o+ FFFFFEFFFEFFFEFF L

LAX G000

AICUUIBUL JO GE7 U0ID3)
P4080 BiBMpIRL Ao uiewo(Aoy aHois

71 SINIDNAS Bl ABY % |

ot

-

+ + + * + + + + + F + + ++ ++ ottt ottt ottt ot

+ + + + F FFFFFFFFFFEFEFAFEAFEFAFEAFEFAFEAFEFAFEAFEFFEFEFEAFEAFEFAFEAFEFEFEAFEFEFEAFEFEFEAFEFAFEAFEFEFEAFEFEAFEAFEFEAFEAFEFEFEFEFEFEFEFFFF
+ + + + + + + ++ + ++ +++ +F+F A+ttt ettt ottt ottt ettt sttt ettt ottt ottt

+ + F F F F o F A FFEFFEFFFEFFEFEF A FFEFEFFEFEFE A FEFEFE R+

YA 1774

OJ0NU0T AOWBA 2uIbUT J1ydeIBoItAID

+ + + F + F F FFFFFFFFEFFEFEFFFF A FFFFEFEF
+ + + + + F + ++ ++F+ ottt

+ + + F F FFFFFFFFEFFEFEFFEFEEFEFEFEFEFEFEFEFEEFEFF
+ +F + F FF o F A FF A FFFFEFEFFEFFE R+

i+

L L N B N N L R L L D D L L R L D L R I R O L L L R L O L L R D D L L L D L L L L T L L D R D O L L L R D D L D L D L L L I L N L L T L L L L L L L L L L L L D O L L R D L D L L L

&+

701 ACWIBIA

- w

-~ Alepus

* + + F FF ok FFFFFFFAFEFFEAFEFFEAFEFEFEAFEFEFEFEFEFEFEFEAFEAFEFEFEAFEEFEFEEFEEFFEF

50¢

U8 HY WBISAS

R ¢ &

0g) 8ic]

AR

US 10,754,960 B2

asundses oydesfoydAio unjey

-
1= . 06¢ \ mm‘.\
- ‘deJmun Emwmow:w\u\

o} i50J A o
2 HO Quiq WBRIBIg 7 FSuodss
- oiydeiBoydAio

‘BSU0dsE] § m \\\ LIS
oiydesboydiio # B
S slpiaushb i m
S B GOIQ GBIMUN ™ le (qoiq poddeins)
P v m NS , + m
2 468 I Buneiboid ueuiop m
= 0cE 10} GOiq @@%@E@w m
2t
Jét .
01~

+
+++

+*
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+*

£0E 2IeMos {INDIN
JIBLIO(]

SUIBUT D1deIBoIdAID

U.S. Patent

Gdoia peddelij

Beuodes
olydeiboydAio

 ALBA

U.S. Patent Aug. 25, 2020 Sheet 4 of 16 US 10,754,960 B2

400 Hardware indepsndent Mods
410

New {irst) secure domain

DOGramming request received by
f'*w;}tr::u shgine.

+++

g o, Store the first secure domain
420 | data structure Yas _ y
. irformalion at the avaiable
~, STy availabise?
o, e key data structure entry.
No
440 v\ Sslect second secure domain (at

second entry of key dala structure)

o be de-schadiuied.

485 450 ~nerypt second secure domain info
.—}O ot T INWRADS fha Tretrieved from second entry to generate
LAGOTY DL (h g R

wrappad blob, to generats wrapped binary iarge obiect (blob),

cacond domain info.

460~ Store wrapped biob in datermined
region of sysiem memaory.

+++

470, {Siore the first seoure dom&in nfo af the
second eniry of key data structure
freed up via the cie scheduling (4440},
... passage of Tim
475 - _ co§s N
y request g
™o second securge”
Lomain e’ |
Yas
480

HRead wrapbed biol from

systen memaory.,

--

U.S. Patent Aug. 25, 2020 Sheet 5 of 16 US 10,754,960 B2

500 Software Managed Mode
210 Receive new (first) secure domain
programming request with first wrapped
blob. (KD_SET_KEY)
530
520 oy data structurs YVes Decrypt (UNWRAP) flrstl
entrv available? wrapped blob to generate first
Y ' domain info.
No 535
__ Store first domain info in the
940~ [Select second secure domain (at second available (first) entry in key

entry of key data structure) to be data structure.

de-scheduled.

- lssue read command
(KD _READ KEY) toread second

domain info from target entry of key 945
data structure.

Encrypt second domain info to
generate new (second) wrapped blob. 930

585

Read second wrapped
blob from
system memory.

Store secong wrapped blob In
determined region of system memory. 560

Decrypt (UNWRAP) first wrapped blob
to generate first domain info. 570

Store the first secure domain info at the

target entry of key data structure freed
up via the de-scheduling (540).

575

W we o MR N R W MM r bl T me Y mEREE @ e W e T wmigipee w ¥ owipliselr v wilphle v yesellr o ki el r mE b G W MMM W M ¥ MMM MM F ekl b Yeslgle

580

Access
request
{0 second secure

Yes

FIG. 5

US 10,754,960 B2

Sheet 6 of 16

Aug. 25, 2020

U.S. Patent

¢¢9

++
--

ll

+++
LRELMLINL LN
e “u m : L el el g i
hd 4
+]
i.l l.l .
.—. -
r._. .-.
+ - S
+ L] H
l.—. Lr . _
L - M
l.—. .-.- L b H H
+ F
+ -
.—. 4
+* r
l.—. Lr .
+ 4 H H
Tl r ! Tl Ml roT !
++
” ...
L]
. [+ - + F 4+ * + 3 -]
r +
1] -
] -
L] r
1 -
] Ll
1] -
. BN « ¢ ¢ N T e 4 F 48 £ S e e n b m e TS eTe s A @ n aTeTa LR £ A 4 A mmu s B n sk
] - .
1 - l-
e 2 4 7ty g 3
- - .
1] - + b
L + !
'] - 'S l-
r +
- [l . k
[+
L] L] I.1
] Ll J“
1] - -
L] +*
1 -
L] + 4
3 » -
- -__...
L] - .
1]
11!!;;;%;;‘ ‘E l’!igiﬂiggiiiid
']
]
1]
F
” .-..—. ++
. m N .
. . WL LU
1] - m
[+
'] [
F 3
L] - m
. i]
L] F
3 § P g
: : " .
: m
1
'] -.—. m
] .-”.-.l
B R iman mmm mAn SAmA WA e e mewenr resreed e o i e o
” TR Thwm wr'wr wormr TDewis wrrmh R seew
: m
_-. [+ r 3 F + ¥y + F + l + 4+ E 4+ 4] [+ 7 + 4 [1 + 4 E & 4 H ¢+)| F 4+ 4+ 3 H + r 3 4+ a4 | F 4+ v 4] F + + [+ 4 & | [+ 5 4
F
1]
n | 3

| e T L 0G0
GO LU0 GRG0 @Emgm
WRATE AR ; Uiiy/Blitlioy Hun swbus uonNIexX:

++
+

0r9 wmcm 9p0vs(] 09
#U{Y PU I

900 4oIo uw c@mwmbmcm

++

+++
+

55O wun gL vononasy; | A «.ﬁf/%m o
— _ - %1 UM UORDIDSI LouRIg y
LG UM BYIBED UONONASY: m P

d9 A&l

o I A N

4! 21 o Pig Lz | wR w Zie]

| mgm_gmz HAN 9 NREM AICWSI | “wa 019 809 ' Bumoos(

| Aoui 308G 3Inoey - Sinpsuos (BUIUBUSH, DOHY 8R0S LG
u 09deox3 | e ﬁﬁg o STIU9XS sy gsiBay| S) W.w. m{. PO%80 | " e Suadis

US 10,754,960 B2

Sheet 7 of 16

Aug. 25, 2020

U.S. Patent

L Ol
ayor) | |8re7 04 ayoen) | [8A97 0]
bl 0¢! 81/ 91/ 2
A0 d4 N1V MOIS\ | /1Y iSed N1y 15e4 N9V
0L/ MOMBON 507
| ssedAg /9|14 Ja)sIbay d4 YI0M}BN ssedAg / o)1 18)sibay Jaboju;
_ _ L/
e e S I 1016 913
|=!
” - 1 -
| 90/ 18INPaYdS 0. 20/ ETETRIS
44 9jdwis 18|NPaYIS 44 [BIauss)/moIS 18|npayos 1se4 AIOWBN
_ ¢0/
auibu3 Jap. n
anant) 4O o4 buneo)d/1abayy r OM:MMMU%E WU 1PRI0 40 110
JowrUSY JB)SI0aH/10)RI0)|Y 00/
10SS890.d
eT 0¢/
snent o ayoe) aoel|

7, L
8¢/
J18p098(] UoNINASU]

NOY
3P020IIIN

10/ 9¢/
pU3 JUOI 18Y2)8)8.14 uononnsu|

8 Ol

0€8
ejeQ puy @poy

8
asnoy/pJeogAay

/(8

88 abelois eje(S99IA9(WO

US 10,754,960 B2

818
abpug SNg

P18
$991A8(] O]

4]
O/l olpny

918

Sheet 8 of 16

8¢8
solydeis) Pad-ybiy

Aug. 25, 2020

7€8
AJOWB

088 10S5990id 79 108589014

/oom

U.S. Patent

US 10,754,960 B2

Sheet 9 of 16

Aug. 25, 2020

U.S. Patent

Pes
AIOWSN

868
a d

088 1085920.d

6 Old

Gl6
O/| Adebia

968
3/

068 18sdiyD

068

716

s0INeQ O]

omm 898 n 8/8 9/
d-d d-d

76
d

8
“d

«

8
“d

—
10

078 108$990.d

bttty

28
AIOWB\

v/ 006

U.S. Patent Aug. 25, 2020 Sheet 10 of 16 US 10,754,960 B2

* B & % & & | F & F & B 8 & § f & F o RS] F ok F o A f RS] f PR

r+{l-|-I.I-I.---l--l.l-rl.l-rr-l--l.l-rl.l-rr-l--I.l-i.l-rr-l--l.l.-l.l-r-rll--l.l.-l.l-rrll--l.h-l.l-rll-l.l.--l.l-rr--l.l.--l.l-rl.-{'

~ F + + F +
= m e mT

[8

a7 *

- T

T

+ 4 + ¥ F + FF + 9 + +F + +2 &1 4 20 %
L nowmom i . " 1w h

T

-

Display Uni

[8

System Agent Uni

41+ 4+ 1+ +1+ FF 1LY YAt AT PRt

ra

1" + ¢ F + 1 + + F + = F +
- - mw an w b L

-
+
4
bllllllll1‘blllllb+l‘i1‘b'll1‘b_illli+b++b+l‘1‘+b++i++l+l‘i+b+++
-+ L
+
L
]
+
s *
+ +
L
+
3 .
+
+ L
+*
+
9
+*
R -
' . :
+
4 + d b L r+ 1d+ L b1 bh+1ed [Y F 1 b+ [Y F 41 b ir b irF i F r b 1w+ F 1 r F B i d b 1wt 1wk L N R N B [B Y h i+ B dwF 4 b+ k1 + 1 b+ L4+ '|':||I'I+"I‘||.+ b i rr -
+++ i G el N e) H W *
+ r
o 2
rmmmﬂmmmmmmm mmmmmmtﬂg -: :'- - :
1 ; : iy .
L] +
E -.'I 'I. i
. d +
n +
1- F+ - -
g - iy .
4 +
+ I'. +
I +I I+ L
. . F .
'1- ‘l-+ +
l. .-l- L -
-.I i‘ L
| i o
l. '1'
E i -I I“ L
H L] +
e L +
- 1] +
:.‘l l: -+ +
:'-. n: M
I + I- +
.' -+ -
-I r +
E ! § ++ '1- +y
l‘ ‘1‘
+ 1]
| " o
< -
i'. "l'
.‘ “
l‘ .'I
l* "l'
- "
1‘ l+
| iy "
A m -,
+ l. *y
§ 2 ?
[[
! * o
i.pﬂm - ey - r,
'r+ .1-
Q o3 : :
- 1]
mmmmmmmmmmm! *‘.‘-ﬁd‘ . :r h !:
r‘ .J-
m . Y LN L
¥ BRI uf "
l‘ .1-
/3 P + : o,
+* L]
X 3 -- : -
<3 i : :
‘“ s ¥ &
P P = g 7
i G} v r aww *y
- : uf fa
ik i N "y i:::}
o o X >
l‘ .‘l'
o s o PR : £y
- . . r
e 'c:} ! - el ¥ ' x
?“} 1: m :-+
5. :n 1:
- LN W L
'M o~ .
+]
l- -1-
Ay, 2 P o
i - l* "l' |}
LA g - X
- —— S— N T
- 1]
= | 5 : <k
1- '1-
m ; T u -, ¢
+ F
+ l. '-l-
LN Ko : e B
w .+ '-
l‘ .-l-
4:{ _ “ {:i} .+
r r
; ! ST A -
l- -1-
I-I‘ .J- -
:_r WA !:
i l‘ .1-
1. '1-
- i .
+ [?ﬁ
“ ‘+ .
I.. .+ .I H. ‘
i : '+
L] -
: : o
r -
g - .7 o T
d +
‘1- !+ Ti"'n
r: :J- W gl el
:* ': f-"'
. L ﬁ} -
- n
L] +*
iy L ¥ E
i '+ "+ E
1 + i+
r' 'I
1] 1]
. o . & . il'“"‘
g ‘* T
+ L]
n +
I.' "
" . T
- o+ ﬂ) i
- +
3 : O
[L
I. "I
i "y m L!‘
- o e, Hemed
: f+ o
NN T R TN T I T T R T T N E TR N NN NN T AN 'L "= + T+ i #] ;’lﬂ :l -i:
.I' F-
j : dy
|-+ ++
- r
< . T*“# (3
R

-
rrr “m - moT N
L N N N B R N B R N NN O B NN BN R N N N N N R O N NN N B NN N RN RN N N N B N N NN N R N R RN N B N R B N T N N N NN TN R NN N R NN N N N NN R NN NN

+
v
- *
+
"
+
+

- .

"
*
*
.

2

+ *
" . .
L mﬂwﬂq L B] mw L T mmw‘ b T e .
*
+
1

;p\\

Madia Processor{s)
1020
1008
image rrocessor
1()24

Integrated Graphics

Audio Processor
1{1/6
e e e e e e e e e e e o
Video Processor
1028
fww rwar wwws moww: Tmace e waa ek ewws wwant oewa s waan ww s

i
E
:
:
E

i
:
:
i
E
3
E
E
E
:
P
E
:
:
:

System on a Ch

1000

2]
w Ll Ol
\&
&
2
£ 0JU0Y) Jamod
= GOLT 09T
Z use|4 NYHQ
- 0SEL CrIT 07LL GELL 0SLL
= Od 19]|04U0D) Ysey 19]|0AU0D NYHAS NOY 1008 NIS
&
- 0811
2 Sd9 Ty
7. JO2UU0JI0)U]
— e e
S 0TT] 60T}
3 3Yoe) 71 Jlun 99e48U| SNQ
% ILE ¢k ' CAmE T 0J1U0" ayde
Y WBPON O 4109pIN @0|| DFF GTT] 80} 10809 8493 T
z 29p0J 09PIA || NdD
017 901}
9109 9109
=
QI —
= 0LT1
A oojaN|g
75 a1
- ./8:

+ + + + F F o+ F FFFFFFFEAFEFFEAFEFFEAFEFFEF

S. Patent Aug. 25, 2020 Sheet 12 of 16 S 10,754,960 B2

1200

+ * + + * + + F+ ++ ottt ot

Registers

+ * + + * + + 4+ ++ Attt ottt

+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

* + + + +F + F F o+ FFFFFFFFF

+ + + + F F + F o+ F A FFEFFEFFFEFFEFEE A FE + + + + F + + F F +F A FFFFFFFEFEFFEFFEFEE A FFFFFEFEFEF

+* + + + + + ¥ F F F FFFFFFFFFEFEFFEFFFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFF

* ko

+ * + + *+ + + F+t Attt

Retire or
omimit Cirout

+ + + F + + F F F FF A F A FFFEFFEFEFFEFEFEE A+
+ + + + + + + ++ + ++ + Attt

-etoh Circutt

+ + + F F FFFFFFFFFFEFEFEFFEFFEFEFEFEEFFF

Code

+
+
+
+
+ .
+
+
+
+
+
+
+ +
+ ++++++
++++++++++++++++++++
+ +
+
H +
+
+
+
+
+
+
+
+
+
+
+

Circuit

Cxecution
Circuit

+ +

+ + ¥+ ¥ + +
+ + F + + F + + + +
+ + +

+
+ +
+ + ¥+ ¥ + + + + + + ¥+ +
+ + + F F F o F o F o+
L .
+ +
+

+ F
+ 4+
o+ F
N
4+t + + o+
Hal
T T 7 o

1214

1206 1208

+ + + F + + F +F F F o+ F A FFFEFFEEFEFEFEFEEFFE

120¢

+ + + + + + + + + + + + ++ + ++

+ + + + kA F
L L B IO DO DO DAL DAL BOE BOE DO BOL BOL DO DO BOL DO DOK BOL DO BN DAL DO BN BN DL BN)

* + + ¥ F F o FFFFFFFEAFFFEFEFFEFEFEFEFEFE S

+ + + + + + + + + F+ + +FF
+* + + F F F FFFFFFFEFFFEFEFFEFF T

+ + + + + + + + + + + + + + + + F+F A+ +F T

+* + + F F F FFFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFF A F
L I B DL L RO DL DL DAL D DN DAL DO DL DOE DO DOL DAL DON BOL DON DO DOE DAL DO BOL BOL BN DOE BOE DNL DAL BN 1

+ + + + + + + + + + + + +F + + + +t +t F+F ottt

Fis. 12

S. Patent Aug. 25, 2020 Sheet 13 of 16 S 10,754,960 B2

1320

+ + + + + + +

+
+ + + + + + + + + + +

+ +
+ +
+ +

+ + + + + F+ + + F + + + + + F F F A+ FFFFFEFFFEFFFEFFEFEFFEFEFFFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFFEFFFEFFFEFFEFEFFFEFF A FFEFFFEFFFEFFFEFFFEFFFEFF S FFEFFFEFFFEFFFEFFFEFF S FF

Fetch, by feteh circuitry, a BIND insifruction

from a code storage.
1344

L NN N N N N N N NN N NN N N N NN N NN N N N NN NN NN NN NN N NN N NN N NN NN

+ + + + + + + + ++ ++++ Attt ottt ettt ettt ettt ettt ottt o+

+

* + +
+

+

Liscode, by decode circuitry, the feiched BIND instruction.
1324

* =+ kot

+ + + + + F FFF A FFFFFEFE A F A F A FF A FFEFF A FF A FEFEF A FEF A FEFEEF A FFEFEF A F A E

Execute, by execution circuitry, the BIND instruction {o encrypt

group of data as a wrapped binary large object (blob).
1340

* + + + + + + + kbbb kbbb bkt

* + + + + F ¥ FFFFFEFFFEFFFEFFFEFFFFFEFEFFEFEFFEFEFFEFEFFEFFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFF A FF

+ + + + + + + + +

Fi(z. 13A

U.S. Patent Aug. 25, 2020 Sheet 14 of 16 US 10,754,960 B2

1330

Feteh, by fetch circuitry, an UNVWRAP instruction

from a code storage.
1332

Decode, by decode circuilry, the fetched
UNWRAP instruction.
1334

++

Cxecute, by execution circutry, the UNWRAP instruction to
decrypt a wrapped dinary large object (blob) info constitiuent
decrypled pieces of a group of data.

1336

+
+++

Fi(138

U.S. Patent Aug. 25, 2020 Sheet 15 of 16 US 10,754,960 B2

* + + + +F F ok FFFFFFFFEFFAFFAFFFFEAFEFFEAFEFFEFEFFEAFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEEFEEFEFEFEFEFEFEAFEFEFEFEEFEEFEEFEEFEFEEFEFEFFEFEFEFEFEFFEAFEFFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEEFEEFEFEFEFEFEEFEFEEFEFEEFFEEFEEFEEFEFEFEFEFEFEFEEFEEFEFEEFEFEFEFEFEFEFEFEEFFEFEFFEFFEFEFEFEFEEFEFEFEFEFE R FF

INSTRUCTION 1400

RE ByaLiD oTAT

bt
4
K
8
£

ATTRIBUTE 8 >
1406 &

oPCOLD
144

Rk

()
e,
jar

——d,
-
md,

=
;
:
i
;
g
:
:

LI B N B BN N N B NN N N N N R N NN NN

+ + + + + + + F + + F + + F At F
* + + F F FFFFFFFFFFFEFFFEFFEFEFFEFEFFEFEEFEFEFEFEFEEFEFEEFEFEFFEFEEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFFEEFEFEFEFEFEFFEFFFFF

LN L N L N I B L D O L D T D O B L D D O B L D L L R L L D L D I I T O L L L D O L B L N L B

FiG. 14

.S. Patent Aug. 25, 2020

Processing Devi

+ + + & FF + + % FF+FFFFFFF S F R FAFFFE A FF+FF

B w mw m e apw W oww

m T omom om ok wom m oy el w m
I B B o I T I L I I e e I T s e o I R

I R N N R N B N S N N N N N D N N L N N L N B N R B N N R L R N R I B

+ + + + 41+ + + + "+ + + +" ++ +=~F++ F=~F ++ +F~F +F F+ FFF APt "t

Main Memory

-+
+
+
+

L]
+
+

nstructions
9

™ - -t - k- -t -

r
LI I o Y I I N N O I B N I I L T I O I I L D L O D N B

+ + ~ 0 + + + & 0 4+ + +d 4+ + +F 04+ F 4+ hF P A AP AR A+

+ & 4 F + &k Fd ¥+ F k- +
LA N N N BN N BB B BN SEBEEBEBERELENSBSENEIBEBEINRMBIENIINEIEIEIMNIEENENIIEIEIMNINIEENEIZEZSNNEE,.

Static Memory

1206

4 4 +d Fw o+ +Fd BB+ F A bkt Lk koA kot k-t d ko Atk h bk d kot R wh R h AR At

womow T g m m om o w wmp ow o omow mow e b omop el m ik
I R B o O O I

nehwork inierfage
Levige

- w omop e b om o w d o m mop e Bom o ol w ke

+ 4+ A P F F FdA L F AP A AL A F AP

-
=
F

-
[]
d

i+++'|i+++l-i+++I-i+++I++++I++++i++++_|i++++‘l+++-|f+++'|f+++-|il'+-|"If+++-|i+

LA N I N NN RN EEN LN RN NN RN RN R NN N D DN D DN R RN D D BN R

Graphics Processing Unit

- w T k wom dwow o w

O

1222

A or moEm T FEEWT FAEEWmTEEE®T E REEETEEEET EEEWTFRaEW®TERa®wTErEEEtrranrr et doronw
I A I R R I R A A I R A A I R R A I N A I N A N A N N N N N N N NN NN AN

- -
I R T I o O L I R N O

= F i rw 3w rrr3 hrraoawrreaswrreoassterashbhdrroassrras

F F a2 W T FESET N LSETErrLSAaSWTErFrrETw

Yigeo Frocessing Unit

1928

L N D D D B * 4 d k=
L ooa s o O A T N T T T Y

4+ + A P+ bAoAt A A AP A S P+

+++1I“-"+1I'."‘-"1I' + + F o+ +

- [d F & & 4 g
R R T I T | o I I T I R A | &

LU L R B
F o= =

P I . -, . . T . I O . . N N N . N NN L . T N N I N N L N I N N R T R PP R . PP B N P N N N P N B N - B

] *
. n
" +
F | k| [| +
R
] i -
: UGI0 HTOCessIN 41 :
] *
. +
] .
. =
. +
7 +
] +
] .
] T
. +
. *
' '
] .
. T
" *
- +
. L s r T T T +
] "
A T
. +
] +
T N N I R T N T T I T I T R I T O T T E E T E E I EE E EE E ICEEE
O N I e T B A R A A A R R A R R N A A R R R A A A A A N AR N A AR NN aF W AR N B RN N A B N

1500

k 4+t + 0+ttt EE Y T Y

* ¥ 2 3 m F FaT9 % FF3"TFFFYT9FFF9T"FFFYTYTFFFYTYFFFYYFFETYFFa

* bk w F &k kb h ok d bk d A Ak kA EF FFkrhh kR rd kS

+ o b+ d oA F o dh Attt Ak ddE A+ A

L F A a2 F Faa a2 FrF LT SELLELETELFSATSELFESASTFFrLSsS W FFra s W FEra P r L Fra

* 4+ F & + + + + + + F F A+ AP+ AP FFAEF A FFFAdFFF A F A

r r m s +F mor &

Sheet 16 of 16 S 10.754.960 B2

Dispiay Device

F + % FF + % % % F + 4 =1 4 + + ¥

rFr+ 4 + % F+h -ttt YTtk t YR YT E Y

P+ + % F F + % % FF + + FF +F + % %4

+ % ¥ 1

+
T
d
[
+
+*
L]
-
[
+
=
=
d
[
+
=
-
*
[
+*
=
[8
[]
L
+
L
-
[
[
+*
=
[]
[
+*
: A 4 4 F & 2 24 F 2o ok d kA FFFFF A FFE AR Fd R4 LL 4 L L
d

[

+

+

L)

[]

L

*

+

T

d

*

+

=

+ + "+ + + +F + + +~F+ + +~F+ F+F+~FF+ +F+F1 APttt ="t Pt

Alphanumenc input
Device

+ % % F 4+ 4+ & EF 4+ & & FF + & % 8 F 4+ & &7
* + % = F F 4+ % FF + = % FF+ + 5% FF + % =45

F + % B

=% FF + + FF ¥+ % 59

- ¥ + 4 L N N S N R AN N N N NN T N I N N T I D NN B D N L B
[KN EE BN EBE B EBEEBEEBENEBEBEEBEEEBENEBERBEBEREBEEBEBREBERBEBEREBEEBENENEERBREBREBEBEIEBIEIBE.BEI

+*

F + % % 4 + ¥

cursor Control

evice

F + % % F + % % = F & 4+ = EF + % % FF + + % FF + % %4 F + = pr4q

Fl

T * ra s wrratrerh tordrhtrdonunddaorhtrrewrhtrdaochsrradtrrrhfrdssnarsw T raanid

A m ma2 &2 2 R RS2 &2 2R LS WELLSEELLLSESSALLESSEASS &L LSS5 AW JPSELSETELLLSETY L E LS S SARLLSESSLR

[S BN B B B BN L DL DL BN N DL DN B RN B DN DR T B N N U B D DU B B BN OB B BN B RN N

* 4 = % FF & + = F F &+ % =5 F &+ % % F F + % %A F 4 %1 F R EF Ry F AP+ =P S+ RY 4+ EPF <+ %P+ + RN

m m R P L 4 4 5 N B2 E R N A S R § S AR R LTPPSEAELE S SRR PSR E PSSR R A SR E PP SEAERPE L 4 o A A4 L LEA R R

ok N B ok Ak B M ok ok ok f ok ok ok B OB o ok B oo ooh ok B ok ok ok o B ok ok osh ok B ok ok ok ok Bk ok ok B B ko ok Bl ok ok ooh § OB Aok ok | Ak ok ok

signal Generation
Levice

smom bk wrh ot bwnt ot d bkt bwrwrht bw b fttrdwt b b Atk rn bt rn

F+ + % F F + % %4 + + % FF + % % % F + +FFF + % %4 F + +FFPF+ 5% %4

+ % ¥+ 4

+ r
LN NN N AR NN LR N BB BN EBEEEBEEBEEEEBEEEBEBEEBEEEBEBEEBENBEREEBEIEBIENEBEIBEINEINENNEIHIEIE.]

L L L L L I L L L L R L L L L L L R L LT R B T R L L N L L N N L N L L L R L L L L O L R L B T R N L . U L R L P L U D LN L I L L L N D R L R L N L L L N B L R L R L N I L N L N IR N LN T

US 10,754,960 B2

1

SUPPORT FOR INCREASED NUMBER OF
CONCURRENT KEYS WITHIN MULTI-KEY
CRYPTOGRAPHIC ENGINE

TECHNICAL FIELD

The disclosure relates to protection of data stored in
memory of a computer system, and more particularly, to
support for an increased number of concurrent keys within
multi-key cryptographic engines.

BACKGROUND

Modern computing systems employ disk encryption to
protect data stored at rest on hard drive disks or other data
storage. Attackers, however, can use a variety of techniques
including bus scanning, memory scanmng, and the like, to
retrieve data from memory. The memory may 1tself include
the keys used for disk encryption, thus exposing the data
encrypted on a disk drive. Various techniques, thereiore,
have been employed to protect sensitive data residing in at
least some regions of memory. Doing so has become chal-
lenging, particularly 1n a cloud or server environment where
multiple customer workloads (from diflerent entities) may
be supported simultaneously on the same server.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram of a computing device for
secure programming of a hardware cryptographic engine,
according to various implementations.

FIG. 2 1s a system block diagram 1llustrating a key data
structure of the cryptographic engine that 1s capable of
caching a large number of keys stored in memory, according
to various 1mplementations.

FIG. 3 15 a system flow diagram illustrating a method for
software management of programming multiple secure
domains, using corresponding multiple keys, into a hard-
ware cryptographic engine, according to various implemen-
tations.

FIG. 4 1s a flow chart of a method of employing a
hardware mode of managing the large number of keys stored
in memory that a cryptographic engine can access to secure
a number of domains of a server, according to one 1mple-
mentation.

FIG. 5 1s a flow chart of a method for software manage-
ment of programming multiple secure domains, using cor-
responding multiple keys, mnto a hardware cryptographic
engine, according to various implementations.

FIG. 6A 1s a block diagram 1llustrating an in-order pipe-
line and a register renaming stage, out-of-order 1ssue/execu-
tion pipeline according to one implementation.

FIG. 6B 1s a block diagram 1llustrating a micro-architec-
ture for a processor or an integrated circuit that may imple-
ment hardware support for a multi-key cryptographic
engine, according to an implementation of the disclosure.

FIG. 7 1llustrates a block diagram of the micro-architec-
ture for a processor or an integrated circuit that implements
hardware support for a multi-key cryptographic engine,
according to an implementation of the disclosure.

FIG. 8 1s a block diagram of a computer system according,
to one 1mplementation.

FI1G. 9 1s a block diagram of a computer system according,
to another implementation.

FIG. 10 1s a block diagram of a system-on-a-chip accord-
ing to one implementation.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11 1illustrates another implementation of a block
diagram for a computing system.

FIG. 12 1s a block diagram of processing components for
executing 1nstructions that implements hardware support for
a multi-key cryptographic engine, according one implemen-
tation.

FIG. 13A 1s a flow diagram of an example method to be
performed by a processor to execute an instruction to
encrypt a group of data as a wrapped binary large object
(blob).

FIG. 13B i1s a flow diagram of an example method to be
performed by a processor to execute an instruction to
decrypt a wrapped blob 1nto constituent pieces of a group of
data.

FIG. 14 15 a block diagram 1llustrating an example format
for instructions disclosed herein.

FIG. 15 illustrates another implementation of a block
diagram for a computing system.

DETAILED DESCRIPTION

Various techniques have been employed to protect sensi-
tive data residing in regions of memory. Some processors
provide cryptographic mechanisms for encryption, integrity,
and replay protection. Memory encryption protects the con-
fidentiality of memory-resident data. For example, total
memory encryption (1 ME) may encrypt data that 1s moving
from a processor core to memory, and may decrypt the
encrypted data on its way back to the processor core.

In some mmplementations, such as 1n Intel® Software
Guard Extensions (SGX) technology, for example a pro-
cessor employs a memory encryptlon engine (MEE) to
protect data when 1t 1s resident 1 memory, e. g within
protected enclaves or portions of memory. The MEE extends
encryption protection (such as provided by the TME) to
provide additional security properties such as integrity and
replay protection. Integrity protection prevents an attacker
from causing hidden modifications to the cipher text (e.g.,
encrypted data, as opposed to plaintext which 1s unencrypted
data) in memory. Furthermore, replay protection eliminates
undetected temporal substitution of the cipher text. In the
absence of such protections the MEE provides, an attacker
with physical access to the system can record snapshots of
data lines and replay them at a later point 1n time to gain
access to the memory-resident data.

Implementations of the disclosure extend the functional-
ity of a TME or MEE engine to support multiple keys in a
multi-key, hardware cryptographic engine. This extension of
functionality provides support for a different key per secure
domain serviced by a server, e.g., up to dozens of domains
on a given server. Domains may refer to workloads, such as
a client machine (e.g., virtual machine), an operating sys-
tem, an application, or other types of workloads the server
supports that may be associated with different customer
entities. For example, a secure domain may be a customer
workload, such as an operating system, along with other
ring-3 applications executing on top of the operating system,
or a virtual machine (VM) executing on top of a virtual
machine monitor (VMM) along with other ring-3 applica-
tions. The benefit of supporting the use of multiple keys 1s
to provide cryptographic isolation between different cus-
tomer domains, €.g., one secure domain cannot access
encrypted data i1 that encrypted data belongs to a different
secure domain being protected with a different crypto-
graphic key. These benefits extend to the ability of a cloud
server provider (CSP) to support a growing number of

US 10,754,960 B2

3

customer workloads on the same server, to adapt to growing
demands for cloud-based hardware resources.

In various mmplementations, the cryptographic engine
may provide support for multiple keys through use of a key
data structure (such as a key table) resident in hardware and
an associated region of memory for overtlow. The key data
structure may store a key and other domain information
associated with each domain programmed 1nto the crypto-
graphic engine to be protected. As long as an entry in the key
data structure 1s available, a new domain can be pro-
grammed 1nto the cryptographic engine and protected with
a unique key that 1s stored with other domain information
(such as a domain identifier) in the available key data
structure entry. As new domains are added and the key data
structure becomes 1full, inactive or least recently used
domains may be de-scheduled by wrapping the key and
domain information for a de-scheduled domain into a
wrapped binary large object (blob). The process of wrapping,
includes encryption, using a platform key, of a group of data
into a single encrypted package (e.g., the blob) that may then
be individually managed. This wrapped blob may then be
stored 1n a determined region of the memory set aside for
secure storage of excess domains. In this way, a key data
structure entry 1s freed up for a new domain and the key and
the domain information for a de-scheduled domain 1s pre-
served 1n memory. Subsequently, when a memory access
request to the de-scheduled domain 1s detected, the previ-
ously-stored wrapped blob may be read out of memory and
presented as a new secure domain request to hardware or
software that 1s managing the scheduling of domains.

In various implementations, the domain management
discussed above may be performed imndependently in cryp-
tographic hardware, or may be performed by domain man-
agement software that the processor core executes. In one
implementation, the process of domain management, which
involves the multiple cryptographic keys, may be performed
by hardware of the cryptographic engine, which 1s discussed
in more detail with reference to FIG. 5. The domain man-
agement process may also be managed by untrusted sofit-
ware, mstructions for which are executed by the processor
core. The management code may use the default platiorm
encryption key. This platform key may not be evicted and
may always be used to protect the VMM and other man-
agement software. When the domain management process 1s
managed by untrusted software, additional safeguards may
be employed to ensure the management 1s performed on
wrapped blobs associated with each domain, and thus the
untrusted software does not access the domain information
or keys in plain text. This software managed mode of
domain management 1s discussed in more detail with refer-
ence to FIGS. 6-7.

These features and others herein described include many
benefits, 1n particular, the ability to cryptographically 1solate
a large number of domains from each other with potentially
unlimited numbers of cryptographic keys. Each domain may
belong to a different customer, and thus there 1s a need to
1solate access to data in memory of one domain from that of
another domain 1n memory. For example, each domain 1s
cryptographically i1solated from another domain being sup-
ported by a server when each domain uses a diflerent key for
securing data 1 memory. Accordingly, as datacenters
expand and endeavor to support multiple customers on the
same server 1 some cases, the data stored 1n memory and
associated with different domains are encrypted with a
different key, and thus there can be no access of data 1n the
memory by a different domain than the domain for which the
data was encrypted. The ability to support multiple keys

10

15

20

25

30

35

40

45

50

55

60

65

4

allows a server, and a datacenter generally, to expand with
increased demand for processing resources that the server
provides.

FIG. 1 1s a block diagram of at least one embodiment of
a computing device 100 for secure programming of a
hardware cryptographic engine, according to various imple-
mentations. In one implementation, computing device 100
may include, among other components, one or more pro-
cessor cores 120, a memory controller 128, system memory
132, data storage 134, communication circuitry 136, a
security engine 138, and a hardware cryptographic engine
140.

In one implementation, the computing device 1s a server
100 that services the domains, e.g., diflerent workloads such
as a client machine, an operating system, an application, or
other types of workloads being supported. In some 1mple-
mentations, one or more ol the processor cores 120 may
include cache 118 (e.g., a multi-level cache), a hardware
virtualization support circuit 122, a secure enclave support
circuit 124, a crypto engine programming support circuit
126, a cryptographic engine 140 (such as the MKTME
previously mentioned), and optionally a processor-side
memory controller 128.

In one implementation, the cryptographic engine 140
includes a key data structure 142 retained 1n local hardware,
e.g., a local hardware cache, registers, or the like. The key
data structure 142 may be a table or other data structure
capable of being indexed within hardware cache. In various
implementations, trusted software may program the crypto-
graphic engine 140 using one or more specialized instruc-
tions ol the processor core to generate wrapped program-
ming information, €.g., a group of data that 1s encrypted
together with a platform key into a single package. The
trusted soltware provides the wrapped programming infor-
mation to untrusted software such as a kernel-mode driver.
The untrusted soitware invokes an unwrapping engine using
one or more specialized instructions of the processor core to
unwrap the programming information and program the
cryptographic engine 140. By using specialized processor
core 1nstructions to wrap (e.g., encrypt) the programming
information, the computing device 100 may ensure that
trusted soltware programs the cryptographic engine 140. By
allowing untrusted software to invoke the unwrapping
engine, the computing device 100 allows system software
(e.g., an operating system and/or VMM) to manage pro-
gramming of the cryptographic engine 140. Additionally, by
performing wrapping and/or unwrapping with the processor
core, the computing device 100 may reduce complexity of
the cryptographic engine 140. The functionality of wrapping
and unwrapping 1s discussed 1n more detail with reference to
FIG. 3.

The computing device 100 may be embodied as any type
of computation or computer device capable of performing
the functions described herein, including, without limitation,
a computer, a desktop computer, a workstation, a server, a
laptop computer, a notebook computer, a tablet computer, a
mobile computing device, a wearable computing device, a
network appliance, a web appliance, a distributed computing
system, a processor-based system, and/or a consumer elec-
tronic device. The computing device 100 may include other
or additional components, such as those commonly found 1n
a desktop computer (e.g., various mput/output devices), 1n
other embodiments. Additionally, in some embodiments,
one or more of the illustrative components may be incor-
porated 1n, or otherwise form a portion of, another compo-
nent. For example, the memory 132, or portions thereof,
may be mcorporated in the processor core 1n some embodi-

US 10,754,960 B2

S

ments. Furthermore, a memory controller for the memory
132 may be included within the processor core.

The processor core 120 may be embodied within a single
or multi-core processor(s), digital signal processor, micro-
controller, or other processor or processing/controlling cir-
cuit. The hardware virtualization support circuit 122 may
support virtualized execution of operating systems, applica-
tions, and other soitware by the computing device 100. The
hardware virtualization support circuit 122 may include
virtual machine extensions (VMX) support by providing two
modes of execution: VMX-root mode and VMX non-root
mode. The VMX-root mode allows executing software to
have broad control of the computing device 100 and its
hardware resources. Conversely, a hypervisor, virtual
machine monitor (VMM), or host operating system (OS)
may execute in VMX-root mode. The VMX non-root mode
restricts access to certain hardware instructions while still
implementing the ordinary ring/privilege system of the
processor core. One or more guest OSs may execute in the
VMX non-root mode. Those guest OSs may execute 1n ring,
zero, similar to being executed without virtualization. The
hardware virtualization support circuit 122 may also support
extended page tables (EPT), which may be embodied as
hardware-assisted second-level page address translation.
The hardware virtualization support circuit 122 may be
embodied as, for example, Intel® VT-x technology.

The secure enclave support circuit 124 allows the pro-
cessor core to establish a trusted execution environment
known as a secure enclave, 1n which executing code may be
measured, verified, and/or otherwise determined to be
authentic. Additionally, code and data included 1n the secure
enclave may be encrypted or otherwise protected from being
accessed by code executing outside of the secure enclave.
For example, code and data included 1n the secure enclave
may be protected by hardware protection mechanisms of the
processor core while being executed or while being stored in
certain protected cache memory of the processor core. The
code and data included 1n the secure enclave may be
encrypted when stored in a shared cache or the main
memory 132. The secure enclave support circuit 124 may be
embodied as a set of processor instruction extensions that
allows the processor core to establish one or more secure
enclaves 1 the memory 132. For example, the secure
enclave support circuit 124 may be embodied as Intel®
Software Guard Extensions (SGX) technology.

The crypto engine programming support circuit 126
allows the processor core 120 to program the cryptographic
engine 140 to provide cryptographic protection of domain
data. In particular, the processor core may enable or disable
encryption for a domain and may securely provide encryp-
tion keys to the cryptographic engine 140. The crypto engine
programming support circuit 126 may be embodied as one
or more specialized processor mstructions (e.g., the mstruc-
tions BIND, UNWRAP, or other instructions to be discussed
in more detail) and associated hardware, microcode, firm-
ware, or other components of the processor core 120.

The memory 132 may be embodied as any type of volatile
or non-volatile memory or data storage capable of perform-
ing the functions described herein. In operation, the memory
132 may store various data and software used during opera-
tion of the computing device 100 such as operating systems,
applications, programs, libraries, and drivers. The memory
controller 128 1s coupled to the memory 132 to store to and
tetch from the memory, which in some cases may depend on
misses to the cache 118. The memory controller 128 may be
communicatively coupled to, or integrated within, the pro-
cessor core 120.

10

15

20

25

30

35

40

45

50

55

60

65

6

The data storage device 134 may be embodied as any type
of device or devices configured for short-term or long-term
storage of data such as, for example, memory devices and
circuits, memory cards, hard disk drives, solid-state drives,
or other data storage devices. In some embodiments, the data
storage device 134 may be used to store the contents of one
or more secure enclaves. When stored by the data storage
device 134, the contents of the secure enclave may be
encrypted to prevent unauthorized access.

The communication circuitry 136 of the computing device
100 may be embodied as any communication circuit, device,
or collection thereot, capable of enabling communications
between the computing device 100 and other remote devices
over a network. The communication circuitry 136 may be
configured to use any one or more communication technol-
ogy (e.g., wired or wireless communications) and associated
protocols (e.g., Ethernet, Bluetooth®, Wi-Fi®, WiMAX,
¢tc.) to eflect such communication.

In some embodiments, the computing device 100 may
include the security engine 138, which may be embodied as
any hardware component(s) or circuitry capable of provid-
ing security-related services to the computing device 100. In
particular, the security engine 138 may include a micropro-
cessor, microcontroller, or other embedded controller
capable of executing firmware and/or other code indepen-
dently and securely from the processor core. Thus, the
security engine 138 may be used to establish a trusted
execution environment separate from code executed by the
processor core 120. The security engine 138 may commu-
nicate with the processor core 120 and/or other components
of the computing device 100 over a dedicated bus, such as
a host embedded controller interface (HECI). The security
engine 138 may also provide remote configuration, control,
or management of the computing device 100. In the 1llus-
trative embodiment, the security engine 138 1s embodied as
a converged security and manageability engine (CSME)
incorporated 1n a system-on-a-chip (SoC) of the computing
device 100. In some embodiments, the security engine 138
may be embodied as a manageability engine, an out-of-band
processor, a Trusted Platform Module (TPM), or other
security engine device or collection of devices. Further, 1in
some embodiments, the security engine 138 1s also capable
of communicating using the communication circuitry 136 or
a dedicated communication circuit independently of the state
of the computing device 100 (e.g., independently of the state
of the main processor core), also known as “out-of-band”
communication.

In various implementations, the cryptographic engine 140
may be embodied as a microcontroller, microprocessor,
functional block, logic, or other circuit or collection of
circuits capable of performing the functions described
herein. As further described below, the cryptographic engine
140 may encrypt and/or decrypt domain data read or written
to memory. The cryptographic engine 140 may cache the
internal key data structure 142, which the cryptographic
engine 140 may use to i1dentily domain accesses to be
protected. As discussed, the key data structure 142 may be
a table or other data structure cable of being indexed and
stored within hardware of the cryptographic engine 140. In
one implementation, the hardware 1s a cache, a set of
registers, or other flash memory.

Accordingly, the key data structure 142 may be controlled
and/or programmed by hardware of the cryptographic
engine 140 or by trusted software, for example using the
crypto engine programming support circuit 126 of the pro-
cessor core 120. The key data structure 142 may be adapted
to store keys and domain information for the domains. The

US 10,754,960 B2

7

encryption keys and/or other secret information of the key
data structure 142 may not be available to untrusted sofit-
ware. In some embodiments, the cryptographic engine 140
may be icorporated along with the memory controller 128
and the processor core 120 1n a system-on-a-chip (SoC) of
the computing device 100.

FIG. 2 1s a system block diagram 200 illustrating a key
data structure 142 of the cryptographic engine 140 (FIG. 1)
that 1s capable of caching a large number of keys stored in
memory, according to various implementations. The system
block diagram 200 includes a system agent 205, a crypto-
graphic engine 240, and a memory controller 228 coupled
together as illustrated. In various implementations, the sys-
tem agent 205 represents a piece of hardware that receives
memory requests from all agents on the system (e.g., cores,
graphics, 10 devices). The domains may include virtual
machines or operating systems, for example, running on the
processor core(s) 120. Each domain executing on the cores
may 1ssue memory requests as needed and will go through
the system agent 205. The system agent 205 may 1n turn
send the requests to the memory controller 228, which 1n
turn retrieves the requested data (or writes the requested
data) to the memory 132.

In various implementations, the cryptographic engine 240
may be implemented as part of the memory controller 228,
s0 as to perform cryptographic and security-related func-
tions 1n relation to data read from and written to the memory
132 on behalf of the domains. As previously discussed, the
key data structure 142 may be stored in hardware of the
cryptographic engine 240 for greater security, such as 1n a
cache, registers, or the like. The system memory 132 may
include a determined region 235 1n which to store wrapped
blobs. In one implementation, the determined region 235 of
memory 1s mdexed according to domain identifier (ID) of
cach respective secure domain. Accordingly, the key data
structure 142 1s eflectively cached for the wrapped blobs that
are stored in the determined region 235 of the memory 132.

In various implementations, the key data structure 142
includes indexed rows, each with a slot identifier (ID), a key
domain (e.g., a domain ID), and a secure key for performing
encryption and decryption on domain data. The key domain
may be used to identily a domain (e.g., higher order address
bits 1n one implementation), and in one implementation,
does not have to be stored 1n the key data structure if the
index (slot ID) corresponds to the key domain in a one-to-
one correspondence. The key data structure 142 may be of
a fixed size to allow for a practical implementation of the
cryptographic engine 240 that includes physical limaits.

In various implementations, the cryptographic engine 240
may program the key data structure 142 using wrapped
blobs. The wrapped blobs are wrapped using a platform key
that 1s pre-programmed 1nto the cryptographic engine for use
in domain management of cryptographic keys. In one
embodiment, the platform key 1s programmed for one reset
cycle and may not persist across resets. The wrapped blobs
may be stored 1n the determined region 235 of the memory
132 and be restored to the key data structure 142 along with
a domain switch (to start execution of a domain). The key
data structure 142 may thus operate as cache for secure
domain information (cryptographic key and other domain
information) with the system memory, forming a virtually
unlimited store for encrypted domain information to the
extent the determined region 235 1s suthiciently large. In one
implementation, the determined region 235 of the memory
may be 1dentified as a secure enclave and protected as secure

5

10

15

20

25

30

35

40

45

50

55

60

65

8

memory, but still be protected with a double level of security
inasmuch as the domain information 1s encrypted as
wrapped blobs.

The determined region 235 in the memory 132 may be
memory taken from system memory of the computing
device 100, and may be set up by system firmware, ¢.g., the
basic mput-output (I/O) system (BIOS) of the computing
device. For example, upon boot of the computing system
100, the BIOS may store, within a range register, reservation
information to reserve the determined region 235 of the
system memory for hardware. After boot has completed, the
reservation information may be retrieved from the range
register and be utilized to program the hardware crypto-
graphic engine and reserve the determined region 235 of
memory.

In various implementations, the determined region 235
may be of a size based on the number of secure domains that
can be supported. As just one example, 11 the size of each set
of domain iformation (to be programmed 1nto the crypto-
graphic engine 140) 1s N bytes and 16K secure domains are
to be supported, then the BIOS may reserve 16N KB of
memory for the determined region 235 of memory. The
domain ID may be used to find the address within the
determined region 233 of the memory 132 to locate a given
wrapped blob. In one implementation, there may be a
one-to-one mapping between a domain ID and the location
in the predetermined region 235 of the memory for storing
the wrapped blobs, ¢.g., in the case domain information 1s to
be evicted from the key data structure 142. Note that when,
in response to a memory access of a domain, the key 1s not
found 1n the key data structure 142 and should be fetched
from memory, there may be a delay introduced for the
incoming request as a result of the fetch and subsequent
unwrapping of domain information to be stored in the key
data structure 142. Since 1t 1s expected that once domain
information 1s restored to the cryptographic engine 140, the
domain information 1s used for some time, these overheads
of delay can be amortized over time, and thus minimized.

The computing system 100 may employ at least two
modes for supporting an enhanced number of keys that may
cllectively be unlimited 1n being able to secure any number
of domains for which domain programming 1s requested.
The first mode may employ management software through
the use of instruction set architecture (ISA) to achieve the
wrapping and save/restore of secure domain imnformation to
and from the memory 132. The second mode may be a
hardware mode where the cryptographic engine 140 may
advertise a large number of keys (more than what can be
provisioned for 1n the cryptographic hardware 140) and then
manages the keys associated with domains independently
without soltware intervention.

FIG. 3 15 a system tlow diagram illustrating a method 300
for software management of programming multiple secure
domains, using corresponding multiple keys, mto a hard-
ware cryptographic engine 340, according to various imple-
mentations. The hardware cryptographic engine 340 may be
the same or similar as the hardware cryptographic engine
140 or 240. The method 300 may be executed between
trusted software 305, domain management software 307
(e.g., untrusted software executable by the processor core
120), and the cryptographic engine 340. As discussed pre-
viously, the crypto engine programming support circuit 126
may be embodied as one or more specialized processor
instructions (e.g., the instructions BIND, UNWRAP, or
other 1nstructions to be discussed 1n more detail) and asso-
ciated hardware, microcode, firmware, or other components
of the processor core 120.

US 10,754,960 B2

9

In various implementations, for example, the method 300
may begin with the trusted software 305, 1n order to set up
a domain, invoking special mstruction BIND to encrypt the
key associated with the domain and other domain program-
ming information (e.g., domain ID) into a wrapped binary
large object (*blob™) (310). This programming information
may be considered secret keying material to be encrypted as
the wrapped blob (310) so that, when handled by the
untrusted domain management soitware 307, the untrusted
domian management software 307 1s unable to access or see
the secret keying material. The method 300 may continue
with sending the wrapped blob (310) to the domain man-
agement solftware 307 for programming into the crypto-
graphic engine 340 (320). The BIND instruction therefore
wraps information in the form of secret data for a specific
target on the computing device platform, e.g., the crypto-
graphic engine 340 in this case.

Once the domain management soiftware 307 has the
wrapped blob (310), the method 300 may continue with this
untrusted domain management software 307 invoking an
UNWRAP instruction (330), which verifies the integrity of
the blob using the platiorm key, and 11 verified successtully,
generating a cryptographic response that can be detected by
the untrusted domain management software 307 and 1s
verifiable by the trusted software 305 (335). The method 300
may continue with the domain management software 307
programming the blob into the cryptographic engine 340
upon successiul unwrap (350). This programming of the
cryptographic engine 340 may be performed over a trusted
hardware network within the processor core 120, and there-
fore outside entities cannot snoop this transaction. Accord-
ingly, there 1s no way for an attacker to access the program-
ming of the blob at this point 1n the data flow.

The method 300 may continue with the domain manage-
ment software 307 recerving the cryptographic response,
which may be passed on to the trusted software 305 (360).
Accordingly, the method 300 may continue with the domain
management software 307 returming the cryptographic
response to the trusted software 305 (370), which signals to
the trusted software 305 that the untrusted domain manage-
ment software 307 indeed mnvoked the UNWRAP 1nstruc-
tion to program the cryptographic engine 340 with the new
domain. In this way, the trusted software 305 verifies the
programming was successiul (380) and can thus track num-
ber of secure domains currently being supported by the
cryptographic engine 340.

The UNWRAP mstruction may therefore take the
wrapped blob as a memory operand and program target-
specific mnformation (e.g., key and domain information) to
the target device (e.g., the cryptographic engine 240), in
response to successiul unwrapping of the wrapped blob. The
UNWRAP instruction may expect a target and a target-
specific command on which to operate. For the crypto-
graphic engine 240 as the target, Table 1 includes a list of
commands that may be among those target-specific com-
mands. Note that “KD” stands for “key domain.”

TABLE 1
Command Encoding Description
KD_SET _KEY 0 Associate domain key with specific
domain using the wrapped blob
provided.
KD_CLEAR_KEY 1 Clear key associated with the domain.
KD_READ _KEY 2 Read key from the key data structure

142. This command does not read the
key 1n plamn text form, but generates

10

15

20

25

30

35

40

45

50

55

60

65

10
TABLE 1-continued

Command Encoding Description

a wrapped blob with the key for the
domainmanagement software 307 to
manage secure domains.

Note that for the above commands to work, the UNWRAP

instruction may also expect a domain ID to be included as
part of the domain information to identify the domain on
which to operate. As an example, for software to associate
a key with a domain, the trusted software 305 may generate
a BIND 1nstruction to wrap a blob with the domain ID and
in response to a clear the key command. In some 1mple-
mentations, 1n order to ensure security, these commands may
entail the caller including some ownership information. As
an example, the current key associated with the domain may
have to be provided 1n the KD_CLEAR_KEY command. As

only the owner that set the key knowns the key, the authen-
ticity of the KD_CLEAR_KEY command may be estab-

lished. In some implementations, the KDD_READ_KEY is a
command that allows the domain management software 307
to use the key data structure 142 as cache with the proposed
wrapped keys mechanism, to be explained 1n more detail
with reference to FIG. 5. In particular, the KD _READ _KEY
command allows untrusted software to read domain 1nfor-
mation out of the key data structure 142 in the form of a
wrapped blob, so as to manage the domains without direct
access to secure key and domain information.

FIG. 4 1s a flow chart of a method 400 of employing a
hardware mode of managing the large number of keys stored
in memory that the cryptographic engine 140 may access to
secure a number of domains of a server, according to one
implementation. Accordingly, the method 400 may be per-
formed by processing logic that may comprise hardware
(e.g., circuitry, dedicated logic, programmable logic, micro-
code, etc.), firmware, or a combination thereof. In one
implementation, method 400 1s performed by processor core
120 of FIG. 1, e.g., by the cryptographic engine 140. In
another implementation, the method 400 1s performed by
any of the processors described with respect to FIGS. 6 A-14.

With reference to FIG. 4, the method 400 may start with
processing logic receiving a new secure domain program-
ming request (410). The programming request may be
received by the crypto engine programming support circuit
126 to program the new secure domain mnto the crypto-
graphic engine 140. The method 400 may continue with the
processing logic determining whether there 1s an entry
available 1n the key data structure 142, e.g., not filled (420).
If yes, the method 400 may continue with the processing
logic storing first secure domain information at the available
entry in the key data structure (430). The first domain
information may include a first key and a first domain
identifier, for example.

If no at block 420, the method 400 may continue with the
processing logic selecting a second secure domain to be
de-scheduled, wherein the second secure domain 1s indexed
within the key data structure 142 at a second entry (440).
The method 400 may continue with the processing logic
encrypting, using a platform key, second domain informa-
tion retrieved from the second entry for the second secure
domain, to generate a wrapped binary large object (blob)
(450). The second domain information may include a second
key and second domain identifier. The method 400 may
continue with the processing logic storing the wrapped blob
in a determined region of the system memory that 1s indexed

US 10,754,960 B2

11

according to the second domain 1dentifier (460). The method
400 may continue with the processing logic storing the first
domain information in the second entry of the key data
structure, which has been freed up by virtue of the de-
scheduling i block 440 (470).

After some time passes, the method 400 may continue
with the processing logic receiving an access request to the
second secure domain (475). Recall that the second secure
domain was de-scheduled from being supported by the
cryptographic engine 140, and therefore, now needs to be
scheduled anew to provide renewed cryptographic support
to the second domain. Accordingly, the method 400 may
continue with the processing logic reading the wrapped blob
from the determined region 2335 of the memory 132 (480).
The method 400 may continue with the processing logic
decrypting the wrapped blob (like performing an UNWRAP
operation), to generate the second domain information
(485). This second domain information, now 1n the clear at
the cryptographic engine, may be used within a request to
again schedule the second domain. The domain scheduling
by the cryptographic engine may therefore be repeated, as
per method 400, whether 1t 1s a request for a new domain or
a renewed requested for a domain previously archived in
memory.

FIG. 5 1s a flow chart of a method 300 for software
management of programming multiple secure domains,
using corresponding multiple keys, into the hardware cryp-
tographic engine 140 or 440, according to various 1mple-
mentations. The method 500 may be performed by process-
ing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soit-
ware (such as operations being performed by the trusted
software 305 and by the untrusted domain management
software 307), firmware or a combination thereof. In one
implementation, the method 500 1s performed by the pro-
cessor core 120 of FIG. 1. In another implementation, the
method 500 1s performed by any of the processors described
with respect to FIGS. 6a-15.

With reference to FIG. 5, the method 500 may begin with
the processing logic receiving a new (e.g., first) secure
domain programming request that includes a first wrapped
blob containing encrypted first domain information (510).
This request may come from the trusted software 305 with
execution of a KD SET KEY command to associate a
domain key with a first secure domain. The method 500 may
continue with the processing logic determining whether an
entry 1s available 1n the key data structure 142 (520). If yes,
the method 500 may continue with the processing logic
decrypting (e.g., with use of an UNWRAP command) the
first wrapped blob to generate first domain information 1n
clear text (530), and storing the first domain information 1n
the available (e.g., first) entry 1n the key data structure 142
(535).

With continued reference to FIG. 5, if there 1s no entry
available in the key data structure 142 (520), the method 500
may continue with the processing logic selecting a second
secure domain at a second entry of the key data structure to
be de-scheduled (540). In various implementations, the
processing logic may determine which programmed domain
1s 1nactive or been least recently used (LRU), or perform
some other similar algorithm to select a domain to be
de-scheduled, e.g., as “the second secure domain™ 1n method
500. The method 500 may continue with the processing
logic 1ssuing a key read command (e.g., KD_READ_ KEY
from Table 1) to read second domain information from a
target entry of the key data structure 142 (5435). In response
to the key read command, the method 500 may continue

10

15

20

25

30

35

40

45

50

55

60

65

12

with the processing logic encrypting the second domain
information to generate a new (e.g., second) wrapped blob
(550) and storing the second wrapped blob 1n the determined
region of system memory 132 (560). The method 500 may
continue with the processing logic programming the first
secure domain 1nto the cryptographic engine by decrypting
(e.g., via an UNWRAP command) the first wrapped blob to
generate first domain information (570) and storing the first
domain information at the target entry of the key data
structure freed up via the de-scheduling of the second
domain (575).

After some time passes, the method 500 may continue
with the processing logic recerving an access request to the
second secure domain (580). Recall that the second secure
domain was de-scheduled from being supported by the
cryptographic engine 140, and therefore, now needs to be
scheduled anew to provide renewed cryptographic support
to the second domain. Accordingly, the method 500 may
continue with the processing logic reading the second
wrapped blob from the determined region 235 of the
memory 132 (585). The method may newly respond to the
second wrapped blob as a request to program the second
secure domain into the hardware cryptographic engine
(510). In this way, the software mode of domain manage-
ment may repeat itself in handling the second wrapped blob
as a new, e.g., third request for a third secure domain.
Although the second wrapped blob was read out of memory,
it may be treated as 1f 1t were a new request from the trusted
software 305.

Domain information was previously referred to generi-
cally, e.g., that a single base key would be stored wrapped
in memory. However, in order to reduce performance over-
heads, an expanded key schedule may also be stored in
memory 1nstead of just the base key. This 1s made possible
since the memory requirements for expanded key schedule
are relatively small (e.g., 1768 for AES-128). This optimi-
zation will allow 10 cycles for expansion to be saved on
restoring a domain from memory. When the hardware AES
encryption needs these keys, hardware of the cryptographic
engine 140 (or other security hardware) may request this
blob or unwrap the blob out of memory for use 1n the ten
rounds (or however many rounds) of AES encryption (or
other type of encryption) to be performed. This optimization
allows access to all ten keys, and saves 9 cycles that would
otherwise be needed for expansion of each individual key, to
be saved on restoring a domain from the determined region
235 of the memory 132.

FIG. 6 A 1s a block diagram illustrating a micro-architec-
ture for a processor 600 that implements hardware support
for a multi-key cryptographic engine, according to an 1mple-
mentation. Specifically, processor 600 depicts an 1n-order
architecture core and a register renaming logic, out-of-order
1ssue/execution logic to be included 1n a processor according
to at least one implementation of the disclosure.

Processor 600 includes a front end unit 630 coupled to an
execution engine unit 650, and both are coupled to a
memory unmt 670. The processor 600 may include a reduced
instruction set computing (RISC) core, a complex instruc-
tion set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, processor 600 may include a special-purpose
core, such as, for example, a network or communication
core, compression engine, graphics core, or the like. In one
implementation, processor 600 may be a multi-core proces-
sor or may be part of a multi-processor system.

The front end unit 630 includes a branch prediction unit
632 coupled to an instruction cache unit 634, which 1s

US 10,754,960 B2

13

coupled to an 1nstruction translation lookaside bufler (TLB)
636, which 1s coupled to an mstruction fetch unit 638, which
1s coupled to a decode unit 640. The decode unit 640 (also
known as a decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are dertved from, the original 1nstructions. The decoder
640 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. The instruction cache unit 634 1s
turther coupled to the memory unit 670. The decode unit 640
1s coupled to a rename/allocator unit 632 1n the execution
engine unit 650.

The execution engine unit 650 includes the rename/
allocator unit 652 coupled to a retirement unit 654 and a set
of one or more scheduler unit(s) 656. The scheduler unit(s)
656 represents any number of different scheduler circuits,
including reservations stations (RS), central instruction win-
dow, etc. The scheduler unit(s) 656 i1s coupled to the physical
register set(s) unit(s) 658. Each of the physical register set(s)
units 638 represents one or more physical register sets,
different ones of which store one or more different data
types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating
point, etc., status (e.g., an instruction pointer that is the
address of the next instruction to be executed), etc. The
physical register set(s) unit(s) 658 1s overlapped by the
retirement unit 654 to illustrate various ways 1n which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder bufller(s) and a retirement
register set(s), using a future file(s), a history bufler(s), and
a retirement register set(s); using a register maps and a pool
ol registers; etc.).

Generally, the architectural registers are visible from the
outside of the processor or from a programmer’s perspec-
tive. The registers are not limited to any known particular
type of circuit. Various different types ol registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable registers
include, but are not limited to, dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. The retirement unit 654 and the
physical register set(s) unit(s) 658 are coupled to the execu-
tion cluster(s) 660. The execution cluster(s) 660 includes a
set of one or more execution units 662 and a set of one or
more memory access units 664. The execution umts 662
may perform various operations (e.g., shiits, addition, sub-
traction, multiplication) and operate on various types of data
(e.g., scalar floating point, packed integer, packed floating
point, vector iteger, vector tloating point).

While some implementations may include a number of
execution units dedicated to specific functions or sets of
functions, other implementations may include only one
execution unit or multiple execution units that all perform all
tfunctions. The scheduler unit(s) 656, physical register set(s)
unit(s) 658, and execution cluster(s) 660 are shown as being
possibly plural because certain implementations create sepa-
rate pipelines for certain types of data/operations (e.g., a
scalar integer pipeline, a scalar tloating point/packed inte-
ger/packed tloating point/vector integer/ vector tloating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register set(s) umt, and/or
execution cluster—and 1n the case of a separate memory

10

15

20

25

30

35

40

45

50

55

60

65

14

access pipeline, certain implementations are implemented 1n
which only the execution cluster of this pipeline has the
memory access unit(s) 664). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 664 1s coupled to the
memory unit 670, which may include a data prefetcher 680,
a data TLB unit 672, a data cache unit (DCU) 674, and a
level 2 (L2) cache unit 676, to name a few examples. In
some 1mplementations DCU 674 1s also known as a first
level data cache (L1 cache). The DCU 674 may handle
multiple outstanding cache misses and continue to service
incoming stores and loads. It also supports maintaining
cache coherency. The data TLB unit 672 1s a cache used to
improve virtual address translation speed by mapping virtual
and physical address spaces. In one exemplary implemen-
tation, the memory access units 664 may include a load unit,
a store address unit, and a store data unit, each of which 1s
coupled to the data TLB unit 672 1n the memory unit 670.
The L2 cache unit 676 may be coupled to one or more other
levels of cache and eventually to a main memory.

In one implementation, the data prefetcher 680 specula-
tively loads/prefetches data to the DCU 674 by automati-
cally predicting which data a program 1s about to consume.
Prefetching may refer to transferring data stored in one
memory location (e.g., position) of a memory hierarchy
(e.g., lower level caches or memory) to a higher-level
memory location that 1s closer (e.g., vields lower access
latency) to the processor before the data 1s actually
demanded by the processor. More specifically, prefetching
may refer to the early retrieval of data from one of the lower
level caches/memory to a data cache and/or prefetch buller
betfore the processor 1ssues a demand for the specific data
being returned.

The processor 600 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS 1nstruction
set of Imagination Technologies of Kings Langley, Hert-
fordshire, UK; the ARM instruction set (with optional addi-
tional extensions such as NEON) of ARM Holdings of
Sunnyvale, Calit.).

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so 1n a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core 1s simultancously multi-
threading), or a combination thereotf (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as 1n the Intel® Hyperthreading technology).

While register renaming 1s described in the context of
out-of-order execution, 1t should be understood that register
renaming may be used in an in-order architecture. While the
illustrated implementation of the processor also includes a
separate 1nstruction and data cache units and a shared L2
cache umit, alternative implementations may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (LL1) internal cache, or multiple levels of
internal cache. In some 1mplementations, the system may
include a combination of an internal cache and an external
cache that 1s external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

FIG. 6B 1s a block diagram 1llustrating an in-order pipe-
line and a register renaming stage, out-of-order 1ssue/execu-
tion pipeline implemented by processor 600 of FIG. 6A

US 10,754,960 B2

15

according to some implementations of the disclosure. The
solid lined boxes 1n FIG. 6B illustrate an i-order pipeline
601, while the dashed lined boxes illustrate a register
renaming, out-of-order 1ssue/execution pipeline 603. In FIG.
6B, the pipelines 601 and 603 include a fetch stage 602, a
length decode stage 604, a decode stage 606, an allocation
stage 608, a renaming stage 610, a scheduling (also known
as a dispatch or issue) stage 612, a register read/memory
read stage 614, an execute stage 616, a write back/memory
write stage 618, an exception handling stage 620, and a
commit stage 622. In some implementations, the ordering of
stages 602-622 may be different than 1llustrated and are not
limited to the specific ordering shown 1n FIG. 6B.

FIG. 7 1llustrates a block diagram of the micro-architec-
ture for a processor 700 that includes logic circuits of a
processor or an integrated circuit that implements hardware
support for a multi-key cryptographic engine, according to
an 1mplementation of the disclosure. In some 1mplementa-
tions, an struction 1n accordance with one implementation
can be implemented to operate on data elements having sizes
of byte, word, doubleword, quadword, etc., as well as
datatypes, such as single and double precision integer and
tfloating point datatypes. In one implementation the in-order
front end 701 1s the part of the processor 700 that fetches
istructions to be executed and prepares them to be used
later 1n the processor pipeline. The implementations of the
page additions and content copying can be implemented in
processor 700.

The front end 701 may include several units. In one
implementation, the instruction prefetcher 716 {etches
instructions from memory and feeds them to an instruction
decoder 718 which 1n turn decodes or interprets them. For
example, 1 one implementation, the decoder decodes a
received 1nstruction into one or more operations called
“micro-nstructions” or “micro-operations” (also called
micro op or uops) that the machine can execute. In other
implementations, the decoder parses the instruction mto an
opcode and corresponding data and control fields that are
used by the micro-architecture to perform operations in
accordance with one implementation. In one 1mplementa-
tion, the trace cache 730 takes decoded uops and assembles
them into program ordered sequences or traces 1n the uop
queue 734 for execution. When the trace cache 730 encoun-
ters a complex instruction, microcode ROM (or RAM) 732
provides the vops needed to complete the operation.

Some 1nstructions are converted into a single micro-op.,
whereas others need several micro-ops to complete the full
operation. In one implementation, 11 more than four micro-
ops are needed to complete an instruction, the decoder 718
accesses the microcode ROM 732 to do the mstruction. For
one implementation, an instruction can be decoded into a
small number of micro ops for processing at the instruction
decoder 718. In another implementation, an instruction can
be stored within the microcode ROM 732 should a number
of micro-ops be needed to accomplish the operation. The
trace cache 730 refers to an entry point programmable logic
array (PLA) to determine a correct micro-instruction pointer
for reading the micro-code sequences to complete one or
more nstructions in accordance with one implementation
from the micro-code ROM 732. After the microcode ROM
732 finishes sequencing micro-ops for an istruction, the
front end 701 of the machine resumes fetching micro-ops
from the trace cache 730.

The out-of-order execution engine 703 i1s where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buflers to smooth out and
re-order the tlow of 1nstructions to optimize performance as

10

15

20

25

30

35

40

45

50

55

60

65

16

they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buflers and
resources that each uvop needs in order to execute. The
register renaming logic renames logic registers onto entries
in a register set. The allocator also allocates an entry for each
uop 1n one ol the two uop queues, one for memory opera-
tions and one for non-memory operations, in front of the
instruction schedulers: memory scheduler, fast scheduler
702, slow/general floating point scheduler 704, and simple
floating point scheduler 706. The uvop schedulers 702, 704,
706, determine when a uop 1s ready to execute based on the
readiness of their dependent input register operand sources
and the availability of the execution resources the uops need
to complete their operation. The fast scheduler 702 of one
implementation can schedule on each half of the main clock
cycle while the other schedulers can only schedule once per
main processor clock cycle. The schedulers arbitrate for the
dispatch ports to schedule uvops for execution.

Register sets 708, 710, sit between the schedulers 702,
704, 706, and the execution units 712, 714, 716, 718, 720,
722, 724 in the execution block 711. There 1s a separate
register set 708, 710, for integer and floating point opera-
tions, respectively. Each register set 708, 710, of one imple-
mentation also mcludes a bypass network that can bypass or
torward just completed results that have not yet been written
into the register set to new dependent uvops. The integer
register set 708 and the floating point register set 710 are
also capable of communicating data with the other. For one
implementation, the integer register set 708 1s split into two
separate register sets, one register set for the low order 32
bits of data and a second register set for the high order 32
bits of data. The floating point register set 710 of one
implementation has 128 bit wide entries because floating

point 1nstructions typically have operands from 64 to 128
bits 1n width.

The execution block 711 contains the execution units 712,
714, 716, 718, 720, 722, 724, where the instructions are
actually executed. This section includes the register sets 708,
710, that store the integer and floating point data operand
values that the micro-instructions need to execute. The
processor 700 of one mmplementation 1s comprised of a
number of execution units: address generation unit (AGU)
712, AGU 714, fast ALU 716, fast ALU 718, slow ALU 720,
floating point ALU 712, floating point move unit 714. For
one 1mplementation, the tloating point execution blocks 712,
714, execute floating point, MMX, SIMD), and SSE, or other
operations. The floating point ALU 712 of one implemen-
tation includes a 64 bit by 64 bit floating point divider to
execute divide, square root, and remainder micro-ops. For
implementations of the disclosure, instructions mvolving a
floating point value may be handled with the floating point
hardware.

In one implementation, the ALU operations go to the
high-speed ALU execution units 716, 718. The fast ALUs
716, 718, of one implementation can execute fast operations
with an effective latency of half a clock cycle. For one
implementation, most complex integer operations go to the
slow ALU 720 as the slow ALU 720 includes integer
execution hardware for long latency type of operations, such
as a multiplier, shifts, flag logic, and branch processing.
Memory load/store operations are executed by the AGUs
722, 724. For one implementation, the mteger ALUs 716,
718, 720, are described 1n the context of performing integer
operations on 64 bit data operands. In alternative implemen-
tations, the ALUs 716, 718, 720, can be implemented to
support a variety of data bits including 16, 32, 128, 256, eftc.
Similarly, the floating point units 722, 724, can be imple-

US 10,754,960 B2

17

mented to support a range of operands having bits of various
widths. For one implementation, the floating point units 722,
724, can operate on 128 bits wide packed data operands 1n
conjunction with SIMD and multimedia instructions.

In one implementation, the uops schedulers 702, 704, 706,
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed 1n processor 700, the processor 700 also includes
logic to handle memory misses. If a data load misses 1n the
data cache, there can be dependent operations 1n tlight 1n the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes
instructions that use incorrect data. Only the dependent
operations need to be replayed and the independent ones are
allowed to complete. The schedulers and replay mechanism
ol one 1implementation of a processor are also designed to
catch instruction sequences for text string comparison opera-
tions.

The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to
identily operands. In other words, registers may be those
that are usable from the outside of the processor (from a
programmer’s perspective). However, the registers of an
implementation should not be limited in meaning to a
particular type of circuit. Rather, a register of an implemen-
tation 1s capable of storing and providing data, and perform-
ing the functions described herein. The registers described
herein can be implemented by circuitry within a processor
using any number of different techniques, such as dedicated
physical registers, dynamically allocated physical registers
using register renaming, combinations of dedicated and
dynamically allocated physical registers, etc. In one 1mple-
mentation, iteger registers store 32-bit integer data. A
register set ol one implementation also contains eight mul-
timedia SIMD registers for packed data.

For the discussions herein, the registers are understood to
be data registers designed to hold packed data, such as 64
bits wide MMX™ registers (also referred to as ‘mm’ reg-
isters 1n some 1nstances) in microprocessors enabled with
MMX technology from Intel Corporation of Santa Clara,
Calif. These MMX registers, available in both integer and
floating point forms, can operate with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128
bits wide XMM registers relating to SSE2, SSE3, SSE4, or
beyond (referred to generically as “SSEx™) technology can
also be used to hold such packed data operands. In one
implementation, 1n storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one implementation, integer and floating point are
either contained 1n the same register set or diflerent register
sets. Furthermore, in one implementation, tloating point and
integer data may be stored 1n different registers or the same
registers.

Implementations may be implemented in many different
system types. Referring now to FIG. 8, shown 1s a block
diagram of a multiprocessor system 800 that may implement
hardware support for a multi-key cryptographic engine, in
accordance with an implementation. As shown in FIG. 8,
multiprocessor system 800 1s a point-to-point interconnect
system, and includes a first processor 870 and a second
processor 880 coupled via a point-to-point interconnect 850.
As shown 1n FIG. 8, each of processors 870 and 880 may be
multicore processors, mcluding first and second processor
cores (1.e., processor cores 874a and 874b and processor
cores 884a and 8845), although potentially many more cores
may be present in the processors. While shown with two
processors 870, 880, it 1s to be understood that the scope of

10

15

20

25

30

35

40

45

50

55

60

65

18

the disclosure 1s not so limited. In other implementations,
one or more additional processors may be present in a given
Processor.

Processors 870 and 880 are shown including integrated
memory controller units 872 and 882, respectively. Proces-
sor 870 also includes as part of 1ts bus controller units
point-to-point (P-P) interfaces 876 and 878; similarly, sec-
ond processor 880 includes P-P interfaces 886 and 888.
Processors 870, 880 may exchange information via a point-
to-point (P-P) mtertface 850 using P-P interface circuits 878,
888. As shown in FIG. 8, IMCs 872 and 882 couple the
processors to respective memories, namely a memory 832
and a memory 834, which may be portions of main memory
locally attached to the respective processors.

Processors 870, 880 may exchange information with a
chipset 890 via individual P-P interfaces 852, 854 using
point to point mterface circuits 876, 894, 886, 898. Chipset
890 may also exchange information with a high-perfor-
mance graphics circuit 838 via a high-performance graphics
interface 892.

Chipset 890 may be coupled to a first bus 816 via an
interface 896. In one implementation, first bus 816 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or interconnect bus, although the
scope of the disclosure 1s not so limited. Various I/O devices
814 may be coupled to first bus 816, along with a bus bridge
818 which couples first bus 816 to a second bus 820. In one
embodiment, second bus 820 may be a low pin count (LPC)
bus. Various devices may be coupled to a second bus 820
including, for example, a keyboard and/or mouse 822,
communication devices 827 and a storage unit 828 such as
a disk drive or other mass storage device which may include
mstructions/code and data 830, in one embodiment. Further,
an audio I/O 824 may be coupled to the second bus 820.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 8, a system
may 1mplement a multi-drop bus or other such architecture.

Referring now to FIG. 9, shown 1s a block diagram of a
third system 900 that may implement hardware support for
a multi-key cryptographic engine, in accordance with an
implementation of the disclosure. Like elements in FIGS. 8
and 9 bear like reference numerals and certain aspects of
FIG. 9 have been omitted from FIG. 8 1n order to avoid
obscuring other aspects of FIG. 9.

FIG. 9 1llustrates that the processors 870, 880 may include
integrated memory and I/O control logic (*“CL”’) 972 and
992, respectively. For at least one implementation, the CL
972, 982 may include integrated memory controller units
such as described herein. In addition. CL 972, 992 may also
include I/0 control logic. FIG. 9 1llustrates that the memo-
riecs 832, 834 are coupled to the CL 972, 992, and that I/O
devices 914 are also coupled to the control logic 972, 992.
Legacy /O devices 915 are coupled to the chipset 890.

FIG. 10 1s an exemplary system on a chip (SoC) 1000 that
may include one or more of the cores 1002A . .. 1002N that
may implement hardware support for a multi-key crypto-
graphic engine. Other system designs and configurations
known 1n the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

US 10,754,960 B2

19

Within the exemplary SoC 1000 of FIG. 10, dashed lined
boxes are features on more advanced SoCs. An interconnect
unit(s) 1002 may be coupled to: an application processor
1017 which includes a set of one or more cores 1002A-N,
which include cache units 1004A-N, and shared cache
unit(s) 1006; a system agent unit 1010; a bus controller
unit(s) 1016; an integrated memory controller unit(s) 1014;
a set of one or more media processors 1020 which may
include integrated graphics logic 1008, an 1image processor
1024 for providing still and/or video camera functionality,
an audio processor 1026 for providing hardware audio
acceleration, and a video processor 1028 for providing video
encode/decode acceleration; a static random access memory
(SRAM) unit 1030; a direct memory access (DMA) unit
1032; and a display unit 1040 for coupling to one or more
external displays.

Turning next to FIG. 11, an implementation of a system
on-chip (SoC) design that may implement hardware support
for a multi-key cryptographic engine, in accordance with
implementations of the disclosure 1s depicted. As an 1llus-
trative example, SoC 1100 1s included in user equipment
(UE). In one implementation, UE refers to any device to be
used by an end-user to communicate, such as a hand-held
phone, smartphone, tablet, ultra-thin notebook, notebook
with broadband adapter, or any other similar communication
device. A UE may connect to a base station or node, which
can correspond 1n nature to a mobile station (MS) 1n a GSM
network. The implementations of the page additions and
content copying can be implemented i SoC 1100.

Here, SoC 1100 includes 2 cores—1106 and 1107. Similar
to the discussion above, cores 1106 and 1107 may conform
to an Instruction Set Architecture, such as a processor having
the Intel® Architecture Core™, an Advanced Micro
Devices, Inc. (AMD) processor, a MIPS-based processor, an
ARM-based processor design, or a customer thereot, as well
as their licensees or adopters. Cores 1106 and 1107 are
coupled to cache control 1108 that 1s associated with bus
interface unit 1109 and L2 cache 1110 to communicate with
other parts of system 1100. Interconnect 1111 includes an
on-chip interconnect, such as an IOSF, AMBA, or other
interconnects discussed above, which can implement one or
more aspects of the described disclosure.

In one implementation, SDRAM controller 1140 may
connect to interconnect 1111 via cache 1110. Interconnect
1111 provides communication channels to the other compo-
nents, such as a Subscriber Identity Module (SIM) 1130 to
interface with a SIM card, a boot ROM 1135 to hold boot
code for execution by cores 1106 and 1107 to initialize and
boot SoC 1100, a SDRAM controller 1140 to interface with
external memory (e.g. DRAM 1160), a flash controller 11435
to interface with non-volatile memory (e.g. Flash 1163), a
peripheral control 1150 (e.g. Serial Peripheral Interface) to
interface with peripherals, video codecs 1120 and Video
interface 1125 to display and receive input (e.g. touch
enabled mnput), GPU 1115 to perform graphics related com-
putations, etc. Any of these interfaces may incorporate
aspects of the implementations described herein.

In addition, the system 1illustrates peripherals for commu-
nication, such as a Bluetooth® module 1170, 3G modem
1175, GPS 1180, and Wi1-Fi® 1185. Note as stated above, a
UE 1includes a radio for communication. As a result, these
peripheral communication modules may not all be included.
However, 1n a UFE some form of a radio for external
communication should be included.

FI1G. 12 15 a block diagram of processing components for
executing instructions that implements hardware support for
a multi-key cryptographic engine. As shown, computing

10

15

20

25

30

35

40

45

50

55

60

65

20

system 1200 includes code storage 1202, fetch circuit 1204,
decode circuit 1206, execution circuit 1208, registers 1210,
memory 1212, and retire or commit circuit 1214. In opera-
tion, an mstruction (e.g., BIND, UNWRAP) 1s to be fetched
by fetch circuit 1204 from code storage 1202, which may
comprise a cache memory, an on-chip memory, a memory on
the same die as the processor, an struction register, a
general register, or system memory, without limitation. In
one embodiment, the instruction may have a format similar
to that of instruction 1400 1n FIG. 14. After fetching the
instruction from code storage 1202, decode circuit 1206 may
decode the fetched instruction, including by parsing the
various fields of the instruction. After decoding the fetched
istruction, execution circuit 1208 1s to execute the decoded
instruction. In performing the step of executing the instruc-
tion, execution circuit 1208 may read data from and write
data to registers 1210 and memory 1212. Registers 1210
may include a data register, an nstruction register, a vector
register, a mask register, a general register, an on-chip
memory, a memory on the same die as the processor, or a
memory 1n the same package as the processor, without
limitation. Memory 1212 may include an on-chip memory,
a memory on the same die as the processor, a memory 1n the
same package as the processor, a cache memory, or system
memory, without limitation. After the execution circuit
executes the instruction, retire or commit circuit 1214 may
retire the instruction, ensuring that execution results are
written to or have been written to their destinations, and
freeing up or releasing resources for later use.

FIG. 13A 1s a flow diagram of an example method 1320
to be performed by a processor to execute a BIND to encrypt
a group of data as a wrapped binary large object (blob). After
starting the process, a fetch circuit at block 1322 is to fetch

the BIND instruction from a code storage. At optional block
1324, a decode circuit may decode the fetched BIND

instruction. At block 1326, an execution circuit 1s to execute
the BIND 1nstruction to encrypt a group of data as a wrapped
binary large object (blob), e.g., as explained with reference
to block 310 in the method 300 of FIG. 3.

FIG. 13B 1s a tlow diagram of an example method 1330
to be performed by a processor to execute an UNWRAP
instruction to decrypt a wrapped blob 1nto constituent pieces
of a group of data. After starting the process, a fetch circuit
at block 1332 1s to fetch the UNWRAP 1nstruction from a
code storage. At optional block 1334, a decode circuit may
decode the fetched UNWRAP instruction. At block 1336, an
execution circuit 1s to execute the UNWRAP 1nstruction to
decrypt a wrapped blob 1nto constituent pieces of a group of
data, e.g., as explained with reference to blocks 330-360 of
the method 300 of FIG. 3.

FIG. 14 1s a block diagram 1llustrating an example format
for mstructions 1400 disclosed herein that implement hard-
ware support for a multi-key cryptographic engine. The
instruction 1400 may be BIND or UNWRAP. The param-
cters 1n the format of the mstruction 1400 may be ditfierent
for BIND, or UNWRAP. As such, some of the parameters
are depicted as optional with dashed lines. As shown,
instruction 1400 includes a page address 1402, optional
opcode 1404, optional attribute 1406, optional secure state
bit 1408, and optional valid state bit 1410.

FIG. 15 1illustrates a diagrammatic representation of a
machine 1n the example form of a computing system 1500
within which a set of mstructions, for causing the machine
to 1mplement hardware support for a multi-key crypto-
graphic engine according any one or more of the method-
ologies discussed herein. In alternative implementations, the
machine may be connected (e.g., networked) to other

US 10,754,960 B2

21

machines 1n a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of a server or a
client device 1n a client-server network environment, or as a
peer machine 1n a peer-to-peer (or distributed) network
environment. The machine may be a personal computer
(PC), a tablet PC, a set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specily actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein. The implementations of
the page additions and content copying can be implemented
in computing system 1500.

The computing system 1500 1ncludes a processing device
1502, main memory 1504 (e.g., flash memory, dynamic
random access memory (DRAM) (such as synchronous
DRAM (SDRAM) or DRAM (RDRAM), etc.), a static
memory 1506 (e.g., flash memory, static random access
memory (SRAM), etc.), and a data storage device 1516,
which communicate with each other via a bus 1508.

Processing device 1502 represents one or more general-
purpose processing devices such as a miCcroprocessor, cen-
tral processing umt, or the like. More particularly, the
processing device may be complex imstruction set comput-
ing (CISC) microprocessor, reduced instruction set com-
puter (RISC) microprocessor, very long instruction word
(VLIW) microprocessor, or processor implementing other
istruction sets, or processors implementing a combination
ol mstruction sets. Processing device 1502 may also be one
or more special-purpose processing devices such as an
application-specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), a digital signal processor
(DSP), network processor, or the like. In one implementa-
tion, processing device 1502 may include one or more
processor cores. The processing device 1502 1s configured to
execute the processing logic 1526 for performing the opera-
tions discussed herein.

In one implementation, processing device 1502 can be
part of a processor or an integrated circuit that includes the
disclosed LLC caching architecture. Alternatively, the com-
puting system 1500 can include other components as
described herein. It should be understood that the core may
support multithreading (executing two or more parallel sets
of operations or threads), and may do so 1n a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core 1s simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as 1n the Intel® Hyperthreading technol-
0gy).

The computing system 1500 may further include a net-
work 1interface device 1518 communicably coupled to a
network 1519. The computing system 1500 also may include
a video display device 1510 (e.g., a liqud crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 1512 (e.g., a keyboard), a cursor control device 1514
(c.g., a mouse), a signal generation device 1520 (e.g., a
speaker), or other peripheral devices. Furthermore, comput-
ing system 1500 may include a graphics processing unit
1522, a video processing unit 1528 and an audio processing
unit 1532. In another implementation, the computing system
1500 may include a chipset (not 1llustrated), which refers to

10

15

20

25

30

35

40

45

50

55

60

65

22

a group ol integrated circuits, or chips, that are designed to
work with the processing device 1502 and controls commu-
nications between the processing device 1502 and external
devices. For example, the chipset may be a set of chips on
a motherboard that links the processing device 1502 to very
high-speed devices, such as main memory 1504 and graphic
controllers, as well as linking the processing device 1502 to
lower-speed peripheral buses of peripherals, such as USB,
PCI or ISA buses.

The data storage device 1516 may include a computer-
readable storage medium 1524 on which 1s stored software
1526 embodying any one or more of the methodologies of
functions described herein. The software 1526 may also
reside, completely or at least partially, within the main
memory 1504 as instructions 1526 and/or within the pro-
cessing device 1502 as processing logic during execution
thereol by the computing system 1500; the main memory
1504 and the processing device 1502 also constituting
computer-readable storage media.

The computer-readable storage medium 1524 may also be
used to store structions 1526 utilizing the processing
device 1502, and/or a software library containing methods
that call the above applications. While the computer-read-
able storage medium 1524 1s shown in an example imple-
mentation to be a single medium, the term “computer-
readable storage medium™ should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“computer-readable storage medium™ shall also be taken to
include any medium that 1s capable of storing, encoding or
carrying a set of instruction for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the disclosed implementations. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, and optical and magnetic media.

The following examples pertain to further implementa-
tions.

Example 1 1s processor comprising: 1) a memory con-
troller of a server; and 2) a hardware cryptographic engine
coupled to the memory controller, the hardware crypto-
graphic engine comprising a key data structure to store
multiple keys for corresponding multiple secure domains,
cach secure domain comprising a different workload to be
serviced by the server, wherein the hardware cryptographic
engine 1s to: a) receive a request to program a first secure
domain into the hardware cryptographic engine, wherein the
first secure domain comprises a new workload to be serviced
by the server, and wherein the request comprises first
domain information; b) determine whether there 1s an entry
in the key data structure that 1s available; and ¢) 1n response
to a determination that the entry 1s available, store the first
domain information in the entry of the key data structure.

In Example 2, the processor of Example 1, wherein the
first domain information comprises a first key and a first
domain 1dentifier for the first secure domain, and wherein
the multiple keys provide cryptographic isolation between
ones of the multiple secure domains.

In Example 3, the processor of Example 1, wherein the
hardware cryptographic engine comprises a cache to store
the key data structure, and wherein the key data structure 1s
indexed according to cache lines of the cache, with a domain
identifier of a secure domain corresponding to a number
associated with the cache line.

In Example 4, the processor of Example 1, wherein 1n
response to a determination that there 1s no entry available

US 10,754,960 B2

23

in the key data structure, the hardware cryptographic engine
1s further to: a) select a second secure domain to be de-
scheduled, wherein the second secure domain 1s indexed
within the key data structure at a second entry; b) encrypt,
with use of a platform key, second domain information
retriecved from the second entry for the second secure
domain, to generate a wrapped binary large object (blob);
and ¢) store the wrapped blob 1n a determined region of
system memory that 1s immdexed according to a domain
identifier of the second secure domain.

In Example 3, the processor of Example 4, wherein the
hardware cryptographic engine 1s further to store the first
domain information in the second entry of the key data
structure.

In Example 6, the processor of Example 4, wherein the
hardware cryptographic engine i1s further to: a) detect a
memory access request to the second secure domain; b) read
the wrapped blob from the system memory; ¢) decrypt the
wrapped blob, to generate the second domain information;
and d) respond to the second domain information as a
request to program the second secure domain into the
hardware cryptographic engine.

In Example 7, the processor of Example 4, wherein upon
boot of the server, a basic mput/output system (BIOS) 1s to
store, within a range register, reservation information to
reserve the determined region of the system memory for
hardware, and wherein the reservation information 1s uti-
lized to program the hardware cryptographic engine.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics in the examples may be used
anywhere 1n one or more implementations.

Example 8 1s a server computing system comprising: 1) a
processor core including a memory controller coupled to
system memory; and 2) a hardware cryptographic engine
coupled to the processor core and the memory controller, the
hardware cryptographic engine comprising a key data struc-
ture to store multiple keys for corresponding multiple secure
domains; wherein the processor core 1s to execute nstruc-
tions to: a) receive a request to program a first secure domain
into the hardware cryptographic engine, wherein the request
comprises first domain information within a first wrapped
binary large object (blob); and b) 1n response to the request
and to a determination that there 1s no available entry in the
key data structure: c¢) select a second secure domain to be
de-scheduled, wherein the second secure domain 1s indexed
within the key data structure at a target entry; d) issue a read
key command to read second domain information from the
target entry of the key data structure; e) encrypt, with use of
a plattorm key, the second domain information retrieved
from the target entry for the second secure domain, to
generate a second wrapped blob; and 1) store the second
wrapped blob 1n a determined region of the system memory.

In Example 9, the server computing system of Example 8,
wherein the first domain information comprises a first key
and a first domain 1dentifier for the first secure domain, and
wherein the multiple keys provide cryptographic 1solation
between ones of the multiple secure domains.

In Example 10, the server computing system of Example
8, wherein 1n response to the request and to a first entry 1n
the key data structure being available, the processor core 1s
turther to execute the mstructions to: a) perform an unwrap
operation to decrypt the first wrapped blob and generate the
first domain information; b) program the first secure domain
into the hardware cryptographic engine, wherein to program

10

15

20

25

30

35

40

45

50

55

60

65

24

includes to store the first domain information in the first
entry of the key data structure; and c¢) generate a crypto-
graphic response 1ndicative of a successiul unwrap of the
first wrapped blob.

In Example 11, the server computing system of Example
8, wherein the processor core i1s further to execute the
istructions to: a) perform an unwrap operation to decrypt
the first wrapped blob and generate the first domain infor-
mation; and b) program the first secure domain into the
hardware cryptographic engine, wherein to program
includes to store the first domain information in the target
entry of the key data structure.

In Example 12, the server computing system of Example
8, wherein the processor core i1s further to execute the
instructions to: a) detect a memory access request to the
second secure domain; b) read the second wrapped blob
from the system memory at a location corresponding to a
domain identifier of the second secure domain; and c)
respond to the second wrapped blob as a request to program
the second secure domain 1nto the hardware cryptographic
engine.

In Example 13, the server computing system of Example
8, wherein the determined region of the system memory 1s
indexed according to domain 1dentifiers of respective secure
domains of the multiple secure domains.

In Example 14, the server computing system of Example
8, wherein upon boot of the server computing system, a
basic input/output system (BIOS) 1s to store, within a range
register, reservation information to reserve the determined
region of the system memory for hardware that depends on
a number of the multiple secure domains, and wherein the
reservation information 1s utilized to program the hardware
cryptographic engine.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics 1n the examples may be used
anywhere 1n one or more implementations.

Example 15 1s a non-transitory computer-readable
medium storing instructions, which when executed by a
processor having a core coupled to a system memory, cause
the processor to execute a plurality of logic operations
comprising: a) receiving a request to program a first secure
domain 1nto a hardware cryptographic engine of the proces-
sor, wherein the request includes first domain information
within a first wrapped binary large object (blob); b) in
response to the request and to a determination that there 1s
no available entry 1n a key data structure stored within the

hardware cryptographic engine: ¢) selecting a second secure
domain to be de-scheduled, wherein the second secure
domain 1s indexed within the key data structure at a target
entry; d) 1ssuing a read key command to read second domain
information from the target entry of the key data structure;
¢) encrypting, using a platform key, the second domain
information retrieved from the target entry for the second
secure domain, to generate a second wrapped blob; and 1)
storing the second wrapped blob 1n a determined region of
the system memory.

In Example 16, the non-transitory computer-readable
medium of Example 15, wherein the first domain informa-
tion comprises a first key and a first domain 1dentifier for the
first secure domain, wherein the key data structure 1s to store
multiple keys for corresponding multiple secure domains,
and wherein the multiple keys provide cryptographic 1sola-
tion between ones of the multiple secure domains.

US 10,754,960 B2

25

In Example 17, the non-transitory computer-readable
medium of Example 15, wherein 1n response to the request
and to a first entry 1n the key data structure being available,
the plurality of logic operations further comprises: a) per-
forming an unwrap operation to decrypt the first wrapped
blob and generate the first domain mnformation; b) program-
ming the first secure domain into the hardware crypto-
graphic engine, wherein programming includes storing the
first domain 1information 1n the first entry of the key data
structure; and ¢) generating a cryptographic response indica-
tive of successtul unwrapping of the first wrapped blob.

In Example 18, the non-transitory computer-readable
medium of Example 15, wherein the plurality of logic
operations further comprises: a) performing an unwrap
operation to decrypt the first wrapped blob and generate the
first domain information; and b) programming the first
secure domain into the hardware cryptographic engine,
wherein programming includes storing the first domain
information in the target entry of the key data structure.

In Example 19, the non-transitory computer-readable
medium of Example 15, wherein the plurality of logic
operations further comprises: a) detecting a memory access
request to the second secure domain; b) reading the second
wrapped blob from the system memory at a location corre-
sponding to a domain identifier of the second secure domain;
and ¢) responding to the second wrapped blob as a request
to program the second secure domain into the hardware
cryptographic engine.

In Example 20, the non-transitory computer-readable
medium of Example 15, wherein the key data structure 1s to
store multiple keys for corresponding multiple secure
domains, and wherein the determined region of the system
memory 1s indexed according to domain identifiers of
respective secure domains of the multiple secure domains.

Various 1mplementations may have diflferent combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics in the examples may be used
anywhere 1n one or more implementations.

Example 21 1s a processor comprising: 1) means for
controller memory of a server; 2) means for storing multiple
keys 1n a key data structure of a hardware cryptographic
engine for corresponding multiple domains of the server,
cach secure domain comprising a different workload to be
serviced by the server; 3) means for receiving a request to
program a first secure domain into the hardware crypto-
graphic engine, wherein the first secure domain comprises a
new workload to be serviced by the server, and wherein the
request comprises first domain information; 4) means for
determining whether there i1s an entry in the key data
structure that 1s available; and 5) in response to a determi-
nation that the entry 1s available, means for storing the first
domain information 1n the entry of the key data structure.

In Example 22, the processor of Example 21, wherein the
first domain information comprises a first key and a first
domain 1dentifier for the first secure domain, and wherein
the multiple keys provide cryptographic isolation between
ones of the multiple secure domains.

In Example 23, the processor of Example 21, wherein the
means for storing comprises a cache to store the key data
structure, and wherein the key data structure 1s indexed
according to cache lines of the cache, with a domain
identifier of a secure domain corresponding to a number
associated with the cache line.

In Example 24, the processor of Example 21, wherein in
response to a determination that there 1s no entry available

10

15

20

25

30

35

40

45

50

55

60

65

26

in the key data structure, further comprising: 1) means for
selecting a second secure domain to be de-scheduled,
wherein the second secure domain 1s indexed within the key
data structure at a second entry; 2) means for encrypting,
with use of a platform key, second domain information
retrieved from the second entry for the second secure
domain, to generate a wrapped binary large object (blob);
and 3) means for storing the wrapped blob 1n a determined
region of system memory that 1s indexed according to a
domain identifier of the second secure domain.

In Example 25, the processor of Example 24, further
comprising means for storing the first domain information 1n
the second entry of the key data structure.

In Example 26, the processor ol Example 24, further
comprising: 1) means for detecting a memory access request
to the second secure domain; 2) means for reading the
wrapped blob from the system memory; 3) means for
decrypting the wrapped blob, to generate the second domain
information; and 4) means for responding to the second
domain information as a request to program the second
secure domain 1nto the hardware cryptographic engine.

In Example 27, the processor of Example 24, wherein
upon boot of the server, means for storing, within a range
register, reservation information to reserve the determined
region of the system memory for hardware, and wherein the
reservation mformation 1s utilized to program the hardware
cryptographic engine.

Various implementations may have different combina-
tions of the structural features described above. For instance,
all optional features of the processors and methods described
above may also be implemented with respect to a system
described herein and specifics 1n the examples may be used
anywhere 1n one or more implementations.

Example 28 1s a method comprising: 1) storing, by a
processing device of a server computing system, multiple
keys 1n a key data structure of a hardware cryptographic
engine, the multiple keys corresponding to multiple secure
domains; 2) receiving, using the processing device, a request
to program a first secure domain 1nto the hardware crypto-
graphic engine, wherein the request comprises first domain
information within a first wrapped binary large object
(blob); and 3) 1n response to receipt of the request and to a
determination that there 1s no available entry 1n the key data
structure, the processing device: a) selecting a second secure
domain to be de-scheduled, wherein the second secure
domain 1s indexed within the key data structure at a target
entry; b) 1ssuing a read key command to read second domain
information from the target entry of the key data structure;
¢) encrypting, with use of a platform key, the second domain
information retrieved from the target entry for the second
secure domain, to generate a second wrapped blob; and d)
storing the second wrapped blob 1n a determined region of
system memory.

In Example 29, the method of Example 28, wherein the
first domain information comprises a first key and a first
domain 1dentifier for the first secure domain, and wherein
the multiple keys provide cryptographic isolation between
ones of the multiple secure domains.

In Example 30, the method of Example 28, wherein 1n
response to the request and to a first entry 1n the key data
structure being available, the method further comprising: 1)
performing an unwrap operation to decrypt the first wrapped
blob and generate the first domain information; 2) program-
ming the first secure domain into the hardware crypto-
graphic engine, wherein to program includes to store the first
domain information in the first entry of the key data struc-

US 10,754,960 B2

27

ture; and 3) generating a cryptographic response indicative
ol a successiul unwrap of the first wrapped blob.

In Example 31, the method of Example 28, further
comprising: 1) performing an unwrap operation to decrypt
the first wrapped blob and generate the first domain 1nfor-
mation; and 2) programming the first secure domain into the
hardware cryptographic engine, wherein to program
includes to store the first domain mformation in the target
entry of the key data structure.

In Example 32, the method of Example 28, further
comprising: 1) detecting a memory access request to the
second secure domain; 2) reading the second wrapped blob
from the system memory at a location corresponding to a
domain 1dentifier of the second secure domain; and 3)
responding to the second wrapped blob as a request to
program the second secure domain into the hardware cryp-
tographic engine.

In Example 33, the method of Example 28, further
comprising indexing the determined region of the system
memory according to domain identifiers of respective secure
domains of the multiple secure domains.

In Example 34, the method of Example 28, further
comprising, upon boot of the server computing system,
storing by a basic input/output system (BIOS), within a
range register, reservation imformation to reserve the deter-
mined region of the system memory for hardware that
depends on a number of the multiple secure domains, and
wherein the reservation information 1s utilized to program
the hardware cryptographic engine.

While the disclosure has been described with respect to a
limited number of implementations, those skilled 1n the art
will appreciate numerous modifications and variations there-
from. It 1s intended that the appended claims cover all such
modifications and variations as fall within the true spirit and
scope of this disclosure.

In the description herein, numerous specific details are set
torth, such as examples of specific types of processors and
system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific pro-
cessor pipeline stages and operation etc. 1n order to provide
a thorough understanding of the disclosure. It will be appar-
ent, however, to one skilled in the art that these specific
details need not be employed to practice the disclosure. In
other istances, well known components or methods, such as
specific and alternative processor architectures, specific
logic circuits/code for described algorithms, specific firm-
ware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating
techniques/logic and other specific operational details of a
computer system have not been described 1in detail 1in order
to avoid unnecessarily obscuring the disclosure.

The implementations are described with reference to
determining validity of data in cache lines of a sector-based
cache 1n specific itegrated circuits, such as 1n computing
platforms or microprocessors. The implementations may
also be applicable to other types of integrated circuits and
programmable logic devices. For example, the disclosed
implementations are not limited to desktop computer sys-
tems or portable computers, such as the Intel® Ultrabooks™
computers. And may be also used in other devices, such as
handheld devices, tablets, other thin notebooks, systems on
a chip (SoC) devices, and embedded applications. Some
examples of handheld devices include cellular phones, Inter-

10

15

20

25

30

35

40

45

50

55

60

65

28

net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), a system on a chip, network computers (NetPC),
set-top boxes, network hubs, wide area network (WAN)
switches, or any other system that can perform the functions
and operations taught below. It 1s described that the system
can be any kind of computer or embedded system. The
disclosed implementations may especially be used for low-
end devices, like wearable devices (e.g., watches), electronic
implants, sensory and control inirastructure devices, con-
trollers, supervisory control and data acquisition (SCADA)
systems, or the like. Moreover, the apparatuses, methods,
and systems described herein are not limited to physical
computing devices, but may also relate to software optimi-
zations for energy conservation and efliciency. As will
become readily apparent in the description below, the imple-
mentations of methods, apparatuses, and systems described
herein (whether 1n reference to hardware, firmware, soft-
ware, or a combination thereof) are vital to a ‘green tech-
nology’ future balanced with performance considerations.

Although the implementations herein are described with
reference to a processor, other implementations are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of implementations of the
disclosure can be applied to other types of circuits or
semiconductor devices that can benefit {from higher pipeline
throughput and improved performance. The teachings of
implementations of the disclosure are applicable to any
processor or machine that performs data manipulations.
However, the disclosure i1s not limited to processors or
machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit,
or 16 bit data operations and can be applied to any processor
and machine 1n which mampulation or management of data
1s performed. In addition, the description herein provides
examples, and the accompanying drawings show various
examples for the purposes of illustration. However, these
examples should not be construed in a limiting sense as they
are merely intended to provide examples of implementations
of the disclosure rather than to provide an exhaustive list of
all possible implementations of implementations of the
disclosure.

Although the above examples describe instruction han-
dling and distribution 1n the context of execution units and
logic circuits, other implementations of the disclosure can be
accomplished by way of a data or instructions stored on a
machine-readable, tangible medium, which when performed
by a machine cause the machine to perform functions
consistent with at least one implementation of the disclo-
sure. In one implementation, functions associated with
implementations of the disclosure are embodied 1n machine-
executable instructions. The instructions can be used to
cause a general-purpose or special-purpose processor that 1s
programmed with the instructions to perform the steps of the
disclosure. Implementations of the disclosure may be pro-
vided as a computer program product or software which may
include a machine or computer-readable medium having
stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform one or
more operations according to implementations of the dis-
closure. Alternatively, operations of implementations of the
disclosure might be performed by specific hardware com-
ponents that contain fixed-function logic for performing the
operations, or by any combination of programmed computer
components and fixed-function hardware components.

Instructions used to program logic to perform implemen-
tations of the disclosure can be stored within a memory in

US 10,754,960 B2

29

the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory

(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used 1n the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, nfrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium suwtable for storing or transmit-
ting electronic mstructions or information in a form readable
by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design 1n a number of manners. First, as 1s
useful 1n simulations, the hardware may be represented
using a hardware description language or another functional
description language. Additionally, a circuit level model
with logic and/or transistor gates may be produced at some
stages of the design process. Furthermore, most designs, at
some stage, reach a level of data representing the physical
placement of various devices 1n the hardware model. In the
case where conventional semiconductor fabrication tech-
niques are used, the data representing the hardware model
may be the data specilying the presence or absence of
various features on different mask layers for masks used to
produce the integrated circuit. In any representation of the
design, the data may be stored 1n any form of a machine
readable medium. A memory or a magnetic or optical
storage such as a disc may be the machine readable medium
to store information transmitted via optical or electrical
wave modulated or otherwise generated to transmit such
information. When an electrical carrier wave indicating or
carrying the code or design 1s transmitted, to the extent that
copying, builering, or re-transmission of the electrical signal
1s performed, a new copy 1s made. Thus, a communication
provider or a network provider may store on a tangible,
machine-readable medium, at least temporarly, an article,
such as information encoded 1nto a carrier wave, embodying
techniques of implementations of the disclosure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso-
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Theretfore, reference to
a module, 1n one 1mplementation, refers to the hardware,
which 1s specifically configured to recognize and/or execute
the code to be held on a non-transitory medium. Further-
more, 1n another implementation, use of a module refers to
the non-transitory medium including the code, which 1s
specifically adapted to be executed by the microcontroller to
perform predetermined operations. And as can be inferred,
in yet another implementation, the term module (in this
example) may refer to the combination of the microcon-
troller and the non-transitory medium. Often module bound-
aries that are illustrated as separate commonly vary and
potentially overlap. For example, a first and a second
module may share hardware, software, firmware, or a com-
bination thereof, while potentially retaining some indepen-

10

15

20

25

30

35

40

45

50

55

60

65

30

dent hardware, software, or firmware. In one implementa-
tion, use of the term logic includes hardware, such as
transistors, registers, or other hardware, such as program-
mable logic devices.

Use of the phrase ‘configured to,” 1n one implementation,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereotf that 1s not
operating 1s still ‘configured to’ perform a designated task 1f
it 1s designed, coupled, and/or interconnected to perform
said designated task. As a purely illustrative example, a logic
gate may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate 1s one coupled 1n some manner that
during operation the 1 or 0 output i1s to enable the clock.
Note once again that use of the term ‘configured to” does not
require operation, but mstead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent
state the apparatus, hardware, and/or element 1s designed to
perform a particular task when the apparatus, hardware,
and/or element 1s operating.

Furthermore, use of the phrases °‘to,” ‘capable of/to,’
and/or ‘operable to,” 1n one implementation, refers to some
apparatus, logic, hardware, and/or element designed 1n such
a way to enable use of the apparatus, logic, hardware, and/or
clement 1n a specified manner. Note as above that use of ‘to,’
‘capable to,” or ‘operable to,” in one implementation, refers
to the latent state of an apparatus, logic, hardware, and/or
clement, where the apparatus, logic, hardware, and/or ele-
ment 1s not operating but 1s designed 1n such a manner to
enable use of an apparatus 1n a specified manner.

A value, as used herein, includes any known representa-
tion ol a number, a state, a logical state, or a binary logical
state. Often, the use of logic levels, logic values, or logical
values 1s also referred to as 1°s and 0’s, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and O refers to a low logic level. In one
implementation, a storage cell, such as a transistor or flash
cell, may be capable of holding a single logical value or
multiple logical values. However, other representations of
values 1n computer systems have been used. For example the
decimal number ten may also be represented as a binary
value of 1010 and a hexadecimal letter A. Theretfore, a value
includes any representation of information capable of being
held 1n a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or mitial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one implementation,
refer to a default and an updated value or state, respectively.
For example, a default value potentially includes a high
logical value, 1.e. reset, while an updated value potentially
includes a low logical value, 1.e. set. Note that any combi-
nation of values may be utilized to represent any number of
states.

The implementations of methods, hardware, software,
firmware or code set forth above may be implemented via
mstructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read-
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (1.e., stores and/or
transmits) information in a form readable by a machine, such
as a computer or electronic system. For example, a non-

US 10,754,960 B2

31

transitory machine-accessible medium includes randome-ac-

cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
inirared signals, digital signals); etc., which are to be dis-
tinguished from the non-transitory mediums that may
receive miformation there from.

Instructions used to program logic to perform implemen-
tations of the disclosure may be stored within a memory in
the system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
a network or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information 1n a form readable by
a machine (e.g., a computer), but 1s not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Frasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.). Accordingly,
the computer-readable medium includes any type of tangible
machine-readable medium swtable for storing or transmit-
ting electronic mstructions or information in a form readable
by a machine (e.g., a computer)

Reference throughout this specification to “one imple-
mentation” or “an implementation” means that a particular
feature, structure, or characteristic described 1n connection
with the implementation 1s imncluded 1n at least one 1mple-
mentation ol the disclosure. Thus, the appearances of the
phrases “in one implementation™ or “in an implementation”
in various places throughout this specification are not nec-
essarily all referring to the same 1mplementation. Further-
more, the particular features, structures, or characteristics
may be combined 1n any suitable manner in one or more
implementations.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary implemen-
tations. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the disclosure as set
torth in the appended claims. The specification and drawings
are, accordingly, to be regarded 1n an 1llustrative sense rather
than a restrictive sense. Furthermore, the foregoing use of
implementation and other exemplarily language does not
necessarily refer to the same implementation or the same
example, but may refer to different and distinct implemen-
tations, as well as potentially the same implementation.

Some portions of the detailed description are presented 1n
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algo-
rithmic descriptions and representations are the means used
by those skilled in the data processing arts to most eflec-
tively convey the substance of their work to others skilled in
the art. An algorithm 1s, here and generally, concerved to be
a self-consistent sequence of operations leading to a desired
result. The operations are those requiring physical manipu-
lations of physical quantities. Usually, though not necessar-
ily, these quantities take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-

10

15

20

25

30

35

40

45

50

55

60

65

32

pared and otherwise manipulated. It has proven convenient
at times, principally for reasons of common usage, to refer
to these signals as bits, values, elements, symbols, charac-
ters, terms, numbers or the like. The blocks described herein
can be hardware, software, firmware or a combination
thereof.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as “defining,” “receiving,” “determining,” “issuing,” “link-
ing,” “associating,” “obtaining,” “authenticating,” “prohib-
iting,” “executing,” “requesting,” “communicating,” or the
like, refer to the actions and processes of a computing
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (e.g.,
clectronic) quantities within the computing system’s regis-
ters and memories into other data similarly represented as
physical quantities within the computing system memories
or registers or other such information storage, transmission
or display devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, mstance or illustration. Any
aspect or design described herein as “example’ or “exem-
plary” 1s not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of
the words “example” or “exemplary” 1s intended to present
concepts 1n a concrete fashion. As used in this apphcatlon
the term “or” 1s mtended to mean an inclusive “or” rather
than an exclusive “or.”” That 1s, unless specified otherwise, or
clear from context, “X includes A or B” 1s intended to mean
any ol the natural inclusive permutations. That 1s, 1f X
includes A; X includes B; or X includes both A and B, then
“X includes A or B” 1s satisfied under any of the foregoing
instances. In addition, the articles “a” and “an” as used 1n
this application and the appended claims should generally be
construed to mean “one or more” unless specified otherwise
or clear from context to be directed to a singular form.
Moreover, use of the term “‘an implementation” or “one
implementation” or “an implementation” or “one implemen-
tation” throughout 1s not intended to mean the same 1mple-
mentation or implementation unless described as such. Also,
the terms “first,” “second,” “third,” “fourth,” etc. as used

herein are meant as labels to distinguish among different
clements and may not necessarily have an ordinal meaning
according to their numerical designation.
What 1s claimed 1s:
1. A processor comprising:
a memory controller of a server; and
a hardware cryptographic engine coupled to the memory
controller, the hardware cryptographic engine compris-
ing a cache to store a key data structure, wherein the
key data structure 1s to store multiple keys for corre-
sponding multiple secure domains, each secure domain
comprising a different workload to be serviced by the
server, wherein the hardware cryptographic engine 1s
to:
receive a request to program a first secure domain 1nto
the hardware cryptographic engine, wherein the first
secure domain comprises a new workload to be
serviced by the server, and wherein the request
comprises first domain information;
determine whether there 1s an entry at a cache line of
the key data structure that 1s available to be written;

and

- 4

2L

bl) 4

US 10,754,960 B2

33

in response to a determination that the entry 1s avail-
able, store the first domain information in the entry
of the key data structure.

2. The processor of claim 1, wherein the first domain
information comprises a first key and a first domain 1denti-
fier for the first secure domain, and wherein the multiple
keys provide cryptographic isolation between ones of the
multiple secure domains.

3. The processor of claim 1, wherein the key data structure
1s indexed according to cache lines of the cache, with a
domain identifier of a secure domain corresponding to a
number associated with the cache line.

4. The processor of claim 1, wherein in response to a
determination that there 1s no entry available 1n the key data
structure, the hardware cryptographic engine 1s further to:

select a second secure domain to be de-scheduled,

wherein the second secure domain 1s indexed within the
key data structure at a second entry;

encrypt, with use of a platform key, second domain

information retrieved from the second entry for the
second secure domain, to generate a wrapped binary
large object (blob); and

store the wrapped blob 1n a determined region of system

memory that 1s indexed according to a domain 1denti-
fier of the second secure domain.

5. The processor of claim 4, wherein the hardware cryp-
tographic engine 1s further to store the first domain infor-
mation in the second entry of the key data structure.

6. The processor of claim 4, wherein the hardware cryp-
tographic engine 1s further to:

detect a memory access request to the second secure

domain;

read the wrapped blob from the system memory;

decrypt the wrapped blob, to generate the second domain

information; and

respond to the second domain information as a request to

program the second secure domain into the hardware
cryptographic engine.

7. The processor of claim 4, wherein upon boot of the
server, a basic input/output system (BIOS) 1s to store, within
a range register, reservation information to reserve the
determined region of the system memory for hardware, and
wherein the reservation information 1s utilized to program
the hardware cryptographic engine.

8. A server computing system comprising;:

a processor core including a memory controller coupled to

system memory; and

a hardware cryptographic engine coupled to the processor

core and the memory controller, the hardware crypto-
graphic engine comprising a key data structure to store
multiple keys {for corresponding multiple secure
domains;

wherein the processor core 1s to execute instructions to:

receive a request to program a first secure domain 1nto
the hardware cryptographic engine, wherein the
request comprises {irst domain information within a
first wrapped binary large object (blob); and
in response 1o the request and to a determination that
there 1s no available entry in the key data structure:
select a second secure domain to be de-scheduled,
wherein the second secure domain 1s 1ndexed
within the key data structure at a target entry;
1ssue a read key command to read second domain
information from the target entry of the key data
structure;

10

15

20

25

30

35

40

45

50

55

60

65

34

encrypt, with use of a platform key, the second
domain imnformation retrieved from the target entry
for the second secure domain, to generate a second
wrapped blob; and
store the second wrapped blob 1n a determined
region of the system memory.
9. The server computing system of claim 8, wherein the
first domain information comprises a first key and a first
domain 1dentifier for the first secure domain, and wherein
the multiple keys provide cryptographic 1solation between
ones of the multiple secure domains.
10. The server computing system of claim 8, wherein in
response to the request and to a first entry in the key data
structure being available, the processor core i1s further to
execute the mnstructions to:
perform an unwrap operation to decrypt the first wrapped
blob and generate the first domain information;

program the first secure domain into the hardware cryp-
tographic engine, wherein to program includes to store
the first domain mnformation 1n the first entry of the key
data structure; and

generate a cryptographic response indicative of a success-

tul unwrap of the first wrapped blob.
11. The server computing system of claim 8, wherein the
processor core 1s further to execute the instructions to:
perform an unwrap operation to decrypt the first wrapped
blob and generate the first domain information; and

program the first secure domain into the hardware cryp-
tographic engine, wherein to program includes to store
the first domain mformation 1n the target entry of the
key data structure.

12. The server computing system of claim 8, wherein the
processor core 1s further to execute the instructions to:

detect a memory access request to the second secure

domain;

read the second wrapped blob from the system memory at

a location corresponding to a domain 1dentifier of the
second secure domain; and

respond to the second wrapped blob as a request to

program the second secure domain into the hardware
cryptographic engine.

13. The server computing system of claim 8, wherein the
determined region of the system memory 1s indexed accord-
ing to domain identifiers of respective secure domains of the
multiple secure domains.

14. The server computing system of claim 8, wherein
upon boot of the server computing system, a basic mput/
output system (BIOS) 1s to store, within a range register,
reservation information to reserve the determined region of
the system memory for hardware that depends on a number
of the multiple secure domains, and wherein the reservation
information 1s utilized to program the hardware crypto-
graphic engine.

15. A non-transitory computer-readable medium storing
instructions, which when executed by a processor having a
core coupled to a system memory, cause the processor to
execute a plurality of logic operations comprising:

receiving a request to program a first secure domain nto

a hardware cryptographic engine of the processor,
wherein the request includes first domain information
within a first wrapped binary large object (blob);

in response to the request and to a determination that there

1s no available entry i a key data structure stored

within the hardware cryptographic engine:

selecting a second secure domain to be de-scheduled,
wherein the second secure domain 1s indexed within
the key data structure at a target entry;

US 10,754,960 B2

35

issuing a read key command to read second domain
information from the target entry of the key data
structure;

encrypting, using a platform key, the second domain
information retrieved from the target entry for the
second secure domain, to generate a second wrapped
blob; and

storing the second wrapped blob 1n a determined region
of the system memory.

16. The non-transitory computer-readable medium of
claim 15, wherein the first domain mformation comprises a
first key and a first domain identifier for the first secure
domain, wherein the key data structure 1s to store multiple
keys for corresponding multiple secure domains, and
wherein the multiple keys provide cryptographic 1solation
between ones of the multiple secure domains.

17. The non-transitory computer-readable medium of
claim 15, wherein 1n response to the request and to a first
entry in the key data structure being available, the plurality
of logic operations further comprises:

performing an unwrap operation to decrypt the first

wrapped blob and generate the first domain informa-
tion;

programming the first secure domain into the hardware

cryptographic engine, wherein programming includes
storing the first domain information in the first entry of
the key data structure; and

generating a cryptographic response indicative of suc-

cessiul unwrapping of the first wrapped blob.

10

15

20

25

36

18. The non-transitory computer-readable medium of
claim 15, wherein the plurality of logic operations further
COmprises:

performing an unwrap operation to decrypt the first

wrapped blob and generate the first domain informa-
tion; and

programming the first secure domain nto the hardware

cryptographic engine, wherein programming includes
storing the first domain information in the target entry
of the key data structure.

19. The non-transitory computer-readable medium of
claim 15, wherein the plurality of logic operations further
COmMprises:

detecting a memory access request to the second secure

domain;

reading the second wrapped blob from the system

memory at a location corresponding to a domain 1den-
tifier of the second secure domain; and

responding to the second wrapped blob as a request to

program the second secure domain into the hardware
cryptographic engine.

20. The non-transitory computer-readable medium of
claim 15, wherein the key data structure 1s to store multiple
keys for corresponding multiple secure domains, and
wherein the determined region of the system memory 1s
indexed according to domain 1dentifiers of respective secure
domains of the multiple secure domains.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

