US010754588B2

a2y United States Patent (10) Patent No.: US 10,754,588 B2

Guim Bernat et al. 45) Date of Patent: Aug. 25, 2020
(54) PERFORMING DATA OPERATIONS IN A GO6I 9/5027 (2013.01); GO6F 9/545
STORAGE AREA NETWORK (2013.01); HO4L 6771097 (2013.01)
_ _ (58) Field of Classification Search
(71) Applicant: Intel Corporation, Santa Clara, CA CPC ... GOGF 3/067; GOGF 9/5005; GOGF 8/433:
(US) GOGF 3/0647; GOG6F 9/545; GOGFE 9/4843;
HO4L 67/1097
(72) Inventors: Francesc Guim Bernat, Barcelona See application file for complete search history.
(ES); Kshitij A. Doshi, Tempe, AZ
(US); Daniel Rivas Barragan, Cologne (56) References Cited
DE
(DE) U.S. PATENT DOCUMENTS
(73) ASSlgnee: I-ILlthSel (j()I'I)()I‘a'tlt)llj Santa Claraj CA 754443500 Bl 253 10/2008 Jones ““““““““““ G06F 9/45533
(US) 712/228
2011/0093699 Al* 4/2011 Lovrien HO4L 63/06
(*) Notice: Subject to any disclaimer, the term of this 713/164
patent 1s extended or adjusted under 35 2016/0224482 Al* 82016 Murata ..o GO6F 13/24
U.S.C. 154(b) by 223 days. 2018/0260257 Al* 9/2018 Okada, GO6F 9/468

* cited b i
(21) Appl. No.: 15/476,875 Cited by examiner

Primary Examiner — Michael A Keller

(22) Filed: Mar. 31, 2017 (74) Attorney, Agent, or Firm — Compass IP Law PC

(65) Prior Publication Data (57) ABSTRACT
US 2018/0284993 Al Oct. 4, 20138 Technology for a controller 1n a storage area network (SAN)
node operable to perform data requests 1s described. The
(31) Int. CL controller can receive a data request from a remote node.
GO6F 3/06 (2006.01) The data request can specify a data payload and a type of
GoO6l" 9/54 (20006.01) operation associated with the data request. The controller
HO4L 29/08 (2006.01) can select a kernel from a kernel table stored in the memory
GO6F 9/48 (2006.01) based on a set of rules. The kernel can be matched to the data
GO6F 8/41 (2018.01) request in accordance with the set of rules. The kernel can
GO6F 9/50 (2006.01) be configured using a bit stream. The controller can execute
(52) U.S. CL the kernel 1n order to perform the data request in accordance
CPC GOo6l’ 3/067 (2013.01); GO6F 3/0626 with the data payload and the type of operation.
(2013.01); GO6F 3/0661 (2013.01); GO6F
8/433 (2013.01); GO6F 9/4843 (2013.01); 26 Claims, 8 Drawing Sheets
SAN 100

SAN Node(s) 105

- abric
H rotocol

H09

+ 4
----- L]

FPGA Control Legic
' 140 ?

001 |orUeIUl DLIdE

)

US 10,754,588 B2

Sheet 1 of 8

Aug. 25, 2020

U.S. Patent

RN RN LRl AN AL RN AN RN B E N AN RSN A ENE RN NN NN RSN NN NN NN]

* + & F -+ F S+ A d FFFA A+ A A FFFAd EFFdd FFF AT

+ 4+ + + F+ & + b +FFF+ Fh A FFEFEYFFFE R+ FY R FEFFYFF A FY o FAAd A b dFFEFA S F R+ A+ R F A A A F A FF SR FE A A R FFEF A A T

v + d A d FFrwd FFrd o+ A F

o

abric
foifelen)

+
:
R

L NN R NN RN NN LS AR RN RN E RN E NN NN NN

*rr d v+ F a1 ¥+ s F+r s nwrrry hsrdkFhadry b dryrryrrsrrrrdrdrkFessFdFs s FrdsgFdFrasdrryrasdrry kFessfFdErnFdFryr s s wrerrhsrdEssnFFdEFrgFrrrdrry s srrrsdrdsan

4 & = = § § & A 1 4 oA b B 4 4 A
4
1
L]

L&

aod oA oW oA A
£

IC
LOQ

4

2 a2 om

[
o

)

4 & a2

SAN Log
120
Mols

L]

FEGA

=TT E E S TTEEETEEE T

F/dwd+Forwredr b ddrdrorertddored+rw ot Fdd++Fwd+

SAN Node(s) 10

4 + 4 = @ . L ® 8 L 1 L @ B L . B B E L . @ @ L. 8 5 B 4 L 5 B S . @ 8 4§ 4L . @ B 4 4L B J L AL B B L L B B 4 4 L B 8 4 4+ L B B 4 L L B L 4 LBE I L " 4 4 . @ B 4 2 L B L 4 |} B 4 L 4 4 L B L L B B 4 L L B L 4 L | B

S ok b A ok ok p kA ko b B ko ok ko d koA ko4 d ok kodod

¥ w ol A d Fr b bk FF A FFF A FFErdd o rrdd FFdd s d F A d o F A FFF A Frddd e d FFrd L d b rw dFFErrd ey d A e+

+ v B+ v ¥+ 4 d ¥ F oA+ dd +Frw B ¥

U.S. Patent Aug. 25, 2020 Sheet 2 of 8 US 10,754,588 B2

Node 1 Switech SAN

Core NG
ENG(@Reg)

Extract |
parameters |

++++++++++++++++++ ++++++++++++++++++++

Control Logic

FabricACCSAN ReqgCneck (Kemil)

LOOKUD

/Nack, Metadata)

ENG(@Req)

+++

+
+

+++++++++++++++++++++++++++++++++++++

Exdract
parameters

+ -+
+
+ + + + + + + + + + +F F F F A+ FFFFFFEFFFEFFFEFFFEFEFEAFEFEFEAFEFEFEFEFEFEFEFEFEFEFEFFEFFEEFEFEFEEAFEFEEFEEFEEFEETE
+
+ +
+ + +

ICSAN_ListAces()

+ +
+++

+++++++++++++++++++++++++++++++++++++

L ist all kKernels
ang metadaia

+++++++++++++++++++++++++++++++++++++

Resp{List of Kemeis)

+ + +
+++

G, 2

U.S. Patent Aug. 25, 2020 Sheet 3 of 8 US 10,754,588 B2

Node 1 switeh SAN

Core NG
ENG(@Reg)

Control Logic

+ + + + + + + + + + + + +

-xiract f
parameters |

+
LB B N N N N RN BB EEEEBENEENENERENEREMNEIEINIEIEZSE.]

oAN Read/Wrie {(pavicad, Operation,
Accelergtionib=optional,
AcceleratiohClassibD=optional)

++

Find kKerned

matching ruie

+ + + + + + + + + + + + + +

+++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++

Ferform SAN

request

+ + + + + + + + + + + + + +

Resp

++

+ +F + ottt e+ttt e+ttt
+ + + + + + + + + + + + + +
LT

G 3

U.S. Patent Aug. 25, 2020 Sheet 4 of 8 US 10,754,588 B2

Heguest from remote
DrOCESSOr Or 10 Jevice

Hecaeived remote

+++++++++++++++++++++++++++++ ;eq, EeSE

402

+++

D= 04 Class = 408
Accelerstionil)

LoOKUD kernel
408

irigger
actiondi4

* Launch N
kernel 101
- | send .
| rasult 4121

Q)
T
O
i
T
et £
U} 3
O &
T
43
3
o

S. Patent Aug. 25, 2020 Sheet 5 of 8 S 10,754,588 B2

Storage Area Network (SANY 500

LA B B N R R BB EE BB EEBEEBEEBEBEBEEBEEBEEERBEEBEEEBEREBEEBEEBEEBEEEBERERBREBEEBELEBEBERBEBEBEEBEBEEERBEBEEEBREBEEREBEBEREBEBEBEBEEBEEBREEEBIELEBEBEREBEBEBEBEBEBEBEBEBEEBEEBEBEERBEBEEBEBEBEREBEBEBBEEBEEBEEREREBEBELEBEBEREBBEBEBEBEEBEBEBIEBEIEIBEBIEIBEIMBIENEBEIEBIENEIBIENEIEIIEIBIEIMEBIEIEEIEMEIIEJIIEIEZS:,.

Field Programmable Gate Array (FPGA)

210

+ + + + + + + + + + + + + + + + +F + + F +F F F A+ FFAFFAFEAFAFAFEAFFAFEAFFAFEAFFFEAFEFAFEFFEAFEAFEFEFEFEFEAFEFFEAFEFEFEFEFEFEAFEAFEFEFEFEFEAFEAFEFEAFEAFEFFEFEFEAFEAFEFEAFEAFEFEAFEFEFEAFEFFEFEFEFEAFEFEFEAFEFEFEAFEFFEAFEFEFEAFEFEFEAFEFFEFEFEFFEFFEFEFFEAFEFFEFEFFEFEFFEAFEFFEFEFFEAFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEAFEFFEAFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFE

FREGA Controller
220

LA B B N R BB EEEEBEBEEBEBEEBEBEBEEBERBEEERBEEBEEBEEBEBEBEBEEBEEBEERBERBEBEEEBERBEBEBEEBBEBEBEBEBEEEBEEBEBELEBEEBBEBEBEBEEBEBEBEBEEBEBEEBEEBEBEREBEBBEBERBEBEBEBEBEBEEBEEBEBEBEEBEREBEEBEBEBEEBEEREBEBEERBEEBELBEBEREBEBEBEBEBEBEBEBEEEBEBEEREBEBEBLEBEEBEBEEBIEBLEBIEBIEBEBIBEBIBIEIBEMNEBEBIEBEIEIEIENEIBIENEIIEIIIZIEIJIJENEIEEZS:,.

1. 5

U.S. Patent Aug. 25, 2020 Sheet 6 of 8 US 10,754,588 B2

00
[

Receive a data reguest from a remote node, wherein
the data reguest specifies a data payicad and a type

of operation associated with the data reguest c1U

select a kermnel from a kemnel table stored in the
memaory based on a set of rules, wherein the kKemel s
matchad (o the data request in accordance with the ¥\~ 820
set of rules, and the kemel 1s conhgured using a pi
stream

Execute the Kernel in order {0 perform the gats
request in accordance with the data payload and the 7\~ 630
type of operation

G, 6

U.S. Patent Aug. 25, 2020 Sheet 7 of 8 US 10,754,588 B2

700
[

Receiving, at a SAN node inciuded in the SAN, a data
request from a remote node, wherein the data reqguest

specifies a gata payioad and a type of operation -~ 740
associateg with the data reguest

selecting, at the SAN node, a kernel from a kemel
{able based on a set of rules, wherein the kemeal s
matchad {o the data request in accordance with the ¥\~ 720
set of rules, and the kemel 1s conhgured using a pi
stream

Executing, at the SAN node, the Kernel it order 1o
nerform the data request in accordance with the data P\~ 730
navicad and the type of operation

G 7

S. Patent Aug. 25, 2020 Sheet 8 of 8 S 10,754,588 B2

LR NN N BN BB S B EBEBEBEEBEEERBEEBEERBEREBEBERBEBEEBERBEEREBEEEBEEEBEEREBEBEBEBEEBEEBERBEREBEBEEEBELEBEEBBEBEBREBEBEEBEBEBEBEEEBEEBEEBEBEEEBEBEEBERBBEEBEREERBERBEBEBEBEEBEERBEBEREBEEBEEBEBEBEBEEBEBEBEBERBEEBEBRBRBEBEEBEBEEBEBEBEBEBRBEBEEBEBBEBEEBEBEREBEBBEBEBEBEBEBEBEBEERBBIEIEIMEIBEBNEBEIEIBIENEIEIEZNIEBJEIEBEZIZHM,.]

.

Memaory

804

+ + + + + ¥ + + + + + F +t +t F A+ttt

+ + + + + + + + + + + + + + ++ +r +t+t+t Attt Attt sttt ettt ottt ettt ettt ottt ottt sttt e+ttt ottt ottt ottt ettt ottt ottt sttt

Processons:

+
+ +
P N N N N N N N R N N N
+ +
+ +
+ *
+ +
+ +
+ *
+ +
+ +
N N A N N NN NN NN R EEEEEEE R R * R N A N N N N A N AN A NN N NN
+ + +
*
+ + +
+
* * *
+
+ + +
*
+ + +
+
* * *
+
+ + +
* n
+ + +
. >
* * *
+
+ + + -
* 5 "t
+ + +
+ H
* * *
+
+ + +
* + + i * +
+ L+
* * *
+ = H
+ + +
*
+ + +
+
* * *
+
+ + +
*
+ + +
+
* * *
+
+ + +
*
* * * L T]
- b L o
* * *
+ + + + + + + + + + + + + + + + + ++ ++ o+ttt
+
+
*
+
+
*
+
+
*
+
+
*
+
+
*
+
+
*
+
+
*
+ +
+
+
*
+
+
*
+
+
*
+

Lispiay

Sereen

+ + + + + + + + + ¥ + + + +F + + F + + F + + F +

L N I

G 8

US 10,754,588 B2

1

PERFORMING DATA OPERATIONS IN A
STORAGE AREA NETWORK

BACKGROUND

Data centers are facilities that house a plurality of com-
puting nodes. For example, a typical data center can include
hundreds or thousands of computing nodes. The computing
nodes can include processing capabilities to perform com-
puting and memory for data storage. Data centers can
include network switches and/or routers to enable commu-
nication between diflerent computing nodes 1n the data
center. Data centers can employ redundant or backup power
supplies, redundant data communications connections, envi-
ronmental controls (e.g., air conditioning, fire suppression)
and various security devices. In one example, data centers
can 1nclude a plurality of computing nodes that communi-
cate with each other over a high-speed storage area network
(SAN).

Data centers can employ various types of memory, such
as volatile memory or non-volatile memory. Non-limiting
examples ol volatile-memory include dynamic random
access memory (DRAM) and synchronous dynamic random
access memory (SDRAM). Non-limiting examples of non-
volatile memory include flash memory and solid-state stor-
age.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of invention embodiments will
be apparent from the detailed description which follows,
taken 1n conjunction with the accompanying drawings,
which together illustrate, by way of example, invention
features; and, wherein:

FIG. 1 1llustrates a SAN that includes a SAN node with
a field programmable gate array (FPGA) and FPGA control
logic 1n accordance with an example embodiment;

FIG. 2 illustrates a system and related operations for
determining whether a SAN node includes a specified kernel
and discovering a list of kernels maintained at the SAN node
in accordance with an example embodiment;

FIG. 3 illustrates a system and related operations for
running kernels at a SAN node to perform data operations in
accordance with an example embodiment;

FIG. 4 1s a flowchart 1llustrating operations for running,
kernels to perform data operations 1n accordance with an
example embodiment;

FIG. 5 illustrates a SAN node operable to perform data
requests 1n a SAN 1n accordance with an example embodi-
ment;

FIG. 6 1llustrates functionality of a controller in a SAN
node operable to perform data requests in accordance with
an example embodiment;

FIG. 7 depicts a tlowchart of a method for performing
data requests mn a SAN 1n accordance with an example
embodiment; and

FI1G. 8 1llustrates a computing system that includes a data
storage device 1n accordance with an example embodiment.

Reference will now be made to the exemplary embodi-
ments illustrated, and specific language will be used herein
to describe the same. It will nevertheless be understood that
no limitation on mvention scope 1s thereby intended.

DESCRIPTION OF EMBODIMENTS

Before the disclosed 1invention embodiments are
described, it 1s to be understood that this disclosure i1s not

10

15

20

25

30

35

40

45

50

55

60

65

2

limited to the particular structures, process steps, or mate-
rials disclosed herein, but 1s extended to equivalents thereof
as would be recognized by those ordinarily skilled in the
relevant arts. It should also be understood that terminology
employed herein 1s used for the purpose of describing
particular examples or embodiments only and 1s not
intended to be limiting. The same reference numerals 1n
different drawings represent the same element. Numbers
provided 1n flow charts and processes are provided for
clarity 1n 1illustrating steps and operations and do not nec-
essarily indicate a particular order or sequence.

Furthermore, the described features, structures, or char-
acteristics can be combined 1n any suitable manner in one or
more embodiments. In the following description, numerous
specific details are provided, such as examples of layouts,
distances, network examples, etc., to provide a thorough
understanding of wvarious invention embodiments. One
skilled 1n the relevant art will recognize, however, that such
detailed embodiments do not limit the overall imnventive
concepts articulated herein, but are merely representative
thereof.

As used 1n this specification and the appended claims, the
singular forms “a,” “an” and *“‘the” include plural referents
unless the context clearly dictates otherwise. Thus, for
example, reference to “a bit line” includes a plurality of such
bit lines.

Retference throughout this specification to “an example”
means that a particular feature, structure, or characteristic
described 1n connection with the example 1s included 1n at
least one embodiment of the present invention. Thus,
appearances ol the phrases “in an example” or “an embodi-
ment” 1 various places throughout this specification are not
necessarily all referring to the same embodiment.

As used herein, a plurality of items, structural elements,
compositional elements, and/or materials can be presented
in a common list for convenience. However, these lists
should be construed as though each member of the list 1s
individually identified as a separate and unique member.
Thus, no individual member of such list should be construed
as a de facto equivalent of any other member of the same list
solely based on their presentation in a common group
without indications to the contrary. In addition, various
embodiments and example of the present mnvention can be
referred to herein along with alternatives for the various
components thereof. It 1s understood that such embodiments,
examples, and alternatives are not to be construed as defacto
equivalents of one another, but are to be considered as
separate and autonomous representations under the present
disclosure.

Furthermore, the described features, structures, or char-
acteristics can be combined 1n any suitable manner 1n one or
more embodiments. In the following description, numerous
specific details are provided, such as examples of layouts,
distances, network examples, etc., to provide a thorough
understanding of invention embodiments. One skilled in the
relevant art will recognize, however, that the technology can
be practiced without one or more of the specific details, or
with other methods, components, layouts, etc. In other
instances, well-known structures, materials, or operations
may not be shown or described 1n detail to avoid obscuring
aspects of the disclosure.

In this disclosure, “comprises,” “comprising,” “contain-
ing” and “having” and the like can have the meaning
ascribed to them in U.S. Patent law and can mean
“includes,” “including,” and the like, and are generally
interpreted to be open ended terms. The terms “consisting
of” or “consists of” are closed terms, and include only the

A Y

US 10,754,588 B2

3

components, structures, steps, or the like specifically listed
in conjunction with such terms, as well as that which 1s 1n
accordance with U.S. Patent law. “Consisting essentially of”
or “consists essentially of” have the meaning generally
ascribed to them by U.S. Patent law. In particular, such terms
are generally closed terms, with the exception of allowing
inclusion of additional 1tems, materials, components, steps,
or elements, that do not materially aflect the basic and novel
characteristics or function of the 1tem(s) used 1n connection
therewith. For example, trace elements present in a compo-
sition, but not aflecting the compositions nature or charac-
teristics would be permissible if present under the “consist-
ing essentially of” language, even though not expressly
recited 1n a list of 1tems following such terminology. When
using an open ended term in this specification, like “com-
prising’ or “including,” it 1s understood that direct support
should be afforded also to “consisting essentially of” lan-
guage as well as “consisting of” language as 1f stated
explicitly and vice versa.

The terms ““first,” “second,” “third,” “fourth,” and the like
in the description and in the claims, if any, are used for
distinguishing between similar elements and not necessarily
for describing a particular sequential or chronological order.
It 1s to be understood that any terms so used are interchange-
able under appropriate circumstances such that the embodi-
ments described herein are, for example, capable of opera-
tion 1n sequences other than those illustrated or otherwise
described herein. Similarly, 11 a method 1s described herein
as comprising a series of steps, the order of such steps as
presented herein 1s not necessarily the only order 1n which
such steps may be performed, and certain of the stated steps
may possibly be omitted and/or certain other steps not
described herein may possibly be added to the method.

As used herein, comparative terms such as “increased,”
“decreased,” “better,” “worse,” “higher,” “lower,”
“enhanced,” and the like refer to a property of a device,
component, or activity that 1s measurably different from
other devices, components, or activities 1n a surrounding or
adjacent area, 1n a single device or in multiple comparable
devices, 1n a group or class, 1n multiple groups or classes, or
as compared to the known state of the art. For example, a
data region that has an “increased” risk of corruption can
refer to a region of a memory device which 1s more likely to
have write errors to 1t than other regions 1n the same memory
device. A number of factors can cause such increased risk,
including location, fabrication process, number of program
pulses applied to the region, etc.

As used herein, the term “‘substantially” refers to the
complete or nearly complete extent or degree of an action,
characteristic, property, state, structure, 1tem, or result. For
example, an object that 1s “substantially” enclosed would
mean that the object 1s either completely enclosed or nearly
completely enclosed. The exact allowable degree of devia-
tion from absolute completeness may 1n some cases depend
on the specific context. However, generally speaking the
nearness of completion will be so as to have the same overall
result as 1f absolute and total completion were obtained. The
use of “substantially” 1s equally applicable when used 1n a
negative connotation to refer to the complete or near com-
plete lack of an action, characteristic, property, state, struc-
ture, 1tem, or result. For example, a composition that 1s
“substantially free of” particles would either completely lack
particles, or so nearly completely lack particles that the
cllect would be the same as 11 1t completely lacked particles.
In other words, a composition that 1s “substantially free of”
an ingredient or element may still actually contain such item
as long as there 1s no measurable effect thereof.

10

15

20

25

30

35

40

45

50

55

60

65

4

As used herein, the term “about” 1s used to provide
flexibility to a numerical range endpoint by providing that a
given value may be “a little above™ or “a little below™ the
endpoint. However, 1t 1s to be understood that even when the
term “about” 1s used in the present specification 1 connec-
tion with a specific numerical value, that support for the
exact numerical value recited apart from the “about” termi-
nology 1s also provided.

Numerical amounts and data may be expressed or pre-
sented herein in a range format. It 1s to be understood that
such a range format i1s used merely for convenience and
brevity and thus should be 1nterpreted flexibly to include not
only the numerical values explicitly recited as the limits of
the range, but also to include all the individual numerical
values or sub-ranges encompassed within that range as it
cach numerical value and sub-range 1s explicitly recited. As
an 1llustration, a numerical range of “about 1 to about 57
should be interpreted to include not only the explicitly
recited values of about 1 to about 5, but also include
individual values and sub-ranges within the indicated range.
Thus, included 1n this numerical range are individual values
such as 2, 3, and 4 and sub-ranges such as from 1-3, from
2-4, and from 3-5, etc., aswellas 1, 1.5, 2, 2.3, 3, 3.8, 4, 4.6,
5, and 5.1 individually.

This same principle applies to ranges reciting only one
numerical value as a minimum or a maximum. Furthermore,
such an interpretation should apply regardless of the breadth
of the range or the characteristics being described.

An 1nitial overview of technology embodiments 1s pro-
vided below and then specific technology embodiments are
described in further detail later. This 1mitial summary 1is
intended to aid readers in understanding the technology
more quickly, but 1s not intended to 1dentily key or essential
technological features nor 1s 1t intended to limit the scope of
the claimed subject matter. Unless defined otherwise, all
technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skall
in the art to which this disclosure belongs.

Modern business applications can be increasingly struc-
tured as hundreds of modular services. In contrast to com-
plex monolithic servers utilized in the past, these modular
services can form a web of individually simple but densely
interactive components. These interactive components can
allow for seamless integration of sophisticated capabilities,
quick debugging, incremental testing, modular implemen-
tation and deployment, fault isolation, scalable orchestra-
tion, etc. However, the change from complex monolithic
servers to modular services with a dense number of inter-
active components has resulted 1n amplified interaction and
data crunching. For example, for a single macro operation
(e.g., a user-level commercial transaction), hundreds of
request-response interactions can potentially occur among
servers that each host these modular services. At each server,
milliseconds of latencies can add up as data in memory 1s
fetched, transformed, and stored a multitude of times for the
single macro operation. These data interactions can occur
hundreds or thousands of times per second across a large
service, which in certain situations, can produce latencies as
high as 700 milliseconds (ms).

While 1t may be possible to simply insert general purpose
processors at a storage node and execute functions on these
general purpose processors in the storage node, these general
purpose processors can become a bottleneck as data volume
grows. In addition, the storage node may be simultaneously
producing data to servers and consuming data from servers.
Therefore, the general purpose processors in the storage
node would be 1n demand for serving a large number of

US 10,754,588 B2

S

requestors. As compared to massively multi-core servers
with generous power budgets, these storage-side general
purpose processors would be fewer 1n number and subject to
power constraints; but at the same time they would be
burdened with handling an increased amount of data.

In the present technology, novel functionalities for remote
storage and novel fabric protocols for defining storage
topologies and rules are defined herein. These novel func-
tionalities for remote storage and novel fabric protocols can
be utilized mm a data center that utilizes a SAN. This
technology can be applicable when compute nodes provide
both data and dernived-data generated from that data (e.g.,
database metadata) over a network fabric for storage in a
memory store 1n the SAN, which can consume a relatively
large amount of network bandwidth. This technology can be
applicable when compute nodes provide a relatively large
amount of data over a network fabric to be stored 1n a
memory store in the SAN, especially when starting from a
relatively small working data set (e.g., from compact trans-
action data to indexes for analytics), which can again
consume a relatively large amount of network bandwidth.
This technology can be applicable to computing or stream-
ing elements, such as Internet of Things (IoT) devices, that
continuously send data streams for storage in a memory
store 1n the SAN. It 1s important to efliciently process these
data streams, which can be costly 1n terms of computation
and/or storage, 1n order to trigger responsive actions based
on events indicated by the data stream. In addition, this
technology can be applicable to scale-out architectures
where storage 1s used as a means ol sharing data and
coordinating 1ts processing, which can be costly 1n terms of
storage and network bandwidth.

In one example, the memory store 1n the SAN can include
a memory with volatile memory, nonvolatile memory
(NVM), or a combination thereof. Volatile memory 1s a
storage medium that requires power to maintain the state of
data stored by the medium. Exemplary memory can include
any combination of random access memory (RAM), such as
static random access memory (SRAM), dynamic random
access memory (DRAM), synchronous dynamic random
access memory (SDRAM), and the like. SDRAM memory
can include any variant thereof, such as single data rate
SDRAM (SDR DRAM) and double data rate (DDR)
SDRAM, including DDR, DDR2, DDR3, DDR4, DDR3,
and so on, described collectively as DDRx. In some

examples, DRAM complies with a standard promulgated by
JEDEC, such as JESD/9F for Double Data Rate (DDR)

SDRAM, JESD79-2F for DDR2 SDRAM, JESD79-3F for
DDR3 SDRAM, or JESD79-4A for DDR4 SDRAM (these
standards are available at www.jedec.org; DDRS SDRAM 1s
forthcoming). Such standards (and similar standards) may
be referred to as DDR-based standards, and communication
interfaces that implement such standards may be referred to
as DDR-based interfaces. In one specific example, the
system memory can be DRAM. In another specific example,
the system memory can be DDRx SDRAM.

NVM i1s a storage medium that does not require power to
maintain the state of data stored by the medium. Non-
limiting examples of NVM can include any or a combination
of solid state memory (such as planar or three-dimensional
(3D) NAND flash memory, NOR flash memory, or the like),
cross point array memory, including 3D cross point memory,
phase change memory (PCM), such as chalcogenide PCM,
non-volatile dual 1n-line memory module (NVDIMM), byte
addressable nonvolatile memory, ferroelectric memory (Fe-
RAM), silicon-oxide-nitride-oxide-silicon (SONOS)
memory, polymer memory (e.g., ferroelectric polymer

10

15

20

25

30

35

40

45

50

55

60

65

6

memory), ferroelectric transistor random access memory
(Fe-TRAM), spin transfer torque (STT) memory, nanowire
memory, e¢lectrically erasable programmable read-only
memory (EEPROM), magnetic storage memory, magnetore-
sistive random-access memory (MRAM), write 1n place
non-volatile MRAM (NVMRAM), nanotube RAM
(NRAM), and the like. These types of non-volatile memory
may be byte or block addressable. In some examples,
non-volatile memory can comply with one or more stan-
dards promulgated by the Joint Electron Device Engineering
Council (JEDEC), such as JESD218, JESD219, JESD220-1,
JESD223B, JESD223-1, or other suitable standard (the
JEDEC standards cited herein are available at www.je-
dec.org). In one specific example, the memory can be 3D
cross point memory. In another specific example, the
memory can be NAND or 3D NAND memory. In another
specific example, the system memory can be STT memory.

In the present technology, flexible, scalable, and low
latency data processing proximal to a storage medium can be
provided 1mn a SAN. The term “SAN” can refer to a tradi-
tional SAN architecture 1n which access to consolidated data
storage 1s provided, as well as a SAN architecture that
provides access to disaggregated storage. As described in
further detail below, low latency data processing can be
achieved using control logic within a SAN node. For
example, the control logic can be FPGA control logic. The
control logic can store multiple algorithms 1n the form of bit
streams to process mcoming/outgoing data from/to remote
entities or elements (e.g., compute nodes, IoT devices, etc.)
according to a set of dynamically configurable rules that
associate the bit streams to specific data streams. In other
words, each data stream can be processed differently
depending on an associated bit stream (as determined using
the set of dynamically configurable rules). More specifically,
cach bit stream (e.g., configuration data) can be used to
configure a kernel, and the kernel can be used to process a
corresponding data stream accordingly. The processing of a
data stream can 1nvolve storing a stream of data to a memory
store 1n the SAN, or reading a stream of data from a memory
store 1n the SAN. The set of dynamically configurable rules
can be applicable for specific stream identifiers (IDs), data
streams from specific compute nodes included n a list,
specific messages, etc.

In previous solutions, logic for handling data streams
to/from storage media was placed 1n or near a compute node
and accessed over local buses, such as Peripheral Compo-
nent Interconnect Express (PCle), Coherent Accelerator
Processor Interface (CAPI), etc., which can be overly cum-
bersome.

In contrast, 1n the present technology, logic (e.g., FPGA
logic) can be placed 1n a SAN, and the logic can be utilized
to handle data streams to/from storage media 1n the SAN,
thereby achieving faster and more power-etlicient execution.
In other words, the usage of the logic can result 1n acceler-
ated storage in the SAN. This solution (e.g., which utilizes
FPGA logic) can be provided as a service that 1s made
availlable for customization 1n a networked environment,
such that broad spectrum storage side processing require-
ments of diverse applications can be fulfilled seamlessly and
ciliciently. In the present technology, the logic for handling
data streams to/from storage media may not be part of a
single machine, and therefore, are highly available and
sharable.

The present technology can provide a number of benefits.
For example, logic can be placed in a shared storage service,
such as the SAN. The logic can be deployed 1n system
topologies with heterogeneous and low compute power

US 10,754,588 B2

7

devices, such as IoT devices. The logic can be used to create
autonomous 1intelligence at memory stores, by sending
operations for execution at/near memory stores, where such
operations can be executed over bulk mnput payloads arriving
from the memory stores and bulk output payloads (i1 appli-
cable) sent to the memory stores. The usage of the logic can
achieve greater power eiliciency, lower latency and reduces
network fabric bandwidth by performing offloadable data
transformations at/near memory stores. In addition, SAN
nodes can download and 1install logic functions either in-
flow or out-of-band from other SAN nodes in the SAN,
thereby providing for programmable storage logic that can
be shared horizontally across the SAN nodes in the SAN.

FIG. 1 1llustrates an exemplary SAN 100 that includes one
or more SAN node(s) 105 with a FPGA 110 and FPGA
control logic 140. The SAN 100 can include one or more
memory store(s) 150. The FPGA control logic 140 can be
novel logic that enables eflicient data storage of data in the
memory store(s) 150 using information (e.g., kernels) main-
tained at the FPGA 110. The memory store(s) 150 can
include volatile memory, NVM, or a combination thereof.
The SAN node 105 can include SAN logic 120 (e.g., logic
implementing existing functionalities) and a fabric interface
160. The fabric interface 160 can enable communication
between the SAN node 105 and compute elements (e.g.,
compute nodes, IoT devices) using a fabric protocol.

In one configuration, the FPGA control logic 140 (or
similar type of programmable logic) can process separate
streams of data (or data streams). For example, the FPGA
control logic 140 can enable the SAN node 105 to register
algorithms as bit streams (or FPGA bit streams). The bit
streams can refer to configuration data that 1s loaded into
FPGAs (as FPGAs are often configured from a serial bit
stream), although FPGAs can also support byte-parallel
loading. In other words, the bit streams can be used to
program the FPGA 110. In one example, the bit streams can
be used to configure kernels, which can function as pro-
grams or routines. A given kernel can be updated by modi-
tying a corresponding bit stream. Thus, the FPGA control
logic 140 can use the kernels to process streams of data
to/from one or more compute elements (e.g., compute nodes,
IoT devices) accordingly. The kernels can be maintained 1n
a kernel table by the FPGA 110 in the SAN node 105.

The FPGA control logic 140 can determine which kernel
to apply to the streams of data based on a set of dynamically
configurable rules. For example, the set of dynamically
configurable rules can specily that: a stream of data from a
particular compute element (or type of compute element,
such as an IOT device) 1s to be processed using a particular
kernel, a specific type of message 1s to be processing using,
a particular kernel, a stream of data with a specific stream 1D
1s to be processing using a particular kernel, etc. In other
words, the set of dynamically configurable rules can specily
which kernels (which are configured by corresponding bit
streams) are associated with certain streams of data.

The processing of the stream of data using a particular
kernel can involve storing the stream of data in the memory
store(s) 150, or the processing of the stream of data using a
particular kernel can involve reading the stream of data from
the memory store(s) 150. In other words, the FPGA control
logic 140 can use the kernels to process incoming/outgoing
streams of data. In addition, the processing of the stream of
data using a particular kernel can mvolve performing vari-
ous types of computations on the stream of data. Diflerent
kernels can function to perform different computations on a
given stream of data. For example, there can be different
kernels for performing a Fournier transformation, matrix

5

10

15

20

25

30

35

40

45

50

55

60

65

8

multiplication, etc. These computations can be performed on
a stream of data that 1s then stored in the memory store(s)
150, or these computations can be performed on a stream of
data that 1s read from the memory store(s) 150. There can
also be special types of kernels, such as security kernels, etc.
Theretfore, upon 1dentifying a stream of data (either from the
memory store 150 or received from the compute elements),
the FPGA control logic 140 can access the set of dynami-
cally configurable rules to determine which kernel (which 1s
configured by a corresponding bit stream) 1s to be applied to
the stream of data, and then the FPGA control logic 140 can
process the stream of data using a selected kernel.

In one example, the FPGA control logic 140 can select a
kernel to process a stream of data based on specified
parameters, such as an acceleration ID and/or an accelera-
tion class ID. The acceleration ID can associate message
data to a certain kernel (or bit stream). The acceleration class
ID can indicate a particular kernel type (or bit stream type),
such as a security kernel or bit stream. In one example, the
set of dynamically configurable rules can indicate that
certain kernels are to be utilized for specific acceleration 1Ds
or acceleration class IDs.

As an example, the FPGA control logic 140 1n the SAN
node 105 can receive a request to process (e.g., store) a
stream of data, and the request can be received from a
remote entity or element, such as a compute node or IoT
device. The FPGA control logic 140 can access the set of
dynamically configurable rules to determine which kernel
(or bit stream) 1s to be utilized to process the stream of data.
The FPGA control logic 140 can select an appropriate kernel
(or bit stream) based on the set of dynamically configurable
rules, and then process the stream of data accordingly. For
example, the stream of data can be written to the memory
store(s) 150 1n the SAN node 105 1n accordance with the
appropriate kernel (or bit stream).

In one example, the FPGA control logic 140 can receive
an input represented by IN(@InData), for example, and
using the kernel, the FPGA control logic 140 can produce an
output represented by OUT(@OutData), for example. In
other words, the FPGA control logic 140 can utilize the
kernel to perform a computation on the input to produce the
output, which can be represented by Compute((@inData,
(@OutData), for example.

In one example, the FPGA control logic 140 in the SAN
node 105 can receive a request for a data operation from a
remote node. The request can include a payload for input or
output. For example, when the remote node 1s sending the
request to process and store data, the payload can be
message data. When the remote node 1s requesting data from
storage, the payload can include data handles on the memory
store(s) 150 (1.e., a reference to certain resources in the
memory store(s) 150). In this case, the payload can be read
from the memory store(s) 150 and directed to the remote
node that sent the request.

In one example, the FPGA control logic 140 in the SAN
node 105 can generate messages to specified or pre-regis-
tered destinations when, during processing of a request,
certain conditions are triggered. As a non-limiting example,
if an IoT sensor 1s generating data which fails consistency
conditions, this event can be detected and flagged. In
response, a destination network interface controller (NIC)
can interrupt and convey notifications to exception handlers.

In one configuration, the FPGA control logic 140 can be
utilized to implement various flows, such as flows for:
determining whether the kernel table maintained by the
FPGA 110 1n the SAN node 105 includes a specified kernel,

discovering a list of kernels maintained by the FPGA 110 1n

US 10,754,588 B2

9

the SAN node 105, and running kernels to perform data
operations with streams of data (e.g., read and write opera-
tions, data computations). The FPGA control logic 140 can
process storage requests from other SAN nodes 1n the SAN
100 (i.e., other nodes 1n a data center). The FPGA control
logic 140 can manage the kernel table in the FPGA 110 using
kernel table control logic. For example, the FPGA control
logic 140 can register, de-register and control access to the
kernel table. In addition, the FPGA control logic 140 can
process storage requests targeting the SAN 100 and process
the storage requests with an appropriate kernel (or bit
stream).

In one configuration, the FPGA 110 can maintain the
kernel table, which can list the kernels supported by the
SAN node 105. The kernel table can be a structure contain-
ing the different types of kernels for processing specific
streams of data targeting the SAN 105. The kernel table can
include a plurality of entries, and each entry can include: an
ID of a kernel that 1s registered, a bit stream associated with
the kernel (1.e., used to configure the kernel), and a rule
specilying types of data to be processed by the kernel. The
ID of a given kernel can be umique among other kernel 1Ds
utilized by the SAN 100. A kernel ID can also be referred to
as a key. The bit stream can be a payload of a maximum of
X bytes, wherein X 1s an integer. A kernel size supported by
the SAN architecture can depend on cost and other product
constraints. The rule can define which streams of data are to
be processed by that particular kemnel (or bit stream). In
other words, all traflic targeting the SAN 100 that matches
a particular rule can be processed by a specific kernel
corresponding to that rule. The rule can specily that certain
kernels are to be utilized for specific acceleration IDs or
acceleration class IDs, and the rule can specily that certain
kernels are to be utilized for specific node IDs (e.g., on a
list). In one example, when a request (e.g., storage request)
from a compute entity matches more than one kernel 1n the
kernel table, one of the kernels can be selected based on a
priority order.

FI1G. 2 1llustrates an exemplary system and related opera-
tions for (1) determining whether a SAN node includes a
specified kernel and (2) discovering a list of kernels main-
tained at the SAN node. In this system, a first node (node 1)
can include a core (or processor) and a NIC. The first node
(node 1) can communicate with the SAN node via a switch.
More specifically, the first node (node 1) can communicate
with control logic (e.g., FPGA control logic) in the SAN
node via the switch.

With respect to determining whether the SAN node
includes the specified kernel (1.e., whether the SAN node
includes a copy of the specified kernel), an application
running on the core in the first node can 1nitiate an nstruc-
tion (e.g., ENG(@Reg) to be sent to the NIC in the first
node. The instruction can be for a given operation. In this
example, the operation can involve inquiring whether the
SAN node 1ncludes the specified kernel. The nstruction can
pass to the NIC a pointer (in memory) to parameters for the
given operation that 1s requested. The NIC can extract the
parameters from the memory (based on the pointer), and
then the NIC can proceed to execute a corresponding flow
based on the mstruction. In this example, the NIC can send
a message over the switch to the control logic in the SAN
node. The message can be represented by FabricAccSAN_
ReqCheck (KernellD), for example. In other words, this
message can be for inquiring whether the SAN node
includes the specified kernel. The message can include a
kernel 1D associated with the specified kernel. The control
logic in the SAN node can receive the message from the

10

15

20

25

30

35

40

45

50

55

60

65

10

NIC. The control logic 1n the SAN can look up the specified
kernel in a kernel table maintained by an FPGA 1n the SAN
node, and then return a response to the NIC. The response
can include an acknowledgement (ACK) when the kernel
table 1n the FPGA includes the specified kernel (based on the
kernel ID), or alternatively, the response can include a
negative acknowledgement (NACK) when the kernel table
in the FPGA does not include the specified kernel. The NIC
can forward the response to the core in the first node.

With respect to discovering the list of kernels maintained
at the SAN node, an application running on the core in the
first node can 1mitiate an instruction (e.g., ENG(@Reg) to be
sent to the NIC 1n the first node. The 1nstruction can be for
a given operation. In this example, the operation can involve
discovering the list of kernels maintained at the SAN node.
The 1nstruction can pass to the NIC a pointer (1n memory)
to parameters for the given operation that 1s requested. The
NIC can extract the parameters from the memory (based on
the pointer), and then the NIC can proceed to execute a
corresponding flow based on the instruction. In this
example, the NIC can send a message over the switch to the
control logic 1n the SAN node. The message can be repre-
sented by FabricAccSAN_ListAccs() for example. In other
words, this message can be for discovering the list of kernels
maintained at the SAN node. The control logic 1n the SAN
node can receive the message from the NIC. The control
logic 1n the SAN node can identify a list of kernels and
corresponding metadata from a kernel table maintained by
an FPGA 1n the SAN node, and then return a response to the
NIC. The response can include the list of kernels and
corresponding metadata. The NIC can forward the response
to the core 1n the first node.

In one configuration, control logic in the SAN node can
register a new kernel. For example, an application runmng
on a local node can provide a pointer to a memory region.
Information for registering the new kernel can be placed at
the pointer to the memory region. This information can
include a bit stream for a kernel, metadata, a kernel 1D, and
an 1dentification of a remote node (1.e., the SAN node) 1n
which the kernel 1s to be registered. A requestor NIC 1n the
local node can extract the information for registering the
new kernel based on the pointer to the memory region, and
then generate a fabric FPGA registration message. The
tabric FPGA registration message can be provided to the
remote node, and the fabric FPGA registration message can
include the extracted immformation for registering the new
kernel. The remote node can determine, via the control logic
(e.g., FPGA control logic), whether a size of the bit stream
exceeds a supported size. When the size of the bit stream
does not exceed the supported size, the control logic can
proceed to register the new kernel (as identified in the
information included 1n the fabric FPGA registration mes-
sage). When the remote node does not have free space to
allocate the new kernel, the control logic can send an error
message to the NIC 1n the local node.

FIG. 3 i1llustrates an exemplary system and related opera-
tions for running kernels at a SAN node to perform data
operations. In this system, a first node (node 1) can include
a core (or processor) and a NIC. The first node (node 1) can
communicate with the SAN node via a switch. More spe-
cifically, the first node (node 1) can communicate with
control logic (e.g., FPGA control logic) in the SAN node via
the switch.

In one configuration, an application running on the core 1n
the first node (node 1) can initiate an instruction (e.g.,
ENG(@Reg) to be sent to the NIC 1n the first node. The

instruction can be for a given operation. In this example, the

US 10,754,588 B2

11

operation can ivolve requesting a read/write data operation
to be performed at the SAN node using an appropriate
kernel. The mstruction can pass to the NIC a pointer (in
memory) to parameters for the given operation that 1s
requested. The NIC can extract the parameters from the
memory (based on the pointer), and then the NIC can
proceed to execute a corresponding flow based on the
istruction. In this example, the NIC can send a message
over the switch to the control logic 1n the SAN node. The
message can be represented by SAN_Read/Write, for
example. In other words, the message can be a request for
performing read/write data operations at the SAN node
using an appropriate kernel. The message can include a
payload (1.e., data to be written to memory in the SAN or an
indication of data to be read from memory 1n the SAN) and
a type of operation to be performed. As optional parameters,
the message can include an acceleration ID and/or an
acceleration class ID.

The control logic i the SAN node can receive the
message from the NIC. The control logic 1n the SAN can
identify an appropriate kernel to fulfill the request for the
read/write data operation, and the appropriate kernel can be
identified using a kernel matching rule. The control logic can
possibly use the acceleration ID and/or acceleration class 1D
when selecting the appropriate kernel. The control logic can
run the kernel i order to perform the read/write data
operation requested by the first node (node 1). For example,
the control logic can fulfill the request by reading data from
a memory store 1n the SAN (a read operation) or writing data
to a memory store in the SAN (a write operation), and the
read/write operation can be performed based on the payload
and operation parameters included in the message. The
control logic can fulfill the request, and then provide a
response acknowledging that the request has been fulfilled to
the NIC. The NIC can forward the response to the core in the
first node.

In one configuration, a compute element can generate a
network attached storage (NAS) read/write request message.
A NIC 1 the compute element can provide the NAS
read/write request message to a SAN node. The NAS
read/write request message can explicitly specily an accel-
eration ID or an acceleration class ID. Otherwise, control
logic in the SAN node can determine that the NAS read/
write request message matches a specific rule, and the
control logic can provide the NAS read/write request mes-
sage to a corresponding FPGA kernel in the SAN node. The
FPGA kemel can be run to perform the NAS read/write
request, and a result can be provided to a requestor (i.e., the
compute element).

FI1G. 4 1s a flowchart illustrating exemplary operations for
running kernels to perform data operations. In block 402, a
request can be received from a remote processor or IoT
device. In block 404, an acceleration 1D can be identified
from the request. In block 406, an acceleration class ID can
be 1dentified from the request. In block 408, an FPGA kernel
table can be looked up based on information included 1n the
request (e.g., acceleration ID and/or acceleration class ID).
A particular kernel can be selected from the FPGA kernel
table, and 1n block 410, the selected FPGA kernel table can
be launched to fulfill that particular request. In one example,
the request can specily a payload. Depending on the opera-
tion to be performed, the payload can be an mput, an output,
or both an mput and an output. In block 416, launching the
selected kernel can cause a payload to be read from storage
in accordance with the request. In block 418, launching the
selected kernel can cause a payload to be written to storage
in accordance with the request. In another example, the

10

15

20

25

30

35

40

45

50

55

60

65

12

request can identily a destination node for an output (or
results). In block 410, upon launching the kernel, the output
(or results) can be sent or streamed to the destination node.
In yet another example, during execution of the selected
kernel, conditions or events can be identified that trigger
specific actions, as 1n block 414. These specific actions can
involve communicating information to certain nodes, and
these nodes may or may not be the same as the destination
node (or storage device) that recerves the output (or results).
Therefore, 1n some cases, the request can be for writing/
reading data from storage, but in other cases, the request can
trigger the performance of other specific actions.

FIG. 5 illustrates a SAN node 500 operable to perform
data requests 1n a SAN. The SAN node 500 can include a
FPGA 510 that includes a kernel table. The SAN node 500
can include an FPGA controller 520. The FPGA controller
520 can recerve a data request from a remote node. The data
request can specily a data payload and a type of operation
associated with the data request. The FPGA controller 520
can select a kernel from the kernel table based on a set of
rules. The kernel can be matched to the data request in
accordance with the set of rules. The kernel can be config-
ured using a bit stream. The FPGA controller 520 can
execute the kernel 1n order to perform the data request 1n
accordance with the data payload and the type of operation.

FIG. 6 illustrates functionality of a controller 1n a SAN
node operable to perform data requests. The controller can
receive a data request from a remote node, wherein the data
request specifies a data payload and a type of operation
associated with the data request, as 1 block 610. The
controller can select a kernel from a kernel table stored in the
memory based on a set of rules, wherein the kernel 1s
matched to the data request in accordance with the set of
rules, and the kernel 1s configured using a bit stream, as in
block 620. The controller can execute the kernel in order to
perform the data request in accordance with the data payload
and the type of operation, as 1n block 630.

Another example provides a method 700 for performing
data requests 1n a SAN, as shown i the flow chart 1n FIG.
7. The method can be executed as instructions on a machine,
where the 1nstructions are icluded on at least one computer
readable medium or one non-transitory machine readable
storage medium. The method can include the operation of:
receiving, at a SAN node mncluded 1n the SAN, a data request
from a remote node, wherein the data request specifies a data
payload and a type of operation associated with the data
request, as 1 block 710. The method can include the
operation of: selecting, at the SAN node, a kernel from a
kernel table based on a set of rules, wherein the kernel 1s
matched to the data request in accordance with the set of
rules, and the kernel 1s configured using a bit stream, as in
block 720. The method can include the operation of: execut-
ing, at the SAN node, the kernel 1n order to perform the data
request 1n accordance with the data payload and the type of
operation, as in block 730.

FIG. 8 illustrates a general computing system or device
800 that can be employed in the present technology. The
computing system 800 can include a processor 802 1n
communication with a memory 804. The memory 804 can
include any device, combination of devices, circuitry, and
the like that i1s capable of storing, accessing, organizing,
and/or retrieving data. Non-limiting examples include SANs
(Storage Area Network), cloud storage networks, volatile or
non-volatile RAM, phase change memory, optical media,
hard-drive type media, and the like, including combinations
thereof.

US 10,754,588 B2

13

The computing system or device 800 additionally
includes a local communication interface 806 for connec-
tivity between the various components of the system. For
example, the local communication interface 806 can be a
local data bus and/or any related address or control busses as
may be desired.

The computing system or device 800 can also 1include an
I/O (mput/output) mterface 808 for controlling the I/O
functions of the system, as well as for I/O connectivity to
devices outside of the computing system 800. A network
interface 810 can also be included for network connectivity.
The network interface 810 can control network communi-
cations both within the system and outside of the system.
The network interface can include a wired interface, a
wireless interface, a Bluetooth interface, optical interface,
and the like, including appropriate combinations thereof.
Furthermore, the computing system 800 can additionally
include a user interface 812, a display device 814, as well as
various other components that would be beneficial for such
a system.

The processor 802 can be a single or multiple processors,
and the memory 804 can be a single or multiple memories.
The local communication interface 806 can be used as a
pathway to facilitate communication between any of a single
processor, multiple processors, a single memory, multiple
memories, the various interfaces, and the like, 1n any usetul
combination.

Various techniques, or certain aspects or portions thereof,
can take the form of program code (1.e., 1nstructions) embod-
ied 1n tangible media, such as tloppy diskettes, CDD-ROMs,
hard drives, non-transitory computer readable storage
medium, or any other machine-readable storage medium
wherein, when the program code 1s loaded 1nto and executed
by a machine, such as a computer, the machine becomes an
apparatus for practicing the various techniques. Circuitry
can include hardware, firmware, program code, executable
code, computer 1nstructions, and/or software. A non-transi-
tory computer readable storage medium can be a computer
readable storage medium that does not include signal. In the
case of program code execution on programmable comput-
ers, the computing device can include a processor, a storage
medium readable by the processor (including volatile and
non-volatile memory and/or storage elements), at least one
input device, and at least one output device. The volatile and
non-volatile memory and/or storage eclements can be a
RAM, EPROM, flash drive, optical drive, magnetic hard
drive, solid state drive, or other medium for storing elec-
tronic data. The node and wireless device can also include a
transceiver module, a counter module, a processing module,
and/or a clock module or timer module. One or more
programs that can implement or utilize the various tech-
niques described herein can use an application programming,
interface (API), reusable controls, and the like. Such pro-
grams can be implemented 1n a high level procedural or
object oriented programming language to communicate with
a computer system. However, the program(s) can be imple-
mented 1n assembly or machine language, 11 desired. In any
case, the language can be a compiled or interpreted lan-
guage, and combined with hardware implementations.
Exemplary systems or devices can include without limita-
tion, laptop computers, tablet computers, desktop comput-
ers, smart phones, computer terminals and servers, storage
databases, and other electronics which utilize circuitry and
programmable memory, such as household appliances,
smart televisions, digital video disc (DVD) players, heating,
ventilating, and air conditioming (HVAC) controllers, light
switches, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

14
EXAMPLES

The following examples pertaimn to specific invention
embodiments and point out specific features, elements, or
steps that can be used or otherwise combined 1n achieving
such embodiments.

In one example there 1s provided a storage area network
(SAN) node a field programmable gate array (FPGA) that
includes a kernel table, and an FPGA controller comprising
logic to recerve a data request from a remote node, wherein
the data request specifies a data payload and a type of
operation associated with the data request, select a kernel
from the kernel table based on a set of rules, wherein the
kernel 1s matched to the data request 1n accordance with the
set of rules, and the kernel 1s configured using a bit stream,
and execute the kernel 1n order to perform the data request
in accordance with the data payload and the type of opera-
tion.

In one example of a SAN node, the type of operation
specified 1n the data request includes a read operation, and
the FPGA controller performs the data request by reading
the data payload from a storage device.

In one example of a SAN node, the type of operation
specified 1n the data request includes a write operation, and
the FPGA controller performs the data request by writing the
data payload to a storage device.

In one example of a SAN node, the FPGA controller 1s
configured to maintain the kernel table with a plurality of
entries, wherein the kernel table 1s stored in the FPGA, and
cach entry includes: an identifier of a kernel that 1s regis-
tered, a bit stream associated with the kernel, and a rule
speciiying types of data to be processed by the kernel.

In one example of a SAN node, the data request includes
one or more of: an 1dentifier that associates the data request
with a particular kernel, or a class parameter that associates
the data request with a particular type of kernel.

In one example of a SAN node, the FPGA controller 1s
configured to perform an action that 1s triggered by the data
request, and results of the action are provided to one or more
remote nodes.

In one example of a SAN node, the FPGA controller 1s
configured to receive, from an application executing on the
remote node, a message requesting whether the FPGA
includes a kernel, determine, using the kernel table, whether
the FPGA 1ncludes the kernel; and provide, to the remote
node, an acknowledgement (ACK) when the FPGA includes
the kernel or a negative acknowledgement (NACK) when
the FPGA does not include the kernel.

In one example of a SAN node, the FPGA controller 1s
configured to recerve, from an application executing on the
remote node, a message requesting a list of kernels included
in the kernel table, generate the list of kernels using the
kernel table, and the list includes metadata for each kernel
on the list, and provide the list of kernels to the remote node.

In one example of a SAN node, the FPGA controller 1s
configured to receive a request to register a kernel, wherein
the request 1includes: a pointer to a memory region in which
the bit stream for the kernel 1s stored, a kernel 1dentifier and
kernel metadata, Verlfy that a size of the kernel does not
exceed a supported size, and register the kernel by adding
the kernel to the kernel table.

In one example of a SAN node, the set of rules are a set
of dynamically configurable rules that associate certain
kernels in the kernel table to certain types of data requests.

In one example of a SAN node, the SAN node 1s com-
municatively coupled to network attached storage (NAS) or
disaggregated storage.

US 10,754,588 B2

15

In one example there 1s provided a controller 1n a storage
area network (SAN) node, the controller comprising logic to
receive a data request from a remote node, wherein the data
request specifies a data payload and a type of operation
associated with the data request, select a kernel from a
kernel table stored 1in the memory based on a set of rules,
wherein the kernel 1s matched to the data request in accor-
dance with the set of rules, and the kernel 1s configured using
a bit stream, and execute the kernel 1n order to perform the
data request in accordance with the data payload and the
type of operation.

In one example, of a controller, the controller further
comprises logic to perform the data request by reading the
data payload from a storage device when the type of
operation specified in the data request 1s a read operation, or
perform the data request by writing the data payload to a
storage device when the type of operation specified 1n the
data request 1s a write operation.

In one example, of a controller, the kernel table includes
a plurality of entries, and each entry includes an 1dentifier of
a kernel that 1s registered, a bit stream associated with the
kernel, and a rule specitying types of data to be processed by
the kernel.

In one example, of a controller, the data request includes
one or more of an 1dentifier that associates the data request
with a particular kernel, or a class parameter that associates
the data request with a particular type of kernel.

In one example, of a controller, the controller further
comprises logic to perform an action that 1s triggered by the
data request, and results of the action are provided to one or
more remote nodes.

In one example, of a controller, the set of rules are a set
of dynamically configurable rules that associate certain
kernels 1n the kernel table to certain types of data requests.

In one example, there 1s provided a method comprising
receiving, at a SAN node included 1n the SAN, a data request
from a remote node, wherein the data request specifies a data
payload and a type of operation associated with the data
request, selecting, at the SAN node, a kernel from a kernel
table based on a set of rules, wherein the kernel 1s matched
to the data request in accordance with the set of rules, and
the kernel 1s configured using a bit stream, and executing, at
the SAN node, the kernel 1n order to perform the data request
in accordance with the data payload and the type of opera-
tion.

In one example, a method further comprises performing
the data request by reading the data payload from a storage
device when the type of operation specified in the data
request 1s a read operation, or performing the data request by
writing the data payload to a storage device when the type
of operation specified 1n the data request 1s a write operation.

In one example, a method comprises performing an action
that 1s triggered by the data request, and results of the action
are provided to one or more remote nodes.

In one example, a method comprises receiving, from an
application executing on the remote node, a message
requesting whether the kernel table includes a kernel, deter-
mimng whether the kernel table includes the kernel, and
providing, to the remote node, an acknowledgement (ACK)
when the kernel table includes the kernel or a negative
acknowledgement (NACK) when the kernel table does not
include the kernel.

In one example, a method comprises receiving, from an
application executing on the remote node, a message
requesting a list of kernels included in the kernel table,
generating the list of kernels using the kernel table, and the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

list 1includes metadata for each kernel on the list, and
providing the list of kernels to the remote node.

In one example, a method comprises receiving a request
to register a kernel, wherein the request includes: a pointer
to a memory region in which the bit stream for the kernel 1s
stored, a kernel 1dentifier and kernel metadata, verifying that
a size of the kernel does not exceed a supported size, and
registering the kernel by adding the kernel to the kernel
table.

In one example there 1s provided a networked system of
storage area network (SAN) nodes 1n a SAN, comprising a
memory store, and a plurality of SAN nodes, wherein each
SAN node in the plurality of SAN nodes includes a con-
troller comprising logic to recerve a data request that speci-
fies a data payload and a type of operation associated with
the data request, select a kernel from the kernel table based
on a set of rules, wherein the kernel 1s matched to the data
request 1n accordance with the set of rules, and execute the
kernel 1n order to perform the data request in accordance
with the data payload and the type of operation.

In one example of a networked system of SAN nodes, the
type of operation specified in the data request includes a read
operation, and the controller performs the data request by
reading the data payload from the memory store.

In one example of a networked system of SAN nodes, the
type ol operation specified 1n the data request includes a
write operation, and the controller performs the data request
by writing the data payload to the memory store.

While the forgoing examples are illustrative of the prin-
ciples of mvention embodiments 1n one or more particular
applications, it will be apparent to those of ordinary skill 1in
the art that numerous modifications in form, usage and
details of implementation can be made without the exercise
of mventive faculty, and without departing from the prin-
ciples and concepts of the disclosure.

What 1s claimed 1s:

1. A storage area network (SAN) node comprising:

a field programmable gate array (FPGA) that includes a

kernel table; and

an FPGA controller comprising logic to:

receive a data stream from a remote node, wherein the
data stream specifies a data payload and a type of
operation associated with the data stream;

select a kernel from the kernel table based on a set of
dynamically configurable rules, wherein the kernel 1s
matched to the data stream 1n accordance with the set
of dynamically configurable rules, and the kernel 1s
configured using a bit stream; and

execute the kernel 1n order to perform a computation on
the data stream 1n accordance with the data payload
and the type of operation.

2. The SAN node of claim 1, wherein the type of operation
speciflied 1n the data stream includes a read operation, and
the FPGA controller performs the computation on the data
stream by reading the data payload from a storage device.

3. The SAN node of claim 1, wherein the type of operation
speciflied 1n the data stream includes a write operation, and
the FPGA controller performs the computation on the data
stream by writing the data payload to a storage device.

4. The SAN node of claim 1, wherein the FPGA controller
1s configured to maintain the kernel table with a plurality of
entries, wherein the kernel table 1s stored in the FPGA, and
cach entry includes: an identifier of a kernel that 1s regis-
tered, a bit stream associated with the kernel, and a rule
specilying types of data streams to be processed by the
kernel.

US 10,754,588 B2

17

5. The SAN node of claim 1, wherein the data stream
includes one or more of: an identifier that associates the data
stream with a particular kernel, or a class parameter that

associates the data stream with a particular type of kernel.
6. The SAN node of claim 1, wherein the FPGA controller
1s configured to perform an action that 1s triggered by the

data stream, and results of the action are provided to one or
more remote nodes.

7. The SAN node of claim 1, wherein the FPGA controller

1s configured to:
receive, from an application executing on the remote
node, a message requesting whether the FPGA 1ncludes

a kernel:;
determine, using the kernel table, whether the FPGA

includes the kernel; and

provide, to the remote node, an acknowledgement (ACK)
when the FPGA includes the kernel or a negative
acknowledgement (NACK) when the FPGA does not
include the kernel.

8. The SAN node of claim 1, wherein the FPGA controller

1s configured to:
receive, from an application executing on the remote
node, a message requesting a list of kernels included in
the kernel table:
generate the list of kernels using the kernel table, and the
l1st includes metadata for each kernel on the list; and
provide the list of kernels to the remote node.

9. The SAN node of claim 1, wherein the FPGA controller
1s configured to:

receive a request to register a kernel, wherein the request

includes: a pointer to a memory region 1n which the bit
stream for the kernel 1s stored, a kernel i1dentifier and
kernel metadata;

verily that a size of the kernel does not exceed a supported

size; and

register the kernel by adding the kernel to the kernel table.

10. The SAN node of claim 1, wherein the set of dynami-
cally configurable rules associate certain kernels in the
kernel table to certain types of data streams.

11. The SAN node of claim 1, wherein the SAN node 1s
communicatively coupled to network attached storage
(NAS) or disaggregated storage.

12. An apparatus comprising:

a controller 1n a storage area network (SAN) node, the

controller comprising logic to:

recelve a data stream from a remote node, wherein the
data stream specifies a data payload and a type of
operation associated with the data stream:;

select a kernel from a kernel table stored in the memory
based on a set of dynamically configurable rules,
wherein the kernel 1s matched to the data stream 1n
accordance with the set of dynamically configurable
rules, and the kernel 1s configured using a bit stream:;
and

execute the kernel 1n order to perform a computation on
the data stream 1n accordance with the data payload
and the type of operation.

13. The apparatus of claim 12, further comprising logic to:

perform the computation on the data stream by reading

the data payload from a storage device when the type
of operation specified in the data stream 1s a read
operation; or

perform the computation on the data stream by writing the

data payload to a storage device when the type of
operation specified 1n the data stream 1s a write opera-
tion.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

14. The apparatus of claim 12, wherein the kernel table
includes a plurality of entries, and each entry includes: an
identifier of a kernel that 1s registered, a bit stream associ-
ated with the kernel, and a rule specitying types of data to
be processed by the kernel.

15. The apparatus of claim 12, wherein the data stream
includes one or more of: an identifier that associates the data
stream with a particular kernel, or a class parameter that
associates the data stream with a particular type of kernel.

16. The apparatus of claim 12, further comprising logic to
perform an action that 1s triggered by the data stream, and
results of the action are provided to one or more remote
nodes.

17. The apparatus of claim 12, wherein the set of dynami-
cally configurable rules associate certain kernels in the
kernel table to certain types of data streams.

18. A method comprising:

recerving, at a storage area network (SAN) node, a data

stream from a remote node, wherein the data stream
specifies a data payload and a type of operation asso-
ciated with the data stream:

selecting, at the SAN node, a kernel from a kernel table

based on a set of dynamically configurable rules,
wherein the kernel 1s matched to the data stream in
accordance with the set of dynamically configurable
rules, and the kernel i1s configured using a bit stream;
and

executing, at the SAN node, the kernel 1n order to perform

a computation on the data stream 1n accordance with
the data payload and the type of operation.

19. The method of claim 18, further comprising:

performing the computation on the data stream by reading

the data payload from a storage device when the type
of operation specified in the data stream 1s a read
operation; or

performing the computation on the data stream by writing

the data payload to a storage device when the type of
operation specified 1n the data stream 1s a write opera-
tion.

20. The method of claim 18, further comprising perform-
ing an action that 1s triggered by the data stream, and results
of the action are provided to one or more remote nodes.

21. The method of claim 18, further comprising:

receiving, from an application executing on the remote

node, a message requesting whether the kernel table
includes a kernel;

determining whether the kernel table includes the kernel;

and

providing, to the remote node, an acknowledgement

(ACK) when the kernel table includes the kernel or a
negative acknowledgement (NACK) when the kernel
table does not 1include the kernel.

22. The method of claim 18, further comprising;

receiving, from an application executing on the remote

node, a message requesting a list of kernels included 1n
the kernel table;

generating the list of kernels using the kernel table, and

the list includes metadata for each kernel on the list;
and

providing the list of kernels to the remote node.

23. The method of claim 18, further comprising;

recerving a request to register a kernel, wherein the

request includes: a pointer to a memory region in which
the bit stream for the kernel 1s stored, a kernel 1dentifier
and kernel metadata;

veritying that a size of the kernel does not exceed a

supported size; and

US 10,754,588 B2
19 20

registering the kernel by adding the kernel to the kernel

table.

24. A system comprising;:

a memory store; and

a plurality of storage area network (SAN) nodes, 5

wherein each SAN node 1n the plurality of SAN nodes

includes a controller comprising logic to:

receive a data stream that specifies a data payload and a

type of operation associated with the data stream;

select a kernel from the kernel table based on a set of 10

rules, wherein the kernel 1s matched to the data stream
in accordance with the set of dynamically configurable
rules; and

execute the kernel in order to perform a computation on

the data stream 1n accordance with the data payload and 15
the type of operation.

25. The system of claim 24, wherein the type of operation
specified 1n the data stream includes a read operation, and
the controller performs the data stream by reading the data
payload from the memory store. 20

26. The system of claim 24, wherein the type of operation
specified 1n the data stream includes a write operation, and
the controller performs the data stream by writing the data
payload to the memory store.

¥ ¥ # ¥ ¥ 25

	Front Page
	Drawings
	Specification
	Claims

